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Abstract: Optical characterization and appearance prediction of translucent materials are
required in many fields of engineering such as computer graphics, dental restorations or 3D
printing technologies. In the case of strongly scattering materials, flux transfer models like the
Kubelka-Munk model (2-flux) or the Maheu’s 4-flux model have been successfully used to this
aim for decades. However, they lead to inaccurate prediction of the color variations of translucent
objects of different thicknesses. Indeed, as they rely on the assumption of lambertian fluxes at any
depth within the material, they fail to model the internal reflectance at the interfaces, penalizing
the accuracy of the optical parameter extraction. The aim of this paper is to investigate the impact
of translucency on light angular distribution and corresponding internal reflectances by the mean
of the radiative transfer equation, which describes more rigorously the impact of scattering on
light propagation. It turns out that the light angular distribution at the bordering interfaces is
often far from being lambertian, and that the internal reflectance may vary significantly according
to the layer’s thickness, refractive index, scattering and absorption coefficients and scattering
anisotropy. This work enables to better understand the impact of scattering within a translucent
layer and also invites to revisit the well-known Saunderson correction used in 2- or 4-flux models.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Translucent materials, i.e. weakly scattering and absorbing materials, where light can enter
deeply and be scattered progressively along its path, are common among manufactured products
(polymer inks in 3D printing [1], dental repair biomaterials [2,3], ceramics [4],. . . ) as well as in
human tissues [5], raising issues in the control and reproduction of their appearance. Indeed,
color and general appearance of translucent materials significantly depend on their thickness, in
a way that a simplified light scattering model such as the Kubelka-Munk (or 2-flux) model [6], or
even the 4-flux model [7–9] cannot predict accurately. In the Kubelka-Munk model, the light is
assumed to propagate along two opposite directions, upwards and downwards, inside a slab. The
incident light is assumed lambertian, and all the reflected or transmitted flux is collected. This
model assumes that light is either absorbed or scattered with a lambertian angular distribution.
The Fresnel reflections at the interfaces of the slab are accounted for by the Saunderson correction
[10], which corrects the reflectance and transmittance calculated by the Kubelka-Munk model,
taking into account the observation and illumination geometries, and refractive index mismatch.
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The validity of this correction was discussed by several authors for different applications [11,12].
One reason for the lack of accuracy of 2-flux models with translucent layers is the poor estimation
of the internal reflectance of the interfaces bordering the material layer. Indeed, the Saunderson
correction [10,13] relies on the assumption that the light reaching the interfaces has a lambertian
type angular distribution, which may not be the case in thin and weakly scattering layers. More
importantly, the exact angular distribution depends on the scattering and absorption properties
of each layer, as well as its thickness. Following guidelines from the CIE [14], the reflectance
or transmittance measurement geometries 1 the d:8◦ geometry (where a sample is illuminated
with diffuse light in an integrating sphere and the emerging light is captured at an 8◦ angle)
or likewise the 8◦:d geometry (where a sample is illuminated with directional light at an 8◦
angle and the emerging light is collected by an integrating sphere). Thus the incident light (or
the captured light) is directional, whereas the 2-flux model assumes measurements based on a
bi-hemispherical geometry. This has almost no impact in strongly scattering layers but may raise
difficulties in translucent materials. As an example, it has been shown recently that in dental
repair biomaterials, using an internal reflectance value of 4% (instead of the expected lambertian
value of 60% for a refractive index 1.5) improves a lot the color prediction accuracy for slabs of
various thicknesses [15]. The 4-flux model, proposed by Beasley et al. [7], popularized by Maheu
et al. [8] and generalized by Vargas [9], considers the propagation of upwards and downwards
fluxes inside a slab, either absorbed or scattered. Compared to the 2-flux model, the 4-flux also
considers the propagation of directional light and the fraction of scattered directional light which
contributes to the diffuse flux. Therefore, it is in principle more suited to reproduce experiments
based on measuring devices with the 8°:d or d:8°geometry as recommended by the CIE [14]
than the 2-flux model, which assumes a d:d geometry. Let’s stress that such a d:d geometry is
very difficult to set up experimentally, although it might be equivalent to a d:8◦ or 8◦:d geometry
when measuring highly scattering media. In the 4-flux model, the angular distribution of diffused
light is also considered with the forward scattering ratio parameter (denoted ζ , it indicates which
proportion of the diffused flux is scattered in the forward direction) and the average path length
parameter (denoted ϵ , it reflects the average increase of distance traveled in the slab by scattered
light rays compared to directional light rays). For isotropic scattering, the forward scattering
ratio is 0.5 (same amount of light is scattered in the forward and the backward hemispheres)
and the average path length parameter is 2. However, this simplifying assumption does not
hold because single scattering is often anisotropic forwards, as in the case of Mie scattering by
spherical particles. In the formulation by Maheu et al.[8], a symmetry condition was introduced
based on phenomenological arguments. Indeed, it was assumed that the forward-scattering ratio
ζ under the diffuse anisotropic radiation is equal to the forward-scattering ratio under collimated
radiation, and that the average path-length parameter ϵ is the same for forward and backward
diffuse radiations. The formulation proposed by Vargas [9], directly calculated from the radiative
transfer equation, is more general as it does not rely on this approximation.

In principle, these issues could be solved if a more sophisticated solution of the Radiative
Transfer Equation [16] (either by direct solving or by Monte Carlo methods) is used instead of 2-
or 4-flux methods. However, these approaches are more time consuming, making challenging the
inverse problem of extraction of optical parameters from a large set of experiments.

