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By submitting macroscopi¢non-Brownian monodisperse suspensions of solid spheres to an
oscillating shear flow with a “rheo-optical” set-up, a quasi-periodic ordering of spheres has been
observed during the shearing motion, and viscosity measurements have been performed
simultaneously. The viscosity values corresponding to the ordered suspensions are significantly
smaller than the values corresponding to the disordered suspensions; they are compared with
viscosity calculations made by other authors in the case of periodic suspensions of particles.
© 1996 American Institute of Physids$1070-663196)02509-3

I. INTRODUCTION such periodic arrays may however appear rather academic.
The reason is that the periodic arrays will be distorted by the
The expression of the viscosity of a suspension of flow. Therefore, the value of the viscosity will be valid only
solid spheres as a function of powers of the volume fractiorwhen the packing is cubical. The instantaneous value of the
¢ of spheres was obtained up to té term from the works  viscosity will be a periodic function of time. The effective
of Batchelor and Greérextending those of Einstéifimited  value of the viscosity can be obtained by averaging the vis-
to the ¢ term. The main difficulty of treatment of non-dilute cosity over all successive configurations of the lattice.
suspensions of particles comes from the existence of many- From an experimental point of view, many works report
body hydrodynamic interactions between the particles. Evenarious structures induced by shear flow in colloidal suspen-
for the calculation of the$? term corresponding to the sions(see, e.g., Ackersdfor Tomitaet al'®), but few ones
pair-interactiong, the viscosity depends on the spatial distri- report similar results in the case of macroscopic, i.e., non-
bution of the particles — the microstructure — which de- Brownian suspensiont§:1’ We performed viscosity measure-
pends itself on the initial spatial distribution and on the na-ments and visualizations of macroscopic suspensions of
ture of the flow (extensional flow, shear flow..). No  spheres with a rheo-optical set-up, and we measured the vis-
analytical calculation for the viscosity is available beyondcosity in two different states: an isotropic disordered state at
this ¢? term, because the distribution functions of more tharthe start of the flow and an ordered state, induced by the
two particles are not known. flow, characterized by a quasi-periodic spatial distribution of
To treat the case of concentrated suspensions anoth#ite particles.
way is to consider a suspension with particles in a given The viscosity measurements of the disordered suspen-
spatial distribution, like periodic arrays of particles, and tosions can be analyzed through effective medium motils
calculate the macroscopic properties of the medium. Severépllowing an idea first developed by Krieger and
authors developed expressions for the drag force in the cagougherty?® Such an analysis has been done by several au-
of different periodic arrays:® The methods employed for thors in the past and will therefore not be discussed in the
these calculations are quite often similar to the ones used fdresent paper. More interesting is the case of the shear-
the calculation of the effective thermal conductivity in the induced quasi-periodically ordered suspensions observed in
case of periodic arrays of metallic spheres, or for the calcuour experiments®?*
lation of the effective elastic moduli of composite materials ~ The present paper gives the comparison between our ex-
(periodic arrangements of Spherica] partides embedded in d?ﬁrimental measurements and numerical calculations made
isotropic matrix with different elastic propertigHasimotd by other authors'®*%in the case of periodic suspensions of
was probably the first to succeed in the treatment of the thregolid particles.
kinds of cubic arraygsimple(SC), body-centeredBCC) and
face-centeredFCCQ)] in the limit of low volume fractions, || EXPERIMENTAL SET-UP
the extension to the whole range of volume fractions being ) )
made by Sangani and Acriv8s. A. Fluid and particles
Later, new theoretical studies were made for the calcu- The suspensions we used are made of solid spheres em-
lation of the viscosity of such periodic arrays of solid bedded in a viscous fluid. The monodisperse glass beads
particles®"*3With the exact knowledge of the positions of all (Potters Ballotini of densityps=2.5 g cm 2 are obtained by
the particles it is possible to calculate the viscosity at allmechanical sieving: the final diameters are in the range
volume fractions by taking into account distribution func- 455 microns. The fluid used is a viscous silicon oil
tions of order as high as desired. The viscosity calculation ofRhodorsil 475000, Rhee-Poulengknown to have a small
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(Fig. 7). A chopped light synchronized at the excitation fre-
quency allows us to observe only the slow movements of
migration superimposed onto the applied oscillating flow.
The microscope is connected to a video system composed of
a CCD camera, a video monitor and a video tape-recorder;
an image analysis is made on a computer.
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D. Viscosity measurement

