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By submitting macroscopic~non-Brownian! monodisperse suspensions of solid spheres to an
oscillating shear flow with a ‘‘rheo-optical’’ set-up, a quasi-periodic ordering of spheres has been
observed during the shearing motion, and viscosity measurements have been performed
simultaneously. The viscosity values corresponding to the ordered suspensions are significantly
smaller than the values corresponding to the disordered suspensions; they are compared with
viscosity calculations made by other authors in the case of periodic suspensions of particles.
© 1996 American Institute of Physics.@S1070-6631~96!02509-3#

I. INTRODUCTION

The expression of the viscosityh of a suspension of
solid spheres as a function of powers of the volume fraction
f of spheres was obtained up to thef2 term from the works
of Batchelor and Green1 extending those of Einstein2 limited
to thef term. The main difficulty of treatment of non-dilute
suspensions of particles comes from the existence of many-
body hydrodynamic interactions between the particles. Even
for the calculation of thef2 term corresponding to the
pair-interactions,1 the viscosity depends on the spatial distri-
bution of the particles — the microstructure — which de-
pends itself on the initial spatial distribution and on the na-
ture of the flow ~extensional flow, shear flow, . . .!. No
analytical calculation for the viscosity is available beyond
thisf2 term, because the distribution functions of more than
two particles are not known.

To treat the case of concentrated suspensions another
way is to consider a suspension with particles in a given
spatial distribution, like periodic arrays of particles, and to
calculate the macroscopic properties of the medium. Several
authors developed expressions for the drag force in the case
of different periodic arrays.3–5 The methods employed for
these calculations are quite often similar to the ones used for
the calculation of the effective thermal conductivity in the
case of periodic arrays of metallic spheres, or for the calcu-
lation of the effective elastic moduli of composite materials
~periodic arrangements of spherical particles embedded in an
isotropic matrix with different elastic properties!.4 Hasimoto3

was probably the first to succeed in the treatment of the three
kinds of cubic arrays@simple~SC!, body-centered~BCC! and
face-centered~FCC!# in the limit of low volume fractions,
the extension to the whole range of volume fractions being
made by Sangani and Acrivos.4

Later, new theoretical studies were made for the calcu-
lation of the viscosity of such periodic arrays of solid
particles.6–13With the exact knowledge of the positions of all
the particles it is possible to calculate the viscosity at all
volume fractions by taking into account distribution func-
tions of order as high as desired. The viscosity calculation of

such periodic arrays may however appear rather academic.
The reason is that the periodic arrays will be distorted by the
flow. Therefore, the value of the viscosity will be valid only
when the packing is cubical. The instantaneous value of the
viscosity will be a periodic function of time. The effective
value of the viscosity can be obtained by averaging the vis-
cosity over all successive configurations of the lattice.

From an experimental point of view, many works report
various structures induced by shear flow in colloidal suspen-
sions~see, e.g., Ackerson14 or Tomitaet al.15!, but few ones
report similar results in the case of macroscopic, i.e., non-
Brownian suspensions.16,17We performed viscosity measure-
ments and visualizations of macroscopic suspensions of
spheres with a rheo-optical set-up, and we measured the vis-
cosity in two different states: an isotropic disordered state at
the start of the flow and an ordered state, induced by the
flow, characterized by a quasi-periodic spatial distribution of
the particles.

The viscosity measurements of the disordered suspen-
sions can be analyzed through effective medium models18,19

following an idea first developed by Krieger and
Dougherty.20 Such an analysis has been done by several au-
thors in the past and will therefore not be discussed in the
present paper. More interesting is the case of the shear-
induced quasi-periodically ordered suspensions observed in
our experiments.18,21

The present paper gives the comparison between our ex-
perimental measurements and numerical calculations made
by other authors9,10,13 in the case of periodic suspensions of
solid particles.

II. EXPERIMENTAL SET-UP

A. Fluid and particles

The suspensions we used are made of solid spheres em-
bedded in a viscous fluid. The monodisperse glass beads
~Potters Ballotini! of densityrs52.5 g cm23 are obtained by
mechanical sieving: the final diameters are in the range
4565 microns. The fluid used is a viscous silicon oil
~Rhodorsil 47V5000, Rhoˆne-Poulenc! known to have a small
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temperature dependence of the viscosity. Its viscosity is
h f55 Pa s at T525 °C and its density is
r f50.97 g cm23. The suspensions are homogenized by
manually stirring the particles in the fluid and carefully
avoiding bubble formation.

