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Abstract

We consider a random growth model based on the IDLA protocol with sources
in a hyperplane of Zd. We provide a stabilization result and a shape theorem
generalizing [7] in any dimension by introducing new techniques leading to a rough
global upper bound.
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1 Introduction

The (standard) Internal Diffusion Limited Aggregation (IDLA) is a random growth
model (An)n≥0 in Zd recursively defined as follows. We start with A0 = ∅. At step n, a
simple symmetric random walk (independent of everything else) starts from the origin
0, called the source, until it exits the current aggregate An−1, say at some vertex z,
which is added to An−1 to get An = An−1 ∪ {z}. A first shape theorem was established
by Lawler, Bramson and Griffeath in [17]. It asserts that the aggregate An (when it is
suitably normalized) converges a.s. to an Euclidean ball as the number n of random walks
goes to infinity, with fluctuations (w.r.t. the limit shape) which are at most linear. Since
then, several papers (by Lawler [16], Asselah and Gaudillière [1, 2, 3] and Jerison, Levine
and Sheffield [12, 13, 14]) have improved the bounds for fluctuations which are known
to be logarithmic in dimension 2 and sublogarithmic in higher dimensions. Since then,
many variants of this model have been considered and corresponding shape theorems
have been explored. Let us cite IDLA models on discrete groups with polynomial or
exponential growth in [6, 21], on non-amenable graphs in [10], on comb lattices in [4, 25],
on cylinder graphs in [15, 19, 24] or on supercritical percolation clusters in [9, 23]. Let
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us mention that IDLA models with drifted random walks [20] or with uniform starting
points [11] have been also studied. The case of multiple sources has been investigated
too, see e.g. [7, 18].

In this paper, we aim to extend the shape theorem in dimension d = 2 stated in [7]
to higher dimensions. As explained below, this generalization is non-trivial and requires
new ideas.

The infinite set of sources that we consider is the hyperplane H := {0} × Zd−1 of
Zd, with d ≥ 3. A random walk starting from a source of H and stopped when it exits
the current aggregate is called a particle. Let n, M be non-negative integers. In the
sequel, exactly n particles are sent from each source. Let us now build the sequence
of aggregates (An[M ])M≥0 inductively as follows. When M = 0, An[0] is the classical
IDLA model, i.e. with n particles emitted from the origin. Let us call level M the set
of sources in H at distance M from the origin (for ∥(z1, . . . , zd)∥ := maxi |zi|). Given a
realization of An[M−1], we throw n particles from each source of level M according to the
lexicographical order. So An[M ] is defined as the aggregate produced by An[M − 1] and
the new sites added by particles launched at level M . Let us emphasize that Theorem
1.2 is interesting in itself since it puts forward an independence property between the
aggregate An[∞] ∩ ZM and particles from afar, and could be used in the vein of [7] to
obtain mixing properties for the aggregate.

Unlike its shape, the total number of sites in An[M ] is deterministic, and equals
#An[M ] = n(2M+1)d−1. Besides, by construction, the sequence of aggregates (An[M ])M≥0
is a.s. increasing in the sense of inclusion, allowing us to define the limiting aggregate
An[∞] as:

An[∞] :=
⋃

M≥0
An[M ] a.s..

One of our main results is a shape theorem for An[∞]. Restricted to the (large) strip
Znα := Z× [[−⌊nα⌋, ⌊nα⌋]]d−1, the aggregate An[∞] looks like a slab with thickness n and
sublogarithmic fluctuations as the number of particles n tends to infinity. Let us specify
that the slab Rx is defined as Rx := [[−⌊x⌋, ⌊x⌋]] × Zd−1 for any positive real number x.

Theorem 1.1. (Shape theorem) For any integers d ≥ 3 and α ≥ 1, there exists a
constant C = C(d, α) > 0 such that, almost surely, there exists an integer N ≥ 1 such
that for any integer n ≥ N ,

Rn/2−C
√

log n ∩ Znα ⊂ An[∞] ∩ Znα ⊂ Rn/2+C
√

log n ∩ Znα . (1.1)

Let us comment on this shape theorem (see Figures 1 and 2). It says that at first
order, the limiting aggregate An[∞] is of thickness n, which makes sense since n particles
are launched per source. Notice that Proposition 2.1 confirms that fact; n is (exactly) the
mean thickness of An[∞]. Let us also remark that Theorem 1.1 holds for the aggregate
An[∞] restricted to the strip Znα (even large). Such a restriction is unavoidable since
a.s. there exists some pathological source z (far away from the origin) for which all
the n particles always move in the direction of the abscissa, meaning that the site
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Figure 1: A realization of A20[40]. Each particle is represented by a cube.

Figure 2: A realization of A20[40] ∩ Z20. The points with x-coordinate on the border
such that |x| = 10 (resp. |x| < 10 and |x| > 10) are colored in blue (resp. green and
red). All other points are colored in white.



z + (n, 0, . . . , 0) belongs to An[∞]. Furthermore, Theorem 1.1 specifies the fluctuations
of the aggregate An[∞] around its limiting shape Rn/2 (both restricted to the strip Znα).
They are (at most) sublogarithmic while they are (at most) logarithmic in dimension
d = 2 [7]. This dichotomy between dimension d = 2 and higher echoes the results
of [2, 13], in which it is proved that the fluctuations for the standard IDLA are also
sublogarithmic when d ≥ 3.

As in dimension d = 2 the proof of Theorem 1.1, and especially the upper bound
in (1.1), crucially relies on the possibility of reducing the problem to a finite number of
sources. Such a reduction is doable thanks to the following stabilization result which
roughly says that particles sent sufficiently far away (from the origin) do not come close
to the origin. Let us emphasize that Theorem 1.2 is interesting in itself since it puts
forward an independence property between the aggregate An[∞]∩ZM and particles from
afar.

Theorem 1.2. (Strong stabilization) Let n ≥ 0 and α > 1 . A.s. there exists an integer
M0 such that, for any integer M ≥ M0, the trajectory of any particle contributing to
An[∞] and starting from a level larger than Mα does not visit the strip ZM .

In what follows, we assume α ≥ 2 to be an integer, as picking real values of α
requires a heavy use of floor functions. This choice is made simply for the sake of
lightening notation.

Theorem 1.2 is an extension of Theorem 3.1 of [7] (concerning the bidimensional
case) to dimension d ≥ 3. As we explain now, this extension is non-trivial and its proof
requires a new approach. As in [7], particles contributing to the aggregate An[∞] are
sent by successive waves, i.e. from the annuli

Ann(M, j) := H ∩
(
B((j + 2)Mα) \ B((j + 1)Mα)

)
, j ≥ 0,

where B(ℓ) denotes the ball with radius ℓ and centered at the origin (w.r.t. the supremum
distance ∥ ·∥). When d = 2, the hyperplane of sources H corresponds to the vertical axis
and Ann(M, j) admits only 2Mα sources, for any j. When d ≥ 3, #Ann(M, j) depends
also on α, j and increases with j as jd−2 (this factor disappears when d = 2). The same
holds for the number of particles sent during the j + 1-th wave, i.e. from Ann(M, j). In
order to visit the strip ZM before stopping, a particle sent during the j+1-th wave has to
travel inside the current aggregate until reaching ZM . It is more or less likely according
to the index j and the thickness of the current aggregate which can then be viewed as
a ’random environment’ where the particle evolves before stopping. However, there is a
certain deterioration of the ’environment’ when successive waves are launched. Indeed,
if Aj+1 denotes the aggregate obtained after sending the j-th wave, then particles of
the j + 1-th wave contribute to the growth of Aj+1 into Aj+2 (i.e. Aj+2 is thicker than
Aj) making easier the travel inside the current aggregate to the strip ZM for further
particles. Hence, we have to deal with two opposite trends: as j increases, particles of
the j + 1-th wave have to travel a longer way to reach ZM , but this way is more likely
since the corresponding aggregate is thicker. In dimension d = 2, the number of particles
sent at each wave being weak (and constant w.r.t. j), the deterioration phenomenon of
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the ’environment’ is negligible compared to the distance that particles must travel and
the stabilization result is not too difficult to obtain in this case (see Section 3.1 of [7]).
In dimension d ≥ 3, because of the increase of the number of particles sent at each wave,
the deterioration of the ’environment’ previously mentioned is stronger and the proof
used in [7] does no longer apply. To address this issue, the idea consists in proving that
the aggregate An[∞], beyond some level, is included within a cone centered at the origin
(Theorem 4.1). This upper bound presents two advantages. First it is rough enough–
the thickness of the cone increases when one moves away from the origin –to take into
account the deterioration of the ’environment’ phenomenon and pathological sources
(previously cited). Second, it is global since it concerns the whole aggregate outside
some compact set. This result is referred to as a rough global upper bound.

Our paper is organized as follows. In Section 2, we give some properties of An[∞]
including invariance (in distribution) w.r.t. translations/symmetries and a mass trans-
port principle. We also recall the so-called Abelian property which ensures that the order
in which the particles are sent is not important (in distribution) to define An[∞]. In
Section 3, we discretize our problem into donuts and establish a result (Proposition 3.1)
which will be used to derive the rough global upper bound. This upper bound is stated
and proved in Section 4. In the last two sections, we prove Theorems 1.1 and 1.2.

2 First properties

2.1 Mass transport property and symmetries

In this section, we state some basic properties satisfied by the random aggregate An[∞].
The first property states that given a line Z× {j}, where j ∈ Zd−1, the average amount
of particles that settle on this line is equal to n. Here, with a slight abuse of notation, we
have written {j} := {j2, j3, . . . , jd} for any j = (j2, j3, . . . , jd) ∈ Zd−1. One can interpret
this as the following statement: on average, the n particles sent from each source (0, j)
settle on the line Z × {j}.