1 o tang

The viscosity is obtained from the phase shift between
Glass displacement force the alternative force applied to the upper plate to create the
plates flow and the induced oscillating displacement of this plate
B ﬁ;::felfm Elect(omagn?tic (F|g 1)
“b;:;;‘;g;*;;;“ One signal is the electrical current in the electromagnetic
vibrator: This signal is proportional to the force applied to
oscillating NG the oscillating upper plate. The other signal is the output of
shear flow Suspension an accelerometer fixed on the upper oscillating plate: This
signal is proportional to the displacement of this plate. The
phase shifto between these two signals is measured by a
lock-in amplifier, and stored in a computer as a function of
the duration of the shear. This phase shift is directly related
to the dynamic viscosityy of the fluid in the cell as it is
demonstrated below.

If we notei(t) =1, cost) the alternative current within
the vibration exciter and(t)=A, cost+¢) the induced
FIG. 1. Experimental set-up. displacement of the upper plate, whese=27f is the pulsa-
tion andf the frequency, the movement equation is

z -
1& X=xocos((x)t+lp)

Chopped
light

synchronization

temperature dependence of the viscosity. Its viscosity is mx+xx+kx=Bli, (1)

7=5 Pas at T=25°C and s density is wherem is the mass of the oscillating par, a viscous
pi=0.97 gcm”. The suspensions are homogenized byfriction coefficient anck the restoring constant of the exciter.
manually stirring the particles in the fluid and carefully The right hand ternBli is the force that is proportional to

avoiding bubble formation. the electric current through the magnetic fiel® and the
length| of the inducing wire. Written in complex form the
B. Type of flow equation is
The suspension is confined between two parallel solid  —mw?Ay+ jAwAg+kAy=Bll,. 2

plates separated by a small gag=200 um) (Fig. 1). The . ]

lower plate is fixed and the upper one oscillates in one di- "€n, the phase shi between the displacemextand the

rection creating a simple shear flow in the flfidequency ~forceBli is

f=w/27w=200 Hz; amplitude of displacement of the upper o o

plate xo~20 um; shear ratey=x,w/e~10? s 1). The tan =

shear rate is constant in the whole volume because the vis-

cous penetration depthS€ v(27¢)/(prw)~3 mm) is much  where wo= JVk/m is the resonant pulsation of the system.

larger than the gap of the celk{200 um). The rate of The viscous friction coefficienk can be related to the ap-

strain y does not vary either across the sample and is quitgarent viscosityy of the sheared fluid: The shear stress

weak (y=xq/e~0.1). produced by the suspension on the upper plate being
ConSidering the Iarge sizes of the partiCles, the hlgh ViS'O-z 777: nj(/e, the viscous friction coefficient ia = 778/8,

cosity of the suspending fluid and the amplitude of the sheafhere S is the shearing surface amdthe gap between the

flow, the particle Reynolds number is low (R&0™%) and  two solid plates. The relation between the phase shift and the
the Pelet number is very high (Pe10™): Brownian forces viscosity is therefore

as well as van der Waals and electrostatic forces between the

()

k—mo? m(w’-—wj)’

particles can be neglected. Consequently, the particle inter- ano— —Swn @
actions can be considered only as of hydrodynamic origin. ¢ m(wz—woz)e'

In fact, the measured phase shift tans the sum of two
terms: The first term is due to the viscosity of the sheared
The solid plates of the shear cell are made of transparerituid and an additional term (tag,) is due to the viscous

glass and the particles are observed by optical microscopfyiction which is internal to the vibration exciter

