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ABSTRACT 
 

In cloud environments, hardware configurations, data usage, and workload allocations are continuously 

changing. These changes make it difficult for the query optimizer of a cloud database management system 

(DBMS) to select an optimal query execution plan (QEP). In order to optimize a query with a more 

accurate cost estimation, performing query re-optimizations during the query execution has been proposed 
in the literature. However, some of there-optimizations may not provide any performance gain in terms of 

query response time or monetary costs, which are the two optimization objectives for cloud databases, and 

may also have negative impacts on the performance due to their overheads. This raises the question of how 

to determine when are-optimization is beneficial. In this paper, we present a technique called ReOptML 

that uses machine learning to enable effective re-optimizations. This technique executes a query in stages, 

employs a machine learning model to predict whether a query re-optimization is beneficial after a stage is 

executed, and invokes the query optimizer to perform the re-optimization automatically. The experiments 

comparing ReOptML with existing query re-optimization algorithms show that ReOptML improves query 

response time from 13% to 35% for skew data and from 13% to 21% for uniform data, and improves 

monetary cost paid to cloud service providers from 17% to 35% on skewdata. 
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1. INTRODUCTION 

 

One key difference between query optimization in cloud databases and in conventional databases 

is that query optimization in cloud databases seeks to reduce the monetary cost paid to cloud 
service providers in addition to the query response time [32]. However, the time and monetary 

costs needed to execute a query are estimated based on the data statistics available to the query 

optimizer at the moment when the query optimization is performed. These statistics are often 

approximate, which may result in inaccurate estimates for the time and monetary costs needed to 
execute the query [1, 2]. Thus, the query execution plans (QEPs) generated by the query 

optimizer based on those statistics before the query execution may not be the best.  

 
One approach that can be applied to address the above issue is adaptive query processing [3]. 

This strategy consists in not executing queries as a whole at one time, but instead dividing the 

execution of each query into multiple stages and then re-running the query optimizer between 

each stage. By doing this, the query optimizer can collect more accurate statistics between stage 
executions, which may allow for changing the QEP at runtime, thus possibly improving query 

performance [1, 4]. Operators that do not rely on the completion of others are grouped together 

and such groups are called “Stages”. For example, if a query plan has a JOIN operator, its left and 
right sides are each executed in a separate stage. After the completion of each stage of the QEP, 

http://airccse.org/journal/ijdms/current2021.html
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the data statistics are updated, so that the query optimizer can make use of the latest statistics to 
generate improved (i.e. re-optimized) QEPs for those stages that remain to be executed. As a 

result of query reoptimization, the QEPs of the stages that have not yet been executed may 

change because the operators in these QEPs might be replaced by others, or because any stage 

might be re-scheduled to run on a different machine. Such changes in QEPs might produce 
different query response times and different monetary costs. However, calling the query 

optimizer multiples times during query execution has an associated time overhead, which in turn 

produces additional monetary costs. For this reason, it is desirable to re-optimize a query only if 
the cost improvements of the re-optimized QEP over the original QEP can offset the cost incurred 

in calling the optimizer multiple times.  
 

At any given stage of the execution of a query, deciding if a re-optimization will likely bring 
performance improvements is not an easy task. In early work [3], such a decision is made by rule 

based heuristic. Several check points are placed manually between certain types of operators. The 

difference between the estimated cost and the actual cost of executing a query after a check point 
is examined. If the difference exceeds a pre-defined threshold, then a re-optimization takes place. 

The problem of this technique is that the rules for placing check points and the threshold are 

fixed. Due to the dynamic of cloud environments, timing of re-optimization decided by this 

technique is not accurate enough to reduce the query’s execution time. Our early work [5] 
presented a query processing algorithm that performs query re-optimization after the completion 

of each stage based on the technique proposed in [1]. However, our work [5] shows that many of 

these re-optimization calls produced no change in the underlying QEP, which means that the 
query re-optimization was performed unnecessarily. This was because the stages were not aligned 

with the best timing to apply the re-optimization. For example, after running the example Query 1 

given in Figure 1, we observed that out of the 10 times that the optimizer was called for re-

optimization during the execution of this query, only 2 out of these calls changed the QEP for the 
remaining stages; therefore, the majority of the re-optimization calls produced no improvement 

on either the time or the monetary cost of running this query. The details on these findings are 

reported in Section 3. 
 

Naturally, calling the re-optimization routine unnecessarily increases both the query response 

time and monetary cost. The problem therefore lies in determining the most appropriate time 

when to call for re-optimization, and in determining those occasions where re-optimization can 
negatively impact query performance. To address this problem, this paper presents a new 

machine learningbased algorithm for query re-optimization in the cloud. The key idea behind this 

algorithm consists in using past query executions in order to learn to predict the effectiveness of 
query reoptimizations, and this is done with the purpose of helping the query optimizer avoid 

unnecessary query re-optimizations for future queries. 
 

