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ABSTRACT 
Design space exploration during conceptual design is an 

active research field. Most approaches generate a number of 

feasible design points (complying with the constraints) and 

apply graphical post-processing to visualize correlations 

between variables, the Pareto frontier or a preference structure 

among the design solutions. The generation of feasible design 

points is often a statistical (Monte Carlo) generation of 

potential candidates sampled within initial variable domains, 

followed by a verification of constraint satisfaction, which may 

become inefficient if the design problem is highly constrained 

since a majority of candidates that are generated do not belong 

to the (small) feasible solution space. In this paper, we propose 

to perform a preliminary analysis with Constraint Programming 

techniques that are based on interval arithmetic to dramatically 

prune the solution space before using statistical (Monte Carlo) 

methods to generate candidates in the design space. This 

method requires that the constraints are expressed in an 

analytical form. A case study involving truss design under 

uncertainty is presented to demonstrate that the computation 

time for generating a given number of feasible design points is 

greatly improved using the proposed method. The integration of 

both techniques provides a flexible mechanism to take 

successive design refinements into account within a dynamic 

process of design under uncertainty. 

 

Keywords: constraint programming, Monte Carlo simulation, 

interval analysis, uncertainty, design space exploration. 

 

INTRODUCTION 
A design concept may be considered or defined (in a 

somewhat restrictive manner) as a parameterized model that 

links a set of design parameters or variables (referred to as 

DVs) to a set of performance variables (referred to as PVs). 

Consequently, a design concept does not refer to a unique 

design solution but to a set of potential design solutions. Being 

able to characterize the ability of a design concept to meet a set 

of requirements is referred to as set-based design [1-3]. Set-

based design opposes point-to-point design, i.e., the traditional 

trial-and-error process of dimensioning a design concept. Set-

based design facilitates concurrent engineering and increases 

the quality of a design while lowering the number of design 

iterations. One can also refer to design under uncertainty where 

the challenge is to be able to look ahead at the properties of the 

subset of design points depending on a given design concept to 

ensure that a design satisfies the constraints and performance 

requirements. This process of assessing the potential of a design 

concept to meet the functional requirements frequently consists 

of an exploration of the solution space, i.e., the space of 

feasible design points pertaining to solutions that satisfy the 

current constraints.  

Figure 1 summarizes the issue of concept dimensioning. 

Starting with functional requirements, FRs, a design concept is 

synthesized or proposed. This concept is structurally defined by 

a number of design variables (DVs) that may be relatively 

constrained (e.g., geometrically). For a given set of DV values, 

current values of performance variables (PVs) can be calculated 

(in case of explicit models of performances) or estimated 

(through expertise or real and/or virtual metamodeling, see for 

example Ref. [4]). In the traditional trial-and-error design 

process, current performance values are compared to expected 

performance values, called functional requirements (FRs). This 

comparison first checks that performance values fit within 

allowable bounds, which is the process of determining if the 

studied design point is a feasible one and if it lies within the 

solution space. A second outcome of this comparison is to 

determine if the studied design point is an optimal Pareto 

solution and/or to estimate its overall utility through a user-

specified preference aggregation model. 
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Figure 1. The dimensioning process for a design concept 

 

Very simple tools can be used to explore the variability of 

the dimensioning of a given concept. Simpson has proposed a 

number of graphical user interfaces for dimensioning design 

concepts. For instance, an I-beam dimensioning example from 

Ref. [5] is shown in Figure 2. The graphical user interface 

allows designers to propose and manipulate values for the DVs 

using slider bars, and the corresponding performance 

parameters are plotted in the 2D window. The design solutions 

represented in the performance space can be flagged a 

posteriori as feasible or infeasible, depending on the current DV 

values that satisfy the allowable bounds or the constraints on 

the I-beam’s design (see Figure 2); see Ref. [5] for more details. 

 

 

Figure 2. Interface for dimensioning an I-beam [5] 

 

More evolved design space exploration tools exist, such as 

the ARL Trade Space Visualizer (ATSV), see Ref. [6]. After 

generating a set of design solutions using either Monte Carlo 

simulation or more rigorous Design of Experiments (DoE) 

techniques, the solutions are automatically displayed within the 

ATSV (see Figure 3). The selection of feasible design solutions 

is automated since solutions that do not a posteriori respect all 

of the constraints can be eliminated from the solution space for 

further exploration. Numerous graphical post-processing tools 

are available in the ATSV to better understand the solution 

space: abstracting more than 3 dimensions into a 3D 

representation using colors, point shapes, textures to emulate 

extra dimensions, etc. (see Figure 3), finding Pareto optimal 

solutions, and representing the preference of design solutions. 