B. Type of flow

The suspension is confined between two parallel solid
plates separated by a small gap (e5200 mm! ~Fig. 1!. The
lower plate is fixed and the upper one oscillates in one di-
rection creating a simple shear flow in the fluid~frequency
f5v/2p5200 Hz; amplitude of displacement of the upper
plate x0'20 mm; shear rateġ5x0v/e'102 s21). The
shear rate is constant in the whole volume because the vis-
cous penetration depth (d5A(2h f)/(r fv)'3 mm! is much
larger than the gap of the cell (e'200 mm!. The rate of
straing does not vary either across the sample and is quite
weak (g5x0 /e'0.1).

Considering the large sizes of the particles, the high vis-
cosity of the suspending fluid and the amplitude of the shear
flow, the particle Reynolds number is low (Re'1024) and
the Péclet number is very high (Pe'1011): Brownian forces
as well as van der Waals and electrostatic forces between the
particles can be neglected. Consequently, the particle inter-
actions can be considered only as of hydrodynamic origin.

C. Optical set-up

The solid plates of the shear cell are made of transparent
glass and the particles are observed by optical microscopy

~Fig. 1!. A chopped light synchronized at the excitation fre-
quency allows us to observe only the slow movements of
migration superimposed onto the applied oscillating flow.
The microscope is connected to a video system composed of
a CCD camera, a video monitor and a video tape-recorder;
an image analysis is made on a computer.

D. Viscosity measurement

The viscosity is obtained from the phase shift between
the alternative force applied to the upper plate to create the
flow and the induced oscillating displacement of this plate
~Fig. 1!.

One signal is the electrical current in the electromagnetic
vibrator: This signal is proportional to the force applied to
the oscillating upper plate. The other signal is the output of
an accelerometer fixed on the upper oscillating plate: This
signal is proportional to the displacement of this plate. The
phase shiftw between these two signals is measured by a
lock-in amplifier, and stored in a computer as a function of
the duration of the shear. This phase shift is directly related
to the dynamic viscosityh of the fluid in the cell as it is
demonstrated below.

If we notei (t)5I 0 cos(vt) the alternative current within
the vibration exciter andx(t)5A0 cos(vt1w) the induced
displacement of the upper plate, wherev52p f is the pulsa-
tion and f the frequency, the movement equation is

mẍ1l ẋ1kx5Bli , ~1!

wherem is the mass of the oscillating part,l a viscous
friction coefficient andk the restoring constant of the exciter.
The right hand termBli is the force that is proportional to
the electric currenti through the magnetic fieldB and the
length l of the inducing wire. Written in complex form the
equation is

2mv2A01 jlvA01kA05BlI 0. ~2!

Then, the phase shiftw between the displacementx and the
forceBli is

tanw5
lv

k2mv2 5
2lv

m~v22v0
2!
, ~3!

wherev05Ak/m is the resonant pulsation of the system.
The viscous friction coefficientl can be related to the ap-
parent viscosityh of the sheared fluid: The shear stresss
produced by the suspension on the upper plate being
s5hġ5h ẋ/e, the viscous friction coefficient isl5hS/e,
whereS is the shearing surface ande the gap between the
two solid plates. The relation between the phase shift and the
viscosity is therefore

tanw5
2Svh

m~v22v0
2!e

. ~4!

In fact, the measured phase shift tanw is the sum of two
terms: The first term is due to the viscosity of the sheared
fluid and an additional term (tanw0) is due to the viscous
friction which is internal to the vibration exciter

FIG. 1. Experimental set-up.
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tanw5
2Svh

m~v22v0
2!e

1tanw0. ~5!

The measured apparent viscosity is therefore

happ.5
2m~v22v0

2!e

Sv
~ tanw2tanw0!. ~6!

The tanw0 term is measured as a preliminary, with no fluid
between the plates other than the air~for which the viscosity
is neglected!. In the case where the working frequency is
much larger than the resonant frequency of the system
(v0

2!v2), the relation giving the viscosity is simply

happ.5
mve

S
~ tanw2tanw0!. ~7!