SELECT R.p_id, R.p_name, R.sc, S.p_hr 

FROM (SELECT p_id, p_name, AVG(p_bp) AS sc 
FROM patient GROUP BY p_id, p_name) AS R 

JOIN (SELECT p_id, p_hr 

FROM patient 
WHERE UDF(p_id,p_hr) > 80 

) AS S 

ON R.p_id = S.p_i 

 

Figure 1. Query 1 
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While machine learning has been used to improve query processing in a number of recent works, 
such as [6, 7, 8, 9, 10, 11], to the best of our knowledge, it has not been used to avoid 

unnecessary query re-optimization calls in adaptive query processing. Among the issues that need 

to be addressed when using machine learning for this purpose are the following. The first one 

consists in the many features that influence query cost estimations, such as selectivity, 
cardinality, min and max values of a column, most frequent value of a column, histogram, etc. 

The difficulty here lies in selecting the most appropriate feature subset out of all these features. 

The second issue consists in the large number of possible machine learning models. Supervised 
learning algorithms like Random Forest [12], Neural Network [13], and Support Vector Machine 

[14] are widely used but need to be studied carefully for our purpose. The third issue is about the 

collection of the historical data on the selected subset of features that is needed to train the 
prediction model constructed using the selected machine learning algorithm. The fourth issue 

consists in measuring the effectiveness of the learning algorithm. Some works such as [8, 15, 16] 

show the learning algorithm is effective for their own purposes, for example to improve cost 

estimation, but actually, none of them demonstrates that they are effective in actual query 
execution performance. Our proposed technique addresses all these issues.  
 

In this paper we make the following contributions:  
 

 We present a novel machine learning-based query re-optimization algorithm for a relational 
DBMS in the cloud [9] to optimize query response time and monetary costs. We discuss the 

feature selection, training data collection, machine learning model selection, and integration 

of the selected machine learning model into query re-optimization.  
 

 We present a comprehensive experimental study evaluating the accuracy of different 

machine learning models, the query response time and monetary costs of the proposed 
query re-optimization algorithm when operating under different machine learning models, 

and comparing the proposed query re-optimization algorithm with existing query re-

optimization algorithms.  
 

The remaining of this paper is organized as follows: Section 2 discusses the related work; Section 

3 provides the details of work on query re-optimization and its results that motivate this research; 

Section 4 presents the proposed machine learning-based query re-optimization algorithm; Section 
5 discusses the experimental performance evaluation model and the results; and finally Section 6 

presents the conclusions and discusses future research directions. 
 

2. RELATED WORK 
 

The problem of query re-optimization has been studied in the literature. In early days, heuristics 
were used to decide when to re-optimize a query or how to do the re-optimization. Usually, these 

heuristics were based on cost estimations which were not accurate at the time when query 

reoptimization takes place. Besides that, sometimes, a human-in-the-loop was needed in order to 
analyze and adjust these heuristics [2, 4, 10, 17]. These add additional overheads caused by query 

re-optimization to the overall performance of queries. Recently, learning techniques have been 

introduced to improve query optimization [6, 7, 8, 9, 10, 11]. Feedback from the executions of 

past queries can be used to guide the query optimizer to produce better QEPs, so that the 
performance of future queries can be improved as a result. In this section, we review the work in 

the two related areas of adaptive query optimization and machine learning-based query 

optimization. 
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2.1. Adaptive Query Optimization 
 

The idea of adaptive query optimization is that data statistics such as selectivity, cardinality, min 

and max values, and histograms are monitored during query execution. The execution of a query 

can be paused whenever the algorithm decides to re-optimize the query. Then the new data 
statistics and intermediate results are used by the query optimizer to generate a new QEP and the 

query execution continues following the new QEP. In the works presented in [18, 19], the 

checkpoints are manually set between certain operators of a QEP. These set points are placed at 

certain positions such as before or after a join operator based on some rules, but whether or not a 
re-optimization call should be triggered is still based on whether the difference between the actual 

and estimated costs of executing a query exceeds a threshold. In these works, the threshold is 

fixed at 20% and applied to all the check points. Re-optimizations that take place at these check 
points are necessary but are still not accurate. For example, in some application scenarios, 

reoptimization should be triggered even the difference is less than 20%. Using a fixed threshold is 

difficult to adapt the re-optimization decision to all application scenarios. The work in [1] 
proposes a query optimization method where the query is re-optimized multiple times during its 

execution based on stages. Every time one stage is finished, the query is re-optimized. We 

implemented this idea and found that many re-optimizations are wasted [5], which we report in 

detail in Section 3. Adaptive query optimization suffers from the following drawbacks: 1) It is 
hard to decide when a query should be re-optimized. Cost estimation can be a heuristic for the 

optimizer to make decision but it is not accurate. Since re-optimization has a considerable 

overhead, re-optimizing a query during its execution when such re-optimization leads to no QEP 
changes can negatively impact the overall performance; and 2) Adjusting the QEP is difficult, 

especially in a cloud environment [20]. Some works such as [10, 21] manually adjust the QEP, 

but these works suffer from a large search space for exploring the best adjustment for the current 

