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Abstract: Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant ac-
tivation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma
progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway
showed less efficiency in clinical trials than might have been expected, since the suppression of the
PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of
compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and
acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can
be expressed in the form of genetically divergent subpopulations including a small fraction of cancer
stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass.
Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface
proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust
marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and
drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of
melanoma progression, drug resistance, and recurrence is reviewed.
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1. Introduction

Human malignant melanoma is a highly aggressive skin cancer characterized by its
heterogeneity, propensity to metastasize to distant organs, and the potential for devel-
oping resistance to conventional and even the newest targeted therapeutics as measured
by progression-free and overall survival [1–3]. As a heterogeneous tumor, malignant
melanoma exists in the form of genetically divergent subpopulations containing melanoma
initiating cells/cancer stem-like cells (CSCs) as a small fraction, and non-cancer stem cells
(non-CSCs) that form most of the tumor mass [4,5]. Like other CSCs, melanoma stem-like
cells (MSCs) are characterized by their unique surface proteins and aberrant signaling
pathways [4–6], which are either in a causal or consequential relationship to melanoma
progression, treatment resistance, and recurrence [5–8]. CD133 (prominin-1) is one of the
most important cancer stem cells (CSCs) that is widely expressed in the CSC subpopu-
lation derived from a large variety of human malignancies, including melanoma [5,6,8].
Beyond its role as a reliable CSC marker for the identification of CSC populations [7,8],
accumulating evidence has indicated that CD133 is responsible for CSC tumorigeneses and
chemoresistance [4,8].

Aberrant activation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated
protein kinase (MAPK) pathways play a significant role in melanoma development, progres-
sion, and drug resistance. Melanoma is characterized by its heterogeneity as a consequence
of genetic and non-genetic alterations that are frequently associated with the activation of
the PI3K and MAPK pathways [9–11]. Although the dual inhibition of BRAF and MEK
by their specific inhibitors has demonstrated significant treatment successes in advanced
melanoma in patients with the BRAF mutation [12,13], most patients showed only short re-
sponse durations along with the development of both intrinsic and acquired resistance [14].
The preclinical investigation of PI3K inhibitors as a monotherapy showed no significant
advances in clinical trials [15,16]. The limited therapeutic efficiency of the inhibitors of PI3K
pathway seems to result from the suppression of feedback loops mediated by PI3K/mTOR
leading to the activation of compensatory pathways such as MAPK/MEK/ERK [17,18].

Melanoma treatment remains a major challenge in clinical oncology. Poor prognosis,
disease progression, and drug resistance in melanoma are closely associated with the
activation of PI3K [19,20]. Thus, targeting the PI3K/AKT/mTOR and MAPK/MEK/ERK
pathways is a promising therapeutic approach that might improve treatment outcomes.

The main function of PI3K is to phosphorylate inositol-containing lipids (PtdIns) at
the D3 OH group of the inositol ring. Consequently, the generation of PtdIns (3)P in the
inner leaflet of membrane bilayers facilitates the recruitment of cytosolic proteins to initiate
multi-functional signaling cascades [21].

Three different classes of PI3K have been identified [22,23]. Although the three PI3K
classes, namely class I, class II, and class III, are similar in structure, they differ in their
function. For example, class I of PI3Ks is directly involved in signaling downstream of
plasma membrane-bound receptors, whereas the two other classes are involved in the
regulation of vesicular trafficking [22].

The activation of PI3Ks is regulated by receptor–ligand ligation that in turn mediates
the internalization of signaling receptors from the plasma membrane into early endosomes,
where the receptors can be sorted into late endosomes/lysosomes for either degradation or
recycling back to the plasma membrane [24,25]. Functionally, the PI3K class I is involved
in the phosphorylation of PtdIns P2 to yield PtdIns P3 that is frequently altered in cancer,
thereby serving as a potentially important therapeutic target [26–28].

Investigators have primarily focused on the heterodimer PI3K. It is composed of a
catalytic subunit (P110) and a regulatory subunit (P85). The regulatory subunits contain
non-receptor tyrosine kinase Src Homology 2 (SH2) and 3 (SH3) domains [29,30]. These
SH2 and SH3 domains are characterized by their ability to interact with target proteins
containing tyrosine kinase-binding sites [29,30].

It is notable that the activation of PI3K in many cancer types, including melanoma,
is mostly associated with tumor development, progression, and drug resistance [31–35].
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Melanoma frequently harbors genetic alterations in the key molecules of the PI3K path-
way that can drive the aberrant activation of the PI3K pathway and its downstream
pathways [27,36].

The conserved serine/threonine kinase mTOR, the mammalian target of rapamycin,
is a downstream effector of the PI3K/AKT pathway and forms two distinct multiprotein
complexes, mTORC1 and mTORC2 [9,10]. mTORC1 is sensitive to rapamycin and activates
S6K1 and 4EBP1, both of which are involved in mRNA translation [37,38]. The activation
of mTOR is mediated by diverse stimuli including growth factors, nutrients, energy, and
stress signals, as well as signaling pathways, such as PI3K and MAPK [37,38].

Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance
is well described, the inhibitors of the PI3K/AKT/mTOR pathway have demonstrated only
limited success in clinical trials, particularly when applied as a monotherapy [35–37]. This
shortcoming of PI3K/AKT/mTOR inhibitors as therapeutic targets in melanoma treatment
is attributed to feedback loops derived from the inhibition of PI3K/mTOR leading to the
activation/reactivation of aberrant signaling pathways like RAS/RAF/MEK/ERK [39,40].

This review provides insight into the role of CD133 signaling in the PI3K/mTOR pathway
which can lead to melanoma progression, drug resistance, and recurrence, and the impact of
the CD133/PI3K/AKT/mTOR pathway as a therapeutic target for melanoma treatment.

2. Melanoma Heterogeneity and Plasticity

Melanocytes are of neuroectodermal origin. They have the potential to migrate
throughout the body and ultimately are localized in the skin, uveal tract, mucosa, inner
ear, and rectum [41,42]. Based on the wide distribution of melanocytes, the development of
melanoma can occur even outside these more common areas.