Following preliminary results presented by our group in [17], the aim of the study is to
investigate this point in details using the formalism of the radiative transfer equation, and to
compute more accurate values of the internal reflectance at the interfaces to be used in the
simplified 2-flux model (such as the Saunderson correction for the Kubelka-Munk model [10,13]),
in function of thickness, refractive index, absorption and scattering coefficients.

The method used to solve the radiative transfer equation in the case of homogeneous and flat
scattering layers is presented first, then used to simulate the angular radiance distribution at their
interfaces. The impact of absorption coefficient, layer thickness, scattering anisotropy in both
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translucent and strongly scattering materials is then carefully investigated. Finally, the accuracy
of conventional and improved 2- and 4-flux models is discussed.

2. Solving the radiative transfer equation in a slab

The formalism and solution of the Radiative Transfer Equation in a slab of thickness d has been
extensively investigated by many authors, and details can be found in the following reference books
[16], [18]. In this section, the approach used in this work is briefly presented for completeness.
The radiative transfer equation (RTE) links the spatial evolution of the radiance L (also called
reduced intensity in [18]) at each point r and light direction s to the medium’s optical properties
(absorption µa and scattering µs coefficients and phase function p(s, s′)):

s.grad(L) = −(µa + µs)L(r, s) + µa + µs

4π

∫
4π

p(s, s′)L(r, s′)ds′. (1)

Considering the scattering angle between s and s′, the phase function p(s, s′) describes the
dependence of the scattered radiance on the scattering angle. In this work, we limit ourselves
to the commonly used Henyey-Greenstein (HG) phase function [19], known to reproduce the
forward peak of Mie scattering quite well, although in principle any type of phase function can
be used. The HG phase function has the advantage of depending on one parameter only (the
anisotropy parameter g). Several authors (see for instance [20,21]) have reported that it tends to
underestimate backward diffuse radiation, explaining that modifications of the HG phase function
have been proposed in the literature, at the cost however of an additional parameter. In common
applications where it is intended to characterize a material of unknown composition by a limited
set of optical measurements, it is necessary to find a trade-off between a good description of light
scattering and a limited number of parameters to evaluate in order to prevent underdetermined
inverse problems. The HG phase function seems to be a good solution in many practical cases.
Of course, it is possible to extend the approach presented in our study to other phase function, in
particular when the diffusing elements in the medium studied are well known, and/or when the
optical measurements are better resolved angularly (e.g. BRDF / BTDF measurements). The
following normalization procedure [18] was used where ω0 is the albedo:

1
4π

∫
4π

p(s, s′)ds′ = ω0 =
µs

µa + µs
. (2)

In this work, the incident light is assumed to be a directional flux at normal incidence over
the whole surface, giving rise to a symmetry of revolution around the normal direction, thus
a constant radiance according to the azimuthal angle ϕ. In consequence, in this 1D geometry,
physical quantities only depend on the depth z and the zenithal angle θ.Introducing µ = cos(θ)
and τ = (µa + µs)z, the RTE can be re-written as:

µ
dL
dτ

(τ, µ) = −L(τ, µ) +
1
2

∫ 1

−1
p0(µ, µ′)L(τ, µ′)dµ′, (3)

where the averaged phase function p0(µ, µ′) is given by :

p0(µ, µ′) =
1
2

∫ 2π

0

∫ 2π

0
p(µ, ϕ, µ′, ϕ′)dϕdϕ′. (4)

The radiance L can be split into a directional radiance contribution LN and a diffused radiance
contribution Ld. The directional component is the contribution to the radiance of light that has
not been scattered. Accounting for multiples reflections at the front side τ = 0 and back side
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τ = τd = (µa + µs)d of the directional component, it is given by [22]:

LN(τ, µ) =
1

2π
TNF0

exp(−τ) + RNexp(2τd − τ)
1 − R2

Nexp(−2τd)
δ(µ − 1), (5)

where TN = T12(µ = 1) (resp. RN = R21(µ = 1)) is the Fresnel transmittance at normal incidence
for unpolarized light entering the scattering layer (resp. Fresnel reflectance for light exiting the
scattering layer). In consequence, the RTE is solved only for the diffused radiance component
Ld, using the discrete ordinate method [16], [18]. Following Ref. [18] and [22], the boundary
conditions at the top and back interfaces include Fresnel reflections in the following way :

Ld(τ = 0, µ>0) = R21(µ)Ld(τ = 0, µ<0), (6)

Ld(τ = τd, µ<0) = R23(µ)Ld(τ = τd, µ>0), (7)

where R21 (resp. R23) is the well know Fresnel reflectance for light going from the medium 2 (i.e.
the scattering layer) to the medium 1 (air) (resp. from the medium 2 to the medium 3, i.e., air).
The direct solving method enables to obtain the diffused radiance distribution at any depth in the
layer, therefore at the two depths of interest here z = 0 and z = d. These angular distributions,
resulting from the solving of the radiative transfer equation with the Fresnel angular reflectance
of the interfaces, are integrated over the hemisphere to provide the expected internal reflectance.
Angles |θ | ≤ 90◦ (i.e., µ ≥ 0) correspond to the lower hemisphere Ω′ where radiance values
depict the angular distribution of the light going downwards. The other angles correspond to the
upper hemisphere Ω, where radiance values depict the angular distribution of the light going
towards negative values of z (therefore upwards). Successful benchmarks with a widely used
Monte Carlo code [23] and literature data [24,25] have been performed in order to assess the
validity of our Radiative Transfer Equation solver. Details are reported in appendix 1 (Section 7).