QEP. In another work, Tukwila [18], re-optimization is decided by a heuristic-based rule. After 
the execution of each operator, the actual data statistics are collected and compared with the 

previous estimated data statistics. If the difference between these two data statistics exceeds a 

threshold, a query re-optimization is conducted. As the rule is heuristic and does not adjust 
adaptively regarding how the data or hardware changes, the rule is not always useful which then 

generates some unnecessary re-optimizations. 
 

2.2. Machine Learning-Based Query Re-Optimization 
 

Machine learning techniques have been used recently in query optimizations [9, 15, 22, 23, 24] 

for different purposes. In earlier works, Leo [23] learns from the feedback of executing past 

queries by adjusting its cardinality estimations over time, but this algorithm requires human-tuned 
heuristics, and still, it only adjusts the cardinality estimation model for selecting the best join 

order. More recently, the work in [24] presents a machine learning-based approach to learn 

cardinality models from previous job executions and these models are then used to predict the 
cardinalities in future jobs. In this work, only join orders, not the entire query, are optimized. In 

[21], the authors examine the use of deep learning techniques in database research. Since then, 

reinforcement learning is also used. The work in [15] proposes a deep learning approach for 

cardinality estimation that is specifically designed to capture join-crossing correlations. 
SkinnerDB [22] and ReJoin [9] are two other works that use a regret-bounded reinforcement 

learning algorithm to adjust the join order during query execution. Also, the algorithm proposed 

in [28] uses variational auto encoder to make an accurate estimation of query execution time but 
still, this algorithm does not perform end-to-end query processing. None of these machine 

learning-based query optimization algorithms is designed for predicting whether a query 

reoptimization is beneficial in terms of query response time and monetary cost, which is the goal 

of our proposed algorithm. In our work, we use a machine learning model that learns from the 
past query re-optimizations to do the re-optimization prediction and integrate this model into the 
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endto-end query processing to achieve improvements on query response time and monetary costs. 
To select a proper machine learning model, we investigate what kinds of features that can be used 

to build such a model, how to generate training queries and training databases, and how major 

existing machine learning models perform in terms of prediction accuracy, query response time, 

and monetary costs. 
 

3. QUERY RE-OPTIMIZATION 

 

To provide more details to support our motivations for the work proposed in this paper, in this 

section we report the findings we obtained when performing query re-optimization without using 
machine learning. In our previous work [5], after a query is submitted to the DBMS, a regular 

query optimizer first generates an initial QEP. Then this QEP will be divided into stages and 

executed by the execution engine stage by stage. After a stage is finished, the data statistics are 
updated. These statistics include the cardinality, selectivity, and max and min values for each 

attribute in each database table. By updating these statistics, the estimation of the resulting data 

size used in the next stages is updated accordingly. The rest of the stages in the QEP are also sent 

to the query optimizer for re-optimization using the updated statistics. Also, in that system, 
multiple machines with different hardware configurations are used in parallel to execute query 

operators. Those machines are referred to as containers in this paper. Executing query on 

different containers results in different query response time and monetary cost, and the best QEP 
selected needs to take both into consideration. In order to do so, we use the Normalized Weighted 

Sum Model developed in [25] to select the best plan. In this model, every possible QEP 

alternative is rated by a score that combines both the objectives, query response time and 
monetary cost, with the weights defined by the user and the environment for each objective, and 

the user-defined acceptable maximum value for each objective. The following function is used to 

compute the score of a QEP: 
 

 
 

aij is the value of QEP alternative i (QEPi) for objective j, 𝑚j is the user-defined acceptable 

maximum value for objective j, and Wj the normalized composite weight of user and 

environment for objective j which is defined as follows: 

 

 
 

Where 𝑢𝑤j and 𝑒𝑤j describe the weight of the user and the environmental weight for objective 

j, respectively. These weights are user-defined. Since the different objectives are 

representative of different costs, the model chooses the alternative with the lowest core to 

minimize the costs. 
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Figure 2. Impacts of physical operators on time and monetary costs for execution of Query 1 

 

We conducted experiments comparing the query performance resulted from using query 

reoptimization vs. using no query re-optimization. In the experiments, 1200 queries were created 

using the query templates presented in [1] (Query 1 shown in Figure 1 is a query created from 

one of these templates). The results show that using re-optimization has approximately 20% 

improvement on average in terms of the overall time cost over using no re-optimization, while 

the monetary costs of the two approaches are close, with only a 4% difference. This increase of 

monetary cost is due to the fact that the more powerful containers that are selected to run the 

queries are the containers for which the cloud providers charge more hourly to run a query. 