Proposition 2.1. Let n ≥ 1. For all j ∈ Zd−1

E [# (An[∞] ∩ (Z × {j}))] = n.

Just as in Section 2 of [7], a consequence of Proposition 2.1 is a result of weak
stabilization, which claims that a particle sent far from the origin does not settle close
to the origin. This result differs from our result of strong stabilization given in Section
5, as the latter shows that a particle sent far from the origin does not visit areas close
to the origin. Moreover, unlike strong stabilization, weak stabilization does not provide
any exploitable bounds, which makes it impossible to use arguments such as the Borel-
Cantelli Lemma.

In the following proposition, we claim that the distribution of the random aggregate
An[∞] is invariant with respect to translations and symmetries. In what follows, we
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denote by Tk the translation operator with respect to vector k ∈ H and Sk the point
reflection operator (across point k ∈ H), that is:

∀x ∈ Zd, Tk(x) := x + k and Sk(x) = 2k − x.

For B ⊂ Zd−1, let

TkB = {Tk(x), x ∈ B} and SkB = {Sk(x), x ∈ B}.

Proposition 2.2. Let n ≥ 0, k ∈ H.

1. The distribution of An[∞] is invariant with respect to Tk, i.e TkAn[∞] law= An[∞].

2. The distribution of An[∞] is invariant with respect to Sk/2, i.e
Sk/2An[∞] law= An[∞].

2.2 Abelian property

We give here the Abelian property, which states that altering the order in which particles
are sent does not change the law of the aggregate. We begin by defining the Diaconis-
Fulton smash sum: (see [8]). For A ⊂ Zd and z ∈ Zd:

• if z ̸∈ A, then A ⊕ {z} = A ∪ {z};

• if z ∈ A, then A ⊕ {z} is the random set obtained by adding to A the vertex on
which a simple random walk started in z exits A.

Proposition 2.3 (Abelian property). Let A and {z1, . . . , zk} be subsets of Zd. The
distribution of

((A ⊕ {z1}) ⊕ {z2}) ⊕ · · · ⊕ {zk}

does not depend on the order of the zi’s. That is, if we take σ ∈ Sk a permutation of
{1, . . . , k}, then:

((A ⊕ {z1}) ⊕ {z2}) ⊕ · · · ⊕ {zk} law= ((A ⊕ {zσ(1)}) ⊕ {zσ(2)}) ⊕ · · · ⊕ {zσ(k)}.

2.3 Proofs of Propositions 2.1 and 2.2

We only show the proof of Proposition 2.1 since Proposition 2.2 can be dealt with in a
similar manner. Our main idea is to build an auxiliary aggregate A′

n[∞] with the same
law as An[∞], but for which it is simpler to show translation invariance. To do so, we
construct A′

n[∞] in the same spirit as An[∞]. Let M ≥ 0. We define A′
n[M ] similarly

to An[M ], by sending n particles per source of HM , but this time the order is given by
random clocks. More precisely, let (Uz,i)z∈H, 1≤i≤n be a family of i.i.d uniform random
variables on [0, 1]. For each z ∈ H we can order these n random variables in order to get
an increasing family of clocks (τz,i)1≤i≤n in [0, 1]. Now, with the collection of random
clocks {τz,i : z ∈ H, 1 ≤ i ≤ n} we can associate a family of independent symmetric
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random walks {Sz,i : z ∈ H, 1 ≤ i ≤ n} on Zd, independent as well of the family of
clocks. Just like above, at time τz,i, the i-th particle is sent from source z ∈ H and follows
a trajectory given by Sz,i, adding a new site to the current aggregate. Let us specify
that each particle’s trajectory is instantly realized and that it settles immediately. The
aggregate A′

n[M ] is obtained following the same protocol as above by sending particles
up to level M according to the random clocks given by our family (Uz,i)∥z∥≤M, 1≤i≤n.
Using the Abelian property, we have

A′
n[M ] law= An[M ].

By adapting Lemma 2.1 of [7], we can easily show that a.s. for all n, M ≥ 0,
A′

n[M ] ⊂ A′
n[M + 1]. Then we define A′

n[∞] as the increasing union:

A′
n[∞] :=

⋃
M≥0

A′
n[M ] a.s.

Since both sequences (A′
n[M ])M≥0 and (An[M ])M≥0 are almost surely increasing and

that A′
n[M ] law= An[M ] for all M ≥ 0, we have A′

n[∞] law= An[∞].
We are now prepared to prove Proposition 2.1. Indeed, since A′

n[∞] law= An[∞], it
is sufficient to prove the same type of result for A′

n[∞]. For x, y ∈ Zd−1, we let Qx→y

denote the number of particles sent from (0, x) that settle on the line Z× {y}. Now, for
A, B ⊂ Zd−1, we define:

Q(A, B) := E

 ∑
x∈A, y∈B

Qx→y

 .

In particular, for all j ∈ Zd−1, we have

E [# (An[∞] ∩ (Z × {j}))] = Q(Zd−1, {j}).

Since Q({j},Zd−1) = n, it is sufficient to prove that Q(Zd−1, {j}) = Q({j},Zd−1). We
show this using a mass transport argument (see Theorem 5.2 of [5]). It is sufficient to
show that Q is diagonally invariant, that is: Q(A+w, B+w) = Q(A, B) for all w ∈ Zd−1.
This holds, since

Q(A + w, B + w) =
∑

x∈A, y∈B

E [Qx+w→y+w]

=
∑

x∈A, y∈B

E [Qx→y]

= Q(A, B),

where the second line comes from the fact that

Qx+w→y+w = Qx+w→y+w

(
(τz,i) z∈H

1≤i≤n
, (Sz,i) z∈H

1≤i≤n

)
(2.1)

a.s= Qx→y

(
(τz−w,i) z∈H

1≤i≤n
, (Sz−w,i) z∈H

1≤i≤n

)
law= Qx→y.
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Note that the computations in (2.1) are specific to A′
n[∞], and are not true for An[∞].

The key argument here is that the particles in A′
n[∞] are not sent according to a specific

order but according to a family of independent uniform clocks, implying that all particles
play the same role for the aggregate.

3 The donut method
In this section, we introduce what will be commonly referred to throughout this paper
as the donut method. This argument will be particularly useful when coupled with the
global upper bound given in Section 4 to control the trajectory of a given particle.
The method consists in building donuts, starting from the origin and up to any given
level, and showing that a particle is unlikely to cross multiple donuts without settling
beforehand. Let us begin by detailing the construction of our donuts, for which it is
necessary to first define cones. For ε > 0, we define the cone of angle ε as:

Cε :=
⋃
l≥0

{
z ∈ Zd, ∥pH(z)∥ = l, |z1| ≤ εl

}
, (3.1)

where pH is the operator realizing the orthogonal projection on H. Let Bd−1(r) denote
the (d − 1)-dimensional lattice ball of radius r, that is

∀r > 0, Bd−1(r) := {x ∈ Zd−1 : ∥x∥ ≤ r}.

Given a decreasing family of real numbers (li)i≥0, we define the donut Di as:

∀i ≥ 0, Di := J−εli, εliK × (Bd−1(li) \ Bd−1(li+1))

We build each donut Di so that its length, which equals 2εli, is equal to its width li −li+1
(see Figure 3: one may see this figure as the view along a vertical cut of our donuts in
dimension 3). This gives the following condition on (li)i≥0:

∀i ≥ 0, li+1 = (1 − 2ε)li,

with ε < 1/2. By induction, we get the general expression:

∀i ≥ 0, li = (1 − 2ε)il,

where l = l0. We consider the number of donuts between levels l and M , with M > l,
and define k as the greatest integer such that:

k∑
i=0

2εli ≤ l − M.

Since li = (1 − 2ε)il, for ε taken small enough, we have:

k ≥ −1
2 log(1 − 2ε)︸ ︷︷ ︸

K(ε)

× log
(

l

M

)
. (3.2)
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2εl2
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×

M

Z × {0}

Figure 3: Partition into donuts

Notice here that K(ε) can be taken arbitrarily large by taking ε arbitrarily small.
Let us now briefly explain the reasoning behind the construction of our donuts. Our

method will be particularly useful to show that a particle sent far away from the origin is
highly unlikely to travel close to the origin while staying within the cone. For a particle
to do so it necessarily has to travel through many donuts without ever exiting the cone,
since the donuts are built in such a way that they wrap around the cone Cε. Such an
event is handled by the following Proposition.
Proposition 3.1. Let M ≥ 1 and ε > 0. Fix (St)t≥0 a simple symmetric random walk
starting from some source of H \ HM and consider the cone Cε defined as in (3.1). For
i ≥ 1, let

Ai =
{

The walk crosses the i donuts D0, . . . , Di−1

without exiting the cone Cε

}
,

and let A0 = Ω. Then, for any i ≥ 0,

P (Ai) ≤ (1 − c)i,

where c = (2d)−2.

Note that what we mean by a walk or particle crossing donut Di is for it to reach
the inner ring of Di without ever exiting Di.

Notice that for a walk to cross a donut (from the outer ring to the inner ring), it
already needs to get through the middle of that donut. To deal with this property, let
us introduce the notion of ’middling slice’ of a donut. Let i ≥ 0 and consider the i-th
donut Di = J−εli, εliK × (Bd−1(li) \ Bd−1(li+1)). Define the lattice sphere of radius s as:

∀s ≥ 0, Sd−1(s) := {x ∈ Zd−1, ∥x∥ = s}.
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Now, notice that li+li+1
2 = (1 − ε)li. Define the middling slice of Di as

mi := J−εli, εliK × Sd−1 ((1 − ε)li) .