 

Figure 3. A graphical representation of the solution space in 

ARL Trade Space Visualizer [6] 

 

Another interesting design space exploration mechanism 

exists in Ref. [7] which allows designers to explore a set of 

statistical runs by capturing the correlations between the design 

(parameters & performance)-value-tuples through sub-windows 

of interest on domains (see Figure 4). Both types of solution 

space explorers [6,7] require a minimal number of feasible 

design points and benefit from homogeneous point densities. 

The more constrained the design concept, however, the smaller 

the solution space will be and the less likely one is to generate a 

good set of feasible design points from the initial DV ranges. 

 

 

Figure 4. Performance (left) and parameter (right) 

histograms [7] 

 

In the next section, the principles of Constraint 

Programming (CP) computation and of its coupling with design 

point generation are presented, provided that the constraints are 

expressed in an analytical form. Then, a case study involving 

dimensioning of a truss is given: the design constraints are 

provided and different stages of CP computation are explained. 

In next section, different strategies for generating feasible 

design points are considered depending on the use of a more or 

less sophisticated result from the CP computation. Finally, the 

conclusions highlight how this integration is well suited to a 

refinement process when designing under uncertainty. 
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USING A PRIMARY CONSTRAINT PROGRAMMING 
COMPUTATION 

With Constraint Programming (CP) over reals, uncertain 

performance and design variables are modeled as intervals of 

allowable values. These constrained variables may be equated 

to uniform distributions of values. CP techniques consist of 

sophisticated evolutions of interval analysis or interval 

arithmetics (see Ref. [8]) applied on a set of analytical 

constraints. Starting from a set of initial domains for the 

constrained variables and from a set of mathematical 

constraints linking the variables, different CP consistency or 

filtering techniques (such as Hull, Box, weak-3B or 3B, see 

Refs. [9-11]) try to contract as much as their consistency degree 

allows the variable domains so as to eliminate infeasible values. 

This domain contraction stage is called the filtering stage. One 

tries to result in the most tightened Cartesian product of 

intervals, ensuring at any moment that any feasible solution is 

kept inside. This last important property refers to the 

completeness property and guarantees that the contraction 

process results in an outer design space approximation. This 

phenomenon is illustrated in Figure 5 through the two-way 

propagation of uncertainty reduction: from DVs to PVs 

(analysis direction) and from PVs to DVs (synthesis direction). 
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Figure 5. The dimensioning issue for a design concept from 

a Constraint Programming perspective 

 

In the second stage, the mechanism of domain splitting 

(bisection for instance) is recursively applied in parallel with 

the filtering mechanism. A search tree is built until a stopping 

criterion (e.g., width of the domains, number of solutions) is 

reached. This branch-and-prune algorithm allows pruning out 

large parts of the design space whenever a domain is found to 

be empty. At the end of the process, the design space is 

approximated by a number of elementary Cartesian products of 

small intervals, denoted as boxes. The resulting hull of boxes 

provides the designer with valuable information about the 

potential values remaining for any design variable at this stage.  

Finally, a graphical representation of this collection of n-

dimensional boxes (n being the number of constrained design 

variables) is easy and convenient for obtaining good pictures of 

the resulting design space. The design space can be represented 

by its two or three-dimensional projections on pairs or triplets 

of design variables (see Ref. [12]).  

Table 1 illustrates the four outer approximations of the 

design space that we further consider when generating feasible 

design points, namely,  

- The initial domains; 

- The filtered domains after the uncertainty reduction 

propagation has been made for the first time; 

- The hull of boxes, i.e., the projection on variable domains 

of the collection of boxes that have not been considered 

inconsistent after the domain splitting process (with no 

guarantee of any actual solution inside); and 

- The collection of boxes itself. 

It is obvious that, in considering the outer approximations 

in that order, the finer the approximation, the faster a 

subsequent generation of feasible design points (represented in 

red inside the curved-bean-shaped design space). This relates to 

the efficiency of the global process, which is discussed later. 