This is the case in our experiments sincef 0548 Hz and
f5200 Hz. All this derivation is correct only if the sheared
fluid is purely viscous. If the fluid has an elastic component,
the elastic modulus can be determined by measuring the
variation in the resonant frequency of the system. Such mea-
surements have been done yet for electrorheological fluids
with our experimental set-up.22,23

III. RESULTS AND DISCUSSION

A. Experimental results

The suspension placed between the plates is initially in a
disordered state@see photo~a!, Fig. 2#. As we applied the
shear, we observe that the particles arrange themselves in
periodic layers that are parallel to the plates and in periodic
lines that are perpendicular to the plane of shear@see photo
~b!, Fig. 2#. The ordering time is of the order of few minutes,
much greater than the characteristic time of the oscillating
flow ~periodT'1024 s). The periodic ordering of the par-
ticles under an oscillating shear flow was first observed and
interpreted by Petit and Noetinger.24 The inertial secondary
flows are induced by the alternating rotation of the particles
under the oscillating shear flow. They result in attractive in-

teractions between the particles along the axis of rotation and
repulsive in the perpendicular equatorial plane. Despite the
weakness of the inertial effects (Re!1), they are revealed
because of their non-zero mean-value over long time by
comparison with the period of the shear. The axis of rotation
being perpendicular to the plane of shear, this explains the
formation of lines of spheres at contact along this direction.

Indeed, the secondary flow around a rotating sphere due
to small inertial effects in a viscous liquid can be found by
using a perturbation method,25 where the perturbation param-
eter that describes the importance of inertial effects is the
Reynolds number Re5rfVd

2/h that is based on the angular
velocityV of the sphere. The inertial velocityv i of this flow,
which moves away from the sphere in the equatorial plane
and towards the spheres along the axis of rotation, is there-
fore of the order ofv i;ReVd. In a shear flow, a sphere
rotates with an angular velocityV5ġ/2 and the inertial ve-
locity scales therefore asv i;r f ġ

2d3/h. The time tm for a
particle to migrate over a distance of the order of its diameter
is then:

tm;
d

v i
;

h

r f ġ
2d2

. ~8!

The ġ2 dependence indicates that this velocity is the same
whatever the direction of the flow: Any side the sphere could
turn, the inertial flow is away from the sphere in the equato-
rial plane and to the sphere along the axis of rotation. The
r f dependence clearly indicates the inertial origin of this
particle migration.

In our experiments d'50 mm and ġ'100 s21

(Re'5.1025), so the time of inertial migration is
tm'102 s'1 min. This value is effectively the typical time
during which we observe by microscopy the migration of the
particles forming at the end the parallel chains.

The migration we observe in this experiment is quite
different from the diffusive process showed experimentally
by Leighton and Acrivos26 and modeled more recently by
Philipset al.27 and by Nott and Brady,28 which occurs when
the shear rate is non-homogeneous and at zero Reynolds
number. In our experiments, the shear rate is homogeneous
and the migration process is a function of the particle Rey-
nolds number even if this number is low because of the cu-
mulative effect due to the alternative movement.

Viscosity measurements performed simultaneously with
microscopic visualization give the following results: As the
shear is applied, we observe a significant decrease in the
viscosity~Fig. 2!. The viscosity starts from a given value and
reaches an asymptotic lower value after a few minutes of
shearing. This decrease is directly correlated with the order-
ing of particles described above, with a the typical time de-
crease of the order of 1 min. We observe this viscosity de-
crease and this particle ordering whatever the gap thickness
~200mm to 2 mm!.

Thus, we define one viscosityh r (t50) corresponding to
the initial disordered state, and a second, lower viscosity,
h r (t5`) , corresponding to the final periodic ordered state.
For all the solid volume fractionsf studied~up to 0.60!, we

FIG. 2. Relative viscosity,h r , of a monodisperse suspension of spheres
~volume fractionf50.20; particle diameterd545 mm) as a function of the
time t of shearing~frequencyf5200 Hz; shear rateġ 5 100 s21). The
photo on the left side~a! shows the disordered suspension before shear, and
on the right side~b! the ordered suspension after few minutes of shearing.
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observe this viscosity decrease: The viscosity of the disor-
dered suspensions is always larger than the viscosity of the
periodic ordered ones at the same volume fraction~Fig. 3!.

In the following, we compare our viscosity measure-
ments on ordered suspensions with numerical calculations
made by other authors on periodic arrays of particles.