Additionally, define the exterior border of Di as

Di
ext =

(
K − ∞, −εliK ∪ Jεli, +∞J

)
×
(
Bd−1(li) \ Bd−1(li+1)

)
.

The following result shows that a walk started from the middling slice of a donut has
a positive probability of exiting the donut through Di

ext and will be used to derive
Proposition 3.1.

Lemma 3.2. Let y ∈ mi and let (St)t≥0 be a simple symmetric random walk on Zd

started at y. For all i ≥ 0, we introduce the stopping time τy = inf{t ≥ 0, St /∈
Bd(y, εli)}. We have:

Py

(
Sτy ∈ Di

ext

)
≥ 1

2d
.

Proof of Lemma 3.2: Let y ∈ mi. Notice that Bd(y, εli) ⊆ Z ×
(
Bd−1(li) \ Bd−1(li+1)

)
,

and that Bd(y, εli) has at least one of its 2d faces, say F, included in Di
ext. By an

argument of symmetry, we have

Py(Sτy ∈ F) = 1
2d

.

Now, since Py(Sτy ∈ F) ≤ Py(Sτy ∈ Di
ext), we have the desired result.

Proof of Proposition 3.1. The case where i = 0 is trivial. Let i ≥ 1. Notice that the
sequence of events (Ai)i≥0 is decreasing, so P(Ai) = P(Ai|Ai−1)P(Ai−1). Thus, it is
sufficient to prove that P(Ai|Ai−1) ≤ (1 − c). Since we are considering events where the
walk crosses donuts from outer ring to inner ring, we will refer to good sides as sides
orthogonal to the ’x’ axis, whereas bad sides will refer to sides that are not good.

Let us define the following events:

Mi =
{

The random walk reaches mi

}

Di =
{

The random walk exits the i-th donut Di−1

through one of the (two) bad sides

}
.

Additionally, define the sequence of stopping times Ti := inf{t ≥ 0, St ∈ mi}. As men-
tioned earlier, for the walk to cross a donut (from outer ring to inner ring) it necessarily
has to cross the middling slice of the donut, and since Cε ∩ Zc

M ⊂
⋃

j≥0 Dj , this implies
that on the event Ai, the walk crossed the i donuts D0, . . . , Di−1 without ever exiting
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through a good side. Therefore:

P(Ai|Ai−1) ≤ P(Mi ∩ Di|Ai−1)

≤
∑

m∈mi

E
[
1Di∩Mi1STi

=m| Ai−1
]

≤
∑

m∈mi

E
[
1Di1STi

=m| Ai−1
]

≤
∑

m∈mi

P (Di| STi = m, Ai−1)P(STi = m| Ai−1).

Now, by the Markov property, for all m ∈ mi, P (Di| STi = m, Ai−1) ≤ Pm(Di). It
remains to bound Pm(Di), which is an immediate consequence of Lemma 3.2. Let us
first define ∂Di

ext := {−εli − 1, εli + 1} ×
(
Bd−1(li) \Bd−1(li+1)

)
. Notice that if the walk

hits a site of ∂Di
ext, then it has necessarily exited the donut through a good side. Hence,

using the result of Lemma 3.2:

Pm(Dc
i ) ≥ Pm

(
{Xτm ∈ Di

ext} ∩ {Xτm+1 ∈ ∂Di
ext}

)
≥ Pm(Xτm+1 ∈ ∂Di

ext|Xτm ∈ Di
ext)Pm(Xτm ∈ Di

ext)
≥ PDi

ext
(X1 ∈ ∂Di

ext)Pm(Xτm ∈ Di
ext)

≥ 1
2d

× 1
2d

.

This concludes the proof, since

P(Ai|Ai−1) ≤
∑

m∈mi

Pm(Di)P(STi = m| Ai−1)

≤
(

1 − 1
4d2

) ∑
m∈mi

P(STi = m| Ai−1) ≤ 1 − 1
4d2 .

4 A rough global upper bound

As seen in dimension 2 (see [7], Section 6), when restricted to a certain level, the ag-
gregate An[∞] is contained within a rectangle of length n. In this section, we prove
that above a certain level the aggregate is entirely contained within a cone with high
probability. To state the result, we first give some notation. For any source z ∈ H and
given a realization of An[∞], we define:

Xz(n) := max
{

|z′
1|, z′ ∈ An[∞], z′

i = zi ∀i = 2, . . . , d
}

.

The random variable Xz(n) is the absolute value of the first coordinate of the furthest
occupied site on the line of level z. Moreover, for any 0 < ε and M ≥ 1 we let:

Over(M, ε, n) =
⋃

l≥M

{∃z ∈ H : ∥z∥ = l, Xz(n) > εl}.
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The event Over(M, ε, n) describes the situation where one or more particles have settled
at a distance greater than εl on some line of distance l ≥ M from the origin. The
following proposition shows that such an event occurs with small probability.
Theorem 4.1. Let n ≥ 1. For all L > 1, for all M ≥ 2, for all ε > 0, there exists a
positive constant Cε,n such that:

P (Over(M, ε, n)) ≤ Cε,n

ML
.

As a consequence of the above result, a.s. there exists a random integer M0 such that
for any M ≥ M0, the aggregate An[∞] ∩ Zc

M is included in Cε. Theorem 4.1 can be
understood as the fact that An[∞] ∩ Zc

M is included within Cε with high probability
since

Over(M, ε, n)c = {An[∞] ∩ Zc
M ⊂ Cε}.

The property An[∞] ∩ Zc
M ⊂ Cε is referred to as the rough global upper bound. This

upper bound will be very useful when coupled with the donut argument of Section 3, as
it will allow us to show that particles are unlikely to travel long distances while staying
within the cone.

The proof of Theorem 4.1 will be shown by induction over n. Our idea is that if for
some fixed n, the aggregate An[∞] is contained within a cone of angle ε for some ε > 0,
then we show that after launching an additional particle from each source, the resulting
aggregate is very likely contained in a slightly larger cone of angle ε′ > ε. To prove
Theorem 4.1, we first show a stronger version in Proposition 4.2. Before we give this
result, we need to build two increasing sequences (Mn)n≥1 and (εn)n≥1, corresponding
to levels of particles and successive angles of cones. Let ε ∈ ]0, 1[, M ≥ 1. We define
the sequences (Mn)n≥1 and (εn)n≥1 by induction:

M1 = M

∀n ≥ 1, Mn+1 = Mn

(
1 − ε

2n+1

)−1
{

ε1 = ε

∀n ≥ 1, εn+1 = εn + ε

2n

Note that for all n ≥ 1, we have ε ≤ εn ≤ 2ε and M ≤ Mn < 2M , for ε small enough.
We now give a stronger version of Theorem 4.1. To avoid any heavy notation, in what
follows, we will write Over(Mn, εn) rather than Over(Mn, εn, n). Additionally, we con-
tinue to omit writing the floor function ⌊·⌋.
Proposition 4.2. For all L > 1, for all ε > 0, for all n ≥ 1, there exists a constant
Cε,n > 0 such that for all M ≥ 1,

P (Over(Mn, εn)) ≤ Cε,n

ML
.

Proof of Theorem 4.1: Let n be fixed. Using the fact that for all M ≥ 1 and for all
ε ∈ ]0, 1[, ε ≤ εn ≤ 2ε and M ≤ Mn < 2M , we have Over(2M, 2ε, n) ⊂ Over(Mn, εn),
hence

P (Over(2M, 2ε, n)) ≤ P (Over(Mn, εn)) ≤ Cε,n

ML
.
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Proof of Proposition 4.2: We prove our result by induction over n. Take L > 1. Our
induction statement is the following:

∀n ≥ 1, P(n) : ∀ε ∈ ]0, 1[, ∀M ≥ 1, ∃Cε,n > 0, P (Over(Mn, εn)) ≤ Cε,n

ML
.

For n = 1, the result is obviously true: Xz(1) = 0 for all z, so P (Over(M1, ε1)) = 0.
Let n ≥ 1 and suppose P(n) holds. We write:

P (Over(Mn+1, εn+1)) ≤ P (Over(Mn+1, εn+1) ∩ Overc(Mn, εn)) + P (Over(Mn, εn)) .

The right-hand term is handled by our induction hypothesis. We now focus on the left-
hand term. On the event Over(Mn+1, εn+1) ∩ Overc(Mn, εn), we have An[∞] ∩ Zc

Mn
⊂

Cεn , but when launching one additional particle from each source of H, the new aggregate
obtained spills over Cεn+1 on Zc

Mn+1
. This implies the existence of three random sites

(Z, Z∗, Zn+1) ∈ Zd such that:

• Z∗ is the source from which the first overflowing particle is emitted

• Zn+1 is the site on which this particle settles

• Z is the orthogonal projection of Zn+1 on H.

Note that the coordinates of Zn+1 are given by

Zn+1 = Z ± (εn+1∥Z∥) · e1,

where e1 = (1, 0, . . . , 0), and that these coordinates only depend on Z, meaning it suffices
to know the location of Z to know precisely where the overflowing particle settled.
Additionally, we call AZ∗ the aggregate (restricted to Zc

Mn+1
) made up of An[∞] and each

additional particle sent from H in the usual order up to site Z∗, and A−
Z∗ the aggregate

(restricted to Zc
Mn+1

) made up of An[∞] and each additional particle sent from H in the
usual order up to site Z∗ excluded. We know that this aggregate is strictly contained
inside of Cεn+1 ∩ Zc

Mn+1
. Notice that AZ∗ = A−

Z∗ ∪ {Zn+1}.
We write:

P (Over(Mn+1, εn+1) ∩ Overc(Mn, εn))
≤

∑
l≥Mn+1

∑
∥z∥=l

P (Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn)) . (4.1)

Now, fix l ≥ Mn+1 and z ∈ H such that ∥z∥ = l, and let zn+1 = z±(εn+1∥z∥)·e1. To deal
with the probability in (4.1), we consider two cases, which we show are both unlikely.
The first case is the case where a ball of particles has settled around zn+1, and the second
is the case where a thin ’tentacle’ has branched out towards zn+1. The following lemma
is an adaptation of Lemma 2 of [12], which deals with the case of tentacles:

13



Lemma 4.3. There exist positive universal constants b, K0, c such that for all real
numbers r > 0 and all z ∈ H with 0 /∈ B̊(zn+1, r),

P
(
Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn), # (AZ∗ ∩ B(zn+1, r)) ≤ brd

)
≤ K0e−cr2

.