Despite access to early diagnostics and increasingly available access to primary care,
both melanoma incidence and mortality rates are increasing worldwide. Current reports
reveal that around 1.7% of all newly diagnosed skin cancers are melanomas, while patients
dying from melanoma account for 75% of skin cancer deaths and nearly 0.7% of all cancer
mortality [41–65]. Incidence rates differ significantly across the globe with the highest rates
in Australia, New Zealand, Europe, and North America; the lowest incidence rate has been
noted in Africa [46,47]. While the geographical dependency of melanoma development has
been widely established, ethnicity, lifestyle (UV exposure), and genetic background are the
most significant factors contributing to the development of melanoma [48,49].

Tumor heterogeneity is a significant challenge and is the main cause of drug resistance
which ultimately leads to therapeutic failure [50–54]. It affects the therapeutic targets
and shapes the tumor microenvironment influencing drug resistance [50]. Tumor het-
erogeneity is a tumor phenomenon that occurs spatially and temporally during tumor
development with the aim of continuously triggering the reprogramming of the tumor
microenvironment [50].

Tumor heterogeneity is attributed to the presence of subpopulations of cells that
differ in their phenotype and biological behavior [56,57]. These subpopulations can exist
within a tumor in the form of intra-tumoral or inter-tumoral heterogeneity. These two
types of tumoral heterogeneity can occur in the same histopathological tumor subtype
within a patient (intra-tumoral heterogeneity) or in the same tumor in different patients
(inter-tumoral heterogeneity) [57,58].

The development of tumor heterogeneity in various cancer types including melanoma
is mediated by genomic- (intrinsic factors) and non-genomic (extrinsic factors)-dependent
mechanisms. Genomic tumor heterogeneity-dependent mechanisms are derived from
significant alterations in the intrinsic factors including genome, transcriptome, epigenome,
and proteome [60–65]. Consequently, melanomas are among the most common heteroge-
neous cancers. For example, melanomas are characterized by diverse genomic alterations in
the form of functional mutations to NRAS, BRAF, KIT, CDK4, and MITF, loss of CDKN2A,
PTEN, ARID2, and NF expression, and epigenetic changes to PTEN, CDKN2A, RAC1, and
P53 genes [16,66,67]. In addition, the development of tumor heterogeneity in melanoma is
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the result of differential expression in the same tumor to various functional proteins, such
as stem cell markers CD20, CD133, ABCB5, CD271, JARID1B, and ALDH1 [68–70].

Non-genomic (extrinsic factors) tumor heterogeneity-dependent mechanisms are the
consequence of tumor-associated inflammation, and crosstalk between the tumor and its mi-
croenvironment [70,71]. Non-genomic/phenotypic heterogeneity demonstrates phenotypic
variability between tumor subpopulations, which share the same genome, while trait differ-
ences among these tumor subpopulations are not related to the genetic differences between
the identified tumor subpopulations [71–73]. In contrast to intrinsic factor-dependent
mechanisms, the extrinsic factor-mediated tumor heterogeneity includes pH, hypoxia,
and crosstalk between tumor cells and the components of the tumor microenvironment,
particularly in association with stromal cells [50,71,72].

The contribution of inflammation to the development of tumor heterogeneity has been
reported in several studies [74,75]. Inflammation is caused by a variety of pathogenic and
environmental factors which lead to the induction of several mechanisms in the form of
oxidative stress, upregulation of hypoxia inducible factor 1-alpha, and the production of
pro-inflammatory cytokines [74–77].

The mechanisms involved in the development of phenotypic and functional hetero-
geneity of melanoma including genomic and non-genomic-dependent mechanisms are
summarized in Figure 1.
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Figure 1. Overview of the genomic and non-genomic-dependent mechanisms regulating the develop-
ment of melanoma heterogeneity and the biological consequences.

In contrast to melanoma heterogeneity, the development of plasticity in melanoma
cells is attributed to significant alterations in the expression profile of stromal and immune
cells, and changes in the extracellular matrix of the melanoma microenvironment [75,78].
Cancer cell plasticity describes the ability of cancer cells to shift dynamically between
differentiated and undifferentiated states to promote long-term tumor cell growth and
transition into CSCs.
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Melanoma cells have the potential to switch their phenotype during tumor progression
from a proliferative and differentiated phenotype to a more invasive and dedifferentiated
phenotype [79,80]. Genetic alterations, influences from the tumor microenvironment, and
epigenetic changes belong to the phenotypic plasticity and high heterogeneity that is
known to be characteristic of melanoma [81]. Melanoma cells continuously undergo re-
versible alteration between a proliferative/differentiated and an invasive/dedifferentiated
phenotype, an epithelial-to-mesenchymal transition (EMT)-like process [82,83]. Thus, the
transition of melanoma cells into an invasive phenotype facilitates melanoma dissemination
from a primary tumor to distant sites [84,85]. However, phenotype alteration is mediated
mainly by a hypoxic tumor microenvironment and inflammatory signal-dependent mecha-
nisms [85–89].

In addition to the reversible alteration between a proliferative/differentiated and an
invasive/dedifferentiated phenotype [79,90,91], occurrence of melanoma cell plasticity is
mediated by both cell-autonomous mechanisms and tumor microenvironment-dependent
signals [90,92]. Accordingly, cancer cell/stromal cell-dependent mechanisms can impact
the regulation of the phenotypic plasticity of melanoma cells [90–95]. For example, cancer-
associated fibroblasts (CAFs), the major component in the tumor microenvironment, have
been shown to play key roles in the regulation of melanoma cell plasticity via hepatocyte
growth factor (HGF)-dependent mechanism [96,97] and insulin-like growth factor receptor
signaling-dependent mechanisms [98].

Thus, understanding the biological complexity of cancer cell plasticity and its role
in melanoma progression and relapse may lead to the development of new therapeutic
approaches for the treatment of melanoma. Also, the functional analysis of specific cell
markers and key molecules of aberrant signaling pathways is urgently needed, particularly
those closely associated with the maintenance of stemness properties and the regulation
of the cross talk between melanoma cells and their microenvironment. The mechanisms
regulating melanoma plasticity are outlined in Figure 2.
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Figure 2. Cellular plasticity in melanoma. Melanoma cells can switch between a differenti-
ated/proliferative/cancer stem cells (CSCs) and a dedifferentiated/invasive phenotype/non-stem
cancer cells via mechanism-mediated. Melanoma plasticity is mediated by genetic and epigenetic al-
terations of melanoma cells and by tumor microenvironmental secretory products (e.g., growth factors
and cytokines), activation of cancer-associated fibroblasts (CAFs), or tumor-associated macrophages
(TAMs). Cancer cells can be reprogrammed towards pluripotency. Phenotype switch of melanoma
increases their plasticity and is responsible for tumor growth, invasion, and drug resistance.
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3. Melanoma Stem Cells