A detailed description of CP consistency techniques, of the 

branch-and-prune algorithm, and of its tuning is beyond the 

scope of this paper. We refer the reader to a previous paper that 

contains these details (see Ref. [13]). Let us simply mention 

that in this paper: 

- We have used the CP platform RealPaver (see Ref. [10]), 

developed by the IRIN Computer Science Department of 

the Nantes (France) University. 

- CP computations are performed using the weak-3B 

consistency technique that has been proven in Ref. [13] to 

be an efficient and convenient technique for mechanical 

design problems.  

- The 3D representations of design spaces have been made 

with the tool Universal Solution Viewer (USV) [14]. 
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Table 1. The four outer approximations of the design space 

(red curved bean) considered in this study 

 

Initial 

domain 

 

Filtered 

domains 

 

Hull of 

boxes (after 

domain 

splitting ) 

 

Collection of 

boxes 

 

 

A TRUSS DIMENSIONING DESIGN EXAMPLE 
 

Definition of the problem 
Our case study consists of dimensioning the two members 

of the truss structure shown in Figure 6. This problem was 

originally proposed by Wood, et al. [15] to compute imprecise 

performance parameters from imprecise design parameters via 

fuzzy techniques. This example has also been used by Scott, et 

al. [16] in a different parameterized form to select an optimal 

Pareto solution that could not be selected via a linear 

aggregation function using importance weights. For this 

example, we use the exact parameterization and initial design 

variable ranges of the truss structure described by Wood, et al. 

[15], but we have chosen the more complex design constraints 

and performance parameters used by Scott, et al. [16]. 

E 

B 
D 

L 

C 

A 

L/3 

W 

E 
w 

t 

Cross section E-E 

60° 

 

Figure 6. The parameterization of the truss structure 

 

The requirement is to design a mechanical structure 

supporting an overhanging vertical load at a distance L from the 

wall with a minimal mass. One possible configuration (see 

Figure 6) consists in a two-member pin-jointed bracket with a 

horizontal member (CD) and a compression member (AB) 

attached to the wall at an angle of sixty degrees. The common 

pin is located at two thirds of L from the wall. Both members 

have rectangular cross sections: wABt for (AB) and wCDt for 

(CD), w standing for width and t for thickness. Additional 

design decisions have been made: the material of both members 

is steel, and we impose wCD = wAB - 0.025. The designer has to 

make decisions for the values of the following design variables: 

t, wAB and L. Moreover, the specification of the overhanging 

load W is imprecise, varying from 15-20 kN; consequently, W 

is treated as a fourth design variable.  

The two mechanical constraints to satisfy are: 

- the maximum bending stress, b, in member (CD) must be 

less than or equal to the allowable bending limit, r (here 

225 MPa for steel). 

- the compression force FAB in member (AB) must be less 

then or equal to the buckling limit Fb. 

The maximum bending stress, b, is located at point B (see the 

bending moment diagram in Figure 7) and is given by the 

following formulas involving WCD, the weight of member (CD): 
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The compression force in member (AB) is given by the 

following formulas involving WAB, the weight of member (AB): 
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Figure 7. The bending moment in the truss 

 

The buckling limit in member (AB) is given as: 
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The performance variables are the mass M of the structure 

(to be minimized) and the safety factor, s, i.e., the amount of 

over-dimensioning beyond the satisfaction of the two 

mechanical constraints. The mass M is given by: 

 

CDAB WWM +=    (4) 

 

The safety factor of the truss structure s is the minimum 

between the safety factor below the allowable bending limit, b, 

namely, s, and the safety factor below the buckling limit, Fb, 

namely, sF, which is expressed as: 
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F
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The two mechanical constraints may be merely expressed 

by: 1,1  Fss  or simply by the single constraint: 

 

  1s              (6) 

Modeling the Constraint Programming problem 
To define a Constraint Programming problem, the initial 

domains (ranges) of the performance and design variables must 

be defined; Table 2 summarizes these for this example. The 

design variables domains are those defined by Wood, et al. [15]. 

In fixing the lower bound of the safety factors s, sF and s to 1, 

the mechanical constraints are taken into account. The lower 

bound of mass is simply set to 0 with no further information. 

 

Table 2. Initial ranges of design and performance variables 
 

Design variables Performance 

variables 
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An important rule in the modeling of a CP problem is that 

intermediary variables that designers are not interested in must 

be eliminated from the set of constraints so as not to consider 

those variables in the design space and to get the best domain 

contraction for the actual design and performance variables. 