C. Optical set-up
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teractions between the particles along the axis of rotation and
repulsive in the perpendicular equatorial plane. Despite the
weakness of the inertial effects (R&), they are revealed
because of their non-zero mean-value over long time by
comparison with the period of the shear. The axis of rotation
being perpendicular to the plane of shear, this explains the
formation of lines of spheres at contact along this direction.
Indeed, the secondary flow around a rotating sphere due
to small inertial effects in a viscous liquid can be found by
using a perturbation methddwhere the perturbation param-
eter that describes the importance of inertial effects is the
Reynolds number Rep;Qd%/ 7 that is based on the angular
velocity Q) of the sphere. The inertial velocity of this flow,
which moves away from the sphere in the equatorial plane
and towards the spheres along the axis of rotation, is there-
FIG. 2. Relative viscosityy, , of a monodisperse suspension of spheresfore of the order ofv;~Re}d. In a shear flow, a sphere
(volume fractiong=0.20; particle diametet=45 um) as a function of the  rotates with an angular veloci = y/2 and the inertial ve-
time t of shearing.(frequencyf:ZOO. Hz; shear ratey = 100 sY). The Iocity scales therefore a$i~pf'72d3/77. The timetm for a
photo on the left sid¢a) shows the disordered suspension before shear, an(barticle to migrate over a distance of the order of its diameter

on the right sidgb) the ordered suspension after few minutes of shearing. ! th
IS then:

1.5 PR S S N S T T S S DU OO YU G0 P TG WO OO SN S0 SO DA UOC OC 00 Yl S

t (min)

tan o= m

7 d
((UT(US)G +tan ¢q. (5) 7 ®)

tp~ —~

Vi pyPd?

The measured apparent viscosity is therefore

-m(w?—wj)e The y? dependence indicates that this velocity is the same
Napp= g, (l@ne—tango). (6)  whatever the direction of the flow: Any side the sphere could
turn, the inertial flow is away from the sphere in the equato-
The tang, term is measured as a preliminary, with no fluid ria| plane and to the sphere along the axis of rotation. The
between the plates other than the (far which the viscosity . dependence clearly indicates the inertial origin of this
is neglectedl In the case where the working frequency is particle migration.
much larger than the resonant frequency of the system |n our experimentsd~50 um and y~100 s!

(wg<w?), the relation giving the viscosity is simply (Re~5.10"%, so the time of inertial migration is
moe t,~10° s~1 min. This value is effectively the typical time
napp_:T(tan p—tan ¢q). (7)  during which we observe by microscopy the migration of the
particles forming at the end the parallel chains.
This is the case in our experiments sing=48 Hz and The migration we observe in this experiment is quite

f=200 Hz. All this derivation is correct only if the sheared different from the diffusive process showed experimentally
fluid is purely viscous. If the fluid has an elastic componentby Leighton and Acriva® and modeled more recently by
the elastic modulus can be determined by measuring thehilips et al?” and by Nott and Brad$? which occurs when
variation in the resonant frequency of the system. Such meahe shear rate is non-homogeneous and at zero Reynolds
surements have been done yet for electrorheological fluidsumber. In our experiments, the shear rate is homogeneous

with our experimental set-uf3:> and the migration process is a function of the particle Rey-
nolds number even if this number is low because of the cu-
11l. RESULTS AND DISCUSSION mulative effect due to the alternative movement.

Viscosity measurements performed simultaneously with
microscopic visualization give the following results: As the

The suspension placed between the plates is initially in @hear is applied, we observe a significant decrease in the
disordered statgsee photo(a), Fig. 2]. As we applied the viscosity(Fig. 2). The viscosity starts from a given value and
shear, we observe that the particles arrange themselves timaches an asymptotic lower value after a few minutes of
periodic layers that are parallel to the plates and in periodishearing. This decrease is directly correlated with the order-
lines that are perpendicular to the plane of sHeae photo ing of particles described above, with a the typical time de-
(b), Fig. 2]. The ordering time is of the order of few minutes, crease of the order of 1 min. We observe this viscosity de-
much greater than the characteristic time of the oscillatingrease and this particle ordering whatever the gap thickness
flow (period T~10"* s). The periodic ordering of the par- (200 um to 2 mm).
ticles under an oscillating shear flow was first observed and  Thus, we define one viscosity, ;¢ corresponding to
interpreted by Petit and Noeting&rThe inertial secondary the initial disordered state, and a second, lower viscosity,
flows are induced by the alternating rotation of the particlesy, -, corresponding to the final periodic ordered state.
under the oscillating shear flow. They result in attractive in-For all the solid volume fractiong studied(up to 0.60, we

A. Experimental results
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FIG. 3. Relative viscosity, , of monodisperse suspensions of spheresFIG. 4. Specific viscosityz, — 1, of monodisperse suspensions of spheres
(particle diameterd=45 um) as a function of the volume fractiog. (particle diameterd=45 um) as a function of the volume fractiog.
(O): disordered suspensions before sheiar):(ordered suspension after 10 ([0): ordered suspension after 10 min of sheari@g): numerical calcula-
minutes of shearing. tions for infinite S.C. suspensions of spheres made by Nunan and Keller