The processes of melanoma development start in mature melanocytes [99,100]. Al-
though the accumulated evidence indicates that early-stage precursors of melanocytes
exist in the dermis [101,102], other reports have suggested that the earliest origins of cu-
taneous melanoma may have occurred in extrafollicular melanocyte stem cells [100–102].
This is probably because the melanoma stem cells (MSCs) are derived either from a trans-
formed melanocyte, from a transformed melanocyte stem cell, or from a combination
of both sources. Like CSCs, MSCs are characterized by their ability to self-renew and
differentiate [103–105]. The generation of these subpopulations is mediated by genetic
segregation and epigenetic alterations via the transcriptional regulation of genes associated
with stemness properties and dysregulation of aberrant signaling pathways such as FOXM1
signaling [106–108]. Consequently, melanoma cells undergo intrinsically asymmetric cell
divisions of stem cell lineage to produce two daughter cells, both significantly different in
their genetic material and phenotype [109–111]. One of these daughter cells is characterized
by its stemness properties and is referred to as CSC, whereas the other daughter cell (non-
CSC) represents a larger portion of the overall tumor mass [4,5,9,110,111]. In addition to
the deregulation of aberrant signaling pathways for tumor growth and survival, MSCs are
notable for their expression of CD20, CD133, CD166, CD271, ABCB5, Nestin, and CD105
surface markers [4,5,8]. Thus, understanding the pathways controlling self-renewal, expan-
sion, and differentiation of MSCs and how UV radiation alters and disrupts melanocyte
lineage pathways will bring greater insight into the origin of melanomas. The development
of CSCs from normal stem/progenitor cells (Figure 3A) and from cancer cells (Figure 3B) is
outlined in detail in Figure 3.
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Figure 3. Model for the development of cancer stem cells (CSCs) from both tumor and normal
cells. (A) Development of CSCs from cancer cells is mediated by the activation of aberrant signaling
pathways via driver mutation-dependent mechanisms and transcriptional activation of self-renewal
genes. Cancer cells become programmed to divide into cancer progenitor cells and CSCs. Cancer
progenitor cells are genetically programmed to divide into one differentiated cell and one CSC. Once
the dedifferentiation process of the differentiated cell has been completed, it can be transformed into
a CSC that ultimately undergoes abnormal asymmetric cell division to produce genetically divergent
subpopulations including CSCs and non-CSCs. (B) The development of CSCs from the activation of
self-renewal genes normal stem/progenitor cells via multiple genetic mutations and dedifferentiation-
dependent mechanisms. Like cancer cell-derived CSCs, CSCs derived from normal stem/progenitor
cells undergo abnormal asymmetric cell division to produce two genetically divergent subpopulations
including CSC and non-CSC.



Cells 2024, 13, 240 7 of 28

Beyond their identification in various malignancies as part of the tumor mass, CSCs
are characterized by their ability to confer self-renewal, differentiation, tumor initiation,
metastasis, recurrence, and drug resistance [5,6,8,112]. Like CSCs of different tumor types,
MSCs have been functionally characterized in vitro and in vivo [5,6,9,100,102]. In addition
to their stemness properties, MSCs demonstrate the expression of stem cell markers includ-
ing CD20, CD105, CD133, CD146, CD166, CD271, ABCB5, and Nestin [5]. Apart from their
function as stem cell marker proteins, such as CD133, the proteins have also been discussed
for their functional role in the regulation of MSCs maintenance and resistance [8].

4. CD133

The stem cell marker CD133 (prominin-1/AC133) has a molecular weight of 120 kDa
and is encoded by the PROM1 gene [113,114]. It is a member of pentaspan transmembrane
glycoproteins [114]. CD133 localizes specifically to cellular membranes with an extracellular
N-terminal domain, 5-transmembrane domains separating two large glycosylated extracel-
lular loops, two small intracellular loops, and an intracellular C-terminal domain [114,115].
The involvement of the CD133 protein in the maintenance of melanoma stemness properties
and drug resistance is mediated through its C-terminal domain, which contains tyrosine
binding sites located on tyrosine 828 (Tyr828) and tyrosine 852 (Tyr852) residues [9,116].
These two tyrosine residues are phosphorylation targets of the non-receptor tyrosine kinase
(NRTK) Fyn [116]. The structure and the various domains of CD133 protein are illustrated
in Figure 4.
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Figure 4. Structure of CD133 protein. CD133 is a 97 kDa transmembrane glycoprotein that contains
an extracellular N-terminal domain, five transmembrane (TM) segments, two small intracellular
loops (IC I and IC II), two extracellular loops (EC I and EC II), and an intracellular C-terminal domain.
The two extracellular loops contain nine N-linked glycan (G) residues. The EC loop I contains
5 N-glycosylation sites, while EC II contains 4 glycosylation sites. The intracellular C-terminal
domain contains two Tyrosine (Tyr828) and (Tyr852) residues.

Many studies have demonstrated that increased CD133 expression is associated with
high tumorigenicity and metastatic potential for melanoma cells [117–119]. Also, CD133
protein has been implicated in the regulation of tumor resistance [120–122].

CD133-expressing CSCs have been shown to exhibit resistance to chemotherapy
and radiation therapy in addition to being associated with poor prognosis in various
cancers [122]. We and others have demonstrated that CD133+ cancer cells confer resistance
to many chemotherapeutic agents such as caffeic acid phenethyl ester [5], Taxol [6], and
fotemustine [8]. Accordingly, CD133-dependent mechanisms have been shown to be
involved in the development of melanoma resistance to chemotherapy [8].

The contribution of CD133 to the regulation of CSC functions such as self-renewal,
differentiation, and drug resistance are likely mediated by the NRTK, Fyn-dependent
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mechanism via the phosphorylation of the Tyr828 residue located on the cytoplasmic
domain of CD133 [8,116]. Our laboratory has demonstrated that the phosphorylation of
Tyr828 is essential for triggering the activation of PI3K and its downstream dependent
signaling pathways in melanoma [8].

