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Abstract: Parkinson’s disease is one of the major neurodegenerative diseases that affects the postural
stability of patients, especially during gait initiation. There is actually an increasing demand for the
development of new non-pharmacological tools that can easily classify healthy/affected patients as
well as the degree of evolution of the disease. The experimental characterization of gait initiation
(GI) is usually done through the simultaneous acquisition of about 20 variables, resulting in very
large datasets. Dimension reduction tools are therefore suitable, considering the complexity of the
physiological processes involved. The principal Component Analysis (PCA) is very powerful at
reducing the dimensionality of large datasets and emphasizing correlations between variables. In this
paper, the Principal Component Analysis (PCA) was enhanced with bootstrapping and applied to
the study of the GI to identify the 3 majors sets of variables influencing the postural control disability
of Parkinsonian patients during GI. We show that the combination of these methods can lead to
a significant improvement in the unsupervised classification of healthy/affected patients using a
Gaussian mixture model, since it leads to a reduced confidence interval on the estimated parameters.
The benefits of this method for the identification and study of the efficiency of potential treatments is
not addressed in this paper but could be addressed in future works.

Keywords: gait initiation; Parkinson’s disease; principal component analysis; bootstrapping;
rehabilitation; unsupervised learning

1. Introduction

Epidemiological studies reported that Parkinson’s disease (PD) is the second world-
wide neurodegenerative pathology. In 2016, 6.1 million people were affected by PD [1,2]. PD
is anatomically characterized by an alteration of the basal ganglia resulting in a dopamine
deficiency clinically responsible for both cognitive and motor disorders, including postural
instability [3] and a difficulty to initiate voluntary movements such as gait [4]. In more
severe cases, the instability can lead to gait freezing or falling [5].

The heterogeneity of PD symptoms involves the fact that patients are taken in charge
through a multidisciplinary team approach combining complementary treatments [1],
typically pharmacological (Levodopa intake being the “first line” of medication [6]), neu-
rosurgical (e.g., deep brain stimulation [7]), or non-pharmacological rehabilitation treat-
ments [8–10]. However, as stressed in the literature, there is currently a need to provide
new non-pharmaceutical protocols to classify the progression of the disease and evaluate
the efficiency of these treatments [11].

Sensors 2024, 24, 1885. https://doi.org/10.3390/s24061885 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24061885
https://doi.org/10.3390/s24061885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3565-4090
https://orcid.org/0000-0003-2535-000X
https://orcid.org/0000-0002-3093-0183
https://doi.org/10.3390/s24061885
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24061885?type=check_update&version=1


Sensors 2024, 24, 1885 2 of 13

The biomechanical analysis of gait initiation (GI), which is a main issue in PD patients,
is relevant to provide information on the progression of the disease and on the efficiency
of these treatments [12]. For example, two studies have recently shown the efficiency of
non-pharmacological rehabilitation interventions on the improvement of GI in PD patients.
They were based on either acute triceps surae (TS) stretching [13] or functional electrical
stimulation bilaterally applied to tibialis anterior [14].

GI corresponds to the transient period between the quiet standing posture and steady-
state walking [15]. It is composed of two successive phases: the “postural phase”, where the
so-called “anticipatory postural adjustments” (APAs) are developed, precedes the swing
foot-off and the “step execution phase” [16]. The biomechanical characterization of GI is
usually done through the simultaneous acquisition of a compound of kinetic variables
resulting in very large datasets. A typical dataset could reach up to around 20 parameters
including [17]:

• The mediolateral (ML)/anteroposterior (AP) APA
• The center of pressure (COP) shift/velocity AP/ML
• The center of mass (COM) shift/velocity AP/ML at heel off (HO), toe off (TO) and

heel contact (HC)
• The foot-lift: time between HO and TO
• The step execution time (EXE)
• The vertical peak force at HC

Those high dimensional datasets are difficult to analyze, since the time-dependent
kinetic variables are highly correlated [18].

