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Abstract

Adaptive importance sampling (AIS) algo-
rithms are widely used to approximate mo-
ments of target probability distributions.
When the target has heavy tails, existing AIS
algorithms can provide inconsistent estima-
tors or exhibit slow convergence, as they of-
ten neglect the target’s tail behaviour. To
avoid this pitfall, we propose an AIS al-
gorithm that approximates the target by
Student-t proposal distributions. We adapt
location and scale parameters by matching
the escort moments (defined even for heavy-
tailed distributions) of the target and pro-
posal. The resulting updates minimize the
α-divergence between the target and the pro-
posal, thereby connecting with variational in-
ference methods. We then show that the α-
divergence can be approximated by a gen-
eralized notion of effective sample size. We
leverage this new perspective to adapt the
proposal tail parameter using Bayesian opti-
mization. We demonstrate the efficacy of our
approach through applications to synthetic
targets and a Bayesian Student-t regression
task on real clinical trial data.

1 INTRODUCTION

Expectations that are challenging to compute arise re-
peatedly in probabilistic machine learning (Ghahra-
mani, 2015), Bayesian statistics (Robert et al.,
2007), statistical signal processing (Särkkä and Svens-
son, 2023), option pricing in mathematical finance
(L’Ecuyer, 2004), and many other fields where Monte
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Carlo methods are often the de-facto standard. Im-
portance sampling (IS) generalizes the Monte Carlo
integration principle to approximate expectations with
respect to a target distribution π (Robert and Casella,
1999; Owen, 2013; Kroese et al., 2014). In IS, samples
are obtained from a distribution q called proposal that
is not necessarily equal to π.

Constructing an adequate proposal q is difficult yet
crucial for the performance of IS. Adaptive IS (AIS)
algorithms, which iteratively refine the proposal dis-
tributions, have become the standard to construct ef-
ficient samplers (Bugallo et al., 2017) and have also
shown connections with particle filtering (Branchini
and Elvira, 2024). AIS proposal adaptation proce-
dures can be based on moment matching (Cornuet
et al., 2012), gradient updates (Elvira et al., 2015,
2023; Elvira and Chouzenoux, 2022), or combined with
Markov Chain Monte Carlo (Botev et al., 2013; Mar-
tino et al., 2017b; Thin et al., 2021).

Several recent works have also highlighted connections
between AIS and variational inference (VI) (Mnih and
Rezende, 2016; Sakaya and Klami, 2017; Domke and
Sheldon, 2018; Finke and Thiery, 2019; Dhaka et al.,
2021; Zhang et al., 2022; Mattei and Frellsen, 2022;
Kviman et al., 2022; Doucet et al., 2023), a frame-
work popular in Bayesian statistics, machine learning
and signal/image processing (Jordan et al., 1999; Blei
et al., 2017; Marnissi et al., 2017). Indeed, VI methods
aim at approximating a target π with a distribution q,
by explicitly minimizing a statistical divergence, typi-
cally the Kullback-Leibler (KL) divergence. In IS and
AIS, the most widely used criterion to evaluate per-
formance is the effective sample size (ESS), which has
some connections with a statistical divergence.

In this paper, we focus on a class of AIS procedures
based on moment matching, in particular on the AMIS
framework of Cornuet et al. (2012) that is behind re-
cent state-of-the-art AIS algorithms (Paananen et al.,
2021). Although popular, moment-matching updates
can be ill-defined when the target or the proposal is
heavy-tailed with undefined moments. Notable ap-
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plications with heavy-tailed π include: Student-t er-
ror models in Bayesian regression, realistic posterior
distributions that are robust to outliers or promoting
sparse solutions (Fernández and Steel, 1998; Tipping
and Lawrence, 2005; Amrouche et al., 2022); applied
econometrics, where parameter estimation for stochas-
tic volatility models of option pricing involves com-
plicated heavy-tailed distributions (Chib et al., 2002);
analysing financial returns datasets (Roy and Hobert,
2010). Similarly, heavy-tailed proposals q can be ben-
eficial in AIS (Owen, 2013, Chapter 9), although they
may not have finite moments thus preventing the ap-
plication of existing moment-matching methods.

Contributions. (1) We propose an AIS framework,
hereby named AHTIS (adaptive heavy-tailed impor-
tance sampling), allowing heavy-tailed target and pro-
posal distributions. Its proposal adaptation mecha-
nism is based on matching the moments of escort den-
sities associated to the target and proposal, i.e., ver-
sions of the density with lighter tails. (2) We show
that our proposed moment matching corresponds to
the minimization of an α-divergence. Our approach
generalizes previous AIS moment-matching procedures
restricted to the KL divergence. (3) We show that a
generalized notion of effective sample size, the α-ESS,
is an IS approximation of the α-divergence, provid-
ing new connections between VI and AIS. (4) Finally,
we exploit this insight to design a joint adaptation
strategy for the tail and the location/scale parameters
of the proposals using Bayesian optimization, outper-
forming existing moment-matching AIS both when a
good tail parameter is known in advance and when
it needs to be adapted. This advantage of AHTIS is
illustrated in Fig. 1.

Outline. In Section 2, we introduce the notion of
escort probability and our approximating family. In
Section 3, we introduce our AIS algorithm, AHTIS, with
adaptation of the location, scale, and tail parameters
of its proposal. Finally, we show the performance of
AHTIS on heavy-tailed target distributions in Section
5, before concluding in Section 6.

2 BACKGROUND

2.1 Importance Sampling

Importance sampling allows for the Monte Carlo in-
tegration of integrals of the form I =

∫
h(x)π(x)dx

when samples from the target density π are either un-
available, or even inefficient (such as in rare events).
Instead, one samples from a proposal distribution q
and uses so-called importance weights to correct the
estimation. The simplest IS estimator of I is the un-
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Figure 1: In this illustrative example, the target π
is a Student-t distribution with νπ = 1 degrees of
freedom (a Cauchy distribution), which is very heavy-
tailed and has undefined mean and variance. We show
three Student-t approximations using (i) existing mo-
ment matching with ν = 3 degrees of freedom (ν > 2
is required for the proposals to have moments), (ii)
AHTIS with ν = 3 degrees of freedom, and (iii) AHTIS

with degrees of freedom adaptation.

normalized IS estimator (UIS), given by

ÎUIS =
1

M

M∑

m=1

w(m)h(x(m)), {x(m)}Mm=1
i.i.d.∼ q, (1)

where w(m) = π(x(m))/q(x(m)) are the (unnormalized)
importance weights using the target probability den-
sity function (pdf), π(x). When q = π, ÎUIS recovers

the plain Monte Carlo estimator, ÎMC. In many cases,
we only have access to the unnormalized target den-
sity π̃(x) = π(x)Zπ, i.e., the normalizing constant Zπ

is unknown. The standard estimator for Zπ is

Zπ ≈ Ẑπ =
1

M

M∑

m=1

π̃(x(m))

q(x(m))
=

1

M

M∑

m=1

w̃(m). (2)

Eq. (2) allows one to estimate I when Zπ is unknown,
leading to the self-normalized IS (SNIS) estimator

I ≈ ÎSNIS =

M∑

m=1

w(m)h(x(m)), (3)

where w(m) = w̃(m)/
∑M

ℓ=1 w̃
(ℓ). The almost sure con-

vergence ÎSNIS
a.s.−−−−−→

M→+∞
I is guaranteed as soon as

π(x) > 0⇒ q(x) > 0 (Owen, 2013, Chapter 4).