Furthermore, we wish to emphasize that the assumptions made in this model regarding
illumination and observation suggest that we can disregard lateral losses due to edge effects.
Subsequently, we would like to discuss this specific point: are these assumptions valid from an
experimental standpoint? In this study, we consider diffusing materials, transparent materials,
and translucent materials. There is no edge loss effect for transparent materials as they are
illuminated under normal incidence, with light propagating straightforwardly. For the others,
namely diffusing and translucent materials, the light undergoes numerous grazing reflections.
It can be guided far from its entry point, and the edge loss can consequently be significant,
especially if the material is additionally weakly absorbing. However, this point has been discussed
previously in the literature [26]. It is recommended to choose the illumination and observation
zones in a way that minimizes measurement error caused by the edge loss effect. Indeed, as
demonstrated in [26], it is appropriate to select the illuminated area (or respectively, the observed
area) larger than the convolution between the material’s diffusion point spread function and the
observed area (or respectively, the illuminated area). It then falls upon the experimenter to use a
suitable measurement setup. Under these conditions, the assumptions of the model described
here are applicable.

3. Semi-infinite layer: results and discussion

We first consider the case of a semi-infinite scattering medium (optical thickness τd = (µa +

µs)d>>1). To simplify the discussion, the phase function is first assumed isotropic, i.e., g = 0.
The impact of scattering anisotropy is discussed later on, in the case of a slab only. The main
mechanisms occurring during light transport in the scattering material are illustrated on Fig. 2.
First, the incident directional flux can be either reflected by the top interface or transmitted into
the medium, where it is progressively scattered or absorbed. Some light propagating upwards
may reach the interface, where it can be either transmitted or reflected. Note that all light rays
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with incident angle higher than the critical angle ic = arcsin(1/n) are necessarily reflected (total
internal reflection). It must be noted that in the semi-infinite material, the light that propagates
upwards has necessarily undergone one or several scattering events. Let’s us now discuss the
collective impact of these mechanisms on the overall angular distribution of the radiance at the
top interface. In Fig. 3 are plotted, in polar coordinates, cut-views of the relative angular radiance
Lz(θ) at z = 0 (named L0(θ) hereinafter) as a function of the angle θ defined in Fig. 1, for a
non-absorbing medium (blue curve) or absorbing medium (red curve).

Fig. 1. Studied configuration where a layer of scattering medium with a refractive index
different from the surrounding air ("slab") is illuminated by directional light at normal
incidence. Physical quantities depend on depth z and angle θ.

𝐹0

100%

4%
A

96% 𝑖 < 𝑖𝑐

C

𝑖 > 𝑖𝑐

D

Scattering Event

B

𝑛1

𝑛2

𝑧

0

Fig. 2. Photon trajectory inside a semi-infinite layer of scattering medium under directional
incident light (irradiance F0). The incident light can be either reflected at the interface (A)
or transmitted into the medium. After a scattering event (B), a photon may propagate until
reaching the interface. If the incident angle is below the critical angle ic, light can exit the
medium or be reflected (C). If it is higher than ic, light is totally reflected back to the medium
(D). Percentages are given for n = n2/n1 = 1.5.

In the case of a non-absorbing semi-infinite material (blue curve), the light that propagates
upwards, after backscattering, is lambertian: the radiance is a constant Lu, the graph draws a
hemi-circle. This is expected, and supports the common assumptions made in the literature. In
the lower hemisphere, as set by the boundary conditions, the downward radiance L0(θ) is the
result of the internal reflection of the radiance propagating upwards, therefore the product of
radiance Lu with the Fresnel reflectance. For a refractive index n of 1.5, this latter is equal to
0.04 at θ = 0◦, and suddenly reaches 1 beyond the critical angle ic = arcsin(1/n) ≈ 42◦. Let’s
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(a) (b)

Fig. 3. Cut view (a) and zoom of the cut view (b) of the relative angular radiance
diagram near the top interface for semi-infinite scattering layers of two media of relative
refractive index n = 1.5, with g = 0: a non-absorbing medium of scattering coefficient
µs = 5.0 mm−1 and albedo ω0 = 1 (blue curve), and an absorbing medium of extinction
coefficient (µa+µs) = 5.0 mm−1 and albedoω0 = 0.9, respω0 = 0.5,ω0 = 0.2 andω0 = 0.1
(red curve, resp. orange curve, yellow curve and brown curve). The light illuminating the
interface from inside the layer propagates with zenithal angles |θ |>90◦ whereas the reflected
light propagates with angles |θ |<90◦.

examine the corresponding diffused internal reflection coefficient rid. The latter is defined as:

rid =

∫ π/2
0 L0(π − θ)R21(θ)sin(2θ)dθ∫ π/2

0 L0(π − θ)sin(2θ)dθ
, (8)

where R21(θ) is the Fresnel angular reflectance of the material-air interface when light comes at
an angle θ from the medium (therefore when the angle is 180◦ − |θ | in our radiance diagram,
where the light striking the interface propagates with zenithal angles |θ |>90◦). As the upward
light is lambertian (the radiance L0(θ) is constant over the hemisphere Ω), we have ri = 0.60.