The principal component analysis (PCA), which is a powerful unsupervised machine
learning technique, reduces the dimensionality of large datasets while preserving the max-
imum information (variance). It is consequently able to identify the hidden correlations
between the parameters in very complex, high-dimensional datasets. The work is con-
ducted through a single computation, which is much more convenient than conducting a
classical univariate analysis [13,19]. It was applied in the clinical field to investigate the
influence of various joint pathologies such as knee osteoarthritis [20] or to characterize the
biomechanical GI differences between elderly fallers and non-fallers [21]. The ability of the
technique to accurately discriminate normal and abnormal gait was also evidenced in [22].
The PCA was also used to analyze the effect of subthalamic stimulation [23] on PD patients
or to create a model of hip and knee joint-angular velocity from limb kinematic data [24].

In theoretical statistics, the central limit theorem (CLT) states that if the sample size
is large, then the average is normally distributed. In practice, it is difficult, especially in
the medical field, to gather large enough sample data on patients to consider the CLT.
Consequently the statistical analysis is often conducted using the mean and the confidence
interval of the samples data. The bootstrapping method can be used to construct a confi-
dence interval of the mean from a very small dataset in a sense that it models the population
by resampling the sample data. This confidence interval should be smaller than the sample
one; consequently, this method could be more relevant than the traditional univariate ones.

PCA combined with bootstrapping has been successfully applied in various fields
including gene identification or the cognitive-network study with Alzheimer disease [25,26].
In the present paper, we investigate the benefits of combining PCA and bootstrapping for
the identification of biomechanical GI markers on PD patients and the development of an
efficient classification methodology of the disease status.

While in [27], PCA and classification approaches such as SVM, PNN and linear regres-
sion were applied to raw ground reaction force recordings, in this paper this method is
described for the first time on a more complete set of variables extracted from the ground
force measurement and achieving a very effective classification, using a Gaussian mixture
model, of a population of healthy and Parkinsonian patients.
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2. Methods
2.1. Principal Component Analysis and Bootstrapping

It is not the purpose of this work to delve into the details of the mathematical method,
but the basic principles are recalled here for clarity. The principal components are un-
correlated, linear combinations, from one or several variables of the initial dataset. In a
multidimensional space, they are the directions that explain the most variance; therefore,
projecting the dataset on these vectors will minimize the information loss. The correlations
between the features can also be determined by looking at the linear combination of vari-
ables within the principal components. The power of the PCA is its ability to identify, in
a large raw dataset, the parameters of interest and their correlations in a single, very fast
computation. A simple example for illustration purposes is provided in Figure 1, in which
a point cloud is located in a shallow region of the space. The dimension that explains little
variance can therefore be neglected, since it provides little information. The PCA finds the
principal components (black arrows), and the point cloud can be projected in the subspace
of the two most significant ones. PC1 is a linear combination of y-z, while PC2 is a linear
combination of x-z. y-z and x-z are, respectively, positively and negatively correlated.
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2.2. Bootstrapping

The traditional hypothesis testing uses the obtained dataset to calculate various statis-
tics, such as the mean or the standard deviation, in order to draw inferences on the
population. The central limit theorem states that if the sample size is large enough, then
the mean of a random sample from a population will distribute normally, regardless of the
underlying distribution. A minimum sample size of 30 is usually considered. Repeating
the study or having a large sample size is not always easily feasible in the medical field and
especially in GI investigation, since it is usually very difficult to gather enough patients.
In this paper, the bootstrapping procedure, which is a resampling technique with replace-
ment, was used to construct a confidence interval for the calculated mean on our small
dataset. This involves repeatedly drawing samples from our dataset in order to generate
multiple new simulated datasets of the same size as the original. Each simulated dataset
has its own properties, and calculating the mean of each would yield a distribution of the
means (Figure 2). The process can be repeated as many times as desired to obtain a robust
statistical estimation.
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Figure 2. Bootstrapping principle: statistical method that allows one to estimate the distribution of a
parameter inside the population using sampling with replacement.