Assessing IS performance. The mean-squared er-
ror (MSE) is a common way to evaluate the per-
formance of estimators (Owen, 2013) and, for both

ÎUIS and ÎSNIS, the MSE decays at the standard
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Monte Carlo rate Θ(1/M). See, e.g., (Chopin and Pa-
paspiliopoulos, 2020, Chapter 8) for more theoretical
properties of IS estimators. However, it is difficult to
devise good estimators of the MSE. The effective sam-
ple size (ESS) is a more practical, and widely used,
metric to assess the quality of IS estimators. It is a
sample approximation of the ratio of variances between
the SNIS estimator and a Monte Carlo estimator with
π (Kong, 1992; Elvira et al., 2022), computed as

ÊSS =
1

∑M
m=1

(
w(m)

)2 ≈ ESS =
Vq[ÎSNIS]

Vπ[ÎMC]
. (4)

While the original motivation is the above approxi-
mation of a ratio of variances, ÊSS has been shown
to be connected with the Pearson chi-squared diver-
gence χ2(π, q) (Agapiou et al., 2017; Sanz-Alonso,
2018; Sanz-Alonso and Wang, 2020; Agarwal et al.,
2022; Elvira et al., 2022), an information-theoretic
measure that plays a key role in the theory of IS (Orsak
and Aazhang, 1991; Akyildiz and Mı́guez, 2021). The
choice of proposal q is crucial to achieve good perfor-
mance in the above metrics, which led to the develop-
ment of adaptive IS algorithms (AIS), where proposals
are iteratively adapted (Bugallo et al., 2017).

Adaptive multiple IS (AMIS). AIS algorithms re-

cycle samples to improve the quality of ÎSNIS. Sup-
pose we have T proposals {qt}Tt=1 and for every t ∈
{1, . . . , T} the samples are {x(m)

t }Mm=1. One way to
re-use all the TM samples is to assign to each of them

an unnormalized weight w̃
(m)
t = π̃(x

(m)
t )/qt(x

(m)
t ), and

possibly perform a resampling step. It has been shown
that an alternative weighting, i.e., deterministic mix-
ture (DM) weighting, achieves better results by consid-
ering all the proposals in the weighting of each sample
(Elvira et al., 2019). The unnormalized DM weight of

the sample x
(m)
t reads

w̃
(m)
t =

π̃(x
(m)
t )

1
T

∑T
τ=1 qτ (x

(m)
t )

. (5)

The DM weighting is notably used by the adaptive
multiple importance sampling (AMIS) algorithm pro-
posed in Cornuet et al. (2012), where at each itera-
tion, the proposal is adapted using all the past sam-
ples using DM weights. Cornuet et al. (2012) suggest
to use the DM weights to update the proposal such
that its moments match the (estimated) moments of π.
Consistent estimators can be constructed by combin-
ing weighted samples from all iterations t = 1, . . . , T
(Marin et al., 2019).

2.2 Escort Distributions and α-Divergence
Minimization

We introduce now existing results about the minimiza-
tion of statistical divergences over Student-t distribu-
tions which we will use to develop our new method.

Definition 1 (Multivariate Student-t). The multi-
variate Student-t distribution on Rd with ν > 0 degrees
of freedom, location parameter µ ∈ Rd, and positive-
definite scale matrix Σ ∈ Sd++ has a pdf with respect
to the Lebesgue measure of the form

qµ,Σ,ν(x) ∝
(
1 +

1

ν
(x− µ)⊤Σ−1(x− µ)

)− ν+d
2

(6)

and is normalized by Zν,Σ =
Γ( ν

2 )

Γ( ν+d
2 )

(
νdπd det(Σ)

) 1
2 .

Student-t distributions recover Cauchy distributions
when ν = 1 and Gaussian distributions in the limit
ν → +∞. They have finite first moment for ν > 1 and
finite second moment for ν > 2. Next, we introduce
the concepts of escort distribution and α-divergence,
which will be used throughout Section 3.

Definition 2 (Escort version of a pdf). Consider α >
0 and a pdf p. The escort version of p (Tsallis, 2009)
with exponent α is the pdf p(α) defined by

p(α)(x) =
p(x)α∫
p(x)αdx

, (7)

assuming that the normalizing constant is finite.

Definition 3 (α-divergence). The α-divergence is de-
fined for α > 0 and α ̸= 1 as

Dα(π, q) =
1

α(α− 1)

(∫
π(x)αq(x)1−αdx− 1

)
. (8)

Its discrete counterpart DM
α (·, ·) is defined similarly on

the simplex of RM , denoted by ∆M .

The α-divergence generalizes many well-known diver-
gences such as KL(π, q) (α → 1) and χ2(π, q)(α = 2).
The KL divergence is such that θ 7−→ KL(π, qθ) is
minimized under a moment-matching property when
the pdf qθ form an exponential family (Bishop, 2006,
Equation (10.187)). This is the case of Gaussian dis-
tributions and hence, the optimal KL approximation
of π is the Gaussian pdf with same first and second
order moments as π. The above result has been gener-
alized beyond this setting under a specific relationship
between the parameter α of the divergence and the de-
gree of freedom parameter ν of the Student-t family,
as the next result shows.

Proposition 1. (Guilmeau et al., 2023) Consider a
target pdf π and the family of Student-t distributions
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with ν > 0 degrees of freedom. If the escort pdf π(α)

with α = 1+ 2
ν+d exists and has finite first and second-

order moments, then the parameters (µ⋆
ν ,Σ

⋆
ν) such that

{
µ⋆
ν =

∫
xπ(α)(x)dx

Σ⋆
ν =

∫
xx⊤ π(α)(x)dx− µ⋆

νµ
⋆⊤
ν

(9)

minimize (µ,Σ) 7−→ Dα(π, qµ,Σ,ν).

3 ADAPTIVE HEAVY-TAILED
IMPORTANCE SAMPLING

We now present our proposed AIS framework, AHTIS,
for handling target distributions with heavy tails and
potentially undefined moments based on α-divergence
minimization. Our framework is summarized in Al-
gorithm 1, which we describe next. In Section 3.2,
we show that the so-called α-ESS can be used to ap-
proximate the α-divergence. We exploit this insight to
propose our tail parameter ν adaptation in Section 3.3.

3.1 Step-by-step Breakdown of AHTIS and
Justification.

First, as input to Algorithm 1 we require initial lo-
cation, scale, and tail parameters for the proposal,
i.e., (µ0,Σ0, ν0) respectively. The algorithm follows
the following steps for T > 0 iterations. First, we
generate samples from qµt,νt,Σt (step 2). Then, tail
adaptation (step 3) finds νt+1 (and therefore αt+1)
with Bayesian optimization (BO), which we detail in
Section 3.3. This step can be performed in an au-
tomatic way using existing implementations (see Ap-
pendix D for more details). The weighting (step 4)
uses the DM approach described in Section 2 allow-
ing the proposal to learn from all the generated sam-
ples. Note that the numerator involves the escort
version of the target, π(αt+1). Notably, this means
that when the variance of the weight with respect to
the true target π is infinite (as it would be the case
for existing AIS algorithms, and is common), since
αt > 1, the variance of Eq. (10) may still be finite.
Finally, the escort moment-matching (step 5) min-
imizes (µ,Σ) 7−→ Dαt+1

(π, qµ,Σ,νt+1
) as explained in

Section 2. AHTIS is motivated by the minimization
of the α-divergence Dα(π, q) between target and pro-
posal, which is known to exhibit favourable properties
for heavy-tailed distributions (Birrell et al., 2021), as
well as for robust approximate inference with general-
ized VI on misspecified models in Bayesian statistics
(Knoblauch et al., 2022; Boustati et al., 2020). More
precisely, Algorithm 1 addresses the following joint op-
timization problem involving (µ,Σ, ν),

µ⋆,Σ⋆, ν⋆ = argmin
µ,Σ,ν

Dα(ν)(π, qµ,Σ,ν). (13)

Algorithm 1 AHTIS

Require: ν0 > 0, µ0 ∈ Rd, Σ0 ∈ Sd++

1: for t = 0, ..., T do

2: Sampling: {x(m)
t }Mm=1

i.i.d.∼ qµt,Σt,νt
.

3: Tail adaptation with BO:

• If t = 0, ν1 = ν0, else, set νt+1 with Algo-
rithm D.1 in Appendix D

• Set αt+1 = 1 + 2
νt+1+d .

4: Temporal DM weighting: For m = 1, . . . ,M
and τ = 0, . . . , t, compute the unnormalized im-
portance weights using the unnormalized escort
target as

w̃(m)
τ =

(
π̃(x

(m)
τ )

)αt+1

1
t+1

∑t
k=0 qµk,Σk,νk

(x
(m)
τ )

(10)

and normalize to obtain w
(m)
τ = w̃

(m)
τ /

∑M
ℓ=1 w̃

(ℓ)
τ .

