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Abstract—Fourier Transform Spectrometers are instruments
that measure the spectral distribution of an electromagnetic
signal. They are based on the principle of interferometry, which
leverages interference patterns to reconstruct high-resolution
observations by solving an inverse problem defined on a con-
tinuous domain. The forward model is a linear integral operator,
which is, in most cases, discretized by considering a uniform
grid and associated Riemann sums to estimate integrals. This
approximation introduces an important reconstruction error,
which can be significantly reduced by using instead appropriate
bases of functions to represent the signal of interest. In this paper,
we show the judiciousness of the Fourier basis for this problem,
and highlight through numerical experiments the gain it brings
in terms of reconstruction precision, compared to the classical
use of discrete samples. We finally propose a new basis obtained
by enriching the Fourier basis with an affine component, which
allows us to overcome the inherent difficulty of representing non-
periodic functions with a finite number of sine functions. We show
that this new basis leads to another significant improvement of
the reconstruction error.

Index Terms—Fourier Transform Spectrometers, Interferom-
etry, Linear integral operators, Hyperspectral imaging, Inverse
problems

I. INTRODUCTION

Spectrometers are used in many scientific and industrial
fields, such as chemistry, physics, biology, and medicine.
In particular, spectrometers embedded on satellites make it
possible to obtain measurements of the reflectance of the
earth’s surface in the visible and near-infrared spectrum, from
which key informations can be extracted about the vegetation,
pollution, and topography. They provide essential information
for understanding the evolution of the earth’s surface and its
climate.

A wide variety of spectrometers have been developed in
recent decades. Among them, Fourier Transform Spectrom-
eters (FTS) have improved the performance of traditional
instruments in terms of spectral resolution and sensitivity by
designing new acquisition systems by interferometry [1], [2].
These instruments measure samples of the Fourier transform of
the incident spectrum and then proceed to a discrete inverse
Fourier transform for reconstruction. For this, an interfero-
metric system is designed in which phase-shifted versions of
the incident wave interfere, producing a so-called interference
signal. This signal is related to the Fourier transform of the
incident spectrum at a frequency given by the optical path
difference (OPD) between the phase-shifted versions of the

wave. Thus, the choice of the OPDs is crucial in the design
of such an instrument, as it determines the spectral range it
can cover and the spectral resolution it can achieve. Different
applications may then require different designs. For example,
the detection of atmospheric gases requires a very fine spectral
resolution around the absorption wavelengths of the gases [3].
On the contrary, detecting vegetation requires measuring the
spectrum over a broader range of wavelengths [4]. Due to
their compactness and low cost, FTS are integrated into several
ongoing and future space missions aiming at better measuring
the anthropogenic emissions of greenhouse gases [1], [2].

The spectrum reconstruction from the measurements is then
carried out by solving an inverse problem. To do so, a precise
knowledge of the forward model is necessary. In particular, in
interferometric spectrometers, the forward model is a linear
integral operator, and the inverse problem is defined in a
continuous domain. A discretization of the forward operator
is required to solve the inverse problem numerically. This
discretization is often carried out explicitly by considering a
uniform grid from which a Riemann sum is built to approxi-
mate the integral [5]. However, this approximation introduces
an error in the reconstruction and might result in highly
computationally demanding algorithms.

Recent works have shown an interest in considering more
sophisticated discretizations of the integral operator in the
context of image deblurring [6]. They consider an approxi-
mation of the signal of interest in a judiciously chosen basis
of functions. Notably, wavelet bases have been considered to
approximate blur operators and have shown promising results
in terms of computational complexity, memory footprint, and
reconstruction precision [6], [7]. Some of these approaches are
based on the Galerkin method, initially used to approximate
linear integral operators in the study of pseudo-differential
equations [8].

Such methodology has yet to be studied in the context of
signal reconstruction from interferometric measurements. This
offers an excellent potential for the design of reconstruction
algorithms in terms of computational efficiency and recon-
struction precision. In this paper, we study the interest of
Fourier-based function bases to discretize the integral operator
involved in an FTS. In sections II and III, we present the
linear integral operator associated to the forward model of a
FTS, and we formulate the inverse problem to be solved in
a continuous domain. In Section IV, two function bases are



considered and studied: the Fourier basis, and a new basis
enriched with an affine component so as to avoid Gibbs effects
(and poor approximation performances) in the reconstruction
of signals that do not vanish at both ends of the spectral range.
Finally, we illustrate the interest of the proposed approaches
on simulated data through numerical experiments.