B. Periodic suspensions of spheres

The effective viscosity of a suspension of rigid spheres
in an incompressible viscous fluid, with the spheres centered
at the points of a periodic lattice, is defined to be the fourth-
order tensor that relates the average deviatoric stress to the
average rate of strain. In the case of the cubic symmetry, it
reduced to the calculation of only two parameters. For the
three cubic configurations~SC, BCC and FCC!, these param-
eters have been numerically calculated by Nunan and Keller9

at all volume fractionsf, from zero up to the close-packing
valuefmax. Asymptotic formulae have also been obtained
by Zuzovskyet al.8 in the limit of low concentrations, and by
Nunan and Keller9 for high concentrations. In the case of the
simple-cubic array, the asymptotic formulae are the follow-
ing:

h r~f!511
5

2

f

110.862f22.286f5/3 when f→0, ~9!

h r~f!50.372
p

4
lnS 12S f

0.524D
1/3D when f→fmax.

~10!

One can verify that relation~2! gives the correct coeffi-
cient ~5/2! for the linear term in the volume fraction for the
very dilute regime. In the concentrated regime, relation~3!
indicates that the viscosity goes to infinity when the volume
fraction of the simple cubic suspensions approaches the
maximum volume fraction (fmax(S.C.)50.524) of this ar-
ray.

The quasi-periodic ordering of our sheared suspensions
leads us to make comparison between the viscosity measure-
ments and numerical calculations on periodic suspensions of
spheres in simple cubic array~S.C.! ~Fig. 4!.

The comparison is rather good for volume fractions up
to about 50%. For larger volume fractions, there is a sudden
discrepancy between the two curves. The reason is that the
viscosity of the S.C. suspensions diverges drastically as the
packing fraction of this array is approached
(fmax(S.C.)50.524), but the structure of our quasi-periodic
suspensions is not exactly the simple cubic-array. The main
difference between the structures we observed@insert ~a!,
Fig. 4# and the pure SC structures@insert ~b!, Fig. 4# is that
the particles in the former are in contact in the direction that
is perpendicular to the plane of shear. Nevertheless, the
rather good agreement up to 50%, may come from the fact
that the spheres in this direction do not strongly interact be-
cause there is no relative motion between them: Conse-
quently, the spacing between these spheres is unimportant in
this direction.

Another question that can be raised is the relevance of
dependence on the size of the system. In the numerical cal-
culations of Nunan and Keller discussed above, the suspen-
sion is supposed to be infinite in size, without boundary ef-
fects. On the contrary, in our experiments, the suspension is
of finite size since it is limited by two parallel solid plates.
We will now examine the variation in the viscosity of a
periodic suspension due to its confinement between two
shearing parallel solid walls.

Tran-Conget al.10 performed numerical calculations in
such cases: the suspensions they considered are made of only
few layers of particles~typically one to four layers! that are
parallel to the wall and regularly spaced. Their results show
that, for a given volume fraction, the viscosity increases
when the number of layers increases~the spacing between

FIG. 3. Relative viscosity,h r , of monodisperse suspensions of spheres
~particle diameterd545 mm) as a function of the volume fractionf.
(s): disordered suspensions before shear; (h): ordered suspension after 10
minutes of shearing.

FIG. 4. Specific viscosity,h r21, of monodisperse suspensions of spheres
~particle diameterd545 mm) as a function of the volume fractionf.
(h): ordered suspension after 10 min of shearing;~—!: numerical calcula-
tions for infinite S.C. suspensions of spheres made by Nunan and Keller
~1984!; (3): numerical calculations for S.C. suspensions of spheres made of
just 3 layers parallel to the solid plates@Tran-Conget al. ~1990!#. Inside the
graph are represented our shear-induced ordered suspensions~a! and the
S.C. suspensions of spheres~b! relative to the simple shear flow~on the
left!.
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the walls is enlarged to keep the volume fraction constant!,
but this enhancement saturates very rapidly as soon as few
layers are stacked one over the other: For the largest volume
fraction they studied (f50.315), the viscosity differs by
only 5% between the two- and three-layered suspensions and
reduces to 1.5% between the three- and four-layered suspen-
sions. The conclusion is that a three- or four-layered suspen-
sion is sufficient to reproduce a periodic suspension in three
directions.10 In our experiment, the spacing between the two
shearing plates ise5200mm. Considering the particle diam-
eter (d545 mm), the number of layers is of the order of 3 or
4 depending on the volume fraction. The reason for which
we made our experiments with this small spacing is that the
visualization is easier. However, we observe the same order-
ing and viscosity decrease if the spacing is much higher.
Although the calculations of Tran-Conget al. are not avail-
able at volume fractions higher than 0.3, one can see~Fig. 4!
that the agreement of our experimental results (h) with the
numerical ones (3) is very satisfactory. The limited exten-
sion of the shearing cell is therefore not very important in the
case of periodic suspensions, provided that exists more than
3 layers in the gap.