5: Escort moment matching: Set (µt+1,Σt+1)
with the updates

µt+1 =

t∑

τ=0

M∑

m=1

w(m)
τ x(m)

τ (11)

Σt+1 =

t∑

τ=0

M∑

m=1

w(m)
τ x(m)

τ x(m)⊤
τ − µt+1µ

⊤
t+1 (12)

6: end for
7: Return: {w(m)

t , x
(m)
t }T,M

t=1,m=1, {µt,Σt}Tt=1

Recall from Section 2 that the value α(ν) in (13) is
such that α(ν) = 1 + 2

ν+d , where d is the dimen-
sion of x. Hence, we are not minimizing a fixed α-
divergence, rather jointly adapting the α-divergence
parameter and the approximating family’s degree of
freedom parameter ν. We now establish in Proposi-
tion 2 that when π is a Student-t distribution, the
optimization problem in Eq. (13) is solved when the
proposal recovers π, illustrating the rationale of our
approach. However, we remark that our algorithm
AHTIS is not restricted to Student-t targets.

Proposition 2 (Well-posedness of tail-adaptation).
Suppose that the target π is a Student-t pdf with νπ > 0
degrees of freedom. Then, Problem (13) is solved by
(µ⋆,Σ⋆, ν⋆) such that ν⋆ = νπ and qµ⋆,Σ⋆,ν⋆ = π.

The proof is postponed to Appendix C. To obtain
a practical algorithm to minimize the problem in
Eq. (13), we propose to consider (µ,Σ) and ν sepa-
rately, and equivalently reformulate Eq. (13) as

ν⋆ = argmin
ν

min
µ,Σ

Dα(ν)(π, qµ,Σ,ν). (14)
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This is motivated by the fact that for a given ν >
0, minµ,Σ Dα(ν)(π, qµ,Σ,ν) = Dα(ν)(π, qµ⋆

ν ,Σ
⋆
ν ,ν

), with
(µ⋆

ν ,Σ
⋆
ν) satisfying Eq. (9). The behaviour of ν 7−→

Dα(ν)(π, qµ⋆
ν ,Σ

⋆
ν ,ν

) is illustrated in Fig. 2.
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? ν
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ν = νπ

Figure 2: Optimal α-divergence value as a function
of ν > 0 from Proposition 1 when π is a Student-t
distribution in dimension d = 5 and degree of freedom
parameter νπ = 2 (vertical dotted red line).

Next, we propose an approach to solve this optimiza-
tion problem within step (3) of Algorithm 1 without
using any additional samples. This requires to evalu-
ate the objective in Eq. (14), which we address now.

3.2 Connecting VI and IS with the α-ESS

A challenge is that, for realistic target distribu-
tions π, one cannot evaluate the cost function
Dα(ν)(π, qµ,ν,Σ) appearing in the minimization prob-
lem of Eq. (14). We now show that a SNIS approx-
imation of Dα(ν)(π, qµ,ν,Σ) is related in a precise way
to an existing generalized ESS, the α-ESS, which be-
longs to the Huggins-Roy family of ESS metrics (Mar-
tino et al., 2017a; Huggins and Roy, 2019). This result
connects further VI and IS and allows us to obtain a
practical way to approximate Dα(ν)(π, qµ,ν,Σ), that we
will use to adapt the tail parameter ν in Section 3.3.
The α-ESS is defined over the simplex ∆M as:

ÊSSα(w) =

(
M∑

m=1

(
w(m)

)α
) 1

1−α

, ∀w ∈ ∆M . (15)

We now show our main result connecting ÊSSα and
Dα(π, q) for general target and proposal distributions.

Proposition 3 (Almost sure convergence). Consider
a target π and a proposal q with normalized importance
weights {w(m)}Mm=1 associated with i.i.d. samples from
q. Then, the discrete α-divergence between the weights

{w(m)}Mm=1 and the uniform weights {1/M}Mm=1 is re-

lated to ÊSSα as follows:

DM
α ({w(m)}Mm=1, {1/M}Mm=1)

=
Mα−1

α(α− 1)

(
ÊSSα({w(m)}Mm=1)

1−α −M1−α
)
. (16)

Moreover, DM
α converges to Dα(π, q), i.e.,

DM
α ({w(m)}Mm=1, {1/M}Mm=1)

a.s.−−−−−→
M→+∞

Dα(π, q) (17)

in an almost sure sense when π(x) > 0⇒ q(x) > 0.

The proof is provided in Appendix C. The quantity
ÊSSα can be cheaply computed. Further, since our
derivation shows that ÊSSα is specifically a SNIS es-
timator, we obtain a central limit theorem (CLT)
by extending standard SNIS results (Chopin and Pa-
paspiliopoulos, 2020), which allows to quantify uncer-
tainty using asymptotic confidence intervals.

Proposition 4 (CLT). If π(x) > 0 ⇒ q(x) > 0

and Vq

[(
π̃(x)
q(x)

)α]
< +∞, the estimator DM

α of the

α-divergence is
√
M -asymptotically normal, i.e.,

√
M
(
DM

α ({w(m)}Mm=1, {1/M}Mm=1)−Dα(π, q)
)

d−−−−−→
N→+∞

N
(
0, σ2

)
, (18)

with variance

σ2 =

( ∫
π̃(x)2αq(x)1−2αdx

(
α(α− 1)

∫
π̃(x)αq(x)1−αdx

)2 − 1

)
. (19)

See Appendix C for a proof. Next, we detail step 3
of Algorithm 1, which relies on ÊSSα.

3.3 Tail Adaptation with Bayesian
Optimization

We now describe how to adapt without generating ad-
ditional samples the parameter ν within the optimiza-
tion problem in Eq. (13) (the procedure is further de-
tailed in Appendix D).

The outer problem on ν consists in minimizing the
function ν 7−→ Dα(ν)(π, qµ⋆

ν ,Σ
⋆
ν ,ν

), with (µ⋆
ν ,Σ

⋆
ν) satis-

fying Eq. (9). Although one-dimensional, this problem
is difficult as it involves intractable integrals and in-
ner optimization. We propose a Bayesian optimization
(BO) approach (Garnett, 2023). BO algorithms do not
require the computations of derivatives and can cope
with noisy estimations of the objective function. Fur-
ther, they only require a small number of these noisy
evaluations, which fits well within our context, since
in AMIS (Cornuet et al., 2012), the value of T does
not need to be large (see Section 5 for details).
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To solve (14) with BO, the main challenge is to ap-
proximate at every iteration t = 1, . . . , T the quantity
Dα(νt)(π, qµ⋆

ν ,Σ
⋆
ν ,νt

). To do so, we first remark that

(µt,Σt) ≈ argmin
µ,Σ

Dαt
(π, qµ,Σ,νt

), (20)

in the sense that (µt,Σt) are constructed following
(11)-(12) which are estimators of the optimality con-
ditions (9). Then, the quantity Dαt

(π, qµ⋆
νt

,Σ⋆
νt

,νt
) is

approximated by computing the αt-ESS with target π
and proposal qµt,Σt,νt , following our Proposition 3.

BO algorithms construct a probabilistic model of the
function ν 7−→ Dα(ν)(π, qµ⋆

ν ,Σ
⋆
ν ,ν

) in the form of a
Gaussian process (GP). At every iteration, the GP
is updated with the data {ντ , ατ -ESS}tτ=1, where the
values ατ -ESS are seen as noisy observations of the ατ -
divergence. Then, an acquisition function, which gov-
erns the trade-off between exploration and exploita-
tion, is maximized, yielding the next value νt+1. We
use Upper Confidence Bound (UCB) as the acquisition
function, which offers theoretical guarantees on cumu-
lative regret by balancing exploration and exploita-
tion with a logarithmic regret bound (Garnett, 2023,
Chapter 10). As kernel for the GP, we use a stan-
dard radial-basis function (RBF) kernel with default
parameters. For more details on the BO procedure,
see Appendix D.