II. FOURIER TRANSFORM SPECTROMETERS

FTS sample a transformation y of the incident light spec-
trum x by producing fringes using an interfering device, where

y(δ) = ⟨A(δ, ·), x⟩ :=
∫ σmax

σmin

A(δ, σ)x(σ)dσ, (1)

δ > 0 is the optical path difference (OPD) between the
phase-shifted versions of the incident wave introduced by the
interfering device, and the transfer function A(δ, σ) is derived
through the physical system that produces the interfering
fringes. The input spectrum, x ∈ X = L2([σmin, σmax]), is
a function of the wavenumber σ (measured in µm−1) and
corresponds to its continuous representation in the wavenum-
ber range [σmin, σmax] to which the instrument is sensitive.
An FTS measures the interference signal for a set of OPD
values δ0, . . . , δM−1, leading to a measurement vector of
dimension M , written

y = (y(δ0), . . . , y(δM−1))
T . (2)

The transfer function of an FTS is usually expressed using
trigonometric functions. In the following, we consider the case
of the ImSPOC instrument, a hyperspectral imager based on a
network of adjacent Fabry-Pérot interferometers [9], for which

A(δ, σ) = (1−R)2

∣∣∣∣∣
+∞∑
n=0

Rnej 2πnδσ

∣∣∣∣∣ , (3)

in which 0 < R < 1 is the reflectivity of the interferometers.
The incoming wave is phase-shifted and attenuated by succes-
sive reflections before interfering with its other replicas in the
sensor. This ideal model expresses the interference between an
infinite number of waves. However, in practice, the value of
R will cause a fast decay of the power of the reflected waves.
Thus, practical models of the transfer function consider a finite
number of interfering waves, depending on the reflectivity
value. In [9], it is shown that a 2-waves model is appropriate
to express the measured data for R ≤ 0.3, leading to,

A[2](δ, σ) = (1−R)2
(
1 +R2 + 2R cos(2πδσ)

)
. (4)

The 2-waves model can be interpreted using the cosine trans-
form of the input spectra, since for A = A[2], (1) becomes

y(δ) = (1−R)2
(
(1 +R2)x+ 2R ℜ{F{x}(δ)}

)
(5)

where x =
∫ σmax

σmin
x(σ) dσ, F{x} is the Fourier Transform of

x and ℜ{z} denotes the real part of a complex number z ∈ C.
Thus, ImSPOC measurements can be interpreted as samples
of the cosine transform of the input spectra. In particular, the
maximum OPD value of the instrument, δmax, determines the

theoretical spectral resolution achievable by the instrument,
1

2δmax
µm, thanks to Shannon-Nyquist Sampling Theorem.

Without loss of generality, we will consider in the following
the 2-waves model. Indeed, similarly to the 2-waves model,
the N -waves model can be expressed as the sum of cosine
transforms (as shown in [9]).

III. INVERSE PROBLEM FORMULATION

We can observe that the set of measurements provided
by an FTS instrument are described by the composition
of two operators: a linear integral operator with kernel A
(Equation (1)), and a sampling operator (Equation (2)). Given
the measurements y, the reconstruction of the spectrum x
can be addressed as a variational inverse problem. The most
common approach corresponds to the least squares energy
minimization,

x̂ ∈ argmin
x∈X

M−1∑
m=0

(
y(δm)− ⟨A(δm, ·), x⟩

)2
. (6)

As this inverse problem is defined in a continuous domain, it
cannot be solved numerically as it is, but it has to be first
reduced to a finite-dimensional problem. A natural way to
discretize (6) is to sample the unknown function x(σ) on the
regular grid (σk)0≤k≤K−1 defined by

σk = σmin + k
∆σ

K
and ∆σ = σmax − σmin,

leading to the discrete signal

x = (x(σ0), . . . , x(σK−1))
T . (7)

The integral in (1) is then approximated by a Riemann sum,
leading to the discrete model

y(δm) =
∆σ

K

K−1∑
k=0

A(δm, σk)x(σk) = aT
mx, (8)

where am =
∆σ

K
(A(δm, σ0), . . . ,A(δm, σK−1))

T .