–∥Z∥ Zn+1

–Mn+1

εn

εn+1

(εn+1 − εn)∥Z∥

(a) Illustration of
Over(Mn+1, εn+1) ∩ Overc(Mn, εn)

–Mn+1

–∥Z∥ Zn+1

εn

εn+1

(b) Case of a tentacle
reaching out to Zn+1

Let us first explain the choice of the radius for the ball centered around zn+1. This
is where the construction of (Mn) and (εn) comes into play. When building the ball
around zn+1, we need to take a radius small enough to ensure that our ball does not
intersect Cεn as well as the strip ZMn := Z × J−Mn, MnKd−1, since we need to consider
only new particles (particles contributing to An+1[∞] \ An[∞]). To do it, let

rn+1 = εn+1 − εn

2 ∥z∥ = ε

2n+1 l.

14



This choice of rn+1 ensures that B (zn+1, rn+1) ∩ Cεn = ∅, since zn+1 is necessarily at a
distance (εn+1 − εn) l of Cεn . Moreover, B(zn+1, rn+1) ∩ ZMn = ∅, since Mn+1 ≤ l thus
rn+1 ≤ ∥z∥ − Mn. To deal with (4.1), we write:

P (Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn))

≤P
(
Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn), # (AZ∗ ∩ B(zn+1, rn+1)) ≤ brd

n+1

)
(4.2)

+P
(
Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn), # (AZ∗ ∩ B(zn+1, rn+1)) > brd

n+1

)
(4.3)

The term (4.2) is handled by Lemma 4.3 with r = rn+1. This gives:

P
(
Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn), # (AZ∗ ∩ B(zn+1, rn+1)) ≤ brd

n+1

)
≤ K0e−c1l2 , (4.4)

where c1 = c1(n) = cε2

4n+1 .

To deal with (4.3), we use the following argument: in order to have more than
brd

n+1 = bεd2−d(n+1)∥z∥d new particles gathered in a ball around zn+1, and knowing only
one additional particle is thrown from each site, this implies that ∥Z − Z∗∥ ≥ K∥z∥

d
d−1

(where K is a positive constant). This gives

P
(
Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn), # (AZ∗ ∩ B(zn+1, rn+1)) > brd

n+1

)
≤P

(
Z = z, ∥Z∗ − z∥ ≥ Kl

d
d−1 , Over(Mn+1, εn+1) ∩ Overc(Mn, εn)

)

≤P

 ⋃
h≥Kl

d
d−1

⋃
∥z′−z∥=h

{
the particle sent from z′ reaches level l while staying within Cεn+1

}
≤

∑
h≥Kl

d
d−1

∑
∥z′−z∥=h

P
(
the particle sent from z′ reaches level l while staying within Cεn+1

)
.

Proceeding in the same way as Section 3, this probability is handled using a donut
argument and is smaller than (1 − c)k, with c = (2d)−2 and with

k ≥ −1
2 log(1 − 2εn+1) × log

(
h

l

)
, (4.5)

given that ε is small enough (here, we used the fact that zn+1 is a the same level as z).
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Therefore,

P
(
Z = z, Over(Mn+1, εn+1) ∩ Overc(Mn, εn), # (AZ∗ ∩ B(zn+1, rn+1)) > brd

n+1

)
≤

∑
h≥Kl

d
d−1

∑
∥z′−z∥=h

(1 − c)k ≤ Kd,εn+1 ld− C
d−1 .

Now, using (4.5), standard computations yield∑
h≥Kl

d
d−1

∑
∥z′−z∥=h

(1 − c)k ≤ Kd,εn+1 ld− C
d−1 ,

where C := C(εn+1) = log(1−c)
2 log(1−2εn+1) can be taken as large as we want (given once again

that ε is small enough) and Kd,εn+1 denotes a positive constant depending only on d and
εn+1. Combining this with (4.4), we get:

P (Over(Mn+1, εn+1) ∩ Overc(Mn, εn))

≤
∑

l≥Mn+1

∑
∥z∥=l

K0e−c1l2 +
∑

l≥Mn+1

∑
∥z∥=l

Kd,εn+1 ld− C
d−1

≤ Kd

∑
l≥Mn+1

ld−2e−c1l2 + Kd,εn+1

∑
l≥Mn+1

ld−2ld− C
d−1 .

Notice that the first term of the previous sum can be bounded by Ke−
c1M2

n+1
2 for some

constant K. Since M ≤ Mn+1, it is clear that Ke−
c1M2

n+1
2 ≤ C′

ε,n

ML for some constant
C ′

ε,n > 0. To deal with the second term, recall that C := C(εn+1) can be taken as large
as necessary (by taking ε sufficiently small). We can therefore choose ε small enough
such that: ∑

l≥Mn+1

l2d−2− C
d−1 ≤

C ′′
ε,n

ML
.

Recall that from our induction hypothesis, P (Over(Mn, εn)) ≤ Cε,n

ML
. This implies

P (Over(Mn+1, εn+1)) ≤ P (Over(Mn+1, εn+1) ∩ Overc(Mn, εn)) + P (Over(Mn, εn))

≤
C ′

ε,n

ML
+

C ′′
ε,n

ML
+ Cε,n

ML

and concludes the proof of Proposition 4.2.

5 Strong stabilization
This section is devoted to the proof of Theorem 1.2 which heavily lies on the donut
method and the global upper bound (see Sections 3 and 4).
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Fix an integer α ≥ 2. For M ≥ 1, j ≥ 0, recall the definition of :

Ann(M, j) := H ∩
(
B((j + 2)Mα) \ B((j + 1)Mα)

)
, j ≥ 0,

and let EM,j be the following event:

EM,j =
{

At least one of the particles starting from Ann(M, j)
visits the strip ZM before exiting the current aggregate

}
.

According to the Borel-Cantelli lemma, it is sufficient to show that

∑
M≥1

P

⋃
j≥0

EM,j

 < +∞.

To do it, we write:

P

⋃
j≥0

EM,j

 ≤
∑
j≥0

P (EM,j ∩ Overc(M, ε, n)) + P (Over(M, ε, n)) .

We focus on the left-hand term. To do it, let j ≥ 0, take l = Mα(j + 1) and take k as in
(3.2). Define Ntot = Ntot(n, M, j) as the total number of particles sent from Ann(M, j).
We have:

P (EM,j ∩ Overc(M, ε, n))

= P
(

Ntot⋃
i=1

{
particle i visits ZM before exiting the aggregate

}
∩ Overc(M, ε, n)

)

≤
Ntot∑
i=1

P
({

particle i visits ZM before exiting the aggregate
}

∩ Overc(M, ε, n)
)

≤
Ntot∑
i=1

P
({

particle i crosses k donuts before exiting the aggregate
}

∩ Overc(M, ε, n)
)

≤
Ntot∑
i=1

P
({

the walk associated with particle i crosses k donuts before exiting Cε ∩ Zc
M

})
≤ Ntot(1 − c)k,

where the last line comes from Proposition 3.1.
Notice here that the global upper bound Over(M, ε, n)c is used twice to deduce two
different arguments. The first time, it allows us to say that if a particle reaches ZM

before exiting the aggregate, then it necessarily crosses the k donuts D0, . . . , Dk−1

before exiting the aggregate, since the aggregate is contained within the cone, which
itself is contained within the union of the donuts. The second time, it allows us to say
that if a particle crosses k donuts without exiting the aggregate, then in particular, it
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does so without exiting the cone, and the same is true for its associated walk. Now,
using (3.2), we get:

Ntot(1 − c)k ≤ Ntot exp
(

K(ε) log
(

Mα(j + 1)
M

)
log(1 − c)

)
≤ NtotM

C(1−α)(j + 1)−C ,

where C := −K(ε) log(1 − c) = log(1 − c)
2 log(1 − 2ε) can be taken arbitrarily large, by taking ε

arbitrarily small.
Since Ntot ≤ KdMα(d−1)jd−2n, we have:

∑
M≥1

P

⋃
j≥0

EM,j


≤
∑

M≥1

∑
j≥0

P (EM,j ∩ Overc(M, ε, n)) +
∑

M≥1
P (Over(M, ε, n))

≤ Kdn
∑

M≥1
MC(1−α)+α(d−1)∑

j≥0
jd−2(j + 1)−C +

∑
M≥1

P (Over(M, ε, n)) .

The left hand-term of the sum is finite since α > 1 and since we can pick C = C(ε)
sufficiently large, while the second term is handled using Theorem 4.1. This concludes
the proof of Theorem 1.2.

6 Shape theorem

In this section, we prove Theorem 1.1 following the same strategy as [2] and [7], by
splitting the proof into two parts: the lower bound and the upper bound. We begin by
showing the lower bound, as we will be using it later for the proof of the upper bound.
The proof of the upper bound relies crucially on the stabilization result (Theorem 1.2).

Let us recall that, for any real number x > 0, the slab Rx and the strip Zx are defined
as

Rx = [[−⌊x⌋, ⌊x⌋]] × Zd−1

and
Zx = Z × [[−⌊x⌋, ⌊x⌋]]d−1

.