Computational complexity of AHTIS. The com-
plexity of Algorithm 1 can be analysed by the one of
AMIS, and the added complexity given by step (3),
the tail adaptation based on BO. Like AMIS, the run-
time of AHTIS (in terms of number of proposal evalua-
tions) is Θ(MT 2) due to the use of deterministic mix-
ture weighting. The values of M and T are fixed and
their influence on the final error is not well-understood
in the AIS literature. We find consistent results with
the original AMIS paper (Cornuet et al., 2012) where
T does not need to be very large (between 20 and 30 in
both our examples and theirs) while M is sufficiently
large. This implies that the BO procedure (see Ap-
pendix D) is usually not expensive in practice, in our
experiments, even if cubic in T in theory since the GP
is fitted on T examples. Recall that the dimension of
our BO problem is fixed to 1, since ν is a scalar. To
summarize, the complexity of BO is driven by (i) se-
quentially updating the GP and (ii) maximizing the
acquisition function. Many works and active research
in the BO literature aim to reduce these costs, see
e.g. (Garnett, 2023, Chapters 9.1, 9.2). In our case,
UCB is one of the cheapest acquisitions to maximize
(Wilson et al., 2018). Finally, previous work has also
managed to reduce AMIS complexity to Θ(MTK) (for
some constant K < T ) with good tradeoffs in estima-
tor variance (El-Laham et al., 2019) whose techniques
also straightforwardly apply to AHTIS.

4 RELATED WORKS

In general, AIS methods do not specifically handle
heavy-tailed targets with undefined moments. Al-
though some works use heavy-tailed proposals, to the
best of our knowledge, no existing AIS work adapts
the tail parameter of a heavy-tailed proposal as in Al-
gorithm 1, while some works in VI do so.

AIS. Wang and Swartz (2022) in the context of AIS
match the first three moments of skew-Student propos-
als with the target’s moments for adaptation, with-
out adapting ν, requiring ν > 3, and with no con-
nection with α-divergences. Korba and Portier (2022)
introduce an AIS scheme using a mixture of an iter-
atively adapted kernel density estimator and a safe
heavy-tailed distribution, however without detailing
the latter’s construction. Other AIS works using mo-
ment matching mention the use of Student-t distribu-
tions, but do not adapt the tail parameter ν (Cornuet
et al., 2012; Portier and Delyon, 2018). El-Laham et al.
(2020) minimize Renyi divergence, which is related to
the α divergence, but incorporate the use of Markov
chain MC steps.

VI. Daudel et al. (2023) propose a general VI frame-
work that allows in particular to minimize a fixed α-
divergence over a mixture of Student-t distributions.
The location, scale, and tail parameters of the Student-
t distributions are adapted. While we adapt ν using
a BO algorithm, they do so by solving a non-linear
equation. However, their procedure may not be able
to reach low value of ν, contrary to ours (see Ap-
pendix D.2 for a justification), and they did not im-
plement a practical scheme showing experimental re-
sults . The work of Wang et al. (2018) proposes to
minimize an f -divergence that is implicitly defined at
each iteration by the importance weights of the sam-
ples. This is connected with the dependence of the
α-divergence we minimize on the degree of freedom
parameter. However, their goal diverges from ours by
focusing on obtaining mass-covering proposals. The
minimization of an α-divergence (or a Rényi diver-
gence) is also considered in (Hernandez-Lobato et al.,
2016; Li and Turner, 2016). In these works, the result-
ing optimization problem is solved by stochastic gradi-
ent descent on a general proposal family, while here we
exploit the Student-t assumption to obtain direct op-
timality conditions. Further, note that VI methods (i)
do not use recycling of past samples, (ii) usually yield
only a lower bound of Zπ. This is in contrast with the
AIS literature, where samples recycling strategies such
as DM weighting have been used (Marin et al., 2019),
allowing to construct O(1/M)-consistent estimates of
Zπ.
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(a) α-ESS (mean ± one standard deviation, higher is better)
for various dimensions d. AHTIS outperforms AMIS for any
ν, sometimes by an order of magnitude, and the ν-adaptive
version converges to the true value νπ = 2.
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(b) Relative square root MSE (lower is better) for various
dimensions d. Note that Zπ = Zνπ,Σπ is the true normaliz-
ing constant, which is available. AHTIS outperforms AMIS
for any ν and the ν-adaptive version converges to νπ = 2.

Figure 3: Results for Section 5.1. All algorithms are run for T = 20 iterations, with M = 104 samples per
iteration and results are averaged over 100 replications. A dashed line identifies AMIS, while solid line is AHTIS,
and same marker/color indicates same ν. Recall that AMIS updates are not defined for ν ∈ {1, 2} as the proposal
moments are undefined.

5 EXPERIMENTS

We demonstrate the benefits of AHTIS first on a con-
trolled scenario with synthetic heavy-tailed targets
(Student-t distributions of varying dimensions), sec-
ond on a posterior distribution arising from a Bayesian
robust regression problem on clinical trial data. Code
for reproducibility and additional results are pub-
licly available at https://github.com/nicola144/

ais-heavy-tails.

We evaluate the algorithms using the α-ESS metric,
shown in Section 3.2 to be a theoretically sounded ap-
proximation of Dα, and the MSE on the estimation
of the normalizing constant Zπ, a key distinguishing
feature of (A)IS algorithms (Llorente et al., 2023).

5.1 Controlled Scenario with Varying
Dimension Student-t Targets

We start with the problem of approximating inte-
grals involving a heavy-tailed Student-t target π with
νπ ∈ {2, 5}. Note that the second-order moments of π
are not defined when νπ = 2. The sought target has a
location parameter sampled in Uniform[−1, 1]d. More-
over, its scale matrix Σπ is built so as to reach a condi-
tion number κ = 5, following (Moré and Toraldo, 1989,
Sec. 5). We consider dimensions d ∈ {2, 4, 8, 16, 32}.
We run AHTIS and AMIS algorithms for T = 20 iter-
ations, with M = 104 samples per iteration, following
the guidelines from (Cornuet et al., 2012). In the spirit

of an ablation study, we analyze the benefits of the tail
adaptation in AHTIS. That is, we also run AHTIS with-
out step (3) of Algorithm 1, ν being fixed and possibly
different from νπ. All algorithms are initialized with
µ0 sampled in Uniform[−5, 5]d and Σ0 = 10Id. For
AHTIS with step (3), the value ν0 = 1 is used. Else,
the degrees of freedom ν ∈ {1, 2, 3, 5} are considered
for the algorithms without tail adaptation. Note that
in the case ν ≤ 2 the updates of AMIS are not defined.

Results. The results in terms of the considered met-
rics are shown in Fig. 3a-3b. The best performance in
both metrics are reached by the ν-adaptive AHTIS and
by AHTIS with ν = νπ. This shows that the ν-adaptive
AHTIS is able to capture the tail behaviour of the tar-
get and confirms the result of Proposition 2. When
ν is fixed, AHTIS outperforms AMIS in both metrics
when ν > 2, and allows in addition to use heavy-tailed
proposals with ν ≤ 2. Such proposals yield better per-
formance on this heavy-tailed target. We show addi-
tional results in Appendix E, including the case νπ = 5
revealing similar behaviours, and νπ = 50 where the
target has lighter tails than the considered proposals.
We also provide an analysis of the adaptation of ν of
AHTIS on these different targets, as well as bootstrap
confidence intervals of the estimators of Zπ returned
by the algorithms.

https://github.com/nicola144/ais-heavy-tails
https://github.com/nicola144/ais-heavy-tails
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(a) α-ESS (mean ± one standard deviation, higher is bet-
ter). AHTIS outperforms AMIS with fixed ν. The ν-adaptive
AHTIS yields better mean, but exhibits a larger variance.

2000 4000 6000 8000 10000

Number of samples

10−3

√
M

S
E
/Z

π

AMIS, ν=3

AHTIS with fixed ν, ν=3

AMIS, ν=5

AHTIS with fixed ν, ν=5

AHTIS

(b) In terms of relative square root MSE (lower is better),
AHTIS outperforms AMIS for any ν and in this case AHTIS
reaches the best performance.