A simple and compact reformulation of this discretization
model is given by the matrix equation

y = Ax (9)

with A = (a0, . . . ,aM−1).
Despite the simplicity of this discretization scheme, im-

portant reconstruction errors may occur when the sampling
grid is not fine enough, due to the poor approximation of the
continuous integral provided by the Riemann sum. It is thus
desirable to choose a large value of K, but when K > M the
inversion of (9) becomes an ill-posed problem (the number of
unknowns is greater than the number of available measure-
ments), so that a regularizing term has to be added to the
model, which leads to a more complex algorithm and a higher
computational cost. In response, a few approaches have been
proposed to tackle the discretization of linear integral operators
in an inverse problem setting. In particular, a methodology
based on the wavelet representation of the kernel has been



considered in the context of image deblurring and has shown
promising results [6], [7]. In the following we shall propose
another discretization scheme for (1), relying on Fourier-based
decompositions of the spectrum to be reconstructed.

IV. USING FOURIER-BASED APPROXIMATIONS

Let (f0, . . . , fK−1) be a set of basis functions and let
us consider XK = span(f0, . . . , fK−1) as an approximation
space containing all candidate spectra for the reconstruction.
Thus, any candidate spectrum x ∈ XK can be written under
the form

∀σ ∈ Ω, x(σ) =

K−1∑
k=0

ckfk(σ), (10)

where (c0, . . . , cK−1) ∈ KK (with K = R or C) are real
or complex coefficients (depending on the nature of the basis
functions). Injecting Equation (10) into (1), we get

y(δ) =

K−1∑
k=0

ck⟨A(δ, ·), fk⟩, (11)

which can be evaluated for all δ ∈ {δ0, . . . , δK−1} to yield
another discrete model with matricial structure,

y = Hc, (12)

in which c = (c0, . . . , cM−1)
T and H is the M ×K matrix

with entries Hm,k = ⟨A(δm, ·), fk⟩. Thus, restricting the
candidate spectra x in the continuous least squares problem (6)
to lie into the approximation space XK , we end up with the
finite-dimensional problem of computing

x̂ =

K−1∑
k=0

ĉkfk where ĉ ∈ argmin
c∈KK

∥y −Hc∥2. (13)

Note that the choice of the basis functions is crucial since
it acts as a regularization of the inverse problem. In fact,
given a ground-truth spectrum, x∗ ∈ X , the best achievable
reconstruction in the approximation space is given by its
orthogonal projection in XK ,

x∗
K = projXK

(x) = argmin
x∈XK

∥x− x∗∥2, (14)

since for any x ∈ XK ,

∥x∗ −x∥2 = ∥x∗ −x∗
K∥2 + ∥x∗

K −x∥2 ≥ ∥x∗ −x∗
K∥2. (15)

We can recognize in (15) the classical bias-variance decom-
position of the squared reconstruction error : the first term
∥x∗ − x∗

K∥2 is the inevitable component of the error due to
the use of an approximation space XK , and the second term
∥x∗

K − x∥2 is the variable part of the reconstruction error due
to the presence of noise in the observed measurements.

A. Fourier basis functions

Fourier bases come as natural choices to define the approx-
imation space in the context of interferometric image recon-
struction. In fact, the family {ej 2π

kσ
∆σ }k∈Z is an orthonormal

basis of X . Thus, the signal of interest can be expressed by
its Fourier series,

x(σ) =
∑
k∈Z

αke
j 2π kσ

∆σ , (16)

in which αk = ⟨x, σ 7→ ej 2π
kσ
∆σ ⟩ are the Fourier coefficients

of x. Subsequently, we define the set of basis functions
(f0, . . . , fK−1) for K odd and k ∈ {0, 1, . . . ,K − 1} by

fk(σ) = exp

(
j 2πσ

∆σ

(
k − K − 1

2

))
. (17)

The orthogonal projection of x on XK is obtain by truncation
of the Fourier series (16). More precisely, we have

xK(σ) =

K−1
2∑

k=−K−1
2

αke
j 2π kσ

∆σ =

K−1∑
k=0

αk−K−1
2

fk(σ). (18)

The approximation error between x and its projection xK

on XK is controlled by the decay of the Fourier coefficients
(αk)k∈Z of x. In particular, Fourier coefficients of smooth
signals decay as a power law, αk = O(|k|−γ), with γ > 0,
giving a bound on the approximation error [10, Chapter 9].

Under this framework, the forward model can then be
discretized by computing the entries of the matrix H involved
in the discrete model (12). In particular, the natural link
between the expression of the linear integral operator for
interferometric instruments and the Fourier transform enables
the computation of those entries in closed form. Indeed, for
the ImSPOC instrument, they are given by

⟨A(δm, ·), fk⟩ =(1−R)2
(
(1 +R2)Ψ

(
k

∆σ

)
+

R

(
Ψ

(
k

∆σ
+ δm

)
+Ψ

(
k

∆σ
− δm

)))
,

(19)

where Ψ(ν) = ∆σe
− jπ(σmax+σmin)ν sinc(πν∆σ), (20)

and sinc(t) = sin(t)
t (with the convention sinc(0) = 0).