The PI3K/AKT pathway is one of the most important networks with the highest muta-
tion frequency in human cancers [123–125]. Both PI3K/AKT/NF-κB and PI3K/AKT/mTOR
are the two main mutated pathways involved in apoptosis and tumorigenesis facilitat-
ing the development of melanoma resistance to anti-cancer agents [126]. Dysregulation
of major key molecules in these signaling pathways is associated with drug resistance
and melanoma progression. Also, the elevated activation of PI3K pathway has been sug-
gested as triggering melanoma progression through the activation of the PI3K/AKT/NF-κB
axis [27,127,128].

In addition to the key role of CD133 in chemoresistance, we and others have demon-
strated the cellular mechanisms by which the CD133 protein triggers activation of the PI3K
pathway both in melanoma [8].

The PI3K/AKT/mTOR signal to downstream proteins leads to the development of
tumor resistance [129,130]. Also, the PI3K/AKT/mTOR pathway has been shown to play a
crucial role in a variety of biological and physiological processes including cell survival and
growth, and transcription and translation, which are implicated in the development of drug
resistance [18,33,131]. Abnormal activation of the PI3K/AKT/mTOR pathway in different
tumor types including melanoma has been suggested as the key mechanism through
which tumors evade drug toxicity [126,132,133]. Thus, CD133 mediates the activation of
the PI3K/AKT pathway in melanoma [8,116]. The activation of mTORC1 through the
PI3K-dependent activation of both AKT and PDK-1 has been reported in CD133 positive
cells [8,116].

In addition to the frequent mutation to AKT family members, mutations to the
PI3K/AKT/mTOR pathway are common in melanoma [33–35]. Mutation in PTEN has been
shown to effectively restrain the PI3K/AKT/mTOR growth-promoting signaling cascade
in primary and metastatic melanoma patients [131–136]. Also, the activation of PI3K/AKT
results in the activation of mTORC1 that subsequently leads to the phosphorylation of the
downstream molecules, p70S6K1, and eukaryotic initiation factor 4EBP1 to affect mRNA
translation and protein synthesis [132,137]. The role of the Fyn-stimulated CD133 signal to
PI3K is considered a key mechanism in the regulation of both PI3K/AKT and PI3K/NF-κB
pathways. To that end, Fyn-stimulated CD133 signaling to PI3K is expected to trigger
the activation of the mTOR and the associated biological consequences in melanoma. In
addition, the references describing the functional role of Fyn-stimulated CD133 signal in
melanoma have been mentioned (Table 1). The mechanisms are thought to be mediated
by an Fyn-stimulated CD133 signal leading to the activation of PI3K and its downstream
pathways, as shown in the proposed model (Figure 5).

Table 1. Studies focused on CD133-dependent P13K/AKT pathway signaling and its link to mTOR
activation in melanoma progression.

Description of the Study References

Melanoma progression and treatment resistance are mediated
by CD133 signaling to the PI3K pathway Jamal et al., 2020 [8]

Inhibition of melanoma growth in an autophagy-dependent
manner through inhibition of PI3K/AKT/mTOR signaling Gong et al., 2020 [135]

Inhibition of the PI3K/AKT/mTOR pathway can efficiently
counteract dabrafenib-induced stimulation of the invasive
capacity of melanoma cells with required resistance.

Caporali et al., 2014 [133]
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Figure 5. Function of CD133 protein. Phosphorylation of Tyr828 and Tyr852 residues of CD133 by
non-receptor tyrosine kinase (NRTK) Fyn triggers the activation of PI3K- and NRAS-dependent
pathways in melanoma. Upon the phosphorylation of both Tyr828 and Tyr852 residues, located on the
cytoplasmic N-terminal domain of CD133, the phosphorylated Tyr828 (pTyr828) and Tyr852 (pTyr852)
recruit the regulatory subunit of PI3K, p85, and the adaptor protein Grb2 to mediate the activation of
PI3K/PDK-1/AKT and PI3K/AKT/MDM, and NRAS/RAFMEK pathways, respectively. The acti-
vated PI3K/PDK-1/AKT pathway induces the inhibition of p27 and the activated PI3K/AKT/MDM2
pathway induces the ubiquitination of p53. Meanwhile, the activated RAS/RAFMEK pathway in-
duces the activation of ERK. Consequently, the activation of Fyn-stimulated signaling to downstream
pathways of both PI3K and Grb2 results in melanoma growth and resistance.

5. Non-Receptor Tyrosine Kinases

In contrast to receptor tyrosine kinases (RTKs), non-receptor tyrosine kinases (NRTKs)
do not possess either an extracellular ligand-binding domain or a transmembrane domain-
spanning region [138–140]. Therefore, NRTKs are either localized in the cytoplasm [136],
or anchored to the cell membrane through their amino terminal modification [141], or
are underlying nuclear translocation [142]. NRTKs are characterized by their modular
construction enzymes and individual domains that are connected by disordered regions in
the form of loop connecting domains [140]. The catalytic domain of the NRTKs is of critical
importance and is about 275 residues in length [143,144]. The structure of the catalytic do-
main is organized in two lobes. The small lobe functions as a binding site for ATP, whereas
the large one functions as a binding site for the protein substrate [145]. The binding of
both ATP and substrate to the corresponding domains catalyzes phosphate transfer in
the cleft between the small and the large lobes [146]. In addition to their enzyme activity,
NTRKs are characterized by their sequence preference around the target tyrosine [147].
The most Src-preferred sequence is Glu–Glu/Asp–Ile–Tyr–Gly/Glu–Glu–Phe, while the
Abl-preferred sequence is Ile/Val–Tyr–Gly–Val–Leu/Val [148,149]. The difference in the
preferred sequences around tyrosine in Src and Abl is evidence of their specific target sub-
strates. NRTKs contain not only a tyrosine kinase domain, but also possess other domains
that can mediate protein–protein, protein–lipid, and protein–DNA interactions [144,150].
Key protein–protein interaction domains in NRTKs are the Src homology 2 (SH2) and 3
(SH3) domains. SH2 is the longer domain of 100 residues and is characterized by the ability
to bind, in a sequence-specific manner, phosphotyrosine (pTyr) but not unphosphorylated
tyrosine (Tyr) residues [150–153]. In contrast to the SH2 domain, the SH3 domain is a
small domain with 60 residues and is characterized by its ability to bind proline-containing
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sequences to form polyproline type II helixes [140,141,145]. While most NRTKs possess
SH domains, there are also some that lack SH2 and SH3 domains [154,155]. These NRTKs
possess some subfamily-specific domains that are essential for protein–protein interac-
tions [156]. Among these subfamilies are the specific domains that target enzymes to the
cytoplasmic part of the cytokine receptors [157,158], such as the JAK family, the integrin-
binding domain, and the focal adhesion-binding domain (FAK family) [115,159]. The NRTK
Abl also contains additional interaction domains including the F actin-binding domain
and DNA-binding domain that contains a nuclear localization signal and exists both in the
nucleus and cytoplasm [160–162]. Conversely, in addition to SH2 and SH3 domains, the
NRTKs Btk/TEC subfamily possesses a pleckstrin homology (PH) domain [163,164]. PH do-
mains are characterized by their ability to bind to phosphatidylinositol (PI) lipids [165,166].