Figure 4: Results for the creatinine dataset, Section 5.2. All algorithms are run for T = 25 iterations, with
varying number of samples and results are averaged over 250 replications. A dashed line identifies AMIS, while
solid line is AHTIS, and same marker/color indicates same ν.

5.2 Application to Bayesian Student-t
regression on real data

We apply our methodology using, as the target π, the
posterior resulting from a robust regression model on
the creatinine dataset (Liu and Rubin, 1995).1 This
dataset has been used to benchmark state-of-the-art
VI and MCMC algorithms (Xu et al., 2023). It con-
tains the results of a clinical trial on N = 34 male pa-
tients. Such a small number of datapoints makes the
inference task challenging since the target is likely out-
side the Bernstein von-Mises regime, i.e., not close to
Gaussian. The regression model assumed in (Xu et al.,
2023) to tackle this dataset is a Bayesian Student-t re-
gression for scalar observations {yn}Nn=1 representing
endogenous creatinine clearance (CR); the covariates
Xn ∈ R3 represent body weight in kg, serum crea-
tinine concentration, and age in years. The goal is
to predict CR of the patients. Therefore, the model
(which includes an intercept) is given by

yn | Xn, β
i.i.d.∼ T ([Xn, 1]

⊤β, I4, 5), (21)

where β ∈ R4 follows the prior p0 = T (0, I4, 1), and
T (µ,Σ, ν) is the Student-t distribution with location
µ, scale Σ, and ν degrees of freedom. The posterior
pdf π, with likelihood p and prior pdf p0, is such that

π(β|{Xn, yn}Nn=1) ∝
(

N∏

n=1

p(yn|Xn, β)

)
p0(β). (22)

1publicly available at https://github.com/
faosorios/heavy/blob/master/data/creatinine.rda

The normalizing constant of π, Zπ, is of practical im-
portance as it can be used for model selection and is
known as model evidence (Mackay, 1992).

We use AHTIS and AMIS to approximate Zπ. We use
T = 25 iterations and varying number of samples. In
order to obtain a better adaptation of the degree of
freedom parameter ν by AHTIS in this case, we op-
timize the Gaussian process hyperparameters, with
regularized maximum likelihood (full details in Ap-
pendix D). Algorithms are initialized with µ0 sampled
in Uniform[−5, 5]d, Σ0 = σ2 · Id, where σ2 = 4 (here,
d = 4). AHTIS with adaptation of ν is initialized with
ν0 = 1 while the algorithms with fixed ν use ν ∈ {3, 5}.
A large enough value of σ2 spreads the mass more and
is generally safer, although too large a value can create
excessive discrepancy w.r.t. the posterior.

As before, we evaluate the α-ESS and the MSE on
the estimation of Zπ. Since we do not have ac-
cess to the true value of Zπ, we estimate the ground
truth using AMIS with 105 samples for T = 25
iterations and initialised with the Laplace approx-
imation of π (MacKay, 1992). Namely, we run
AMIS with degree of freedom ν = 5 and initial
values µ0 = argmaxβ π(β|{Xn, yn}Nn=1) and Σ0 =

−
[

∂2

∂β2 log π(β = µ0, {Xn, yn}Nn=1)
]−1

.

Results. In Fig. 4a-4b, we display the α-ESS and the
square root relative MSE as functions of the number
of samples M . In this experiment, there is no obvi-
ous true value for ν, due to the intractable π. The
ν-adaptive AHTIS shows the best mean α-ESS values,

https://github.com/faosorios/heavy/blob/master/data/creatinine.rda
https://github.com/faosorios/heavy/blob/master/data/creatinine.rda


Thomas Guilmeau⋆,♢, Nicola Branchini†,♢, Emilie Chouzenoux⋆, Vı́ctor Elvira†

albeit with a larger variance. We expect this to be the
case, since AHTIS has to learn ν adaptively through
the minimization of a complicated objective function
which does not fit in the hypotheses of the conver-
gence results in (Garnett, 2023, Chapter 10) nor in
the simpler setting of Student-t π that we described
in Figure 2 and Proposition 2. Our adaptation proce-
dure for ν is thus subject to non-convexities, such as
local minima or plateaus, that may complicate reach-
ing the global minimizer. In terms of MSE, the best
performance is reached by the ν-adaptive AHTIS, and
second best by AHTIS with ν = 5 (which motivated us-
ing this ν for the ground truth). Note that when ν is
fixed, AHTIS reaches better performance in both met-
rics than AMIS. We report results with more values of
ν in Appendix E, with qualitatively similar findings.

6 CONCLUSIONS

We have proposed AHTIS, an AIS framework specifi-
cally suited for heavy-tailed target distributions π, be-
ing the first to do so explicitly in the AIS literature.
AHTIS allows for the adaptation of location, scale, and
tail parameter of a Student-t proposal, hereby differ-
ing from most previous AIS works. We also explicitly
minimize an α-divergence between the target and the
proposal, in the spirit of VI methods. We showed that
the α-divergence can be approximated by a quantity
involving the α-ESS, connecting further AIS and VI al-
gorithms and allowing us to design our tail adaptation
method.

Our framework is compatible with the use of mixture
proposals when the target is suspected to be multi-
modal, and an extension towards this direction is in-
teresting future work. Further, the computational ef-
ficiency of the tail adaptation procedure, when a good
ν is not known in advance, could benefit from existing
works in the BO literature.
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Rényi deformations linked via a new λ-duality. IEEE
Transactions on Information Theory, 68(8):5353–
5373.

Xu, Z., Chen, N., and Campbell, T. (2023). Mixflows:
principled variational inference via mixed flows.
In International Conference on Machine Learning
(ICML), pages 38342–38376.

Zhang, L., Carpenter, B., Gelman, A., and Vehtari,
A. (2022). Pathfinder: Parallel quasi-Newton vari-
ational inference. Journal of Machine Learning Re-
search, 23(1):13802–13850.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. https://github.com/

nicola144/ais-heavy-tails

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes, see our Supple-
mentary

(b) Complete proofs of all theoretical results.
Yes, see our Supplementary

(c) Clear explanations of any assumptions. Yes,
see our Supplementary

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Not Applicable

(b) The license information of the assets, if ap-
plicable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Appli-
cable

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable

https://github.com/nicola144/ais-heavy-tails
https://github.com/nicola144/ais-heavy-tails


Thomas Guilmeau⋆,♢, Nicola Branchini†,♢, Emilie Chouzenoux⋆, Vı́ctor Elvira†

Adaptive importance sampling for heavy-tailed distributions via
α-divergence minimization: Supplementary Materials

In Appendix A, we give an example of the construction of an escort probability density that has lighter tails than
the original. In Appendix B, we study the well-posedness of our variational formulation of the adaptation of the
location, scale, and tail parameters of the proposal. In Section Appendix C, we give the proofs of our results
about the sampling estimation of α-divergences. We detail our tail adaptation procedure in Appendix D, as
well as another tail adaptation procedure proposed recently in the VI literature. Finally, we provide additional
numerical experiments in Appendix E.

We run the synthetic experiments on a personal laptop with 7, 6 GB RAM and with 8 Intel Core i5 − 8265U
cores. We run the real data experiments on a a personal laptop (MacBook Pro) with 8 cores, M1 Apple Pro chip
and 16 GB RAM. Our code is available at https://github.com/nicola144/ais-heavy-tails.

A Illustrative example of escort distribution

To illustrate how the escort version of a pdf makes the tails lighter with a concrete example, we show how the
parameters of a Student-t distribution change when considering their escort version. In particular, the following
proposition shows that it is possible to construct the escort pdf of a Student-t pdf such that the escort has a
higher degree of freedom parameter than the original, and hence a lighter tail.

Proposition A.1. (Guilmeau et al., 2023) Consider two Student-t families in dimension d with νq and ν degrees

of freedom, respectively. Then the escort q
(α)
µq,Σq,νq

of qµq,Σq,νq
with α = 1 + 2

ν+d , is a Student-t distribution with

ν(α) degrees of freedom, location µ(α), and shape Σ(α) such that




ν(α) = νq + 2
νq+d
ν+d ,

µ(α) = µq,

Σ(α) =
νq

ν(α)Σq.