In the case of a real test including 20 patients, 1000 bootstraps would be equivalent to
1000 different tests from 20 patients. Figure 3 shows how the 1000 bootstrapped means are
distributed around the one from the original sample dataset. Bootstrapping will converge
on the correct distribution with a sample size as low as 10. This method is very useful
when access is limited to a very small number of individuals inside the population. The
95% confidence interval of the means shown in Figure 3 can be easily obtained from the
covariance matrix. Very interestingly, the confidence interval of the sample mean is much
reduced compared to the one of the original samples. In Section 3, we will demonstrate
how this can be purposefully used to enhance the classification of two groups of patients
(healthy and Parkinsonian).
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2.3. Participants and Sample Collection

In this paper, a set of previously published GI kinetics data from PD patients and
a control group was purposely used [13]. Ten Parkinson-disease-affected patients were
recruited for this study. The “control group” was composed of ten healthy, community-
dwelling seniors, of the same age and walking without assistance. They were free of
any known neuromuscular disorders. In this study, they provided normative values
of dependent variables. PD patients were examined by a neuro-physiotherapist after a
12 h withdrawal from antiparkinson’s medications (here referred to as the OFF-medication
state). The examination was based on the Movement Disorder Society Clinical Diagnostic
Criteria for Parkinson’s disease [28]. PD patients had no known records of falling or
freezing. They were also physically perfectly independent and able to walk without any
assistance. The participants were required to give written informed consent after being
informed about the nature and purpose of the experiment. The protocol, in compliance
with the standards established by the Declaration of Helsinki, was previously approved
by the local ethics committee of the University of Paris-Saclay and registered under the
following trial number: 2018-A00162–53.

2.4. Experimental Task

The participants stood at first in a natural upright position on a force-plate (0.9 × 1.80 m,
AMTI, Watertown, MA, USA), which was located at the beginning of a 6 m walkway
track (Figure 4). The force-plate recorded the 3D forces and moments acting at its surface.
In the initial standing posture, the feet were positioned shoulder-width apart, the arms
rested alongside the trunk, and the gaze was directed forward to a small target at eye level
(2 cm diameter, 6 m away). The locations of the heel and big toe of each foot were marked
on the force-plate with strips of adhesive tape and were used as a visual reference on
which the participants positioned themselves after each trial under the supervision of
the experimenters.
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Figure 4. Experimental setup used for acquiring the gait initiation data on a force-plate.

Two series of ten barefoot gait initiations were performed. When instructed, they
initiated the gait, with a prior “all set” signal, at a spontaneous velocity when they felt ready.
The participants’ preferred leg was determined by lightly pushing on the participants’
backs in the initial posture, with eyes closed, to induce a step forward. The walking
movement was continued until the end of the track, and they were required to rest ~10 s
between trials.

2.5. Data Recordings of the Experimental Variables

The characteristic time-events were extracted from the biomechanical traces: GI onset
(t0), swing heel-off, swing foot-off and swing foot-contact [17] (Figure 5).
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GI is divided into APA (from t0 to HO), foot-lift (from HO to TO) and execution phase
(from TO to foot-contact (FC) [15]). APA amplitude was characterized by the maximal
mediolateral and anteroposterior COP displacement obtained during the APA time-window
and the COM velocity at swing heel-off.

In this paper, we chose to build our dataset using the following 11 experimental
variables, as they have proven to be sufficient to properly describe the GI process [17] and
can be easily derived from the force plate data:
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• The ML/AP APA (in s): APAML and APAAP
• The AP/ML COP shift (in m)
• The AP/ML COM velocity at HO, TO and HC (in m/s)
• The foot-lift time between HO and TO (in s)
• The vertical peak force at HC (in N)

The instantaneous COM acceleration was derived directly from the recorded ground
reaction forces and the application of Newton’s second law. The COM velocity was
computed by numerical integrations of the COM acceleration.

The data were acquired at a sampling rate of 500 Hz and filtered with a second-
order Butterworth low-pass filter designed with a 10 Hz cut-off frequency [29]. The data
acquisition was controlled by a custom-made program written in MatlabTM (Version 5.3
(R11), The MathWorks Inc., USA).