In the case of an absorbing semi-infinite medium (red curve), due to absorption, the overall
radiance is of course lower than in the non-absorbing medium (both are plotted with the same
scale in Fig. 3). Moreover, we observe that the upward radiance (in the upper hemisphere) is not
constant anymore: it takes higher values at |θ | = 90◦ than at θ = 180◦. The light propagating
upwards is therefore no longer lambertian. Let us comment this discrepancy. First, remind that
at z = 0, the upward radiance results from the backscattering of directional light propagating
downwards and diffused light propagating upwards. As previously seen, the downward radiance
is not lambertian, because of the angular dependence of the Fresnel angular reflectance of
the interface. However, in the non-absorbing medium, the upward radiance results from an
infinite number of isotropic scattering events, which allows to get a lambertian distribution. On
the contrary, in presence of absorption, the upward radiance results from a limited number of
scattering events only. In consequence, although isotropic, scattering fails to distribute light
uniformly over the sphere, which explains why the contribution to the upward flux of nearly
normal radiances is lower than the one of grazing radiances. According to Fig. 3(b), the more the
absorption increases, the less the upward luminance distribution is lambertian. Moreover, in Fig.
S1 of Supplement 1, normalized radiation for different optical indexes has been computed at the
same level of absorption, confirming that the non-lambertian shape of the radiance is indeed a

https://doi.org/10.6084/m9.figshare.25002086
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consequence of combined effects of absorption and Fresnel reflections. The anisotropy of L0(θ)
modifies the calculation of the diffused internal reflectance rid. In this case, the numerator of
Eq. (8) changes less than the denominator which increases, resulting in an increase of rid to 0.62
(see Fig. 3). In the following, these conclusions are extended to the case of a finite thickness
layer, with first isotropic, and then anisotropic scattering.

4. Finite thickness layer (slab): results and discussion

We now consider the case of a layer of finite thickness. Global internal reflection may occur at
both interfaces in a similar way, although the situation of each interface is not symmetrical, as the
directional light enters from the top interface only. In this case, not only the top (denoted rid) but
also the bottom (denoted r′id) internal reflectance require attention. It is worth to be noted that
rid and r′id refer to the internal reflectance of the diffused radiance component Ld only. For this
reason, we introduced two other internal reflectances (named global internal reflectances): rig for
the front interface, and r′ig for the back interface, that account for both directional and diffused
components, such that

rig =
Fd

Fd + FN
rid +

FN

Fd + FN
rN , (9)

and
r′ig =

F′
d

F′
d + F′

N
r′id +

F′
N

F′
d + F′

N
r′N , (10)

with Fd and F′
d, resp. FN and F′

N , the diffused, resp. the directional, fluxes falling on the interface,
rN and r′N the Fresnel reflectance at normal incidence from the medium through air. All quantities
without quote mark, resp. with quote mark, refers to the top interface, resp. to the bottom
interface.

As the 4-flux model treats the propagation of directional and diffused light separately, rid and
r′id should be used for the diffused component in the 4-flux model. On the contrary, as the 2-flux
model ignores directional light, the reflectance rig and rig′ should be used as correct parameters
for this latter approach.

4.1. Radiance angular variations and internal reflectances in the case of an isotropic
scattering phase function

Figure 4(A) (resp. Figure 4(B)) represents diffused radiances L0(θ) and Ld(θ) at the top and
bottom interfaces as functions of the zenithal angle in isotropic cases in absence of absorption
(respectively in presence of absorption) for various optical thicknesses (the sum µa + µs of the
absorption and scattering coefficients remaining constant in our simulations).

It’s natural to question the relevance of scattering within an extremely thin optical layer. If the
layer has a negligible thickness, there’s no space left for diffusers. Moreover, the model becomes
dubious when the size of the diffusers approaches the same order of magnitude as the thickness.
Therefore, one might ask at what optical thicknesses the simple scattering approximation applies.
While the threshold for the simple scattering approximation remains a topic of debate [27], an
optical thickness of τd = 0.35 is definitively above this threshold. Consequently, we confine our
analysis to optical thicknesses exceeding 0.35.

For large optical thicknesses, i.e., (µa + µs)d>>1 (red-orange curves), with or without
absorption, for an isotropic phase function, the diffused radiance distribution at the top interface
tends to the one observed for a semi-infinite medium discussed in the previous section (Fig. 3):
the slab simply behaves as a semi-infinite medium. In absence of absorption, the radiance
distribution at the bottom interface also tends to be a constant, and thus, rig (resp. rid) tends
to be equal to r′ig (resp. r′id). In presence of absorption, the diffused radiance distribution at
the bottom interface tends to be negligible for large optical thicknesses. Even if it is possible
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B - With Absorption ( 0 = 0.7)A - Without Absorption ( 0 = 1.0)

Fig. 4. Polar plot of the diffused radiance at the top interface, L0(θ) (Fig. 4Aa), resp. (Fig
4Ba), and the bottom interface, Ld(θ) (Fig. 4Ab), resp. (Fig 4Bb), for isotropic layers
of different optical thicknesses in absence of absorption (refractive index n = 1.5, albedo
ω0 = µs/(µa + µs) = 1.0), resp. in presence of absorption (refractive index n = 1.5, albedo
ω0 = µs/(µa + µs) = 0.7).

(although difficult) to compute a diffused and global internal reflectance at this bottom interface,
as the bottom radiance is negligible, this quantity does not really have any physical meaning.
Consequently, this case will not be discussed hereafter.

For small optical distance, i.e., (µa + µs)d<<1 (blue curves), however, there is less scattering,
but also less absorption, than large optical thicknesses. We thus observe a similar radiance pattern
at both interfaces, in presence or in absence of absorption: radiances L0(θ) and Ld(θ) become
weak for incidence angles lower than the critical angle ic. Indeed, the radiance at higher incidence
angles is mainly caused by the total internal reflection at each interface. This effect strongly
depends on the optical index value, as shown in Supplement 1 (Fig. S11). In consequence,
upward and downward radiances tend to become almost identical at each interface. For this
reason, the numerator and denominator of Eq. (8) tend to be equal for the diffused internal
reflectance at both interfaces, resulting in in an increase in the diffuse internal reflectance value
as d decreases.