PI lipids are key players in many trafficking and signaling pathways [167,168]. The
phosphorylation of PI lipides is mediated primarily by a family of lipid kinases, the
phosphatidylinositol-3-kinases (PI3Ks) [169–171].

PI3Ks are a family of enzymes that contain important cellular signaling regulators [18,172].
The activation of PI3K is mediated by either G-protein-coupled receptors or receptors with
an intrinsic/associated protein tyrosine kinase activity in the form of an extracellular
stimuli-dependent mechanism [173,174]. In addition to their activation by the direct
interaction with the small GTPase Ras, the activation of PI3K by an NRTK-dependent
mechanism has also been demonstrated in melanoma [175]. The structure of various NRTK
families and their functional domains is illustrated in Figure 6.
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Figure 6. Structure of non-receptor tyrosine kinase families and their functional domains. Non-
receptor tyrosine kinases (NRTKs) such as ABl, CSK, SYK, Src, TEC, FAK, FES, JAK, and ACK kinases
are made up of an N-terminal region and a large C-terminal region. The N-terminus contains the
common kinase domain that spans ~300 residues. The N-terminal region of NRTKs contains a number
of extra SRC homology 4 (SH4), 3 (SH3), and 2 (SH2), catalytic kinase (SH1), Pleckstrin homology (PH),
four-point-one, ezrin, radixin, moesin (FERM), Janus homology (JH2) domain 2, and FES/FER/Cdc-
42-interacting protein homology (FCH) domains, with Btk-type zinc finger (Btk), coiled coil (CC)
motives, proline-rich region (pr), Janus homology domain 2 (JH2). The C-terminal region of NRTKs
contains SH3, CRIB, and Cdc42/Rac-interactive (CRIB) domains as well as DNA-binding (DNA),
actin-binding (Actin), and focal adhesion targeting (FAT) domains.

6. Non-Receptor Tyrosine Kinase Fyn

Fyn is a tyrosine-specific phospho-transferase that is a member of the large Src family
of NRTKs. While the formal crystal structure of the full-length Fyn protein has not been
described, the mode of regulation of Fyn tyrosine kinase activity is like the Src family
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kinases [175,176]. Fyn is a 59 kDa protein comprised of 537 amino acids encoded by the
Fyn gene that can be spliced to produce three isoforms [177]. The first identified isoform
is isoform 1 (Fyn[B]); isoform 2 (Fyn [T]) is highly expressed in T-cells and differs from
the isoform in the linker region between the SH2 and SH1 domains [178]. Isoform 3
has been detected in blood cells and differs from isoform 1 via the absence of sequence
233–287 [179,180]. Like members of the Src family, Fyn shares the conserved structure
that consists of consecutive SH1, SH2, and SH3 domains (Figure 7). The SH1 domain
is the catalytic tyrosine kinase, while the SH2 domain binds to tyrosine-phosphorylated
substrates. Specifically, the SH2 domain of Fyn binds the phosphorylated tyrosine Y528

residue in its carboxyl terminal tail under basal conditions in vivo [116,181]. Repression of
Fyn kinase activity is achieved via intra-molecular interactions between the SH3 domain
and a polyproline type II linker helix that connects the SH2 and the SH1 domains. For
the Fyn kinase, the tyrosine Y528 negative regulatory site is phosphorylated by C-terminal
src Kinase (CSK), a cytoplasmic protein–tyrosine kinase [181]. FCSK homology kinase
(CHK) is a second enzyme that catalyzes the phosphorylation of this inhibitory tyrosine
Y528 [182]. CHK binds Src family members with a high affinity, independent of CHK
catalytic activity, which may be sufficient to inhibit Src family kinase activity [183,184]. The
dephosphorylation of the Y528 residue by protein tyrosine phosphatases rPTPα, SHP1/2,
PTP1B, PTPε, and CD45 can release the SH2 domain and activate the enzyme [181,185,186].
In addition, the subfamily composed of Fyn, Src, and Lyn kinases contains dual acylation
sites in the amino-terminal SH4 domain, which is thought to be partially responsible for
lipid raft micro-domain association [181,186–188].
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Figure 7. Fyn kinase structure and regulation. Fyn kinase consists of SH1, SH2, SH3, and SH4
domains. The SH2 domain binds the phosphorylated Tyr528 (pTyr528) in the C-terminus to keep Fyn
in an inactive conformation. Tyr528 is dephosphorylated by phosphatases (PTPs) to keep the structure
open allowing for phosphorylation of Tyr416 in the catalytic SH1 domain.

As is widely documented, the Src family kinase/focal adhesion kinase (FAK) complex
is a signaling platform that is known to play a crucial role in the regulation of oncogenic
growth factor receptor-dependent downstream pathways [189,190]. This observation is
described more in the case of melanoma in Xiphophorus fish, in which the oncogenic EGF
receptor orthologue Xiphophorus melanoma receptor kinase (Xmrk) effects the continu-
ous activation of the Src family kinase Fyn that is strongly involved in promoting many
tumorigenic events [190–192].

The Xiphophorus fish, which is derived from the crosses between X. maculatus (the
southern platyfish) and X. hellerii (the green swordtail) species of the fish genus Xiphopho-
rus [191,192], can spontaneously develop malignant melanoma via a proto-oncogene en-
coding a receptor tyrosine kinase-designated Xmrk-dependent mechanism [191]. The
encoded Xmrk protein is structurally related to the human EGFR with an extracellular
ligand-binding domain, a transmembrane domain, and intracellular.