In our shear-induced ordered suspensions, the spheres
are aligned in close contact in one particular direction and
the particles of each line do not rotate independently but as a
whole: another way is to compare these chains of spheres
with elongated bodies. Such a comparison is exposed in the
following section.

C. Periodic suspensions of prolate spheroids

Bibbo et al.27 made some experiments with a parallel-
plate rheometer on suspensions of non-Brownian fibers:
There is a rapid viscosity decrease as the strain is increased,
this decrease being correlated with a strong change in the
orientational distribution, from an initial state with a random
distribution to a final state in which most of the fibers are
aligned in the shearing planes. For instance, the relative vis-
cosity of fiber suspensions of aspect ratior p'17 ~length-to-
thickness ratio! at volume fractionf'0.10 decreases from
roughly 4 to 1.5, i.e., decreases by 60%. In our previously
described experiments, the relative viscosity of suspensions
of spheres associated with the disordered-ordered ‘‘transi-
tion’’ decreases only by a 15% factor at the same volume
fraction. In the case of fibers, the effect is reinforced by the
anisotropy of the particles.

The comparison of a chain of spheres at close-contact
with a prolate spheroid@see Figs. 5~a! and 5~b!# have been
made recently by Zahnet al.30 for a sedimentation problem
at very low particle Reynolds numbers. Using magnetic field
induced aggregation of paramagnetic colloidal spheres into
linear chains of calibrated length, they determine the aniso-
tropic friction coefficients of the chains, with a range from 1
to 100 particles, by video-microscopic observation of sedi-
mentation velocity. The results they found agree well with
the Slender-body theory~valid for thin elongated bodies of
various shapes but of vanishing thickness-to-length ratio!
even with small chains lengths. At low Reynolds number, the
velocity field far from an object do not depend strongly on its
shape. In the case of suspensions of solid particles, the ef-

fective viscosity depends also only slightly on the particle
shape at volume fractions sufficiently lower than the maxi-
mum packing fraction.11

A suspension made ofn lines of p spheres of diameter
d per unit volume has the same solid volume fraction as a
suspension made of the same numbern of prolate spheroids
of the same aspect ratior p5p ~lengthL5pd, diameterd).
The reason is that the volumeVp.s. of a prolate spheroid of
aspect ratiop (Vp.s.5 p(pd)d2/6) is surprisingly equal to
the volumeVc.p. of a chain ofp spheres (Vc.n.5 ppd3/6).
The extra solid matter of the spheroids filling the holes be-
tween the spheres at close contact@shaded area, Fig. 5~d!#
balances exactly its loss of matter at each thin tip@shaded
area, Fig. 5~c!#!

The behavior of suspensions of anisotropic bodies sub-
mitted to a given flow is even much more complex than the
case of suspensions of spheres since in addition the distribu-
tion of particle orientations must be taken into account. In
simple shear flows, an elongated particle does not have an
equilibrium position, but experiences a periodic rotating mo-
tion, spending however much of its time aligned in the ve-
locity direction. Hence, a suspension of elongated particles
that is in an initially random distribution of orientation and
that is submitted to this flow will do not remained random if
Brownian motion can be neglected. To succeed in the vis-
cosity calculation, one has to know on one hand the statistic
distribution of the particle orientations, and on the other hand
the stress contribution for each orientation. The problem ap-
pears therefore extremely complex. Roughly speaking, the
increase of the viscosity due to the presence of elongated
bodies ~length L, width d5L/r p) is proportional tonL3

( 5 fr p
2) with arbitrarily chosen orientation distribution, to

nL2d( 5 fr p) if all particles are in the plane of shear and to
nLd2( 5 f) if particles are perpendicular to the plane of
shear. More exactly, theories exist in the dilute limit (nL3

! 1 or f ! r p
22) even for suspensions of particle of finite

aspect ratio31 but the theories developed in semi-dilute re-
gime (nL2d! 1 orf ! r p