(1984); (x): numerical calculations for S.C. suspensions of spheres made of
just 3 layers parallel to the solid platEEran-Conget al. (1990]. Inside the
graph are represented our shear-induced ordered suspefiajcasd the

observe this viscosity decrease: The viscosity of the disors:C- suspensions of spheré relative to the simple shear flodon the
. . . . ert).

dered suspensions is always larger than the viscosity of the

periodic ordered ones at the same volume fractfeg. 3).

In the following, we compare our viscosity measure- h i_eriodic orderi ¢ h d :
ments on ordered suspensions with numerical calculations The quasi-periodic ordering of our sheared suspensions
made by other authors on periodic arrays of particles leads us to make comparison between the viscosity measure-

ments and numerical calculations on periodic suspensions of
spheres in simple cubic arrd$.C) (Fig. 4).
The comparison is rather good for volume fractions up
B. Periodic suspensions of spheres to about 50%. For larger volume fractions, there is a sudden

The effective viscosity of a suspension of rigid Spheresd'iscre}.:)ancy between the two. curves. The reason is that the
in an incompressible viscous fluid, with the spheres centere¥iSCcosity of the S.C. suspensions diverges drastically as the
at the points of a periodic lattice, is defined to be the fourth;Packing  fraction — of this array is approached
order tensor that relates the average deviatoric stress to th&@maxS-C.)=0.524), but the structure of our quasi-periodic
average rate of strain. In the case of the cubic symmetry, £USPensions is not exactly the simple cubic-array. The main
reduced to the calculation of only two parameters. For thélifference between the structures we obserliedert (a),
three cubic configurationSC, BCC and FCE these param- Fig- 4] and the pure SC structurgimsert(b), Fig. 4] is that
eters have been numerically calculated by Nunan and Rellethe particles in the former are in contact in the direction that
at all volume fractionsp, from zero up to the close-packing is perpendicular to the plane of shear. Nevertheless, the
value ¢pay. Asymptotic formulae have also been obtainedrather good agreement up to 50%, may come from the fact
by Zuzovskyet al®in the limit of low concentrations, and by that the spheres in this direction do not strongly interact be-
Nunan and Kellétfor high concentrations. In the case of the ause there is no relative motion between them: Conse-
simple-cubic array, the asymptotic formulae are the follow-auently, the spacing between these spheres is unimportant in

ing: this direction.
Another question that can be raised is the relevance of
¢ dependence on the size of the system. In the numerical cal-

7(p)=1+ 2 1+0.862p— 2.2864°° when ¢—0, (9 culations of Nunan and Keller discussed above, the suspen-
sion is supposed to be infinite in size, without boundary ef-
- ¢ |\ fects. On the contrary, in our experiments, the suspension is
7($)=0.37—7 In( 1—(@) ) when ¢— dmax- of finite size since it is limited by two parallel solid plates.
' (10) We will now examine the variation in the viscosity of a
periodic suspension due to its confinement between two
One can verify that relatiof2) gives the correct coeffi- shearing parallel solid walls.
cient (5/2) for the linear term in the volume fraction for the Tran-Conget al° performed numerical calculations in
very dilute regime. In the concentrated regime, rela{i®n  such cases: the suspensions they considered are made of only
indicates that the viscosity goes to infinity when the volumefew layers of particlestypically one to four layersthat are
fraction of the simple cubic suspensions approaches thparallel to the wall and regularly spaced. Their results show
maximum volume fraction ¢,,,(S.C.)=0.524) of this ar- that, for a given volume fraction, the viscosity increases
ray. when the number of layers increasgse spacing between
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the walls is enlarged to keep the volume fraction congtant d
but this enhancement saturates very rapidly as soon as few
layers are stacked one over the other: For the largest volume
fraction they studied ¢=0.315), the viscosity differs by
only 5% between the two- and three-layered suspensions and
reduces to 1.5% between the three- and four-layered suspen- nd 1pd
sions. The conclusion is that a three- or four-layered suspen-
sion is sufficient to reproduce a periodic suspension in three
directions®® In our experiment, the spacing between the two
shearing plates is=200 um. Considering the particle diam-
eter d=45 um), the number of layers is of the order of 3 or