(A.1)

B Divergence at the optimum for Student-t targets

We now study the properties of the optimization problem (13) when the target is a Student-t distribution. In
particular, we give the proof of Proposition 2. We also describe in this case the inner problem in (14) and give
an explicit expression of its optimum value, leading to the plot in Figure 2.

Proof of Proposition 2. The α-divergence is such that Dα(p, q) ≥ 0 with equality if and only if p = q almost
everywhere (for α > 0 and α ̸= 1). Moreover, for any ν > 0, α(ν) = 1 + 2

ν+d > 1. This implies that if (µ,Σ, ν)
is such that

Dα(ν)(π, qµ,Σ,ν) = 0, (B.1)

then (µ,Σ, ν) is a solution of Problem (13).

Since π is a Student-t distribution, there exists (µ⋆,Σ⋆, ν⋆) such that qµ⋆,Σ⋆,ν⋆ = π. In particular, ν⋆ = νπ. This
implies that

Dα(ν⋆)(π, qµ⋆,Σ⋆,ν⋆) = 0, (B.2)

and hence the result.

We now detail how to compute the function ν 7−→ Dα(ν)(π, qµ⋆
ν ,Σ

⋆
ν ,ν

) when π is a Student-t distribution, as it is
plotted in Figure 2. To this end, we need to introduce the Rényi entropy of a pdf p that is defined by

Hα(p) :=
1

1− α log

(∫
p(x)αdx

)
. (B.3)

https://github.com/nicola144/ais-heavy-tails
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We then use this notion to give an explicit expression of our quantity of interest.

Proposition B.1. Consider a target distribution π and the family of Student-t distribution with ν degrees of
freedom with α = 1 + 2

ν+d . Consider qµ⋆
ν ,Σ

⋆
ν ,ν

such that Equation (9) is satisfied. Then we have

α(α− 1)Dα(π, qµ⋆
ν ,Σ

⋆
ν ,ν

) = exp
(
(α− 1)

(
Hα(qµ⋆

ν ,Σ
⋆
ν ,ν

)−Hα(π)
))
− 1. (B.4)

Proof. We can see from Proposition A.1 that Equation (9) implies that
∫
xπ(α)(x)dx =

∫
x q

(α)
µ⋆
ν ,Σ

⋆
ν ,ν

(x)dx and
∫
xx⊤ π(α)(x)dx =

∫
xx⊤ q

(α)
µ⋆
ν ,Σ

⋆
ν ,ν

(x)dx. We can deduce from that, and using (Wong and Zhang, 2022, Equation

(3.17)), that the α-divergence RDα between π and qµ⋆
ν ,Σ

⋆
ν ,ν

is such that

RDα(π, qµ⋆
ν ,Σ

⋆
ν ,ν

) = Hα(qµ⋆
ν ,Σ

⋆
ν ,ν

)−Hα(π), (B.5)

where RDα is the Rényi divergence with parameter α. The result follows from the link between the α-divergence
and the Rényi divergence (see (van Erven and Harremoës, 2014) for the definition and properties of the Rényi
divergence).

Proposition B.1 shows that, in order to compute the quantity plotted in Figure 2, we need to compute explicitly
the Rényi entropy of a Student-t distribution and compute explicitly the parameters of qµ⋆

ν ,Σ
⋆
ν ,ν

. We do so in the
following two propositions.

Proposition B.2. Consider two degree of freedom parameters ν, νq > 0, a dimension d, and set α = 1 + 2
ν+d .

Then, for any qµq,Σq,νq
, we have that

Hα(qµq,Σq,νq ) = −
ν + d

2

(
logZν(α),Σ(α) − α logZνq,Σq

)
(B.6)

with ν(α) = νq + 2
νq+d
ν+d and Σ(α) =

νq

ν(α)Σq.

Proof. Using the result of Proposition A.1, we first compute that for any x ∈ Rd,

qµq,Σq,νq (x)
α =

Zν(α),Σ(α)

Zα
νq,Σq

qµ(α),Σ(α),ν(α)(x) (B.7)

From there, we deduce that

Hα(µq,Σq, νq) =
1

1− α log

(∫
qµq,Σq,νq

(x)αdx

)

=
1

1− α
(
logZν(α),Σ(α) − α logZνq,Σq

)

which gives the result.

Proposition B.3. Consider two degree of freedom parameters ν, νπ > 0, a dimension d, and set α = 1 + 2
ν+d .

Then, for any π = qµπ,Σπ,νπ , the Student-t distribution qµ⋆
ν ,Σ

⋆
ν ,ν

minimizing (µ,Σ) 7−→ Dα(π, qµ,Σ,ν) is such that
{
µ⋆
ν = µπ,

Σ⋆
ν = νπ

ν(α)−2
Σπ,

(B.8)

provided that ν(α) > 2.

Proof. This comes from the optimality result of Proposition 1, the characterization of π(α) as a Student-t distri-
bution with parameters given in Proposition A.1, and the fact that for any qµ,Σ,ν with ν > 2, qµ,Σ,ν(x) = µ and
qµ,Σ,ν(xx

⊤) = ν
ν−2Σ.

Gathering these three results, we can then get a closed-form expression for the function

ν 7−→ min
µ,Σ

Dα(ν)(π, qµ,Σ,ν) (B.9)

when π is Student-t distribution for some νπ > 0. Then, one can use it to draw Figure 2.
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C Proofs of Section 3.2

We give below the proofs of Propositions 3 and 4, that describe the approximation of α-divergences by a self-
normalized importance sampling estimator. This estimator is linked with the α-ESS and the (discrete) α-
divergence between the normalized importance weights and the corresponding uniform weights.

Proof of Proposition 3. We derive the following self-normalized IS (SNIS) approximation of the α-divergence,
making an ESS-like quantity appear:

Dα(π, q) =
1

α(α− 1)



∫ ( π̃(x)

q(x)

)α
q(x)dx

Zα
π

− 1


 (C.1)

≈ 1

α(α− 1)




1
M

∑M
m=1

(
π̃(x(m))
q(x(m))

)α

(
1
M

∑M
m=1

π̃(x(m))
q(x(m))

)α − 1


 (C.2)

=
1

α(α− 1)

(
Mα−1

M∑

m=1

wα
m − 1

)
(C.3)

=
Mα−1

α(α− 1)

(
M∑

m=1

wα
m −M1−α

)
(C.4)

=
Mα−1

α(α− 1)

(
(ESSα)

1−α −M1−α
)
. (C.5)

Notice the SNIS approximation from Eq. (C.1) to Eq. (C.2), i.e., the same set of samples is used to approximate
a ratio of two integrals. Moreover, we can recognize from Eq. (C.3) that

Dα(π, q) ≈ DM
α ({w(m)}Mm=1, {1/M}Mm=1), (C.6)

with the continuous α-divergence on the left and the discrete α-divergence on the right. We also have the almost
sure convergence DM

α ({w(m)}Mm=1, {1/M}Mm=1)
a.s.−−−−−→

M→+∞
Dα(π, q) from standard SNIS results (see for instance

(Owen, 2013, Theorem 9.2)).