The diffused internal reflectance of the top and bottom interfaces, respectively rid and r′id, are
plotted in Fig. 5(Aa), resp. Figure 4(Ab), as functions of the optical thickness for various albedo
values. We retrieve the fact that when the optical thickness τd, is very small, the diffused internal
reflectance value increases at both interfaces. As the optical thickness increases, the diffused
internal reflectance decreases. It asymptotically approaches 0.60, the value usually considered in
the Saunderson correction, for the top interface when the medium is non-absorbing (ω0 = 1), or
a higher value than 0.60 if the medium is absorbing (0.63 when ω0 = 1).

Let’s now examine the case of the global internal reflection rig and r′ig (Fig. 5(Ba) and
Fig. 5(Bb)). First of all, it should be noted that the two coefficients may differ, in particular
at lower optical thickness: when rid and r′id s.t.tend to 1increase, their counterparts rig and r′ig
take much lower values. Indeed, at low optical thickness, the contribution of diffused light to

https://doi.org/10.6084/m9.figshare.25002086
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Fig. 5. Internal reflectances versus optical thickness (µa + µs)d for isotropic scattering
(g = 0) and several albedo ω0 = µs/(µa + µs) with µa + µs = 5 cm−1. The bold dashed line
at ri = 0.6 corresponds to the value usually considered in the Saunderson correction.

the total radiance decreases, explaining the decrease of the global internal reflectance, which
tends to 4%; the Fresnel coefficient at normal incidence. This effect is particularly strong for
low albedo values, as absorption prevents scattering to randomize the light direction. At high
optical thickness however, both rig and r′ig tend to rid and r′id as expected, justifying the use of the
lambertian value 0.6 in the 2-flux model.

4.2. Radiance angular variations and internal reflectances in the case of an anisotropic
scattering phase function

It is known that light scattering mechanisms are usually anisotropic, except in the particular case
of scattering centers smaller than the wavelength (Rayleigh scattering). Living tissues, such as
skin, are a well-known examples of turbid media where light is mostly scattered in the forward
direction [28]. For this reason, we restrict ourselves to an anisotropic scattering phase function
with positives values of the anisotropy parameter g. However, note that results with negative
value of the anisotropy parameter g are given in the Supplement 1 (Figs. S6-S9).

Figure 6(A) (resp. Figure 6(B)), represents the diffused radiances L0(θ) and Ld(θ) at the top and
bottom interfaces as functions of the zenithal angle in the anisotropic case (g = 0.8) in absence
of absorption (respectively in presence of absorption), for various optical thicknesses of the
medium. With or without absorption, for large optical thickness, i.e., (µa + µs)d>>1 (red-orange
curves), the diffused radiance distribution at the top interface tends to the one observed for a
semi-infinite medium as discussed in the previous section (Fig. 3): the high number of scattering
events occurring within the slab tends to compensate the effect of anisotropy in this case.

When (µa + µs)d<<1 (blue curves), with or without absorption, the impact of anisotropy
becomes significant, in particular for the radiance at the bottom interface. As the value of the
anisotropy factor g is positive, θ = 0◦ appears to be the privileged direction for scattering light.

https://doi.org/10.6084/m9.figshare.25002086
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B - With Absorption ( 0 = 0.7)A - Without Absorption ( 0 = 1.0)

Fig. 6. Polar plot of the diffused radiance at the top L0(θ) (Fig. 6Aa), resp (Fig 6Ba),
and bottom Ld(θ) (Fig. 6Ab), resp. (Fig 6Bb); for layers of different optical thicknesses
in presence of absorption (refractive index n = 1.5, albedo ω0 = µs/(µa + µs) = 1.0,
anisotropy factor g = 0.8), resp in presence of absorption (refractive index n = 1.5, albedo
ω0 = µs/(µa + µs) = 0.7, anisotropy factor g = 0.8).

For this reason, a peak in the θ = 0◦ direction clearly appears in the bottom diffused radiance.
Moreover, the radiance overall values are weaker than in the isotropic case, as the scattered light,
preferentially directed in the θ = 0◦ direction, can emerge more easily from the back without
being affected by any internal reflection. At the front interface, a small peak appears at θ = 180◦,
corresponding to the light reflected back by Fresnel reflection at the bottom interface.

Let’s consider the impact of scattering anisotropy on the diffused- and global internal
reflectances versus optical thickness (Fig. 7). Note that the isotropic case (g = 0) is also plotted
(solid line) for comparison, together with a medium (g = 0.5) and strong (g = 0.8) anisotropy. As
previously, we will not discuss hereafter the particular case of the bottom interface in presence of
absorption, the radiance being negligible at the bottom interface in this case. For all the other
cases, anisotropy does not seem to significantly impact the trends previously discussed for both
diffused and global internal reflectances.

The most significant differences when comparing isotropic with anisotropic situations are a
modest increase of the top internal reflectance rid which can be observed at high optical thickness
(0.7 instead of 0.6 for ω0 = 0.1), and, due to the light scattered in the normal direction, a faster
decrease of the top global internal reflectance rig as the optical thickness tends to 0 in anisotropic
situations.

In conclusion, despite significant changes in term of radiance directivity, scattering anisotropy
does not introduce significant changes in term of internal reflectances, especially for large optical
thickness (refer to solid lines of Figs. S2-S5 of Supplement 1).

https://doi.org/10.6084/m9.figshare.25002086
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Fig. 7. Internal reflectances versus optical thickness (µa + µs)d for several albedo ω0 =
µs/(µa + µs) with µa + µs = 5 cm−1 and for anisotropic scattering: colored solid lines
correspond to g = 0, colored dashed lines correspond to g = 0.5 and colored dotted lines
correspond to g = 0.8. The bold dashed line at ri = 0.6 corresponds to the value usually
considered in the Saunderson correction.