3. Results on the Classification of Healthy and Parkinsonian Patients

In this section, we were interested in whether the PCA enhanced with bootstrapping
could help to classify healthy and affected Parkinsonian patients. The GI dataset was run
through PCA, and the mean scores were calculated and bootstrapped 10,000 times. It was
found that the three first principal components, provided in Equation (1), explain 99.9% of
the variance, thus reducing the 11 dimensions to only 3:

PC1 = Fz
PC2 = 0.71 ∗ APAML + 0.56 ∗ APAAP − 0.41 ∗ VCGAP@HC

PC3 = 0.791 ∗ VCGAP@HC + 0.25 ∗ APAML + 0.28 ∗ APAAP + 0.27 ∗ VCGAP@HO
+0.37 ∗ VCGAP@TO

(1)

where Fz, VCGAP@HC, VCGAP@HO, VCGAP@TO, APAML and APAAP are, respectively, the peak
force at HC, the AP COM velocity at HC, HO, TO and the ML/AP APA.

The linear combinations PC1, PC2 and PC3 of those variables are consequently the
ones that retain more information from the original dataset of 11 dimensions. This is
consequently the best subspace in which to project and observe the samples.

One can note in PC2 and PC3 that the coefficients affected to APAML and APAAP are
similar; thus, APAML and APAAP could be replaced by APAMean, the mean APA time. In
the same way, VCGAP@HO and VCGAP@TO could quite logically be replaced by VCGAP@HO
only, since there is not much difference between the COM velocity of HO and TO. The main
variables allowing one to classify the two different groups are consequently the peak force
at HC, the AP COM velocity at HO and HC, as well as the mean APA.

The principal components can therefore be simplified as follows:

PC1 = Fz
PC2 ≈ APAmean − 0.41 ∗ VCGAP@HC

PC3 ≈ 0.791 ∗ VCGAP@HC + 0.5 ∗ APAmean + 0.64 ∗ VCGAP@HO

(2)

In Figure 6, 10,000 bootstrapped means for both the control group and the PD patients
are plotted in the 3D subspace of the first three principal components. The two 3D point
clouds appear well separated, but in order to better visualize the cluster separation, Figure 7
shows the projections on the 2D subspaces PC1/PC2 and PC2/PC3.
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Parkinsonian patients in (top) the PC1/PC2 subspace and (bottom) the PC2/PC3 subspace. The
ellipses (-) represent the 95% confidence intervals.

In Figure 6, the clusters corresponding to the healthy and Parkinsonian patients can
be clearly visually discriminated. In order to quantify their degree of separation, the
Jaccard similarity coefficient, which provides a robust measure for assessing the degree of
overlap and commonality within distinct datasets, was calculated. Specifically designed
for finite sample sets, this coefficient calculates the similarity between two datasets A and
B by determining the ratio of the size of the intersection to the size of the union of the
sample sets:

J(A, B) =
|A ∩ B|
|A ∪ B| (3)

The Jaccard similarity coefficient J(A, B) can thus be regarded as the probability of
picking an element present in both sets.

In the PC1/PC2 and the PC2/PC3 subspaces, the Jaccard coefficients were, respec-
tively, 10.9% and 11.2%. This result emphasizes the ability of the PCA combined with
bootstrapping to accurately identify and differentiate two clusters corresponding to a
healthy and a Parkinsonian population. The addition of bootstrapping to PCA significantly
enhances the selectivity of the method, since, as shown in Figure 3, the 95% confidence
interval of the data samples alone would be much larger than the one of the bootstrapped
means, resulting in a higher overlap and Jaccard coefficients.

4. Unsupervised Clustering Using Gaussian Mixture Model

In this section, we show how by using unsupervised clustering on the results presented
in Section 3, one can classify the status of a patient without any prior knowledge of
their status. Unsupervised clustering is a powerful tool for analyzing complex datasets
without the need for labeled information and for grouping the data points into clusters
based on their similarity. The Gaussian Mixture Model (GMM), which is an expectation-
Maximization algorithm, assumes that the data points are a combination of several Gaussian
normal distributions. It can be regarded as a generalized version of the classical K-Means
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algorithm, taking into account the covariance of the data and enabling a more flexible and
nuanced representation of cluster boundaries.