However, we noticed that a large number of query re-optimizations is unnecessary. An 

unnecessary re-optimization for a QEP occurs when the QEP does not change after the 

reoptimization is performed. Note that in these experiments, after a stage in a QEP is executed, a 

re-optimization is automatically conducted regardless of whether the data statistics have changed 

after the stage is executed, resulting in many re-optimizations that are unnecessary. For example, 

the experiments show that when Query 1 is executed, 8 of the 10 query re-optimizations are 

unnecessary. The only 2 necessary re-optimizations happen after the subquery is executed. 

Except for those, the QEPs after the TableScan or Aggregate operator is executed do not change 

at all after the re-optimizations. Performing re-optimization incurs overheads and unnecessary 

reoptimizations increase query response time and monetary costs. In these experiments, we 

observed that nearly 60% of the query re-optimizations are unnecessary and performing one 

query re-optimization costs around 0.5% of the total query response time. Thus, avoiding 

unnecessary query re-optimizations is important to further improve the performance of query 

execution on both time and monetary costs.  

 

If a query is re-optimized only when changes to its QEP after the re-optimization can be 

guaranteed, then there will not be any unnecessary re-optimization. In order to detect such 

changes, in the next section, we present a new machine learning-based re-optimization technique 

to predict if a QEP will change after a re-optimization based on the historical query execution 

data is performed, and conduct a re-optimization for the QEP only when such a change is 

predicted. 
 

4. PROPOSED MACHINE LEARNING - BASED QUERY RE - OPTIMIZATION 
 

In this section, we describe how machine learning is used in our proposed algorithm, ReOptML, 

to predict when a query re-optimization is beneficial for the performance of queries. We first 
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present an overview of our approach (Section 4.1), then we present its four parts: the feature 

selection (Section 4.2); the training data collection (Section 4.3); the machine learning model 

selection (Section 4.4); and the query re-optimization algorithm that integrates with the selected 

machine learning model to optimize query response time and monetary cost (Section 4.5).  
 

4.1. Overview  
 

Figure 3 shows the major steps in query processing when ReOptML is incorporated for query 

reoptimization. First, the optimizer receives a query and records the current data statistics. Then 

the query is compiled into a QEP with the stage information. The first stage in the QEP is 

executed and removed from the QEP. During the execution, the data statistics are monitored and 

updated. After the execution of the first stage, these updated data statistics are compared with the 

current data statistics that were recorded before the stage was executed. The machine learning 

model is used here to take the difference between the current data statistics and the new data 

statistics as input, and produce the re-optimization decision (“YES” or “NO”) as output. The 

query is reoptimized if the decision is “YES” and the current first stage in the new QEP after the 

reoptimization is executed; otherwise, if the decision is “NO”, the QEP remains the same and its 

next stage is executed. This procedure continues until there is no stage left.  
 

4.2. Feature Selection  
 

In this section, we discuss what statistics (features) we collect to train our machine learning 

model. 
 

 
 

Figure 3. Query processing with machine learning-based query re-optimization 

 

A change in a QEP after a re-optimization implies that the re-optimization is beneficial. We 

define such a change to be one of the following types: 1) changes in the physical operator types, 

2) changes in the number of containers, or 3) changes in the types of containers. This means that 

if any of these three types of changes occurs, then the re-optimization should be allowed to take 

place.  

 

A change in the physical operator types means that if there exists any physical operator in the 

current QEP that is different from the physical operators in the previous QEP, then the QEP has 
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changed. For example, in our previous experiments, the change in the physical operator from 

Shuffle Join to Broadcast Join is defined as a change in the physical operator types. This change 

highly influences query execution time. Thus, by detecting such changes in the QEP after a 

reoptimization, this re-optimization will probably be beneficial, and thus the re-optimization will 

be applied if a similar situation is encountered.  
 

A change in the number or types of containers means that the total number of containers used to 

execute the current QEP is different from that of the previous QEP. Such changes are also called 

changes in the degree of parallelism. For example, the TableScan operator is assigned to four 

containers before the re-optimization and uses only three containers after the re-optimization. 

This change highly influences the monetary cost of query execution. Thus, re-optimizations are 

useful if such changes are detected. Similarly, a change in the types of containers means that after 

the re-optimization, the operators are assigned to different types of containers from the ones that 

the operators were assigned to before the re-optimization. These new containers may be more or 

less powerful than the old ones. Detecting such changes may influence the monetary cost as well.  
 

These three types of changes occur whenever the estimated data size has also changed. This is 

because the query optimizer uses these estimations to decide how to execute the query and how 

many containers should be used. Thus, in order to tell whether the re-optimization will be 

beneficial, we use the data features that are relevant to the changes in data size estimation.  
 