The melanoma formation in Xiphoporus is initiated by overexpression of the EGFR-
related receptor tyrosine kinase Xmrk. This receptor is activated in fish melanoma as
well as in a melanoma-derived cell line (PSM) resulting in constitutive Xmrk-mediated
mitogenic signaling. The elevated expression of Xmrk is the initial cell-type-specific event
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in melanoma formation in Xiphoporus [110]. Xmrk-mediated transformation potential
is cell-type-specific signal transduction-dependent mechanism [193]. The NRTK Fyn has
been identified as a substrate of Xmrk in Xiphoporus melanoma cells [181,194,195]. In
addition, Xmrk has been reported to contain binding sites for growth factor receptor-bound
protein 2 (GRB2), Src homology and collagen (Shc), Fyn, and PLCg [196]. Also, the binding
of Grb2 to the activated Xmrk has been shown to trigger activation of the MAP kinase
pathway [194]; meanwhile, the binding of Fyn to the Xmrk receptor is mediated through
its SH2 domain [195].

FYN is highly expressed in many cancers and promotes cancer growth and metastasis
through diverse biological functions such as cell growth, apoptosis, and motility migration,
as well as the development of drug resistance in many tumors [12,151,177–181]. In addition,
FYN is involved in the regulation of multiple cancer-related signaling pathways, including
interactions with ERK, COX-2, STAT5, MET, and AKT [196]. FYN is therefore an attractive
therapeutic target for various tumor types, and suppressing FYN can improve the prognosis
and prolong the life of patients.

7. Receptor and Non-Receptor Tyrosine Kinase-Mediated Pathways to Melanoma
Progression and Drug Resistance

In human melanomas, both PI3K/PTEN/AKT and RAS/RAF/MEK/ERK signaling
pathways are the key routes whose constitutive activation results from genetic alteration [19,20].
Frequent mutations in RAF, RAS, and PTEN are largely associated with defects in cell death
machinery, abnormal proliferation, angiogenesis, and invasion and thereby contribute in
great part to melanoma progression and drug resistance [19,20,137,197].

The PI3K signaling pathway is one of the most frequently altered pathways in human
cancer leading to oncogenic transformation, tumor initiation, and progression, in addition
to the regulation of tumor apoptosis and autophagy [22–24]. Meanwhile, the PI3K and its
lipid product phosphatidylinositol-3,4,5-trisphosphate (PIP3) are involved in the activation
of multiple downstream signaling proteins [198]. Of note, the protein kinase AKT is the
most studied downstream effector protein of PI3K [72,199,200].

The discovery of PI3K-dependent downstream effector signaling molecules such as
the PDK1/mTORC2/SGK axis underscores the importance of PI3K in the regulation of a
variety of cellular functions [200,201]. The PI3K/PDK1/mTOR/SGK pathway has been
shown to compensate for the function of the PI3K/AKT pathway in the promotion of tumor
survival, progression, migration, and drug resistance [20,82,202].

The target of rapamycin (TOR) was first identified in the budding yeast Saccharomyces
cerevisiae [203]. The structurally and functionally conserved mammalian counterpart,
mTOR, was identified based on the biochemical and inhibitory properties of rapamycin in
mammalian cells [9,204–206].

mTOR includes two functionally distinct protein complexes, namely mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2) [207]. mTORC1 is composed of mTOR,
raptor, mLST8, and two negative regulators, PRAS40 and DEPTOR [207,208]. Mean-
while, mTORC2 is composed of the conserved mTOR, RICTOR (mAVO3), mSin1, and
mLST8 (GβL), as well as less conserved proteins such as PRR5/Proctor, PRR5L, and
DEPTOR [207,209,210].

The PI3K-Akt-mammalian target of rapamycin (mTOR) pathway is intracellular and is
aberrantly upregulated in different tumor types, including melanoma [124]. The PI3K/AKT
and PI3K/AKT-mTOR pathways are essential in the regulation of biochemical and bio-
logical processes both in normal and cancer cells [131,208–212]. Dysregulation of these
pathways is frequently associated with genetic/epigenetic alterations and poor treatment
outcomes in a variety of human cancers including melanoma [209,210].

The activation of PI3K through an NRTK/Fyn-induced CD133 signal has been re-
ported both in melanoma [116] and glioma cells [211]. The phosphorylation of tyrosine
kinase Tyr828 and Tyr852 residues by NRTK Fyn was found to trigger downstream path-
ways of PI3K, including PI3K/AKT/MDM2 and PI3K/AKT/MKP-1 [8]. Activation of the
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PI3K/AKT/MDM2 pathway results in the destabilization of the p53 protein, while the
activation of the PI3K/AKT/MKP-1 pathway results in the inhibition of mitogen-activated
protein kinases (MAPKs) JNK and p38, and the activation of both PI3K/AKT/MDM2
and PI3K/AKT/MKP-1 pathways leads to the inhibition of fotemustine-induced apop-
tosis [8]. Although the characterization of Fyn-stimulated CD133/PI3K/mTOR is not
described in human melanoma, the mechanism of Fyn-stimulated CD133 signal to the
PI3/AKT axis seems to be a general mechanism in solid tumors [116,211]. However,
the activation of PI3/AKT is expected to mediate the Fyn-stimulated CD133 signal to
mTOR in the form of generating an Fyn/CD133/AKT/mTOR axis. Thus, targeting the
Fyn/CD133/AKT/mTOR axis likely possesses a therapeutic impact for melanoma treat-
ment. Figure 8 demonstrates a proposed model for both RTK- and NRTK-mediated sig-
naling pathways, PI3K/AKT, PI3K/AKT/mTOR, and RAS/RAF/MEK/ERK, in different
tumor types including melanoma.
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stimulates Stat3, CD133 signaling to PI3K/AKT/mTOR, PI3K/PDK-1, PI3K/AKT/MDM2, and
Grb2/Grb7/RAS/RAF/MEK/ERK pathways in melanoma by the phosphorylation of tyrosine ki-
nase Tyr828 and Tyr852 residues located on the cytoplasmic C-terminal domain of the CD133 protein to
recruit both p85 and Grb2 proteins, respectively. P85 serves to mediate Fyn-stimulated CD133 signal
to PI3K to enhance the activation of several pathways including PI3K/PDK-1/AKT/mTOR/S6K
and/or PI3K/AKT/mTOR/S6K; PI3K/PDK-1/AKT/4E-BP1 and/or PI3K/AKT/4E-BP1; PI3K/PDK-
1/AKT/MDM2 and/or PI3K/AKT/MDM2; PI3K/PDK-1/AKT/MKP-1 and/or PI3K/1/AKT/MKP-
1. Meanwhile, Grb2serves to mediate Fyn-stimulated CD133 signal to enhance the activation of
NRAS/BRAF/MEK/ERK pathway. Finally, the biological consequences of Fyn-stimulated signal to
CD133 in melanoma include the enhancement of protein synthesis, cell cycle progression, cell growth,
survival, and drug resistance. (B) RTK-mediated signaling pathways to tumor progression and drug
resistance. By binding RTKs to their corresponding receptors, tyrosine kinases (TKs) bind ligands to
initiate the signaling pathway via intermediate molecule, insulin receptor substrate (IRS). Then, the
activated PI3K becomes able to phosphorylate the phosphatidylinositol 4,5-bisphosphate (PIP2) to
phosphatidylinositol 3,4,5-trisphosphate (PIP3), a process that is reversed by PTEN. Meanwhile, at
the cell membrane, proteins with pleckstrin homology domains are then phosphorylated via PIP3
(phosphoinositide-dependent protein kinase-1 (PDK1) and AKT). Also, PDK1 can phosphorylate
critical residues on AKT. The tumor suppressor complex of TSC1/TSC2 normally inhibits mTOR
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activation via the brain-enriched Ras homologue (Rheb). Activated AKT prevents this inhibition and
leads to activation of the mTOR/Raptor complex 1 (mTORC1). This complex can be inhibited by
rapamycin and its analogues. Consequently, mTORC1 leads to the activation of downstream proteins
involved in the initiation of protein synthesis, leading to cell growth. Also, activation of RTKs able to
initiate MAPK pathway signaling, leading to tumor progression, proliferation, and drug resistance.
Activation of the MAPK pathway may also enhance PI3K signaling. MEK, MAPK/ERK kinase.