The rich statistical framework of GMM-based clustering and its inherent ability to
capture the uncertainty in data is particularly useful for tasks such as anomaly detection and
is particularly well-suited for modeling complex datasets with overlapping or irregularly
shaped clusters.

Since in our case the bootstrapped means fit a Gaussian distribution, this approach
is perfectly suited to our datasets. In Figure 8, the GMM clustering was applied to 20,000
bootstrapped means of healthy and Parkinsonian patients in the PC1/PC2 and PC2/PC3
subspaces to see how the means were classified. The algorithm very satisfyingly manages
to classify healthy and Parkinsonian patients without prior knowledge of their state, as
shown by the confusion matrix shown in Tables 1 and 2. Parkinsonian patients are properly
classified with an accuracy of 98% in both subspaces.
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Table 1. Confusion matrix used for classification in the PC1/PC2 subspace using a GMM.

Healthy Parkinsonian

Healthy 89.8%
True healthy

10.2%
False Parkinsonian

Parkinsonian 1.9%
False healthy

98.1%
True Parkinsonian

Table 2. Confusion matrix used for classification in the PC2/PC3 subspace using a GMM.

Healthy Parkinsonian

Healthy 92%
True healthy

8%
False Parkinsonian

Parkinsonian 2.5%
False healthy

97.5%
True Parkinsonian

5. Conclusions

Considering the complexity of the GI characterization and the need to develop new
non-pharmacological tools to classify patients and evaluate the progression of the disease,
e.g., [13,17], in this paper we studied the ability of the Principal Component Analysis (PCA)
enhanced with bootstrapping to reduce the dimensionality of the dataset, with the aim to
classify patients using a Gaussian Mixture Model (GMM). The PCA is a statistical tool that
has been shown to be efficient in reducing the dimensionality of datasets [30]. It can rapidly
identify the major linear combinations of variables influencing the studied phenomenon.
While in [27] PCA and a few classification approaches were tested successfully, they were
only applied to raw ground reaction force recordings. In this paper, the results emphasized
that three majors sets composed of linear combinations of the peak force at HC, the AP
COM velocity at HO and HC, as well as the mean APA are sufficient to classify the
status of a patient. The bootstrapping, which consists in resampling the dataset with a
replacement, applied to the mean of the PCA scores, was shown to estimate much narrower
confidence intervals, thus resulting in an enhanced separation of the clusters. Finally, the
GMM was shown to be an efficient clustering method, using only two of the three first
principal components.

It is worth noting that in Parkinson’s disease, the evolution of the symptoms, their
nature (e.g., some patients show a freezing behavior during gait initiation, while others
do not), the age at which they first appear (Parkinson’s disease generally begins at the age
of 60 years but might occasionally begin before 50 years and even at the age of 25 years),
etc. are highly variable between patients, which makes this disease unique and difficult to
diagnose [31]. The present study shows that this methodology comes in handy for clinicians
by allowing them to estimate a sampling variability and thus better take into consideration
the heterogeneity between patients. Such heterogeneity could not be addressed in previous
researches focusing on the biomechanical organization of gait initiation in patients with
Parkinson’s disease, as only univariate analyses were carried out, e.g., [32–35]. The gait
initiation analysis proposed in the present study is thus very likely more relevant and
robust for detecting Parkinson’s disease than the latter analyses. It is believed that it
might beneficially be extended to the detection of other neurological diseases with postural
impairments, such as multiple sclerosis, stroke, cerebral palsy, etc.

In conclusion, the application of the proposed unsupervised learning methods offers a
new insight into the analysis of gait kinetics and the efficiency of non-drug interventions for
physical medicine and rehabilitation clinicians as well as biomedical engineers. The blind
identification on a large dataset of unsorted variables of the main parameters evolving with
the disease could help physicians assess the way the status of a patient is evolving and
could help engineers develop new follow-up tools.
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