Assume that in the current DBMS, there exist the C1,C2,….,Cn columns in all the tables. The 

differences in the selectivity (DIFF_SELECTIVITY), in the number of distinct values 

(DIFF_NDV) and in the histograms (DIFF_HISTOGRAM) of each column before and after a 

stage is executed are used as the data features in the training data used for prediction as shown in 

Table 1. The binary value YES/NO is used as the predicted class in the training data, where YES 

means that the re-optimization is predicted to be useful and NO otherwise. Many works show 

that the selectivity, number of distinct values and the histogram influence the data size estimation 

[15, 17, 26]. Thus, the differences in these three features before and after a stage is executed 

result in changes in the data size estimation of the intermediate results. Hence, they become 

relevant in deciding the effectiveness of re-optimization.  
 

4.3. Model Training  
 

First, we generate queries for model training by running random queries generated from all 22 

types of queries in the TPC-H benchmark [27] on our system and recording the data statistics, 

which are the values of the features we have selected in Section 4.2 above. This way the 

prediction model can be applied to all queries. If re-optimization is only for the costliest/most 

representative queries, then in this first step, the training data should be collected from running 

only the random but most costly/representative queries.  
 

Figure 4 shows the procedure for the training data collection. In order to better explain in detail 

how the training data is collected, we demonstrate an example of executing the following 

example Query 2 shown in Figure 5. 
 



International Journal of Database Management Systems (IJDMS) Vol.13, No.1, February 2021 

29 
 

 
 

Figure 4. The procedure for collecting training data 

 

 
 

Figure 5. Query2 

 

After the query is submitted, we record the current data statistics gathered from the system logs. 

These current statistics are called Statcurr. Then, the query is sent to the optimizer to generate a 

QEP. This QEP includes the stage information and the nodes on which these stages will be 

executed. Figure 6 shows the QEP generated by the query optimizer for Query 2. In Figure 6, 

each node stands for a different query operator. The arrows indicate the dataflow between the 

operators. The QEP is divided into stages, each of which is denoted by a rectangular. TS, SOR, 
 

 
 

Figure 6. QEP divided into different stages generated by the query optimizer for Query 2 

SELECT Department, COUNT(Name) 

FROM STUDENT 

GROUP BY Department 

WHERE Grade <= ‘C’; 
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FIL, and AGG, standing for TableScan, Sort, Filter and Aggregate operators, respectively. In a 

cloud database system, as data are distributed among different containers, the subscripts 

distinguish the same operators that are executed in parallel on different data on different 

containers.  

 

Then, Stage 1 is sent to the query execution engine. During the execution, we update the data 

statistics using the method presented in [1]. In this method, data statistics are collected during the 

execution and updated after the operators in one vertex finish. The vertex is similar to our stage. 

We call these updated statistics Statupdate. Since these statistics are collected from the actual 

running query, Statupdate is more accurate than Statcurr which is obtained from the estimation. The 

difference between Statupdate and Statcurr, is called Statdiff. Statdiff includes the values of the features 

used as the training data. For example, the current selectivity and the updated selectivity of 

column A are 0.5 and 0.1, respectively, then the difference 0.4 is added as the value of the 

DIFF_SELECTIVITY feature in the training dataset. This process is applied to all the features. 

The selected features are shown in Table 1. 
 

Table 1. List of Selected Features 

 

 
 

If the re-optimization is predicted to be beneficial, the QEP is then re-optimized using the 

updated data statistics. Following this, the next stage (Stage 2) is executed based on the new 

QEP. The process is then repeated for the rest of the stages. In this example, Stage 2 is possibly 

changed. At this point, Stage 2 after the re-optimization is compared to the Stage 2 before the re-

optimization to observe any potential changes. 

 

4.4. Machine Learning Model Selection  
 

There exist a lot of machine learning models, but we need to choose a model that has a high 

accuracy in predicting if a re-optimization is beneficial, and incurs smaller overheads than the 

amounts of query execution time and monetary cost that it can save by avoiding unnecessary 

reoptimizations. The overheads incurred by a prediction model include the time to train the 

model (training time) and the time to apply the trained model for prediction (prediction time). In 

our case, as the model is trained offline, we are only concerned about the prediction time 

overhead. Applying different models trained by different learning algorithms may have different 

prediction time overheads. For example, applying a model created by a Neural Network learning 

algorithm [13] may have a different prediction time overhead comparing with the prediction time 

overhead when applying a model trained by a Random Forest algorithm [12]. This overhead may 

be different even when applying different models that are trained by the same learning algorithm. 
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Figure 7. Query processing algorithm with machine learning based re-optimization 

 

For example, checking a Neural Network with 50 layers to derive a prediction is different from 

checking a Neural Network with 100 layers. 
 

In this paper, we study three major supervised machine learning algorithms representing three 

different families of machine learning models: Neural Network [13], Random Forest [26], and 

Support Vector Machine (SVM) [14]. These algorithms have also been used in the recent works 

on applying machine learning to database research [21]. We compare these three algorithms 

based on their prediction accuracy and prediction time and monetary overheads. The comparison 

results are reported in Section 5.2 and Section 5.3. 