21) are in theSlender-body approxi-

FIG. 5. Illustrations of~a! a line of r p58 spheres of diameterd; ~b! a
prolate spheroid of aspect ratior p58 ~length r pd and diameterd); ~c! the
shaded areas represent the loss of solid matter for a prolate spheroid relative
to a chain of spheres of same aspect ratio;~d! the shaded areas represent the
extra solid matter of a prolate spheroid relative to a chain of spheres of same
aspect ratio. The sum of the shaded areas appearing respectively in~c! and
~d! are equal, meaning that the volume of the two objects are equal.
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mation, i.e., in the case of an infinite aspect ratio.32 In the
case where all the fibers are perpendicular to the plane of
shear, these theories do not give a viscosity increase as a
function of the fiber volume fraction since the thickness of
the fibers is supposed to be zero.

Another approach is the numerical calculations made by
Claeys and Brady13 for the effective properties of suspen-
sions of rigid non-Brownian prolate spheroids interacting hy-
drodynamically in a Newtonian, incompressible fluid at zero
Reynolds number, by taking into account not only the far-
field interactions but also the lubrication effects. In particular
they calculate the viscosity of crystalline dispersions of these
elongated particles. The relative viscosity is given by the
relation13

h r5116krp
2f, ~11!

wherek is a numerical coefficient that depends on the spatial
distribution of the spheroids, on the aspect ratio, on the type
of the flow ~pure strain, pure shear,...! and on the solid vol-
ume fractionf. The parameterr p

2 is used to emphasized the
anisotropy of the spheroids: the volume fractionf*5r p

2f
would be the effective volume fraction of a suspension
where spheres of diameterd*5r pd would replace the pro-
late spheroids of aspect ratior p . These authors calculate the
numerical value of the coefficientk as a function of the
volume fraction, for several kinds of regular arrays contain-
ing spheroids of aspect ratior p 5 8 and submitted to different
types of flows. We have taken their values ofk correspond-
ing to prolate spheroids arranged in the expanded simple
cubic array~e.s.c.! and submitted to a simple shear flow in a
plane perpendicular to the spheroids, with the undisturbed
velocity lying along the shortest vector of the lattice@see
schematic illustration~b! in the insert of Figure 4#. This cor-
responds very well to our experimental suspension micro-
structure and to our flow conditions@insert ~a!, Fig. 6#. The
e.s.c. structure is obtained from a simple cubic close-packing
of spheres by stretching it along the main crystallographic

direction ~100! by a factor equal to the aspect ratio of the
spheroids: This transformation maps a sphere onto a spher-
oid without altering the volume fraction@Figs. 5~c! and
5~d!#; then, different volume fractions can be obtained by an
isotropic dilution of this dense microstructure while keeping
the surface-to-surface separation between nearest neighbors
the same in the three main perpendicular directions. Such a
technique is adopted to achieve the same packing fraction as
the one of the simple cubic cell of spheres
(fe.s.c.5fs.c.5p/650.52). Otherwise, a simple cubic array
of prolate spheroids of aspect ratior p is in such a way that
the center-to-center separations are the same in the three per-
pendicular directions but not the surface-to-surface separa-
tions; its packing fraction is therefore equal to 0.52/r p

2 . This
would lead to a drastic decrease in the maximum packing
fraction: For aspect ratior p510, the highest volume fraction
attainable would be equal to 0.005.

Figure 6 shows that the numerical calculations of these
periodic suspensions of prolate spheroids correspond quite
well with our viscosity measurements of ordered suspensions
of spheres. This agreement means that the differential rota-
tion between touching particles in each chain is unimportant.
Unfortunately, the calculations have not been done beyond a
volume fraction of 45%. Such a concentration is however
extremely high if we remember that volume fractions inves-
tigated experimentally for disordered suspensions of fibers
do not exceed 30%. Atf50.45,nL2d'1, which is the limit
between semi-dilute and concentrated regime.

IV. CONCLUSION

The experiments we performed show the advantage ly-
ing in the use of a rheo-optical set-up in the case of complex
fluids: we could correlate the macroscopic behavior of sus-
pensions of solid spheres~by viscosity measurements! with
the microstructure~by optical microscopy!.

In addition, we found a good agreement between our
viscosity measurements for the quasi-periodic shear-induced
suspensions we observed and viscosity calculations of sus-
pensions of particles ordered in perfect regular arrays. This
comparison reinforced the interest of simulations of ordered
systems.
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