6.1 Proof for the lower bound

In this section, we show the lower bound of Theorem 1.1, which is the following result:
for any integers d ≥ 3 and any α ≥ 1, there exists a constant C = C(d, α) > 0 such that,
almost surely, there exists N ≥ 1 such that for any n ≥ N ,

Rn/2−C
√

log n ∩ Znα ⊂ An[∞] ∩ Znα .
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We adopt in this section the notation of [1, 2, 7] and denote by A(η) the aggregate
generated by an initial configuration η. Since we are launching n particles from each site
of H, we will mostly be using the notation A(n1H) to refer to An[∞].

For k ∈ N, we define the shell Sk by

Sk =
(
R(k+1)

√
log n \ Rk

√
log n

)
∩ Znα .

We let
∂Rk

√
log n = {−⌊k

√
log n⌋, ⌊k

√
log n⌋} × Zd−1.

and write
∂k,n = ∂Rk

√
log n ∩ Znα .

Now, for z ∈ ∂Rk
√

log n we define the tile and cell centered in z as

τ(z) = B
(

z,

√
log n

2

)
∩ ∂Rk

√
log n and C(z) = B

(
z,
√

log n
)

∩ Rc
k

√
log n.

The strategy to prove the lower bound is to show that each tile of Rk
√

log n is likely
visited by many particles, and then show that if many particles reached a tile, they are
likely to fill up the corresponding cell. The idea here is similar to that of a floodgate.
Each tile τ can be seen as a floodgate, and the particles as water. We stop the particles
once they reach τ , and let them accumulate on the tile, just like a floodgate would
store water. Then, when there is a sufficient number of particles accumulated on τ , we
release the particles and show that they are likely to fill up the corresponding cell. This
is the same as opening the floodgates and letting the water run free again. For some
configuration η and B ⊂ Rk

√
log n, we will denote by:

• Wk
√

log n(η, B) the number of particles with initial configuration η that hit set B
before or when exiting Rk

√
log n.

• Mk
√

log n(η, B) the number of random walks with initial configuration η that hit
set B before or when exiting Rk

√
log n.

We say that set B is not covered if B ̸⊂ A(n1H). It is sufficient to show that there exists
a constant C such that for all L > 1, n ≥ 1 and k ≤ n

2
√

log n
− C, we have

P (Sk is not covered ) ≤ c

nL
. (6.1)

Coupling this result with the Borel-Cantelli lemma gives∑
n≥1

P (Sk is not covered ) ≤
∑
n≥1

c

nL
< +∞,

which suffices to prove the upper bound. Now, let

Tk
√

log n = {τ(z), z ∈ ∂k,n},
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and for a tile τ = τ(z) ∈ Tk
√

log n,

µ(τ) = E
[
Mk

√
log n(n1H, τ)

]
− E

[
Mk

√
log n

(
Rk

√
log n \ Z, τ

)]
,

where Z is the following set:

Z = {z′ ∈ Rk
√

log n : d(z′, τ(z)) ≤ b
√

log n}

for some b > 0 which will be chosen later, and with d(x, A) = inf
y∈A

∥x − y∥. Now, fix
C > 0. For k ≤ n

2
√

log n
− C, we write:

P (Sk is not covered ) ≤ P
(

∃τ ∈ Tk
√

log n, Wk
√

log n(n1H, τ) <
1
3µ(τ)

)
(6.2)

+P
(

∀τ ∈ Tk
√

log n, Wk
√

log n(n1H, τ) ≥ 1
3µ(τ), Sk is not covered

)
(6.3)

The second term of expression (6.3) will be handled later in Section 6.1.3. To handle
(6.2), essentially, we must control the probability that few particles hit a tile. This is
achieved using Lemma 6.1 below. Notice that working on strip Znα allows us to use a
union bound on P

(
∃τ ∈ Tk

√
log n, Wk

√
log n(n1H, τ) < 1

3µ(τ)
)
, since

#Tk
√

log n ≤ 2(2nα + 1)d−1 ≤ Knα(d−1).

It is sufficient to prove that any tile τ ∈ Tk
√

log n,

P
(

Wk
√

log n(n1H, τ) <
1
3µ(τ)

)
≤ exp

(
−κC2 log(n)

)
.

The above inequality is a consequence of the following lemma (Lemma 2.5 of [2]):

Lemma 6.1. (Asselah, Gaudillière)
Suppose that a sequence of random variables {Wn, Mn, Ln, M̃n; n ≥ 0} and a sequence
of real numbers (cn)n≥0 satisfy for any n ≥ 0:

Wn + Ln + cn ≥ M̃n and M̃n
law= Mn.

Assume that Wn and Ln are independent and that Ln and Mn are both sums of inde-
pendent Bernoulli random variables with finite first moment. Assume also that

(H1) the Bernoulli variables {Y
(n)

1 , Y
(n)

2 , . . . } whose series is Ln satisfy for some κ > 1:

sup
n

sup
i

E
[
Y

(n)
i

]
<

κ − 1
κ

;

(H2) µn = E [Mn − Ln] ≥ 0.
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Then, for any n ≥ 0 and ξn ∈ R, we have for any λ ≥ 0,

P (Wn < ξn) ≤ exp
(

−λ (µn − ξn − cn) + λ2

2

(
µn + κ

∞∑
i=1

E
[
Y

(n)
i

]2))
.

We first need to check that both hypotheses of Lemma 6.1 are satisfied. To do
so, we use a similar strategy of [17] and [2] to stochastically dominate the variable
Mk

√
log n(n1H, τ). We have:

Wk
√

log n(n1H, τ) + Mk
√

log n

(
Ak

√
log n(n1H), τ

)
law= Mk

√
log n(n1H, τ), (6.4)

where Ak
√

log n(n1H) = A(n1H) ∩ Rk
√

log n.
We explain the general idea behind (6.4). Consider a random walk starting on some

site of H and hitting τ when exiting Rk
√

log n. Such a walk is accounted for in Mk
√

log n.
Now, it is possible for the particle associated to that random walk to also hit τ when
exiting Rk

√
log n. In that case, it is accounted for in Wk

√
log n. If, however, it settles

beforehand, say on some site y ∈ Rk
√

log n, then we can find a coupling such that the
trajectory of the walk starting after the particle has settled is the same as the trajectory
of a random walk started on y hitting τ when exiting Rk

√
log n. Such a term is accounted

for in Mk
√

log n

(
Ak

√
log n(n1H), τ

)
. This stochastic equality will be of use when applying

Lemma 6.1, using it with Mn = Mk
√

log n(n1H, τ) and

M̃n = M̃k
√

log n(n1H, τ) := Wk
√

log n(n1H, τ) + Mk
√

log n

(
Ak

√
log n(n1H), τ

)
.

Now, simply using the fact that Ak
√

log n(n1H) ⊂ Rk
√

log n, we have:

M̃k
√

log n(n1H, τ) ≤ Wk
√

log n(n1H, τ) + Mk
√

log n

(
Rk

√
log n, τ

)
a.s. (6.5)

Now, we let cn = #Z ≤ c
(
b
√

log n
)d, where c = c(d) > 0. Using (6.5) gives:

M̃k
√

log n(n1H, τ) ≤ Wk
√

log n(n1H, τ) + Mk
√

log n

(
Rk

√
log n \ Z, τ

)
+ cn.

Note that this inequality is similar to the one in Lemma 6.1. The idea will be to apply

Lemma 6.1 with


Wn = Wk

√
log n(n1H, τ)

Mn = Mk
√

log n(n1H, τ)
M̃n = M̃k

√
log n(n1H, τ)

Ln = Mk
√

log n

(
Rk

√
log n \ Z, τ

)
Note that both Ln and Mn can be written as sums of independent Bernoulli random
variables, as:

Ln =
∑

y∈R
k
√

log n
\Z

1y
S(H

k
√

log n
)∈τ and Mn =

∑
y∈n1H

1y
S(H

k
√

log n
)∈τ ,

where the indicators 1y correspond to independent simple symmetric random walks
beginning at y. Before applying Lemma 6.1, we must ensure that hypotheses (H1) and
(H2) hold. This is done in the next subsection.
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6.1.1 Checking hypotheses (H1) and (H2)

Let us begin by giving the following lemma, which ensures hypothesis (H1) of Lemma
6.1 for some b > 0 in the definition of Z. This lemma is analogous to Lemma 5.1 of [1],
and is adapted to the case of slabs. We omit its proof.

Lemma 6.2. There exists a positive constant κ0 > 0 such that for all r > 0, for any
y ∈ Rr and x ∈ ∂Rr \ {y}, we have

Py (S(Hr) = x) ≤ κ0
∥x − y∥d−1 ,

where Hr denotes the hitting time of ∂Rr for the simple random walk (S(t))t≥0.

This ensures (H1), since for all y ∈ Rk
√

log n \ Z,

E
[
1y

S(H
k
√

log n
)∈τ

]
=
∑
x∈τ

Py

(
S(Hk

√
log n) ∈ τ

)
≤ #τ

κ0
∥x − y∥d−1

≤ #τ
κ0

(b
√

log n)d−1

≤ c

bd−1 ,

where the last line comes from the fact that #τ is of order (
√

log n)d−1. Thus taking b
large enough in the definition of Z ensures (H1). We now show that hypothesis (H2)
holds as well. We show that if τ is a tile at a distance C

√
log n of ∂Rn/2, then for some

positive constant κ > 0, we have

µ(τ) ≥ κC log(n)d/2. (6.6)

We also showing the following:∑
y∈R

k
√

log n
\Z

Py

(
S(Hk

√
log n) ∈ τ

)2
≤ c log(n)d−1. (6.7)

The proofs of (6.6) and (6.7) are given in Section 6.3.