 

4.5. Query Processing Using the Proposed Machine Learning-based Query 

ReOptimization Model (ReOptML)  
 

In this section, we illustrate how the trained model is applied during the query execution and the 

details are provided in Algorithm 1 shown in Figure 7. In Lines 1 to 3 of Algorithm 1, the query 

is first optimized and converted to a QEP. This QEP is denoted as Old_QEP. At this time, the 

current data statistics are collected and stored as Old_Statistics. In Line 4, Stage 1 of the QEP is 

executed and removed from the QEP, and the intermediate results are saved. In Lines 5 and 6, the 

data statistics are updated and recorded as New_Statistics after the Stage 1’s execution. In Line 7, 

the New_Statistics and Old_Statistics are compared and denoted as Diff_Statistics. From Line 8, 

while there are unfinished stages remaining in the Old_QEP, the Diff_Statistics is sent to the 
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machine learning model to predict whether the new re-optimization will be beneficial or not and 

the corresponding decision of “YES” or “NO” is returned. If the decision is “YES”, then in Lines 

10 to 13, the Old_QEP is re-optimized into the New_QEP by the query optimizer using the new 

data statistics and the intermediate results. The New_QEP replaces the Old_QEP and the first 

stage in the New_QEP is then executed. If the decision is “NO” in Line 14, then the re- 

optimization is skipped and the current first stage of the Old_QEP is executed without re- 

optimization. From Line 16 to Line 22, regardless of whether the QEP has been re-optimized or 

not, the data statistics are always updated and compared as the model requires the Diff_Statistics 

to make a decision before executing the next stage. This procedure repeats until all the stages 

have been executed. Then the query results are sent to the user. 
 

5. PERFORMANCE EVALUATION  
 

In this section, we first describe the hardware configuration and the procedure used to collect the 

training data. We then evaluate the machine learning models that predict whether the 

reoptimization is necessary to identify the best one to process queries. Finally, we compare the 

performance of processing queries using ReOptML with the performances of three competitive 

algorithms: query processing without re-optimization, query processing with re-optimization 

after each stage is executed and query processing with re-optimization after each check point.  
 

5.1. Hardware Configuration  
 

There are two sets of machines used in our experiments. The first set consists of a single local 

machine used to train the machine learning model and to perform the query optimization. This 

local machine has an Intel i5 2500K Dual-Core processor running at 3 GHz with 16GB DRAM. 

The second set consists of 10 dedicated Virtual Private Servers (VPSs) that were used for the 

deployment of the query execution engine. Five of these VPSs, called small containers, have one 

Intel Xeon E5-2682 processor running at 2.5GHz with 1 GB of DRAM. The other 5 VPSs, called 

large containers, each has two Intel Xeon E5-2682 processors running at 2.5GHz with 2 GB of 

DRAM. The query optimizer and the query engine used in this experiment were modified from 

PostgreSQL 8.4 [28]. The data were distributed among these VPSs.  

 

5.2. Performance of Different Machine Learning Models for Query Re-

Optimization  
 

Generating training queries and databases: In order to study the model accuracy of different 

models on different sizes of training queries, batches of different sizes of training queries are 

created. Each batch contains a different number of queries that have been executed and 

monitored on the same system with the algorithm implemented based on work [5]. The batch 

sizes are from 10,000 queries to 60,000 queries with an interval of 5,000 queries between them. 

Also, we prepare two databases for training: one database where all the tables are populated with 

uniform distributed data and the other database where all the tables are populated with zpfi 

distributed skew data. To simulate the real usage of a database management system, the tuples of 

all the database tables are randomly changed constantly. This means we continuously insert, 

delete, or update tuples and index columns of all the tables. The table structures remain 

unchanged, no new tables are created, and no current tables are dropped. After each query 

execution, multiple observations are gathered as discussed in Section 4.3. After executing each 

query, multiple reoptimizations are conducted and each observation is for one of the query re-

optimizations. Then these observations are labeled manually according to whether the QEP has 

been changed after the re-optimization. An observation is labelled “YES” if the QEP has been 

changed after the reoptimization and “NO” otherwise.  
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Tuning model parameters: If the learning algorithm constructing the model has parameters, one 

important thing is to choose the best values for the parameters before training the model. For the 

Random Forest algorithm, we found three parameters influencing the model accuracy which are 

the number of trees, number of nodes in the tree, and random split option. In order to select the 

best values for the parameters for running this model, the Nested Cross Validation method [28] is 

used. This method first uses one round of cross validation to search for the best parameters’ 

values and then applies another round of cross validation to test the true accuracy of the model. 

In our experiments we found that using the number of hidden layers as 600, the number of nodes 

in the tree as 200, and the random split option as YES provide the best accuracy of our Random 

Forest model.  