5. Validity of the 2- and 4-flux models with and without internal reflectances
calculated by the radiative transfer equation

Previous simulations have shown that internal reflectances may differ significantly from the
lambertian value in translucent materials. In this section, we would like to assess its impact on
the prediction accuracy of conventional optical models, and see if it is possible to improve it by
simply replacing the lambertian one by the ones calculated by the radiative transfer equation.

For the purpose of this experiment, the propagation of light inside translucent slabs of variable
thickness was simulated with the RTE, and the reflectance and transmittance factors of each
slab as well as the internal reflectances rid, r′id, rig, r′ig at their interfaces were calculated. The
slabs are characterized by a scattering coefficient µs = 4.5 mm−1 and an absorption coefficient
µa = 0.5 mm−1. These values are consistent with measurements performed on translucent skin
tissues at 500 nm or 550 nm [5,28–30]. Scattering was modelled using the Henyey-Greenstein
phase function with g = 0 (isotropic scattering), g = 0.5 and g = 0.8. Slabs with optical
thicknesses ranging from 5.10−4 to 7 (thickness ranging from 10−4 mm to 1.4 mm) were
simulated for each value of g.

Then, the absorption k and scattering s coefficients of the best available model, i.e. the 4-flux
model, were extracted using a fitting algorithm to reproduce at best the RTE data (taken as
reference) for all thicknesses. Note that here the rid and r′id values calculated with the RTE
were used to extract the optical parameters of the 4-flux model. Here, we limit ourselves for
simplicity to the approximated 4-flux approaches proposed by Rozé [31]. Consequently, the
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forward scattering ratio ζ is calculated according to formula (11) as proposed in [31] :⎧⎪⎪⎨⎪⎪⎩
ζ = 1

2 if g = 0 ,

ζ =
(1+g)

[︂√
1+g2−1+g

]︂
2g
√

1+g2
otherwise.

(11)

The average path length parameter ϵ was set to 2, which corresponds to semi-isotropic
scattering, as usually done in 2-flux and 4-flux models. We assume that it is constant with respect
to the layer thickness, and that its value is the same at both interfaces of the slab. This is a strong
assumption which will necessarily limit the accuracy of all models, but it simplifies the study
and allows to draw general conclusions on the models’ accuracy. Note that the RTE enables
to calculate ϵ at any depth within the slab thanks to its integral definition given in [31], and
use different values for the top and bottom interfaces, as highlighted in the 4-flux model from
Vargas et al. [32,33]. Explicit expressions for both forward and backward average path-length
parameter have been derived in [34], which is theoretically valid in the limit of dilute suspension
of spherical particles.

The fitting algorithm is based on the GlobalSearch global optimization solver from Matlab,
and searches for the parameters that minimize the average root mean square difference between
the reflectance and transmittance factors predicted and simulated with the RTE (ground truth).

Finally, the absorption and scattering coefficients of the 2-flux model are deduced from those
of the 4-flux model using the well-known equations(12,13) [35,36]:

K = ϵk, (12)

and
S = ϵs(1 − ζ), (13)

where K (resp. S) denotes the absorption (resp. scattering) coefficient of the 2-flux model
and k (resp. s) denotes the absorption (resp. scattering) coefficient of the 4-flux model. We
take k = µa and s = µs.Then, assuming that the absorption and scattering coefficients are not
thickness-dependent, diffused reflectance and transmittance of the slab are re-calculated using
the different models, and compared with the true value obtained by RTE simulation. For the
2-flux model (or Kubelka-Munk), we used the well-known formalism of Ref. [6] combined with
the Saunderson correction [11], and for the 4-flux model, we used the approach of Maheu et al.
[8] for predicting the reflectance and transmittance of translucent slabs with refractive index
n = 1.5. Let us recall that compared to the 2-flux model which only considers the propagation of
diffused flux inside a slab, the 4-flux model describes both the propagation of the diffused and
directional incident light, accounting for the fraction of directional flux that is scattered, and the
fraction of flux that remains directional inside the layer.

For the 2-flux model, several possible values of global internal reflectance rig and r′ig were
considered:

• rig = r′ig = 0, which represents the case where the Saunderson correction is omitted,

• rig = r′ig = 0.04, which is the standard value for non-scattering media with n = 1.5,

• rig = r′ig = 0.60, which is the standard value assuming isotropic scattering with n = 1.5,

• rig and r′ig calculated with the RTE for each thickness.

For the 4-flux model, only two cases where rid = r′id = 0.60 and the rid and r′id values calculated
by the RTE were considered. The rid, r′id, rig and r′ig values are given in the Fig. S10 of the
Supplement 1. The reflectance and transmittance factor predictions of the 2- and 4-flux models

https://doi.org/10.6084/m9.figshare.25002086
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are reported on Fig. 8. The 4-flux model with the rid and r′id values calculated by the RTE is
found the most accurate for predicting the reflectance and the transmittance, regardless of the
g value. Of course, it is the consequence of the construction of the experiment (k and s are
extracted from RTE data using this model), but such agreement would not have been possible if
the 4-flux model with the rid and r′id values calculated by the RTE was not able to reproduce
accurately RTE results.