4 depending on the volume fraction. The reason for which (a) (b) (©) (d)

we made our experiments with this small spacing is that the

visualization is easier. However, we observe the same ordefG. 5. lllustrations of(a) a line of r,=8 spheres of diametet; (b) a

ing and viscosity decrease if the spacing is much highemrolate spheroid of aspect ratig=8 (lengthr,d and diameted); (c) the
Although the calculations of Tran-Corey al. are not avail- shaded areas represent the loss of solid matter for a prolate spheroid relative

. . . to a chain of spheres of same aspect rdtidthe shaded areas represent the
able at volume fractions hlgher than 0.3, one can(Eq:e 4 extra solid matter of a prolate spheroid relative to a chain of spheres of same

that the agreement of our experimental resuliy Wwith the  aspect ratio. The sum of the shaded areas appearing respectivelyaind
numerical ones X) is very satisfactory. The limited exten- (d) are equal, meaning that the volume of the two objects are equal.
sion of the shearing cell is therefore not very important in the

case of periodic suspensions, provided that exists more than

3 layers in the gap.

fective viscosity depends also only slightly on the particle

In_our shear-mduced ord.ered Suspensions, the_ spher ﬁape at volume fractions sufficiently lower than the maxi-
are aligned in close contact in one particular direction an um packing fractiort*

the particles of each line do not rotate independently but as a A suspension made of lines of p spheres of diameter

whole: another way is to compare these chains of spherqia per unit volume has the same solid volume fraction as a

with elongated bodies. Such a comparison is exposed in th§uspension made of the same numbef prolate spheroids

following section. of the same aspect ratig,=p (lengthL =pd, diameterd).
The reason is that the volumé, ; of a prolate spheroid of
aspect ratiop (Vps= m(pd)d?/6) is surprisingly equal to
Bibbo et al?” made some experiments with a parallel- the volumeV, , of a chain ofp spheres V. ,= prd3/6).
plate rheometer on suspensions of non-Brownian fibersThe extra solid matter of the spheroids filling the holes be-
There is a rapid viscosity decrease as the strain is increaseyeen the spheres at close contgstiaded area, Fig.(&)]
this decrease being correlated with a strong change in thiealances exactly its loss of matter at each thin[tipaded
orientational distribution, from an initial state with a random area, Fig. &)]!
distribution to a final state in which most of the fibers are  The behavior of suspensions of anisotropic bodies sub-
aligned in the shearing planes. For instance, the relative vignitted to a given flow is even much more complex than the
cosity of fiber suspensions of aspect ratje=17 (length-to-  case of suspensions of spheres since in addition the distribu-
thickness ratip at volume fractiong~0.10 decreases from tion of particle orientations must be taken into account. In
roughly 4 to 1.5, i.e., decreases by 60%. In our previouslysimple shear flows, an elongated particle does not have an
described experiments, the relative viscosity of suspensioraquilibrium position, but experiences a periodic rotating mo-
of spheres associated with the disordered-ordered “transion, spending however much of its time aligned in the ve-
tion” decreases only by a 15% factor at the same volumdocity direction. Hence, a suspension of elongated particles
fraction. In the case of fibers, the effect is reinforced by thethat is in an initially random distribution of orientation and
anisotropy of the particles. that is submitted to this flow will do not remained random if
The comparison of a chain of spheres at close-contaddrownian motion can be neglected. To succeed in the vis-
with a prolate spheroiflsee Figs. &) and 5b)] have been cosity calculation, one has to know on one hand the statistic
made recently by Zahet al® for a sedimentation problem distribution of the particle orientations, and on the other hand
at very low particle Reynolds numbers. Using magnetic fieldhe stress contribution for each orientation. The problem ap-
induced aggregation of paramagnetic colloidal spheres intpears therefore extremely complex. Roughly speaking, the
linear chains of calibrated length, they determine the anisoincrease of the viscosity due to the presence of elongated
tropic friction coefficients of the chains, with a range from 1 bodies (length L, width d=L/r;,) is proportional tonL®
to 100 particles, by video-microscopic observation of sedi{ = ¢>r§) with arbitrarily chosen orientation distribution, to
mentation velocity. The results they found agree well withnL?d( = ¢rp) if all particles are in the plane of shear and to
the Slender-body theorgvalid for thin elongated bodies of nLd?( = ¢) if particles are perpendicular to the plane of
various shapes but of vanishing thickness-to-length yatioshear. More exactly, theories exist in the dilute limitL¢
even with small chains lengths. At low Reynolds number, the< 1 or ¢ < rgz) even for suspensions of particle of finite
velocity field far from an object do not depend strongly on itsaspect rati®* but the theories developed in semi-dilute re-
shape. In the case of suspensions of solid particles, the efime (nL?d <1 or¢ < r;l) are in the Slender-body approxi-