 

Model Accuracy: Model accuracy reflects the overall success rate of predicting useful 

reoptimizations. We use 10-fold cross validation to test the accuracy of three models, Neural 

Network, Random Forest, and SVM. We also study the impact of different data distributions on 

the accuracy of the learning models. We populate the database tables with both the uniformly 

distributed data and skew data and the same queries are executed on both of them. Many 

traditional query optimizers, like PostgreSQL [29], assume that data is uniformly distributed, so 

if only uniformly distributed data is used, there are more chances that re-optimization has no 

effect at all. Skew data may cause wrong cost estimations and thus the QEP selected by the 

traditional query optimizer is far from optimal, thus re-optimization may be more useful when 

data is skew. We use skew data on purpose to see how model the accuracy and query execution 

performance are impacted.  

 

As shown in Figure 8, as the number of queries increases, the accuracy increases as well. This is 

because as more observations were learned by the model, it is more capable of predicting 

beneficial re-optimizations. We find the accuracy among these three models are slightly different. 

Averagely, the Neural Network is near 70% accurate, while Random Forest and SVM are close 

to 75%. From the data distribution perspective, the models on the uniform data and on the skew 

data have slightly different accuracies with the average accuracy being within 5% difference of 

each other. 
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Figure 8. Model accuracy of three different machine learning algorithms that learn from queries executed 

on (a) uniform data and (b) skewed data 

 

5.3. Performance Obtained When Applying Different Machine Learning Models for 

Query Re-Optimization to Query Processing  
 

The model accuracy is close to each other as reported above; so to select which model should be 

used eventually, in this section, we evaluate these models in terms of performance on query 

execution when incorporating them into query processing as shown in Algorithm 1 in Figure 7 in 
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Section 4.5. We generate 100 query instances from each of the 22 TPC-H benchmark query 

types, totaling 2200 queries. On average, each query has 13 stages. These queries are executed 

and reoptimized based on the decisions made by these three models. Each QEP is evaluated with 

the same weight on time and monetary costs when the query optimizer selects the best QEP. This 

means we assume the users have no preference on time or monetary costs themselves. The actual 

time and monetary costs resulted from applying these three models are compared. To be fair, 

these queries are newly generated and not seen by any of these models during the model training 

process. Figure 9 shows the end-to-end query response time and monetary cost on executing the 

queries generated from all 22 query types of the TPC-H benchmark and these costs are 

summarized in Table 2. These results are averaged on running queries on both uniform and skew 

dataset.  

 

From Table 2, we can see that SVM gives the best query response time. As shown in Figure 8, 

the three models have a very similar model accuracy. This means that the optimizer has a similar 

chance to perform useful re-optimizations by using any of these models. However, it takes 

different amounts of time to apply these models as we have discussed in Section 4.4. As these 

models are applied online during query execution, the overheads caused by using these models 

are added to the query response time. Thus, a small difference in this overhead may cause a 

significant difference in query response time, and thus is crucial to the users. From the monetary 
 

Table 2. Average and Cumulative Query Response Time and Monetary Cost Using Three Different 

Machine Learning Models 

 

 
 

cost perspective, the amount of money to execute each query seems negligible when using any of 

the three models as shown in Figure 9 (b). However, this amount shown in this figure is just for 

one query execution, but in practice, tens of thousands of queries are executed for enterprise 

applications. This results in a large difference in cumulative monetary costs. Also, for each query 

type, the monetary cost has a larger variation than the query response time. This is because in our 

hardware configuration, a large container is charged 4 times of money more than a small 

container according to our price model. If an operator is assigned to a large container, it costs 

way more money to be executed but the time cost may be just a little bit less. Thus, the 

accumulative monetary cost varies a lot. Overall, SVM has the best prediction accuracy and 

query response time, and the second best monetary cost. Thus, in the following experiments, we 

select SVM as the machine learning model to be used in our proposed machine learning-based 

query reoptimization, ReOptML, and compare this algorithm against other query re-optimization 

algorithms. We select this model for comparison purposes only; we do not intent to suggest 

which model should be selected automatically as some QEPs may be executed faster but costs 

more money and vice versa, depending on the selected model.  
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5.4. Performance of Different Query Re-Optimization Algorithms  
 

In this section, we compare the end-to-end query processing performances obtained when the 

following query re-optimization algorithms are incorporated into query processing: 1) our 

proposed algorithm (ReOptML); 2) the algorithm presented in [5] (denoted as ReOpt in our 

figures) where a query re-optimization is conducted automatically after the execution of each 

stage in the query is completed. We developed this algorithm based on the state of art works 

[1,31]; the algorithm proposed by Tukwila [18] (denoted as Tukwila), a well-known adaptive 

query re-optimization algorithm that triggers a re-optimization after an operator is executed if the 

difference between the estimated query cost and the actual query cost exceeds some threshold; 

and the baseline algorithm where queries are processed without any query re-optimization 

(denoted as NoReOpt). 
 