In reflectance, the 4-flux model with rid and r′id = 0.60 is the most accurate for g = 0, and for
slabs thicker than τd = 3.5 for g = 0.5. For g = 0, ϵ = 2 and ζ = 0.5, the simulation corresponds
to the assumptions of the 4-flux model, i.e., lambertian flux within the layer and at the interfaces,
which explains why this model fits well with the ground truth. The only error comes from the
use of different values of rid and r′id. The 2-flux models are less accurate than the 4-flux models,
and do not even converge towards the 4-flux model for high optical thickness which is inherent to
formulae (12) and (13). For g = 0.8, the 2-flux model with rig and r′ig values calculated with the
RTE is the most accurate model. This tends to show that adapting the value of rig and r′ig is more
important for highly asymmetric scattering. 2-flux and 4-flux models with ri = 0.60 are notably
inaccurate for thin slabs, but their accuracy increases for slabs of high optical thickness. The
2-flux model with rig = 0.04 is inaccurate with g = 0 and g = 0.5, but is fairly accurate for very
thin slabs, i.e., τd ≤ 1 when g = 0.8. The 2-flux model with rig and r′ig = 0 is inaccurate in all the
tested cases.

In transmittance, regardless of the value of g, the 2-flux model with rig and r′ig = 0.60 is
inaccurate. For g = 0, the 4-flux model with rid and r′id = 0.60 is the most accurate as in
reflectance mode. The 2-flux model with rig and r′ig values calculated with the RTE is more
accurate than the other 2-flux models, with the 2-flux model with rig and r′ig = 0.60 being the
least accurate. For g = 0.5, the 2-flux model with rig and r′ig = 0.04 is the most accurate, but
the other models (except the 2-flux model with rig and r′ig = 0.60) remain fairly accurate. For
g = 0.8, the 2-flux model with rig and r′ig values calculated with the RTE is the most accurate, as
in reflectance mode. The other models are notably less accurate, except for the 4-flux model with
rid and r′id = 0.60 for very thick slabs and the 2-flux model with rig and r′ig = 0.04 for very thin
slabs.

It is worth noting that the reflectance and transmittance factors are perfectly predicted by the
4-flux models when the optical thickness tends towards 0 regardless of the value of rid, and the
2-flux model with the rig values calculated with the RTE or with rig = 0.04. Indeed, for an
extremely thin slab (with optical thickness almost 0), scattering and absorption become negligible
and light is only reflected by the top and bottom interfaces. Therefore, the slab is equivalent to a
layer of clear glass (non-scattering and non-absorbing medium with refractive index n = 1.5), and
its reflectance and transmittance factors can be calculated easily with Fresnel laws. This trend,
which must be accounted for at the interfaces of the layer, is only satisfied by the aforementioned
2-flux and 4-flux models.

Within the limits of this study where the 4-flux model with rid and r′id calculated by RTE has
been taken as a reference, we conclude that the 4-flux model with rid = r′id = 0.60 is the most
accurate model for g = 0 and 0.5 in reflectance and transmittance mode. However, for higher
values of g, the model is not accurate enough and specific values of ri must be used. This is why
the 2-flux model with rig and r′ig values calculated with the RTE is the most accurate model for
g = 0.8 in this particular case. The other 2-flux models are generally less accurate than the 4-flux
model, although the 2-flux model with rig = r′ig = 0.04 is more accurate in transmittance mode.

In other words, these preliminary results suggest that in all cases, for an accurate material
parameter extraction using 2- or 4-flux models in translucent material, internal reflectance
should be modified in agreement with radiative transport theory, especially for highly anisotropic
scattering. If conventional values of internal reflectance with ri = r′i = 0.60 have to be used for
simplicity, it is highly recommended to prefer the 4-flux model rather than the 2-flux model.
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Fig. 8. Reflectance (left graphs) and transmittance (right graphs) factors predicted by the
2-flux and 4-flux models for different values of the internal reflectance at the interface. The
red dotted curves represent the 2-flux model with rig = r′ig = 0 (ie. no Saunderson correction).
The magenta dotted curves represent the 2-flux model with rig = r′ig = 0.04. The yellow
(resp. blue) dotted curves represent the 2-flux (resp. 4-flux) model with rig = r′ig = 0.60 (ie.
lambertian flux). The green (resp. black) dotted curves represent the 2-flux (resp. 4-flux)
model with rig (resp. rid) and r′ig (resp. r′id) calculated by the RTE for each slab. The black
solid lines represent the ground truth values simulated with the RTE. a) Simulations of the
RTE are performed for g = 0. b) Simulations of the RTE are performed for g = 0.5. c)
Simulations of the RTE are performed with g = 0.8.
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Fig. 9. Root Mean Square Difference (RMSD) assessing the deviation between the generated
spectral reflectance (on the left) and transmittance factors (on the right) of samples with
various thickness and the corresponding predictions given by the four-flux models with
or without ri and r′i values calculated with the RTE. The sample with 1.2 mm is used for
calibration of the models. a) The spectral reflectance and transmittance are generated with
g = 0 (isotropic scattering). b) The spectral reflectance and transmittance are generated with
g = 0.75.

Indeed, the 4-flux model naturally takes into account the decrease of the diffuse flux compared to
the specular flux in translucent materials, whereas the 2-flux models need to account for it by
setting appropriate value the global internal reflectances.