Proof of Proposition 4. We first compute the gap

DM
α ({w(m)}Mm=1, {1/M}Mm=1)−Dα(π, q) =

1

α(α− 1)




1
M

∑M
m=1

(
π̃(x(m))
q(x(m))

)α

(
1
M

∑M
m=1

π̃(x(m))
q(x(m))

)α −
∫ ( π̃(x)

q(x)

)α
q(x)dx

(∫
π̃(x)dx

)α


 . (C.7)

We now deal with the denominator. Due to our hypothesis π(x) > 0 ⇒ q(x) > 0, we have that
1
M

∑M
m=1

π̃(x(m))
q(x(m))

a.s.−−−−−→
M→+∞

Zπ, from which we deduce the following almost sure convergence:

(
1

M

M∑

m=1

π̃(x(m))

q(x(m))

)α

a.s.−−−−−→
M→+∞

(∫
π̃(x)dx

)α

. (C.8)

We now turn to the numerator. The quantity 1
M

∑M
m=1

(
π̃(x(m)

q(x(m))

)α
is an unbiased Monte Carlo estimator of

∫ ( π̃(x)
q(x)

)α
q(x)dx with the variance of each term of the sum being equal to

Vq

[(
π̃(x)

q(x)

)α]
=

∫
π̃(x)2αq(x)1−2αdx−

(∫ (
π̃(x)

q(x)

)α

q(x)dx

)2

. (C.9)
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We have by the central limit theorem for Monte Carlo estimators that

√
M

(
1

M

M∑

m=1

(
π̃(x(m))

q(x(m))

)α

−
∫ (

π̃(x)

q(x)

)α

q(x)dx

)
d−−−−−→

M→+∞
N
(
0,Vq

[(
π̃(x)

q(x)

)α])
. (C.10)

Then, using Eq. (C.8)-(C.10) and Slutsky’s theorem, we obtain that

√
M
(
DM

α ({w(m)}Mm=1, {1/M}Mm=1)−Dα(π, q)
)

d−−−−−→
N→+∞

N
(
0,

( ∫
π̃(x)2αq(x)1−2αdx

(
α(α− 1)

∫
π̃(x)αq(x)1−αdx

)2 − 1

))
, (C.11)

which yields the result.

D Tail adaptation

D.1 Our tail adaptation procedure with Bayesian Optimization

We present below in full detail our proposed tail adaptation procedure.

Algorithm D.1 Tail adaptation with BO

Require: • Current tail parameter and α-ESS, i.e., νt, ÊSSαt

• Previous tail parameters and α-ESS values {ντ , ÊSSατ
}t−1
τ=1

• Choice of parameterized kernel function k(ν, ν′; θ). This defines the GP prior, i.e., the GP before
observing any data.

• Choice of parameterized acquisition function acq(ν;ψ;GP)
• (Optional): Choice of prior distribution for θ, p(θ)

• (Optional): Choice of prior distribution for the observation noise σ2, p(σ2)

1: Use transformed values of ÊSSατ
with the following monotonic transformation (thus preserving optima)

yτ = log

(
1−

(
1

M
ÊSSατ

))
, τ = 1, . . . , t (D.1)

2: Update Gaussian process GPt posterior at current iteration t with new datapoint {νt, yt}. This involves
calculating a new mean and covariance, see (Garnett, 2023, Chapter 2).

3: Obtain new tail parameter νt+1 by maximizing the acquisition function,

νt+1 ← argmax
ν

acq(ν;ψ;GPt) (D.2)

In Emukit, a popular BO package (Paleyes et al., 2019, 2023), several solvers are available depending on acq;
we used a gradient-based solver.

4: (Optional) Gaussian process hyperparameter optimization: We model {yτ}tτ=1 as noisy observations
of the true (transformed) α-ESS from the GP with additive Gaussian noise with variance σ2. Letting the
observations (scalars) be y = [y1, . . . , yt] and Kt be the t × t matrix with entries k(ντ , ντ ′ ; θ) for (τ, τ ′) ∈
{1, . . . , t} × {1, . . . , t}, optimize θ and noise σ2 to maximize the log-likelihood of the observed data, as

θ, σ2 ← argmax
θ,σ2

−1

2
log |det

[
2π
(
Kt + σ2I

)]
| − 1

2
y⊤
(
Kt + σ2I

)−1
y + log p(θ) + log p(σ2) (D.3)

The optimization problem in Eq. (D.3) is addressed by Emukit (Paleyes et al., 2019, 2023) with gradient-based
methods.

5: Return: νt+1

We describe below all implementation details regarding Algorithm D.1.
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Kernel function. We used the perhaps most common kernel function in BO, i.e., the radial basis function
(RBF) kernel, also known as exponentiated quadratic (EQ) or squared exponential (SE) (Garnett, 2023). For
a one dimensional input as ν, the SE kernel has two scalar parameters, lengthscale l and function variance σ2

f ,

i.e., θ = {l, σ2
f}, and its expression is given by

kSE(ν, ν
′; θ) = σ2

f · exp
(
−1

2

(ν − ν′)2
l2

)
. (D.4)

The lengthscale l indicates the typical distance between turning points in the function, while the intuition for
σf is that by seeing a long enough horizontal stretch of the function, ≈ 2/3 of the points would lie between ±σf
of the GP mean.

Acquisition function. We experimented using the Gaussian process upper confidence bound (GP-UCB) (Srini-
vas et al., 2009), a parameterized (by ψ) acquisition function (perhaps the most well-known), acq, with only one
scalar tuning parameter ψ = {β}, β > 0 given by

νUCB-best
t+1 = argmax

ν∈[1,νmax]

µGPt
(ν) + β1/2v2GPt

(ν), (D.5)

where, defining kt(ν) as the vector-valued function ν → [k(ν, ν1), . . . , k(ν, νt)] (and omitting kernel parameters θ
for brevity),

µGPt
(ν) = kt(ν)

⊤(Kt + σ2I)−1yt, (D.6)

v2GPt
(ν) = k(ν, ν)− kt(ν)⊤(Kt + σ2I)−1kt(ν). (D.7)

The β parameter controls the typical exploration and exploitation tradeoff needed. To set β, we followed the
theoretical guarantees described by (Garnett, 2023, Chapter 10, page 229); letting the search space for ν be
V = [1, νmax] and t for the BO iteration number (corresponding to t in our AHTIS algorithm), we selected

β⋆
t =

√
2 log

(
(t2 + 1) |V|√

2π

)
(D.8)

for the synthetic experiments. For the real data experiments, we used βt = 1.5 · β⋆
t for higher exploration due to

a much noisier and more challenging objective function. As search space for Eq. (D.5), we used νmax = 10.

Hyperparameter priors. As described in the main paper, for the real data experiments we optimized the GP
hyperparameters at each iteration (step (4) of Algorithm D.1) using a prior for both θ = l, σ2

f and σ. For all
these parameters, we used an inverse Gamma prior,

p(σ2|α, β) = βα

Γ(α)
(σ2)−(α+1)e−

β

σ2 , (D.9)

where Γ(·) is the gamma function, (omitting equivalent equations for l and σ2
f ) with α and β selected such that

E[σ2] = 3,V[σ2] = 2; E[σ2
f ] = 5,V[σ2

f ] = 2; E[l] = 5,V[l] = 2.

Finally, to implement all of the above steps we used the Python library Emukit (Paleyes et al., 2019, 2023).

D.2 Another tail adaptation method

Daudel et al. (2023) propose a VI method for minimizing a fixed α-divergence (differently than us, as the α
changes at each iteration) over a mixture of Student-t distributions in (Daudel et al., 2023, Example 5). For
each component of the mixture, the location, scale, and tail parameters are all adapted. We now show that
their tail-adaptation procedure is not able to produce degree of freedom parameters that are less than a constant
νmin ∈ (2.5, 2.6).

In order to observe that, we consider the update (Daudel et al., 2023, Equation (70)). For simplicity, we consider
the case where the mixture is reduced to one component, but our analysis still applies in this more general
setting. In the simplified setting we consider, we have at iteration t that the next degree of freedom parameter
νt+1 satisfies

κ
(νt+1

2

)
=

∫
(z − ln(z))pµt,Σt,νt(y, z, dy, dz), (D.10)
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with κ(x) = ln(x) + Γ′(x)
Γ(x) , α ∈ [0, 1), and a positive measure pµt,Σt,νt

over R × Rd. For any z > 0, we have

z − ln(z) ≥ 1. We can thus check that the right-hand side of Eq. (D.10) is positive. The function κ is increasing
and bijective from (0,+∞) to R from (Daudel et al., 2023, Lemma 13).

Now let us demonstrate that there exists a scalar νmin > 0 such that νt+1 > νmin and give some bounds on
νmin. We define νmin such that κ

(
νmin

2

)
= 0. The function κ is increasing and bijective from (0,+∞) to R from

(Daudel et al., 2023, Lemma 13). We can check that that κ(1.25) < 0 and that κ(1.3) > 0. This means that the
scalar νmin exists and satisfies νmin ∈ (2.5, 2.6). This shows that there are values of ν that cannot be attained
by the algorithm of Daudel et al. (2023). Although this lower bound is reasonable, it may not yield optimal
performance on heavy-tailed targets such as the one considered in Section 5.1.