This is why: 

- Variables WAB, WCD, wCD, Fb and LAB must be replaced by 

their expressions in t, wAB, L and W in the constraints. 

- Variables s and sF must not be considered as performance 

variables in which the designer is interested, and they must 

not be bisected during the splitting process. A special 

mechanism exists in RealPaver [10] for hiding such 

variables in the enumerated boxes. When these variables 

are defined as functions of other variables, it symbolically 

replaces internal occurrences of the variables by their 

expressions, even though the initial domains may be 

defined on them. The intermediary variables to be hidden 

are preceded by a $ sign in Eq. (7). 

- In addition, the number of occurrences of the same variable 

must be minimized as much as possible to avoid the 

dependency problem (see Ref. [11]). The dependency 

problem occurs due to the fact that a variable occurrence is 

suddenly replaced by its current domain during the solution 

process. Subsequently, the multiple occurrences of a given 

variable within a given constraint and even between 

different constraints are decorrelated. This decorrelation 

results in relaxed constraints and then in larger domains. 

This is why it is often necessary to reformulate constraints 

by decreasing the number of occurrences of the same 

variable by appropriate factorization strategies (see Ref. 

[17]). The choice of the weak-3B-consistency global 

consistency technique (as opposed to local consistency 

techniques like hull or box) partly overcomes this problem 

(see Refs. [13] and [18]). 
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The design scenario 

After considering the sole constraint 1s , and starting 

from initial domains of Table 2, the first filtering stage followed 

by the domain splitting stage into 1000 boxes has led to the first 

collection of boxes and hull of boxes visible in the first row of 

Table 3 (Case #1). This first CP computation already leads to 

noticeable domain reduction. M is ensured to stand between 

2077.9 and 6300.9 N, the safety factor is already guaranteed to 

be lower than 2.567, and the lower bounds of t and wAB have 

been tightened. The shape of the design space (using 3D box 

projections of {t, wAV, L}, {L, W, M}, and {W, M, s}) confirms 

some intuitive trends: the greater the supported weight W or the 

structure length L, the greater the structure mass M and the 

lower the safety factor. However, the fact that there seems to 

exist a given safety factor for which the mass M is the greatest 

is not so intuitive and reveals that simultaneously minimizing 

M and maximizing s is a difficult task (see Ref. [16]). 

If the designer notes that there is a sufficient degree of 

freedom for further constraint on the design, then the 

specifications on M and s can be strengthened. Increasing the 

lower bound of the safety factor to 1.5, given that the safety 

factor is close to 1, is risky; therefore, let us impose 3200M  

on the structure mass to control it better. After recomputation, 

the design space has been dramatically reduced. As a first 

consequence, the length L can no longer be 4 m; it is limited to 

3.15 m. The safety factor domain is importantly tightened, and 

s is guaranteed to be lower than 1.664. The smallest mass M is 

now 2926.5 N. The domains of wAB and W are also tightened 

considerably. The designer is now informed that the 

overhanging load can no longer be greater than 16638 N. It has 

been useful to keep variability on the specified load since this 

flexibility has been used to find a better design.  

IMPROVED STRATEGIES FOR GENERATING 
FEASIBLE DESIGN POINTS 

We would like to globally measure the efficiency of a CP 

computation of an outer approximate design space in the 

generation of a given number of feasible design spaces in two 

cases: 

- The case of a “not so constrained” design problem, which 

means that the initial domain is not large compared to the 

effective solution space. This is the situation of Case #1 of 

the specification constraints on the truss structure. 

- The case of a “highly constrained” design problem, which 

means that the initial domains are much larger than the 

actual solution space. This is the case of Case #2 of the 

specification constraints on the truss structure. 

 

Four strategies are considered for generating design points 

when assuming uniform distributions on design variables {t, 

wAB, L, W}: 

- From initial domains (see Table 2). This amounts to a 

priori totally ignoring the location of feasible design 

points. 

- From the hull of boxes of Case #1 (see Table 3). This hull 

of boxes is a first outer approximation of the design space 

corresponding to the constrained system: 1s . 

- From the hull of boxes of Case #2 (see Table 3). This hull 

of boxes is a first outer approximation of the design space 

corresponding to the highly constrained system: 

3200,5.1  Ms . 

- From the collection of boxes of Case #2 (see Table 3). This 

corresponds to a second finer outer approximation of the 

constrained system: 3200,5.1  Ms . 