The activation of mTORC1 is mediated by the inactivation of both TSC1 and TSC2
following their phosphorylation via the PI3K/AKT pathway [205]. In addition to its
functional role in the regulation of cell growth, proliferation, and survival in response to
sensing mitogen, energy, and nutrient signals, the mTORC1 is involved in the regulation
of many functional proteins including the regulation of eukaryotic elongation factor 2
(eEF2) kinase [212,213], CLIP-170 (cytoplasmic linker protein-170) [214], ornithine decar-
boxylase (ODC) [215], hypoxia-inducible factor 1α (HIF-1α) [216], protein phosphatase
2A (PP2A) [217], lipin [218], PKCδ and PKCε [219], protein phosphatase 2A (PP2A) [2],
p21Cip1and p27Kip1cyclin-dependent kinase inhibitors [220,221], and retinoblastoma pro-
tein (Rb) [222].

The second complex of mTOR, namely mTORC2, has been demonstrated as play-
ing an important role in the promotion of cancer cell survival, proliferation, growth, and
motility based on its ability to enhance the phosphorylation of AktSer473, the key regulator
of the insulin/PI3K pathway [9,223]. To that end, the permanent activation of AKT is
associated with feedback reactivation of mTORC2 [224]. Thus, targeting mTORC1 and/or
mTORC2 may have a therapeutic impact on the treatment of different tumor types, in-
cluding melanoma. The mechanisms of RTK-mediated signaling to the PI3K/AKT/mTOR
pathway and its biological consequences in melanoma cells are outlined in Figure 9.
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of PI3K/AKT and NRAS/RAF/MEK signaling pathways by RTKs can promote several cellular
functions via the activation of MDM2, NF-κB, and CREB to enhance p53 degradation as well as
promote the transcription of proliferative and anti-apoptotic genes. PI3K/AKT-induced activation of
mTOR phosphorylates 4E-BP1, the inhibitor of elF-4E, to allow the release of the active form of elf-4E
to initiate the translation processes of angiogenic or cell cycle gene targets. PI3K/AKT can inhibit the
phosphorylation of downstream effectors, namely caspase-9, GSK-3ß, p27, and p21 to induce cell
cycle progression and inhibition of apoptosis.

8. Melanoma Progression and Drug Resistance Are Attributed to Dysregulation of
PI3K/AKT/mTOR Pathways

Dysregulation of the PI3K/AKT/mTOR pathways contributes to the pathogenesis
of melanoma [210,225]. The initiation of primary melanoma occurs as horizontal lesions
that appear in the form of a thin plaque on the epidermis [226], and therefore is known as
the radial growth phase (RGP) that can proceed to form the vertical growth phase (VGP)
characterized by its invasiveness and propensity to metastasize to distant organs. The
transition of RGP into VGP has been reported to be mostly associated with AKT activation,
since the occurrence of melanoma metastasis is frequently associated, to a large degree, with
AKT/mTOR activities [227]. Thus, the enhancement of the aggressiveness and metastasis
of melanoma has been suggested to occur through AKT-dependent mechanisms [228,229].
In this process, AKT acts as a molecular switch that is linked with the elevated activation of
mTOR and S6K1, enhancement of angiogenesis, and the accumulation of reactive oxygen
species (ROS) that can enhance further aggressiveness and metastasis in melanoma [209].

As is widely documented, the development of melanoma is attributed, in great part, to
intensive skin exposure to both UVA and UVB rays that contribute to the dysregulation of
the PI3K/AKT/mTOR pathway [230,231]. Thus, abnormal cellular alterations in response
to genetic and non-genetic modifications of genes or proteins of cutaneous intracellular
networks are expected to destroy skin tissue homeostasis, and ultimately lead to the
development of different types of skin cancer [82,232].

Accumulated evidence indicates that activation of the mTOR pathway is strongly
associated with the pathogenesis of melanoma [40,233]. Meanwhile, constitutive activation
of mTOR has been reported as inhibiting autophagic cell death and dysregulation of the
normal cell cycle [234,235]. Given that the molecular basis and targets of most melanomas
have been described in detail, the development of anticancer agents with the ability to
maintain skin tissue homeostasis and integrity is a promising therapeutic strategy. Overall,
targeting PI3K, AKT, and mTOR proteins by a specific inhibitor may offer a therapeutic
option for the treatment of different tumor types including melanoma.

9. PI3K/AKT/mTOR Pathway as a Therapeutic Target in Melanoma Treatment

Successful prevention of tumor development and progression requires the long-term
administration of anticancer agents that have to be well tolerated by patients. Previous
and current analyses of signaling pathways in different tumor types have revealed that the
tumor driving-signaling pathways of melanoma contain key molecules that can serve as
therapeutic targets for melanoma treatment [236–238].