C. Periodic suspensions of prolate spheroids
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direction (100 by a factor equal to the aspect ratio of the

spheroids: This transformation maps a sphere onto a spher-

oid without altering the volume fractiofiFigs. 5c) and

5(d)]; then, different volume fractions can be obtained by an

] isotropic dilution of this dense microstructure while keeping

; the surface-to-surface separation between nearest neighbors

] the same in the three main perpendicular directions. Such a

technique is adopted to achieve the same packing fraction as

R the one of the simple cubic cell of spheres

(Pesc= s .= m6=0.52). Otherwise, a simple cubic array

] of prolate spheroids of aspect ratig is in such a way that

' the center-to-center separations are the same in the three per-

pendicular directions but not the surface-to-surface separa-

tions; its packing fraction is therefore equal to OrE%Z/This

S ] ] would lead to a drastic decrease in the maximum packing

FIG.IG. Sp_ecmc viscosityy, — 1, of monogllsperse suspensions of_spheresfraction: For aspect ratiopz 10, the highest volume fraction

(particle diameterd=45 um) as a function of the volume fractiog. . ’

(00): ordered suspension after 10 min of shearing:)( numerical calcula-  &ttainable would be equal to 0.005.

tions for S.C. array of suspensions of prolate spheroids by Claeys and Brady ~Figure 6 shows that the numerical calculations of these

(;993. Inside the graph are represented our shear-induced ordered suspgferiodic suspensions of prolate spheroids correspond quite

;C)e”footfhsep:iemrgfi‘)sig‘;rt?liéf'ths;Isgf‘;_”s'o”5 of prolate spherdwisela- || with our viscosity measurements of ordered suspensions
of spheres. This agreement means that the differential rota-
tion between touching particles in each chain is unimportant.

mation, i.e., in the case of an infinite aspect rafion the Unfortunately, the calculations have not been done beyond a

: : / . 1 aor
case where all the fibers are perpendicular to the plane gfolume fraction of 45%. Such a concentration is however

shear, these theories do not give a viscosity increase asegtremely hig_h if we rememper that volume fra_ctions inyes—
function of the fiber volume fraction since the thickness oftid9ated experimentally for disordered suspensions of fibers
the fibers is supposed to be zero do not exceed 30%. Ab=0.45,nL?d~1, which is the limit

Another approach is the numerical calculations made by’€tWeen semi-dilute and concentrated regime.
Claeys and Brady for the effective properties of suspen-
sions of rigid non-Brownian prolate spheroids interacting hy-1V. CONCLUSION
drodynamically in a Nevvtqnian, incompressible fluid at zero The experiments we performed show the advantage ly-
F_eeyn_olds nL_meer, by taking mtq ac_count not only th_e far'ing in the use of a rheo-optical set-up in the case of complex
field interactions but also the lubrication effects. In particular,

_ . ) . . fluids: we could correlate the macroscopic behavior of sus-
they calculate the viscosity of crystalline dispersions of thes%ensions of solid spherdby viscosity measurementsiith

eIongat%d particles. The relative viscosity is given by thethe microstructurdby optical microscopy

relatiort In addition, we found a good agreement between our
77r:1+6kr§¢, (11  viscosity measurements for the quasi-periodic shear-induced

aguspensions we observed and viscosity calculations of sus-

wherek is a numerical coefficient that depends on the spati
distribution of the spheroids, on the aspect ratio, on the typ
of the flow (pure strain, pure shear).and on the solid vol-
ume fractiong. The parametelrg is used to emphasized the
anisotropy of the spheroids: the volume fractig =r§¢
would be the effective volume fraction of a suspension"CKNOWLEDGMENTS
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