We also investigated the capacity of the four-flux model with or without ri and r′i values
calculated with the RTE to extract optical parameters for one thickness and then to use them to
predict the spectral reflectance and transmittance for other thicknesses. Spectral reflectances and
transmittances were generated with the RTE for n = 1.5, µa varying from 0.5 to 0.01 mm−1, µs
varying from 3.4 to 2.2 mm−1, g either equal to 0 (isotropic scattering) or 0.75, and for varying
layer thickness, in order to simulate measurements performed on translucent samples with a
spectrophotometer. The measurements of the samples with thickness 1.2 mm were used to extract
the optical parameters according to the four-flux model with ri = r′i = 0.60 and the four-flux
model with ri and r′i given by the RTE by means of an optimization algorithm. Then, these
coefficients were used to predict the spectral reflectances and transmittances of the other samples.
The prediction accuracy of each model is then assessed by calculating the Root Mean Square
Difference between the predicted and the generated spectra, averaged on all wavelengths. The
prediction accuracy for the reflectance and transmittance is displayed in Fig. 9(a) for the isotropic
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case (g = 0) and Fig. 9(b) for the anisotropic case (g = 0.75). The reflectance and transmittance
predictions obtained with the four-flux model with ri = r′i = 60% show discrepancies, especially
for thin layers. However, the predictions obtained with the four-flux model with ri and r′i given by
the RTE are much more accurate, especially for the reflectance and for both g = 0 and g = 0.75.
This further highlights the accuracy improvement enabled by the use of ri and r′i values rigorously
calculated with the RTE instead of using the Lambertian approximation in the case of translucent
material.

6. Conclusion

Detailed simulations based on the numerical solving of the radiative transfer equation (RTE)
were used to calculate the internal diffused reflectance, a parameter needed in the 2-flux or 4-flux
models used for optical parameter extractions and appearance prediction. In this work, both
isotropic and anisotropic scattering were considered, even though we found that anisotropy does
not significantly impact the overall conclusions.

For large optical thicknesses, the internal diffused reflectances at both interfaces were found in
agreement with the expectation of the lambertian approximation when absorption is negligible.
In presence of absorption however, these internal reflectances slightly differ, the top one being a
bit higher, and the bottom one a bit lower than the lambertian value.

For intermediate and low optical thicknesses (translucent material), it turns out that both
internal reflectances tends to be approximately equal, and exceed the value for a lambertian
distribution. On the opposite, global internal reflectances (including both directional and diffused
light), required for 2-flux models, tends to directional values at low optical distances.

These results are the consequence of the competition between the directional reflection (Fresnel
formulae), which induces anisotropy in the angular distribution of radiance (low incidence angle
rays may escape from the slab while high incidence angle rays remain trapped by global internal
reflection), and scattering, which tends to distribute light uniformly.

Finally, the impact of the internal reflectances on extraction performed using the 2- and
Maheu’s 4-flux models was investigated, using RTE simulations as a reference. It turns out
that the commonly used approximation, i.e., keeping constant the internal reflection equal to its
lambertian value, can lead to significant errors (up to 100%) for 2-flux models when dealing
with translucent materials. Moreover, parameter extraction with the 2- and 4-flux models can
be significantly improved using the internal coefficient calculated using the radiative transfer
equation, especially in translucent material with highly anisotropic scattering medium.

These results open the way to a better prediction of the spectral reflectance and transmittance,
thereby the color appearance, of slices of translucent materials with respect to their thickness.

Appendix: benchmark of the radiative transfer equation solver

In order to validate the implemented model, benchmarks with a widely used Monte Carlo code
[23] with different sets of parameters (relative refractive indices, absorption and scattering
coefficients, layer thickness, and anisotropy parameter g of the Henyey-Greenstein phase function)
were performed with success, considering the same geometrical configurations and physical
parameters (not shown here). Note that GPU time of this Monte Carlo code has been found 6
times longer than our RTE solver at the same level of accuracy.

In addition, we report here in Fig. 10 and Fig. 11 successful comparison with literature data
for two specific cases with and without index-matching and considering isotropic or anisotropic
phase function.

For an anisotropic phase function and a slab geometry of finite thickness with index matching,
van de Hulst’s tables [24] served as a reference for total reflection and transmission. The
Henyey-Greenstein phase function was considered with an anisotropy parameter g of 0.75. The
albedo was 0.9. According to Table 1, one can notice that our work is consistent with existing
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values of van de Hulst et al. [24]. Moreover, the angular dependencies of relative radiance in a
slab with index matching and with or without absorption have also been benchmarked with van
de Hulst et al. data, and are reported in the following figure.

(a) (b)

Fig. 10. Comparison of mean luminance given by the Monte Carlo code [23] (blue dashed
curve) and our RTE solver (orange solid curve) for (a) for semi-infinite scattering layer of
relative refractive index n = 1, with g = 0.6, albedo ω0 = 0.9 and an extinction coefficient
(µa + µs) = 10.0 mm−1 (b) slab scattering layer of relative refractive index n = 1.5, with
g = 0, albedo ω0 = 0.9, optical thickness τd = 5 and an (µa + µs) = 5.0 mm−1.

(a) (b)

Fig. 11. Comparison of cut views of the relative angular radiance diagram near the top (a)
and bottom (b) interface between our solver (solid lines) and values given by Van de Hulst
(crosses) for a slab scattering layer of optical thickness τd = 4.00 and relative refractive
index n = 1.0, with g = 0 at various albedo ω0 = 0.95,ω0 = 0.9,ω0 = 0.6 and ω0 = 0.2.

Table 1. Total Reflection and Transmission comparison between van de
Hulst [24] and our work for an anisotropic scattering slab medium.

van de Hulst [24] This work

Total Reflection 0.09739 0.09740

Total Transmission 0.66096 0.66096
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Table 2. Total Reflection comparison between Giovanelli [25] and
our work for a semi-infinite medium which is not index matched with

surrounding medium (n = 1.5) and the albedo is 0.9.

Giovanelli [25] This work

Total Reflection 0.2600 0.2608

Finding exact solutions for media which are not index matched is more difficult. Giovanelli’s
work [25] provides data only for a semi-infinite medium with isotropic scattering, an optical
index mismatch of 1.5 and an albedo of 0.9. According to Table 2, one can notice that our work
is consistent with existing values given by Giovanelli. [25]
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