In addition to limited clinical benefit as a monotherapy in melanoma treatment, treat-
ment with PI3K-targeted inhibitors is associated with the development of intrinsic and
acquired resistance [239,240]. The development of these resistance mechanisms has been
shown to be the consequences of PI3K inhibitor-induced insulin release, leading to hyper-
phosphorylation of insulin growth factor receptor(s) (IGF1R) [241,242]. As consequence,
the phosphorylated IGF1R becomes able to mediate the reactivation of the PI3K signaling
axis in tumors and rescues AKT and S6 phosphorylation via insulin receptor substrate (IRS)
adaptor molecule-dependent mechanisms [241,243,244]. Insulin-mediated feedback loops
can evade the biological consequences of PI3Kα, mTORC1, and AKT inhibition [17,245,246].

Both PI3K/AKT/mTOR and RAF/MEK/ERK signaling cascades are derived from
numerous feedback loops and are interconnected at multiple points of crosstalk. Inhibition
of one of these pathways can result in the activation of the other signaling cascade [247].
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Thus, dual targeting of both pathways may improve treatment efficacy, leading to better
clinical outcomes. Numerous in vitro and in vivo preclinical studies have revealed that
dual targeting of signaling pathways, such as the PI3K/AKT/mTOR and RAF/MEK/ERK
pathways, is a clinically relevant treatment option [248]. For example, pyridinyl imidazole
compounds have been reported to simultaneously target both the BRAF oncogene and
mTORC1 signaling in human melanoma cells [249].

Although the immune checkpoint inhibitors have been utilized as an alternative
therapeutic option for melanoma treatment [250–252], tumor microenvironment-induced
immunosuppressive effects have been shown to impair the therapeutic efficacy of im-
mune checkpoint inhibitors [253]. In contrast to inhibitors of the immune checkpoint,
PI3K/AKT/mTOR and MAPK/MEK/ERK inhibitors have been shown to suppress tu-
mor growth and block tumor microenvironment-mediated tumor growth and metastasis.
For example, the inhibition of PI3K/AKT/mTOR was found to increase immunogenicity
and thereby enhance tumor sensitivity to immunotherapy [254]. Thus, the combination
of MAPK/MEK/ERK- and PI3K/AKT/mTOR-targeted therapies may overcome resis-
tance to immunotherapy [255,256]. Combinatorial or sequential treatments are expected
to benefit melanoma patients, particularly those with mutations in both PI3K and MAPK
pathways [255,256].

Many of the multiple targeted inhibitors for Fyn/CD133, PI3K, AKT, or mTOR have
been evaluated and tested in in vitro melanoma model and in phase I and II clinical trials
in melanoma. These include the inhibition of the Fyn/Stat pathway by chalcone derivative
in melanoma [257], the inhibitor of Fyn/CD133 (Saracatinib) that has been evaluated via a
Phase II study in metastatic melanoma [258], the inhibitors of PI3K (BAY-80-6946) [259] and
of buparlisib [260], the inhibitors of AKT including perifosine in patients with metastatic
melanoma [261], and MK-2206 in BRAF wild-type melanoma [262]. Meanwhile, the dual
inhibitor of PI3K/mTOR (NVP-BEZ235) has been studied in melanoma [263]. Also, the
mTOR analogs including everolimus [264] and temsirolimus [265] have been tested on their
inhibitory effect on mTORC1 in melanoma; conversely, mTOR kinase inhibitors were found
to target both mTORC1 and mTORC2 [266,267]. In addition, the most common references
describing the reliability of the Fyn/CD133/PI3K/mTOR pathway as a therapeutic target
in melanoma treatment have been provided in Table 2 and the possible therapeutic targets
of the Fyn/CD133/PI3K/Akt/mTOR pathway in melanoma are outlined in Figure 10.

Table 2. Studies focused on the reliability of Fyn/CD133/PI3K/mTOR pathway as therapeutic target
in melanoma treatment.

Description of the Study Therapeutic Target References

Phase II study of the Src kinase
inhibitor saracatinib (AZD0530) in
metastatic melanoma

NRTK, Fyn Tang et al., 2020; Gangadhar,
et al., 2013 [257,258]

Clinical reliability of PI3K pathway
as therapeutic target for
melanoma treatment

PI3K
Amaral et al., 2020; Schneider
et al., 2014; Tran
et al., 2021 [259–261]

Clinical relevance of AKT as
therapeutic in melanoma treatment AKT Ernst et al., 2005; Rebecca

et al., 2014 [262,263]

Target both mTORC1 and mTORC2
based on their clinical reliability in
melanoma treatment

mTORC1/mTORC2

Sznol et al., 2013; Bernard
et al., 2021; Slingluff et al.,
2013; Gopal et al., 2014;
Espona-Fiedler et al.,
2012 [264–268]
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10. Conclusions

Malignant melanoma is a deadly disease with a poor prognosis. Obtaining complete
tumor remission is difficult because of the presence of a heterogeneous subpopulation
of CSCs. However, the identification of CSCs in melanoma and other cancers has led to
promising advances that may soon impact the management of these cancers. CSCs are
also responsible for therapeutic resistance that leads to tumor relapse. Specific signaling
mechanisms are required for the maintenance of CSCs in tumors that can maintain their
microenvironment. CSCs are becoming priority targets for the development of novel
antitumor therapy. The tumor milieu is a critical regulator of melanoma-specific CSC-driven
angiogenesis and metastasis. Signaling effectors from ECM or stromal cells can act as EMT
or MET inducers or may regulate dormancy at metastatic sites in CSCs. CSC-dependent
melanoma progression is mediated by MAPK/ERK and PI3K/Akt/mTOR pathways.
Given the unique biology of CSCs, there is great need to develop novel and promising
approaches for CSC-targeted cancer therapy. Combinatorial and/or sequential inhibition
of CD133 signaling to PI3K/AKT/mTOR and PI3K/RAS/RAF/MEK/ERK pathways, after
first-line immunotherapy, may extend the anti-tumor response for melanoma patients.
This is especially true for those harboring genetic alterations in key molecules of both
the PI3K/AKT/mTOR and MAPK/MEK/ERK pathways. The development of clinically
relevant pharmacological inhibitors to block the function of both PI3K/AKT/mTOR and
MAPK/MEK/ERK could provide new avenues for well-designed studies that assess the
tolerability and efficacy of a new therapeutic approach for the treatment of melanoma.
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