6.1.2 Application of Lemma 6.1

We now have all the tools in hand to handle (6.2). To do so, we use the previous results
and Lemma 6.1. Notice that C = C(b) can be taken large enough such that µ(τ) ≥ 3cn.
Therefore, applying Lemma 6.1 gives for all λ ≥ 0:

P
(

Wk
√

log n(n1H, τ) <
1
3µ(τ)

)
≤ exp

(
−λ

3 µ(τ) + λ2

2
(
µ(τ) + κc log(n)d−1

))
. (6.8)
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After optimizing in λ, and using that µ(τ) ≥ κC log(n)d/2 we get that

P
(

Wk
√

log n(n1H, τ) <
1
3µ(τ)

)
≤ exp

(
−κC2 log(n)

)
.

Therefore,

P
(

∃τ ∈ Tk
√

log n, Wk
√

log n(n1H, τ) <
1
3µ(τ)

)
≤ #Tk

√
log n exp

(
−κC2 log(n)

)
≤ Knα(d−1) exp

(
−κC2 log(n)

)
,

which for C large enough decreases faster than any power of n−1. The proof of the
optimization is given in the appendix.

6.1.3 Handling (6.3)

We now focus on giving an upper bound of (6.3). The idea here is that if many particles
hit a tile, they are very likely to fill the corresponding cell. Note that we have the
following inclusion

Sk ⊂
⋃

z∈∂k,n

C(z).

Now, using the previous inclusion and the fact that µ(τ) ≥ κC log(n)d/2, we get

P
(

∀τ ∈ Tk
√

log n, Wk
√

log n(n1H, τ) ≥ 1
3µ(τ), Sk is not covered

)

≤ P

 ⋃
z∈∂k,n

C(z) is not covered , ∀τ ∈ Tk
√

log n, Wk
√

log n(n1H, τ) ≥ κC

3 log(n)d/2


≤

∑
z∈∂k,n

P
(

C(z) is not covered
∣∣∣∣ ∀τ ∈ Tk

√
log n, Wk

√
log n(n1H, τ) ≥ κC

3 log(n)d/2
)

.

The following lemma shows that if many particles are initially contained inside a ball of
radius R/2, they have a high probability of filling the ball of radius R. (See Lemma 1.3
of [2]) It describes the idea mentioned above of floodgates being open and filling up a
given area.

Lemma 6.3. (Asselah, Gaudillière) Choose R and A large enough. Assume that ⌊ARd⌋
particles lie initially on B(0, R/2). We call η the initial configuration of these parti-
cles and A(η) the aggregate they produce. There are positive constants {κd, d ≥ 3}
independent of R and A such that

P (B(0, R) ̸⊂ A(η)) ≤ exp
(
−κdAR2

)
.
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In our case, we know that each tile has been hit with at least κC
3 log(n)d/2 particles.

Now, recall that a cell’s radius is twice the radius of a tile, meaning we can apply Lemma
6.3 directly, and get

P
(

C(z) is not covered
∣∣∣∣ ∀τ ∈ Tk

√
log n, Wk

√
log n(n1H, τ) ≥ κC

3 log(n)d/2
)

≤ exp (−κdC log(n)) .

Now, using that

#∂k,n = #
(
∂Rk

√
log n ∩ Znα

)
= 2 × (2nα + 1)d−1 ≤ Knα(d−1)

we can conclude on the upper bound of (6.3). We have

P
(

∀τ ∈ Tk
√

log n, Wk
√

log n(n1H, τ) ≥ 1
3µ(τ), Sk is not covered

)
≤ Knα(d−1) exp (−κdC log(n))

which decreases, for C large enough, faster than any given power of n−1. This concludes
the proof of the lower bound.

We understand thanks to Lemma 6.3 the source of the sublogarithmic fluctuations
for the aggregate. We use Lemma 6.3 in hopes of applying the Borel-Cantelli Lemma
and getting a bound decreasing faster than any power of n. The bound we obtain is of
order exp

(
−κdAR2), hence choosing R of order

√
log n means exp

(
−κdAR2) is of order

n−κA, with κd > 0 and A ≫ 1. We therefore pick shells of size R ≈
√

log n, leading
to sublogarithmic fluctuations. Note that the bound in Lemma 6.3 for d = 2 is equal
to exp

(
−κ2

AR2

log R

)
, so choosing R ≈

√
log n no longer grants a functional bound for the

Borel-Cantelli Lemma.

6.2 Proof for the upper bound

In this section, we prove the upper bound of Theorem 1.1, that is: for any integers d ≥ 3
and α ≥ 1, there exists C > 0 such that, almost surely, there exists N ≥ 1 such that for
any n ≥ N ,

An[∞] ∩ Znα ⊂ Rn/2+C
√

log n ∩ Znα .

The proof follows the same lines as in [7]. Fix α ≥ 1 and take C > 0. From the proof of
Theorem 1.2, we know that for any L > 0 and for n large enough,

P (A(n1H) ∩ Znα ̸= A(n1Hnγ ) ∩ Znα) ≤ n−L,

for an integer γ ≥ α+1. This approximation is essential to the rest of the proof, because
instead of considering an infinite number of particles in A(n1H), we reduce the problem
to a finite number of particles in A(n1Hnγ ). According to the Borel-Cantelli lemma, it
is sufficient to prove that

P
(
A(n1Hnγ ) ∩ Znα ̸⊂ Rn/2+C

√
log n ∩ Znα

)
(6.9)
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is smaller than any power of n−1. To do so, we define the random variable

X(n) = max {|z1|, z ∈ A(n1Hnγ ) ∩ Znα} .

Now, notice that we can bound (6.9) by P
(
X(n) > n

2 + C
√

log n
)
.

Since #Hnγ ≤ (2nγ + 1)d−1, we know that X(n) ≤ n (2nγ + 1)d−1 a.s. Taking the supre-
mum over the point z ∈ Znα ∩ {z : n

2 + C
√

log n ≤ |z1| ≤ n (2nγ + 1)d−1}, it suffices to
prove that

sup
z

P (z ∈ A(n1Hnγ ), |z1| = X(n))

is lower than any power of n−1. Now, fix z ∈ Znα such that :
n

2 + C
√

log n ≤ |z1| ≤ n (2nγ + 1)d−1 .

We define h(n) = |z1| − n
2 . Note that h(n) ≥ C

√
log n.

When bounding P (z ∈ A(n1Hnγ ), |z1| = X(n)), let us split this probability into two
parts, claiming that if z belongs to the aggregate, either a thin tentacle of settled particles
branches out to that point, or there is a ball of settled particles around z. We will once
again be using Lemma 2 of [12], which was previously used in Section 4. We write

P (z ∈ A(n1Hnγ ), |z1| = X(n))

≤ P
(
#
(
A(n1Hnγ ) ∩ B−(z, h(n))

)
> βhd(n), |z1| = X(n)

)
+ P

(
z ∈ A(n1Hnγ ), # (A(n1Hnγ ) ∩ B(z, h(n))) ≤ βhd(n)

)
, (6.10)

where β is chosen as in Lemma 2 of [12], allowing us to handle the last term of (6.10).
This gives

P
(
z ∈ A(n1Hnγ ), # (A(n1Hnγ ) ∩ B(z, h(n))) ≤ βhd(n)

)
≤ K0e−ch2(n),

which is smaller than any power of n−1, since h(n) ≥ C
√

log n. To handle the first term
of the right-hand side of (6.10), we follow the same method as in [7]. For an initial
configuration η and a set B ⊂ Zd, we denote by M∗

n/2+h(n) (η, B) the number of random
walks with initial configuration η and which satisfy the following conditions:

• The random walks intersect B before they exit Rn/2+h(n)

• The particles associated with the random walks hit ∂Rn/2

The path of such a random walk is illustrated by Figure 5 below: the aggregate is
contained inside the dashed blue lines, the particle’s path is represented by the red line,
and the associated random walk’s path by the dashed red line.
Notice that on the event {X(n) = |z1|} , the aggregate’s furthermost point (on the x
axis) is therefore z1 and has a coordinate equal to z1 = ±

(
h(n) + n

2
)
. This implies the

following inequality:

# (A(n1Hnγ ) ∩ B(z, h(n)))
sto.
≤ M∗

n/2+h(n)
(
n1Hnγ ,B−(z, h(n))

)
, (6.11)
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where B−(z, h(n)) := B(z, h(n)) ∩ Rn/2+h(n).
Indeed, on the event X(n) = |z1|, the aggregate cannot go any further than Rn/2+h(n)

and therefore any particle of A(n1Hnγ ) ∩ B(z, h(n)) necessarily hit ∂Rn/2 before exiting
the aggregate, and the random walk associated to that particle also necessarily inter-
sected B−(z, h(n)) before exiting Rn/2+h(n). The crucial point is that no particle can
escape from Rn/2+h(n) on this event. This implies inequality (6.11).

×z

∂Rn/2+h(n) ∂Rn/2+h(n)

H ∂Rn/2∂Rn/2

Figure 5: An example of a walk in M∗
n/2+h(n) (n1Hnγ ,B(z, h(n)))

Therefore,

P
(
# (A(n1Hnγ ) ∩ B(z, h(n))) > βhd(n), |z1| = X(n)

)
≤ P

(
M∗

n/2+h(n)
(
n1Hnγ ,B−(z, h(n))

)
> βhd(n)

)
.