Notice that wavelet bases could also have been consid-
ered as a relevant alternative to the Fourier basis presented
above. Indeed, wavelet bases are known for their universal
approximation properties and exhibit, in some cases, faster
decay of their coefficients. However, contrary to the Fourier
basis which here enables a straightforward computation of
the entries of H using (19), the choice of a wavelet basis
would in general involve the computation of inner products
⟨A(δm, ·), fk ⟩ with non closed form, and would thus come
with a higher computational cost [6].



B. Fourier basis enriched with an affine function

We now consider the possibility of enriching the Fourier ba-
sis proposed above with functions that constitute a dictionary
to represent the spectrum of interest. In this section, we study
the possibility of completing the Fourier basis with an affine
function, and define for 0 ≤ k ≤ K − 1 (with K even)

fk(σ) =

exp

(
−

j 2πσ

∆σ

(
k − K−2

2

))
, if k ≤ K − 2

σ if k = K − 1.
(21)

Contrary to the Fourier basis above, this enriched basis permits
the representation of continuous signals x(σ) that do not
satisfy the constraint x(σmin) = x(σmax). The discretization
of the integral operator in this case is similar to that proposed
for Fourier bases. In fact, this modeling allows an explicit
calculation of the inner products between the kernel of the
operator and the basis functions by leveraging the properties
of the Fourier transform.

V. NUMERICAL EXPERIMENTS

A. Experimental setup

This section presents numerical experiments to illustrate the
interest of the proposed approach. We consider an ImSPOC
instrument with M = 319 interferometers and a wavenumber
range [σmin, σmax] = [0.35, 2.875] µm−1. The reflectivity
of the interferometers is set to R = 0.3 and is assumed to
be constant for all interferometers across the wavenumber
range. The interferometer thicknesses are chosen so as to
obtain a regular sampling of the OPD domain, δm = m

M δmax,
with δmax = 55µm. The measurement data are simulated
from a high-resolution spectrum (N = 2151 samples) orig-
inating from the ECOSTRESS Spectral Library [11]. To
do so, we consider the continuous spectrum x∗(σ) defined
by the piecewise affine interpolation of this discrete high-
resolution spectrum on the wavenumber range, and simulate
measurements by integrating numerically (1) with the kernel
(4) using Romberg’s method [12]. Finally, a Gaussian noise
with variance σ2 = 10−3 is added to the measurements,
which produces a realistic measurement vector with dimension
M = 319 and peak-signal-to-noise ratio around 60 dB. Note
that we do not simulate the measurements with the discretized
model, which would put us in a situation of inverse crime [13,
Section IV.C] and would lead us to erroneous or unjustified
conclusions.

We then process these simulated data with the three models
considered above (Riemann sum discretization, Fourier basis
approximation, Fourier-affine basis approximation), solving
the least squares problem by applying the pseudo-inverse of
the associated matrix (A or H) to the measurement vector. To
estimate the reconstruction precision, we compute the discrete
mean square error

MSE(x∗, x̂) =
1

K
∥x̂− x∗∥2

between the ground-truth spectrum x∗(σ) sampled on the
uniform grid (σk)0≤k≤K−1 and the reconstruction. Note that

this error estimate is the only one possible for the Riemann
sum model, but for the approximations models (Fourier and
Fourier-affine) the continuous error

MSEc(x
∗, x̂) =

1

∆σ

∫ σmax

σmin

(
x̂(σ)− x∗(σ)

)2
dσ

would be more natural. In practice the two values barely differ,
so we stick to the discrete MSE to keep comparable estimates
for all models.

B. Case of a vanishing spectrum

We first consider the ECOSTRESS spectrum mentioned
above (black/blue curve in Figure 1, left). This spectrum
vanishes at the boundaries σmin and σmax of the spectral
domain, so the constraint x(σmin) = x(σmax) imposed by
the Fourier basis model is not an issue, and there is no need
to consider the Fourier-affine model.

In Figure 1, we can see that the Fourier basis model
systematically performs better than the Riemann sum model
(the discrete MSE is significantly smaller for each value of K).
The improvement is particularly impressive for the lowest-
dimensional case (K = 65), since in that case the Riemann
sum model fails to reconstruct a decent approximation of
the ground truth, while the Fourier basis model yields a
reconstructed spectrum barely distinguishable from the ground
truth. It is important to notice that the complexity is the same
for both algorithms, since it only depends on the size (M×K)
of the matrix to be (pseudo-)inverted.