E Further Numerical Experiments

E.1 Controlled Scenario with Varying Dimension Student-t Targets

We give here supplementary numerical experiments in the case of a Student-t target distribution in varying
dimension, that is described in Section 5.1. In addition to the results already presented in Section 5.1, we show
in Fig. E.1 the α-ESS and square-root relative MSE on the normalizing constant of the target when the target has
degree of freedom νπ ∈ {5, 50}. We also compute the bootstrap 90% confidence intervals to better understand
the distributions of the estimates yielded by the algorithms. They are shown in Fig. E.3. Finally, we describe
the final degree of freedom parameters reached by AHTIS with adaptation of ν when the target has degree of
freedom parameter νπ ∈ {2, 5, 50} in Table E.1.

2 4 8 16 32

Dimension d

0.8

0.9

1.0

α
-E

S
S

AHTIS with fixed ν, ν = 3

AHTIS with fixed ν, ν = 5

AHTIS with fixed ν, ν = 10

AMIS, ν = 3

AMIS, ν = 5

AMIS, ν = 10

AHTIS

(a) α-ESS (mean ± one standard deviation, higher is better)
for various dimensions d. AHTIS outperforms AMIS for any
ν, sometimes by an order of magnitude, and the ν-adaptive
version converges to the true value νπ = 5.

2 4 8 16 32

Dimension d

10−4

10−3

10−2

√
M

S
E
/Z

π

AHTIS with fixed ν, ν = 3

AHTIS with fixed ν, ν = 5

AHTIS with fixed ν, ν = 10

AMIS, ν = 3

AMIS, ν = 5

AMIS, ν = 10

AHTIS

(b) Relative square root MSE (lower is better) for various
dimensions d. Note that Zπ = Zνπ,Σπ is the true normaliz-
ing constant, which is available. AHTIS outperforms AMIS
for any ν and the ν-adaptive version converges to νπ = 5.

Figure E.1: Results for a synthetic Student-t target with νπ = 5. All algorithms are run for T = 20 iterations,
with M = 104 samples per iteration and results are averaged over 100 replications. A dashed line identifies
AMIS, while solid line is AHTIS, and same marker/color indicates same ν.
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AMIS, ν = 10

AHTIS

(a) α-ESS (mean ± one standard deviation, higher is better)
for various dimensions d. AHTIS outperforms AMIS for small
ν, but does not always yield the highest possible value of
ν, for which the best results are obtained with the escort
version of AMIS.
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(b) Relative square root MSE (lower is better) for various
dimensions d. Note that Zπ = Zνπ,Σπ is the true normaliz-
ing constant, which is available. AHTIS outperforms AMIS
for small ν, but does not always yield the highest possible
value of ν, for which the best results are obtained with the
escort version of AMIS.

Figure E.2: Results for a synthetic Student-t target with νπ = 50. All algorithms are run for T = 20 iterations,
with M = 104 samples per iteration and results are averaged over 100 replications. A dashed line identifies
AMIS, while solid line is AHTIS, and same marker/color indicates same ν.
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,Û
/Z

π
]

AHTIS, ν = 1

AHTIS, ν = 2

AHTIS, ν = 3

AHTIS, ν = 5

AMIS, ν = 3

AMIS, ν = 5

AHTIS

(a) Normalized bootstrap 90% confi-
dence intervals for a Student-t target
with νπ = 2.

10 20 30

Dimension d

100

9.88× 10−1

9.9× 10−1

9.92× 10−1

9.94× 10−1

9.96× 10−1

9.98× 10−1

In
te

rv
al

:
[L̂
/Z

π
,Û
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(b) Normalized bootstrap 90% confi-
dence intervals for a Student-t target
with νπ = 5.
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(c) Normalized bootstrap 90% confi-
dence intervals for a Student-t target
with νπ = 50.

Figure E.3: Normalized bootstrap 90% confidence intervals for the final estimators of Zπ for a synthetic Student-t
target π with νπ ∈ {2, 5, 50} in dimension d ∈ {2, 4, 8, 16, 32}. The algorithms are run for T = 20 iterations
with M = 104 samples per iterations, yielding an estimator of Zπ. This experiment has been replicated 100
times, and we have used these estimators to compute the bias-corrected bootstrap confidence intervals [L̂, Û ] for
each algorithm. The lower and upper bounds of the confidence have been normalized by dividing them by Zπ.
For each algorithm, the shaded area represents the resulting normalized confidence interval. Good normalized
bounds are thus closed to the value 1 (since we are trying to estimate Zπ and we are normalizing by this same
value).
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νπ = 2 νπ = 5 νπ = 50
d = 2 2.05± 0.569 4.87± 0.142 8.38± 1.66
d = 4 2.16± 1.18 4.96± 0.168 8.17± 1.54
d = 8 1.98± 0.574 4.93± 0.293 8.13± 1.98
d = 16 2.03± 0.562 5.03± 0.978 6.71± 3.10
d = 32 2.04± 0.175 5.03± 0.504 5.62± 2.48

Table E.1: Final degree of freedom νT yielded by Algorithm 1 for a target with degree of freedom parameter νπ
in dimension d. The results are of the form mean ± one standard deviation, for T = 20 over 100 runs.

Results. Table E.1 reveals that the ν-adaptive AHTIS is able to correctly capture the tail behaviour of the
target with good precision when νπ ∈ {2, 5}. In the case νπ = 50 where the tails of the target are lighter, we
see that the adapted value of ν yielded by AHTIS is lower than νπ. This is because ν is restricted to an interval
[1, νmax] (see Eq. (D.5)). We have set νmax = 10 in our experiments, thus excluding νπ = 50. This is not a
problem in IS, as we aim to create proposals that, if mismatched, have heavier tails than the target (Owen, 2013,
Chapter 9). Fig. E.1 shows a situation where AMIS and AHTIS with ν = 5, and the ν-adaptive AHTIS are able
to reach similar performance in terms of α-ESS and MSE. The fact that AMIS is now able to reach performance
similar to AHTIS (in contrast with the results of Fig. 3) is because νπ = 5, meaning that π has well-defined first
and second order moments and that AMIS with ν = νπ can be used. Note however that in the case of a mismatch
ν ̸= νπ, AMIS is inferior to AHTIS. Fig. E.2a shows a situation the target π is significantly lighter-tailed than
the considered proposals. Indeed, νπ = 50 while proposals have degree of freedom parameter ν ∈ {3, 5, 10} and
AHTIS is constrained to ν ∈ [1, νmax] (see Eq. (D.5)) with νmax = 10. In this situation, the methods with fixed ν
perform better, with the best performance obtained with the escort AMIS with ν = 10. AHTIS does not always
identify the highest value of ν as the best, but still outperforms the other methods when the proposals have
ν ̸= 10. Fig. E.3 show that the estimators of Zπ tend to underestimate the true value of Zπ in high dimensions,
since the bootstrap 95% intervals often gets below Zπ. This phenomenon is more pronounced, especially for the
AMIS algorithm, when there is a mismatch between the degree of freedom parameter of the target and the one
of the proposal, showcasing the effectiveness of our AHTIS methodology in this respect.

E.2 Application to Bayesian Student-t regression on real data

We include figures with additional results for ν = 4 for all algorithms (excluded from the main paper for better
readability of the main plots).
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Figure E.5: Normalized bootstrap 90% confidence intervals for the final estimators of Zπ for the posterior of the
creatinine dataset. Note that here since the dimension is fixed, we have number of samples on the x-axis.
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(a) α-ESS (mean ± one standard deviation, higher is better)
for the creatinine dataset experiments.
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(b) Relative square root MSE (lower is better) for the cre-
atinine dataset experiments.

Figure E.4: Results here are as in Figs. 4a and 4b (main paper), but with added ν = 4. Recall that all algorithms
are run for T = 25 iteration and results are averaged over 250 replications. A dashed line identifies AMIS, while
solid line is AHTIS, and same marker/color indicates same ν.
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