The trajectories of the walks counted by M∗ are not independent. This comes from the
fact that the particles with which they are associated are killed upon exiting the current
aggregate. Since the trajectories of the particles are highly dependent, this remains true
for M∗. However, we only count walks for which the associated particle has hit ∂Rn/2
before exiting the aggregate, meaning that the random walks evolve independently after
hitting ∂Rn/2. In particular, they evolve independently once they reach B−(z, h(n)).
We know that the walks counted my M∗ are independent after they reach ∂Rn/2, so
in particular after reaching ∂B−(z, h(n)). Recall that a random walk started in x ∈
∂B−(z, h(n)) has probability at least ρ > 0 to hit B(z, 2h(n)) ∩ Rc

n/2+h(n) when it exits
B(z, 2h(n)). It is important to note that ρ does not depend on n. In particular, random
walks counted in M∗

n/2+h(n) have probability at least ρ of hitting tile τ̃(z), where

τ̃(z) = B(z, 2h(n)) ∩ ∂Rn/2+h(n).
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We now split our probability into two, conditioning on the event where a sufficient
amount of random walks of M∗

n/2+h(n) have hit the tile τ̃(z) defined above. This gives

P
(
M∗

n/2+h(n)
(
n1Hnγ ,B−(z, h(n))

)
> βhd(n)

)
≤ P

(
M∗

n/2+h(n) (n1Hnγ , τ̃(z)) ≤ βhd(n)ρ
2

∣∣∣∣∣ M∗
n/2+h(n)

(
n1Hnγ ,B−(z, h(n))

)
> βhd(n)

)

+ P
(

M∗
n/2+h(n) (n1Hnγ , τ̃(z)) >

βhd(n)ρ
2

)
. (6.12)

From what we said above, we know that the random walks are independent after
they hit ∂B−(z, h(n)), and that any walk started from a point x ∈ ∂B−(z, h(n)) has
probability at least ρ to hit τ̃(z).
Therefore, conditional on the event

{
M∗

n/2+h(n) (n1Hnγ ,B−(z, h(n))) > βhd(n)
}

, the
random variable M∗

n/2+h(n) (n1Hnγ , τ̃(z)) stochastically dominates a binomial distribu-
tion with parameters βhd(n) and ρ, denoted by B

(
βhd(n), ρ

)
. This allows us to handle

the first term in (6.12). Indeed, using the fact that E
[
B
(
βhd(n), ρ

)]
= βhd(n)ρ, stan-

dard concentration inequality theory (e.g [22]) gives:

P
(

B
(
βhd(n), ρ

)
≤ βhd(n)ρ

2

)
≤ exp

(
−βhd(n)ρ

8

)
.

Therefore, using the stochastic domination we mentioned above,

P
(

M∗
n/2+h(n) (n1Hnγ , z, τ̃(z)) ≤ βhd(n)ρ

2

∣∣∣∣∣ M∗
n/2+h(n)

(
n1Hnγ ,B−(z, h(n))

)
> βhd(n)

)

≤ exp
(

−βhd(n)ρ
8

)
.

This last term decreases faster than any power of n−1. Switching our focus to the second
term (6.12), it remains to prove that for n large and for any L > 0,

P
(

M∗
n/2+h(n) (n1Hnγ , τ̃(z)) >

βhd(n)ρ
2

)
≤ n−L.

It is sufficient to show this for M∗
n/2+h(n)(n1H, τ̃(z)) instead of M∗

n/2+h(n)(n1Hnγ , τ̃(z))
simply using the fact that M∗

n/2+h(n)(n1H, τ̃(z)) ≥ M∗
n/2+h(n)(n1Hnγ , τ̃(z)).

Note that to apply Lemma 2 of [12], it was necessary to consider a finite number of
particles, which is why the considered configuration was n1Hnγ . Switching back to an
infinite configuration with n1H is no longer problematic, as we will no longer be needing
this lemma. Instead, we use a lemma similar to Lemma 6.1, which we give below.
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Lemma 6.4. (Lemma 2.5 of [2]) Suppose that a sequence of random variables
Wn, Ln, Mn, M̃n and an event An satisfy for each n ∈ N:

(Wn + Ln)1An ≤
sto

M̃n and Mn
law= M̃n.

Assume that Wn and Ln are independent, and that Ln and Mn are series of independent
Bernoulli random variables with finite expectations, with Ln = ∑

i≥0 Y
(n)

i . Finally,
assume that µn = E [Mn] − E [Ln] ≥ 0.
Then, for all n ≥ 0, ξn ∈ R and λ ∈ [0, log 2],

P (Wn ≥ ξn, An) ≤ exp

−λ(ξn − µn) + λ2

µn + 4
∑
i≥0

EY
(n)

i

2
 .

Using the same arguments as for (6.4), we can establish the following equality:

M∗
n/2+h(n) (n1H, τ̃(z)) + Mn/2+h(n)

(
An/2(n1H), τ̃(z)

)
law= M̃n, (6.13)

where An/2(n1H) = A(n1H) ∩ Rn/2, and M̃n is an independent copy of
Mn/2+h(n) (n1H, τ̃(z)).

The idea here is to once again consider a walk counted by Mn/2+h(n) (n1H, τ̃(z)),
and consider the trajectory of its associated particle. Either the particle has hit ∂Rn/2
before exiting the aggregate, and is therefore counted by M∗

n/2+h(n) (n1H, τ̃(z)), or the
particle has settled before on some site x. In that case, we can launch a new random
walk from x ∈ An/2(n1H), which is accounted for by Mn/2+h(n)

(
An/2(n1H), τ̃(z)

)
. Now,

take α′ > α. Let us denote by δI(n) the inner error of An/2(n1H) on Znα′ , that is

δI(n) = max
{

n

2 − |z1|, z ∈
(
Rn/2 \ An/2(n1H)

)
∩ Znα′

}
.

This quantity is illustrated in Figure 6.
We can use the work we did in the previous section to bound this inner error. Indeed,

we know that P
(
δI(n) > κ

√
log n

)
is smaller than any power of n−1, provided that κ and

n are chosen large enough. Using the definition of δI(n), we have Rn/2−δI(n) ∩ Znα′ ⊂
An/2(n1H), so combining this with (6.13), we get

M∗
n/2+h(n) (n1H, τ̃(z)) + Mn/2+h(n)

(
Rn/2−δI(n) ∩ Znα′ , τ̃(z)

) sto.
≤ M̃n.

Now, for some αd > 0 which will be chosen later, on the event {δI(n) ≤ αdh(n)
2C }, we have

R
n/2− αdh(n)

2C

∩ Znα′ ⊂ Rn/2−δI(n) ∩ Znα′ , which therefore gives

(
M∗

n/2+h(n) (n1H, τ̃(z)) + Mn/2+h(n)

(
R

n/2− αdh(n)
2C

∩ Znα′ , τ̃(z)
))

1
δI(n)≤ αdh(n)

2C

sto.
≤ M̃n.
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Znα′

Znα′

δI(n)

H ∂Rn/2∂Rn/2

Figure 6: Illustration of the inner error

This stochastic inequality is similar to the one required by Lemma 6.4. We can directly

apply this lemma with



Wn = M∗
n/2+h(n) (n1H, τ̃(z))

Ln = Mn/2+h(n)

(
R

n/2− αdh(n)
2C

∩ Znα′ , τ̃(z)
)

M̃n = Mn/2+h(n) (n1H, τ̃(z))
An =

{
δI(n) ≤ αdh(n)

2C

}
ξn = βhd(n)ρ

2
We show in Section 6.3 that the hypotheses in Lemma 6.4 hold. Now, we write

P
(

M∗
n/2+h(n) (n1Hnγ , τ̃(z)) >

βhd(n)ρ
2

)

≤ P
(

M∗
n/2+h(n) (n1Hnγ , τ̃(z)) >

βhd(n)ρ
2 , δI(n) ≤ αdh(n)

2C

)

+ P
(

δI(n) >
αdh(n)

2C

)
.

We first focus our attention on the second term. Notice that since h(n) ≥ C
√

log n, we
have

P
(

δI(n) >
αdh(n)

2C

)
≤ P

(
δI(n) >

αd
√

log n

2

)
.

Taking αd sufficiently large, this term becomes smaller than any given power of n−1.
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We now shift our focus to the first term of the sum. Fix αd large enough so that the
previous term P(δI(n) > αdh(n)

2C ) is smaller than any power of n−1. After an application
of Lemma 6.4 and an optimization detailed in Section 6.3.2, we get for some constant
κd > 0, if C is chosen large enough:

P
(

M∗
n/2+h(n) (n1H,B(z, τ̃(z))) >

βhd(n)ρ
2 , δI(n) ≤ αdh(n)

2C

)
≤ exp

(
−κdh(n)2

)
. (6.14)

This goes to zero faster than any power of n−1 and concludes the proof of our theorem.

6.3 Auxiliary proofs

6.3.1 Proofs from the lower bound

We start by giving the proof of (6.6). To do it, we apply the following lemma, which is
a simple extension of Lemma 6.4 of [7].

Lemma 6.5. Let r ≤ r′ and let τ ⊂ ∂Rr′ be finite. Then

E [Mr′(Rr, τ)] = 2r + 1
2 #τ.

In particular, for any r′ ≥ 1,

E [Mr′(1H, τ)] = #τ

2 . (6.15)

Now, to get (6.6), we write

µ(τ) = E
[
Mk

√
log n(n1H, τ)

]
− E

[
Mk

√
log n

(
Rk

√
log n \ Z, τ

)]
≥ nE

[
Mk

√
log n(1H, τ)

]
− E

[
Mk

√
log n

(
Rk

√
log n, τ

)]
≥ #τ

2
(
n − 2k

√
log n − 1

)
≥ cA

(√
log n

)d
.