Table I shows the contributions of the approximation error
and the noise-induced error (the two terms discussed after
Equation (15)) to the continuous error MSEc(x

∗
K , x̂) in the

Fourier basis model, for various values of K. The approxima-
tion error ∥x∗ − x∗

K∥2 is computed using Romberg’s method
to integrate the squared difference between the continuous
piecewise affine ground-truth spectrum and its projection on
the Fourier basis. The noise-induced error ∥x∗

K−x̂∥2 is, thanks

Figure 1: (left) Reconstruction of the spectrum from the mea-
surements using the proposed approach with a Fourier basis and
the implicit discretization of the integral operator on a uniform
grid for 65 basis functions and 65 samples. Fourier basis functions
allow for an accurate reconstruction of the spectrum even for a
small number of basis functions. (right) discrete MSE (in log scale)
between the ground-truth spectrum and its reconstruction from the
measurements using the proposed approach with a Fourier basis and
the explicit discretization of the integral operator on a uniform grid.
The reconstruction precision is significantly improved using Fourier
basis functions to represent the spectrum.



dimension (K) ∥x∗ − x∗
K∥2 ∥x∗

K − x̂∥2

65 2.15× 10−1 8.29× 10−6

129 3.5× 10−2 4.44× 10−6

205 3.8× 10−3 3.04× 10−6

Table I: Approximation error (squared model bias) and noise-
induced error (variance) for various number of Fourier basis func-
tions.

to Shannon-Nyquist Theorem, equal (up to a coefficient 1/K)
to the discrete MSE between the K lowest-frequency Fourier
coefficients of the ground-truth spectrum (estimated using
Romberg’s method) and the corresponding coefficients ck of
the estimated reconstruction. As expected, the approximation
error decreases with the number of Fourier basis functions.
Moreover, the projection error is very low (≈ 10−6) for all
values of K, which shows that the least squares reconstruction
in the approximation space is nearly optimal in reason of the
good signal-to-noise ratio of the simulated measurements.

C. General case (no boundary continuation)

We now consider a non-vanishing spectrum x∗, for which
x∗(σmin) and x∗(σmax) are very different (black/red curve in
Figure 2, left). In that case, the Fourier basis model is not very
efficient, because of the constraint x(σmin) = x(σmax) inher-
ited from the ∆σ-periodicity of the basis functions. However,
the Fourier-affine model proposed in Section IV-B (Fourier
basis enriched with an affine component) nicely solves this
issue. Indeed, we can see in Figure 2 that the presence of a
single additional affine component in the approximation space
allows us to get rid of the strong reconstruction artifacts (Gibbs
oscillations near the domain boundaries) observed with the
Fourier basis model, and improves the reconstruction error by
a factor up 1000.

Figure 2: (left) Reconstruction of a non-vanishing spectrum x∗

(black plain curve) using a Fourier or a Fourier-affine basis. We
can see that Fourier basis reconstruction (blue dashed curve) exhibits
strong oscillations near the boundaries of the spectral range. Those
are in fact Gibbs artifacts caused by the inability of this Fourier basis
to deal with the discontinuity existing in the periodical extension
of the signal. Fortunately, these artifacts are completely eliminated
in the Fourier-affine model (red dashed curve). (right) discrete MSE
between x∗ and the reconstructions obtained using the three different
models for various values of K. Contrary to what we observed in
Figure 1, the Fourier model now performs as poorly as the Riemann
sum model (because of Gibbs artifacts), but the Fourier-affine model
improves the reconstruction error by at least two orders of magnitude.

VI. CONCLUSION

In this paper, we proposed a new way to discretize linear in-
tegral operators in an inverse problem arising in hyperspectral
signal reconstruction from interferometric measurements. We
showed that, while keeping the efficiency of a direct least-
square inversion and with no additional computational cost,
the classical discretization with a Riemann sum can be advan-
tageously reformulated using an approximation space obtained
by enriching a Fourier basis with an affine component to avoid
Gibbs artifacts. With numerical experiments, we demonstrate
on realistic simulated data that the proposed method improves
the reconstruction error by one to three orders of magnitude.
More generally, we advocate the idea that enriching further
the proposed Fourier-affine basis with functions able to better
represent some identified classes of spectra (vegetation spectra,
soil spectra, mineral spectra) could lead to even more accurate
reconstructions.
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