 
 

Figure 9. (a) and (b). Average response time and Average monetary cost of executing queries using three 

different machine learning models for query re-optimization 

 

We launch 2200 queries with 100 queries being generated from each of the 22 TPC-H query 

types both on uniform and skew data. We compare the average query response time and 
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monetary cost. We report the query types that have large differences between ReOpt and 

ReOptML on average so that we can see with the help of machine learning, how much 

improvement can be obtained with re-optimization.  
 

Skew Data: we compare our algorithm with Tukwila, NoReOpt, and ReOpt on skew data. The 

experimental results show that our algorithm performs the best both in terms of query response 

time and monetary costs. From Figure 10 (a), on average we see that ReOptML yields 13%, 22%, 

and 35% less query response time than ReOpt, Tukwila, and NoReOpt, respectively. From Figure 

10 (b), on average we see that ReOptML spends 17%, 34%, and 35% less money than NoReOpt, 

ReOpt, and Tukwila, respectively.  
 

The above results show that ReOptML save more time and monetary cost than the other three 

algorithms, ReOpt, Tukwila, and NoReOpt. In this experiment, re-optimization contributes to 

these savings and it is beneficial on two aspects. First, after a re-optimization, the optimizer 

implements different types of physical opertors. Different types of physical operators, such as 

NestedLoopJoin or HashJoin, used to execute these JOINs can result in a large difference in 

query response time. Second, re-optimizations help decide the degree of parallelism of each 

operator so that a lot of money is saved as fewer containers are used for executing these 

operators. However, not all re-optimizations are useful as discussed in Sections 1 and 3, 

conducting more useful reoptimizations and avoiding unnecessary re-optimizations can further 

improve performance. We compare the QEP before and after re-optimizations in each algorithm 

to find out whether each re-optimization is actually necessary or not. In this experiment, nearly 

70% of the re-optimizations are necesscary in ReOptML, while only 35% in ReOpt and 28% in 

Tukwila are necessary. From this, we conclude that using machine learning further helps improve 

both time and monetary costs of query execution by avoiding unnecessary re-optimizations.  
 

Uniform Data: In addition to the results obtained from executing queries on skew data, Figure 10 

(c) and (d) also show the results of executing the same queries on uniform data. These two 

figures report only the query types that have the large differences in query response time and 

monetary cost. From Figure 10 (c), on average we see that ReOptML yields 13%, 13% and 21% 

less query response time than ReOpt, Tukwila, and NoReOpt, respectively. The total savings of 

query response times resulted from ReOptML, ReOpt, Tukwila and NoReOpt on uniform data 

are less than those on skew data because the optimizer assumes the data is uniformly distributed 

by default. Thus, the error of cost estimation on uniform data is less than that on skew data. This 

shows that query re-optimization in general is more helpful on executing queries on skew data. In 

term of monetary cost, from Figure 10 (d), on average we see that ReOptML spends the same 

amount of money as ReOpt, 7% less money than Tukwila, but 10% more money than NoReOpt. 

From these results, we find that when queries are executed on uniform data, re-optimization 

saves time, but does not improve monetary cost.  
 

In summary, we conclude that using machine learning to predict when a re-optimization is 

beneficial does improve query response time no matter queries are executed on uniform or skew 

data. In terms of monetary cost, this algorithm also saves a significant amount of monetary cost 

when queries are executed on skew data, but gives no improvement when queries are executed on 

uniform data. 
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Figure 10. (a)-(d). Average query response time and monetary cost of executing one query from different 

query types on skew data (a-b) and on uniform data (c-d) 

 

6. CONCLUSION AND FUTURE WORK  
 

This paper presents an algorithm called ReOptML that uses a machine learning-based model to 

decide whether or not a query should be re-optimized. The experiments conducted show that for 

skew data, ReOptML improves the query response time (from 13% to 35%) and monetary cost 

(from 17% to 35%) over the existing algorithms that use either no re-optimization, optimization 

after each stage in the query execution plan (QEP) is executed, or re-optimization when a check 

point is reached and the difference between the actual query cost and estimated query cost 

exceeds some threshold. For uniform data, the proposed algorithm also improves query response 

time (13% to 21%) over the existing algorithms, but does not improve monetary cost. While our 

studies have shown that machine learning has positive impacts on deciding whether a re-

optimization should be conducted, the machine learning model proposed in this work provides 

only a binary decision of whether or not a re-optimization should be carried out, and the model 

relies on the data statistics (features) which may not be available in all DBMSs. For future work, 

we will investigate techniques that do not rely on data statistics. In addition, we will also extend 

our approach to predicting, independently of query stages, when a query re-optimization should 

be carried out, and predicting how many times such query re-optimization should occur. 
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