We now show the bound given by (6.7). Using Lemma 6.2, we have

Py

(
S(Hk

√
log n) ∈ τ

)
≤ #τ max

x∈τ
Py

(
S(Hk

√
log n) = x

)
≤ #τ max

x∈τ

κ

∥y − x∥d−1

≤ #τ
c

∥y − z∥d−1 .
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Hence ∑
y∈R

k
√

log n
\Z

Py

(
S(Hk

√
log n) ∈ τ

)2
≤ (c#τ)2 ∑

y∈R
k
√

log n
\Z

1
(∥y − z∥2)d−1 .

Since #τ is of order (
√

log n)d−1, it suffices to show that ∑y∈R
k
√

log n
\Z

1
(∥y−z∥2)d−1 < ∞,

and therefore that

2k
√

log n∑
j=1

∫
[1,∞[d−1

dx1 . . . dxd−1(
j2 + x2

1 + . . . x2
d−1

)d−1 < ∞.

This is true since

2k
√

log n∑
j=1

∫
[1,∞[d−1

dx1 . . . dxd−1(
j2 + x2

1 + . . . x2
d−1

)d−1 ≤
2k

√
log n∑

j=1

∫ ∞

1

rd−2

(j2 + r2)d−1 dr

≤
2k

√
log n∑

j=1

∫ ∞

1/j

jd−2rd−2

j2(d−1) (1 + r2)d−1 jdr

≤
2k

√
log n∑

j=1

1
jd−1

∫ ∞

0

rd−2

(1 + r2)d−1 dr,

which is finite since d ≥ 3. Thus, for some c > 0,∑
y∈R

k
√

log n
\Z

Py

(
S(Hk

√
log n) ∈ τ

)2
≤ c log(n)d−1.

Optimization in (6.8): In this section, we detail the computations of the optimization
in (6.8). In all that follows, κ denotes a generic constant.
We wish to minimize λ 7→ exp

(
−λ

3 µ(τ) + λ2

2

(
µ(τ) + κ′ log(n)d−1

))
on R+. Recall that

µ(τ) ≥ κC log(n)d/2. Note that it suffices to minimize the function within the ex-
ponential, which happens to be a second degree polynomial. Pick λ∗ minimizing the
polynomial, that is

λ∗ = µ(τ)
3 (µ(τ) + κ′ log(n)d−1)

This gives

−λ∗

3 µ(τ) + (λ∗)2

2
(
µ(τ) + κ′ log(n)d−1

)
≤ − µ(τ)2

18 (µ(τ) + κ′ log(n)d−1)

≤ − µ(τ)
18
(
1 + κ′ log(n)d−1

µ(τ)

) .
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Now,

1 + κ′ log(n)d−1

µ(τ) ≤ 1 + κ′ log(n)d−1

κC log(n)d/2 ≤ κ

C
log(n)d/2−1.

Therefore, combining this to the fact that µ(τ) ≥ κC log(n)d/2, we get

− µ(τ)
18
(
1 + κ′ log(n)d−1

µ(τ)

) ≤ − κCµ(τ)
log(n)d/2−1

≤ −κC2 log(n)d/2

log(n)d/2−1

≤ −κC2 log n.

6.3.2 Proofs from the upper bound

We now show proofs concerning the results for the upper bound of Theorem 1.1. Let us
begin by showing that the hypotheses in Lemma 6.4 hold.

Hypotheses of Lemma 6.4: We first need to check that µn = E [Mn] − E [Ln] ≥ 0.
This once again uses Lemma 6.5. To lighten notation, we define R(n, αd, C) := R

n/2− αdh(n)
2C

.
We have:

µn = E
[
Mn/2+h(n) (n1H, τ̃(z))

]
− E

[
Mn/2+h(n)

(
R(n, αd, C) ∩ Znα′ , τ̃(z)

)]
≥ E

[
Mn/2+h(n) (n1H, τ̃(z))

]
− E

[
Mn/2+h(n) (R(n, αd, C), τ̃(z))

]
= # τ̃(z)

2

(
αdh(n)

C
− 1

)
≥ cαd

2C
hd(n).

Now, following the same computations as the ones used to get (6.7), we get
∑

y∈R(n,αd,C)∩Z
nα′

Py

(
S(Hn/2+h(n)) ∈ τ̃(z)

)2
≤

∑
y∈R(n,αd,C)

Py

(
S(Hn/2+h(n)) ∈ τ̃(z)

)2

≤ ch(n)2d−2.

Control of µn: We showed just above that the hypotheses of Lemma 6.4 were satisfied.
However, when applying this lemma and optimizing, we need an upper bound on µn,
given by the following proposition.

Lemma 6.6. There exist positive constants c, C0 such that for n large enough,

µn ≤ cαdhd(n)
C

+ C0.
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Proof of Lemma 6.6: We write

µn = E
[
Mn/2+h(n) (n1H, τ̃(z))

]
− E

[
Mn/2+h(n) (R(n, αd, C), τ̃(z))

]
+ E

[
Mn/2+h(n) (R(n, αd, C), τ̃(z))

]
− E

[
Mn/2+h(n)

(
R(n, αd, C) ∩ Znα′ , τ̃(z)

)]
.

The first line has already been computed above, and can be bounded from above by
cαd
2C hd(n), for some c > 0. We now shift our focus on the second line. Notice that this
quantity is equal to:

E
[
Mn/2+h(n)

(
R(n, αd, C) ∩ Zc

nα′ , τ̃(z)
)]

, (6.16)

and it remains to show that this is bounded uniformly on n.
Now, recall that z ∈ Znα . Walks counted by Mn/2+h(n)

(
R(n, αd, C) ∩ Zc

nα′ , τ̃(z)
)

neces-
sarily stay within Rn/2+h(n) between levels nα′ and nα before exiting through τ̃(z). We
can therefore use a donut argument (just like in the proof of Theorem 1.2) between levels
nα and levels nα′ and beyond, by building hypercubes of length n+2h(n) between these
levels. The length of our hypercubes is imposed to us by the width of Rn/2+h(n), which
equals n + 2h(n). Since we want the walk to stay inside the slab, we choose our boxes
to have the same width. We illustrate this argument with Figure 7. Now, for a walk
started on some site of R(n, αd, C) ∩ Zc

nα′ to exit Rn/2+h(n) through τ̃(z), it necessarily
has to cross a certain amount of boxes. Just like in Proposition 3.1, we use the same
reasoning to say that:

∀k ∈ N, P (the walk goes through at least k boxes) ≤ (1 − c)k,

with c = 1
4d2 . We need to determine the minimum amount of cubes of length n + 2h(n)

that can fit between nα and nα′ . This is equal to nα′ −nα

n+2h(n) , which is greater than n given
n is large enough and α′ > max(α, 2). Let us number these boxes by B0, B1, . . . starting
from level nα. We have:

R(n, αd, C) ∩ Zc
nα′ ⊂

⋃
k≥n

Bk.
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nα

nα′

| |

∂Rn/2+h(n)

n + 2h(n)

n + 2h(n)x

Figure 7: Illustration of the box method

Hence:

E
[
Mn/2+h(n)

(
R(n, αd, C) ∩ Zc

nα′ , τ̃(z)
)]

= E

Mn/2+h(n)

⋃
k≥n

Bk, τ̃(z)


≤
∑
k≥n

∑
x∈Bk

Px

(
S(Hn/2+h(n)) ∈ τ̃(z)

)
≤
∑
k≥n

∑
x∈Bk

Px (the walk goes through at least k − 1 boxes)

≤
∑
k≥n

(n + 2h(n))d(1 − c)k−1

≤ Knd(1 − c)n−1 ∑
k≥n

(1 − c)k−n,

which tends to 0 when n tends to infinity, and is consequently uniformly bounded on
n.
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Optimization in (6.14) : We end by detailing the optimization in (6.14). This com-
putation follows the same spirit as the optimization in the lower bound (see (6.8)). We
will be using the previous bound on µn given by Lemma 6.6 to conclude.

In all that follows, recall that αd is fixed. After applying Lemma 6.4, we get that for
all λ > 0:

P
(

M∗
n/2+h(n) (n1H,B(z, τ̃(z))) >

βhd(n)ρ
2 , δI(n) ≤ αdh(n)

2C

)

≤ exp

−λ

(
βh(n)dρ

2 − µn

)
+ λ2

µn + 4
∑

y∈R(n,αd,C)∩Z
nα′

Py

(
S(Hn/2+h(n)) ∈ τ̃(z)

)2


 .

Once again, minimizing in λ > 0 yields:

P
(

M∗
n/2+h(n) (n1H,B(z, τ̃(z))) >

βhd(n)ρ
2 , δI(n) ≤ αdh(n)

2C

)

≤ exp


−

(
µn − βhd(n)ρ

2

)2

4

µn + 4
∑

y∈R(n,αd,C)∩Z
nα′

Py

(
S(Hn/2+h(n)) ∈ τ̃(z)

)2




.

Using the bound of Lemma 6.6, we can take C sufficiently large in order for
(
µn − βhd(n)ρ

2

)2

to be of order h2d(n). Therefore, we have for C large enough, (βhd(n)ρ
2 − µn)2 ≥ ch2d(n),

(for some c > 0). Now, recall that
∑

y∈R(n,αd,C)∩Z
nα′

Py

(
S(Hn/2+h(n)) ∈ τ̃(z)

)2
≤ ch(n)2d−2.

Using the bound of Lemma 6.6 and the fact that d > 2, we have:

4

µn + 4
∑

y∈R(n,αd,C)∩Z
nα′

Py

(
S(Hn/2+h(n)) ∈ τ̃(z)

)2

 ≤ c′h(n)2d−2.

Combining both results gives:

P
(

M∗
n/2+h(n) (n1H,B(z, τ̃(z))) >

βhd(n)ρ
2 , δI(n) ≤ αdh(n)

2C

)
≤ exp

(
− ch(n)2d

c′h(n)2d−2

)
= exp

(
−cdh2(n)

)
.
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