 

This last generation strategy was required to implement a 

specific algorithm. The collection of boxes issued from the CP 

computation will be disjointed by construction (see Figure 8 for 

a textual representation). The first operation consists of 

projecting this collection of boxes over the subspace of design 

variables {t, wAB, L, W}. Next, for all of the remaining boxes, 

the volume is computed. In considering the total volume and 

the approximate total number of generated design points (here 

100,000 trials are expected), an approximate number of trials is 

calculated for each remaining box in proportion of its volume. 

Finally, this calculated number of trials is sampled within the 

considered remaining box to ensure a constant density of 

generated design points in the subspace of design variables {t, 

wAB, L, W}. 
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Table 3. CP computation of the truss structure - considering two series of specification constraints 

 

Specification 

Constraints 
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Figure 8. Textual representation of a collection of boxes 

 

Table 4 provides the ratios of design points that have been 

detected as feasible, i.e., respecting the specification constraints 

in Case #1 and Case #2. The results confirm our expectations.  

For the “not so constrained” design problem (Case #1), the 

initial ratio of feasible design points to total number of points 

generated is satisfactory with 15% because the design space is 

still large relatively to the initial domains, and many design 

points directly fall within the design space. When considering a 

better outer approximation of the design space with the hull of 

boxes of Case #1, this ratio is significantly increased to 33%. 

For the “highly constrained” design problem (Case #2), the 

ratio of feasible design points is dramatically low since only 4 

trials over 100,000 were respecting the specifications of Case 

#2 when starting from the initial domains. Indeed, the design 

space is much narrower, compared to the initial domains, due to 

strong constraints (see Table 3). This ratio reaches 1.7% when 

the design points are generated from the hull of boxes of Case 

#2. This low score compared to Case #1 (33%) means that 

many Cartesian products within the hull domains are not valid, 

and consequently that the design space is less complicated. 

Finally, this latter ratio is improved by a factor of 5 to reach 

9.5% when the design points are generated from the collection 

of boxes finely approximating the design space. This final score 

is satisfactory since Case #2 represents a difficult case. 

Theoretically, this last ratio could reach 100% provided that: 

- The filtering technique is highly consistent (a technique is 

highly consistent at the condition that any box containing 

no design point is detected inconsistent and ruled out from 

the list of solution boxes); and 

- The domain splitting is infinitely fine. 

For example, this ratio of 9.5% would be improved by 

adopting a 3B-consistency filtering technique instead of a 

weak-3B-consistency technique (see Ref. [13] for a comparison 

of techniques’ efficiency) and in enumerating 2000 boxes 

instead of 1000 boxes. However, the computation time for CP 

would increase needlessly because of a posteriori constraint 

checking from worse design point generation would be more 

time-saving.  

The computation time for generating the feasible design 

points mentioned in table 1 is the sum of: 
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- time t1 for the constraint programming computation which 

varies here from 49 to 70 seconds (not applicable to 

column #1 of table 1), 

- time t2 for the Monte-Carlo generation of 100,000 design 

points within allowable interval bounds and for the later 

corresponding constraint checking. Here, we have 

considered in a first approximation that an elementary 

constraint checking was constant in time, independently of 

the feasibility/infeasibility of the design point, leading to 

an approximate 3600 seconds in all cases (for 100,000 

trials). 

 

The extra time for the MC generation of design points from 

the collection of boxes turned out to be negligible in 

comparison with the later constraint checking. Finally, the 

efficiency of the different cases must be compared for a given 

number of feasible design points found and an efficiency 

indicator may be defined by: 

 

 

21

pointsdesignfeasibleofNumber

tt
Efficiency

+
=     (8) 

For the “not so constrained” design problem (Case #1), our 

method speeds up the generation of feasible design points by a 

factor of 2. But, For the “highly constrained” design problem 

(Case #2), our method speeds up the generation of feasible 

design points by a factor of 2300. 

 

 

Table 4. Ratios of feasible design points from 4 Monte Carlo generation strategies (over 100,000 trials) 

  Initial domains 
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1s  

  

 
14.97% (14,969 feasible) 

t2=3600s 
4.16 feasible points / s 

 
33.30% (33,300 feasible) 

t1=49s, t2=3600s 
9.13 feasible points / s 

  

C
a
se

#
2

  

3200

5.1





M

s
 

 
0.00% (4 feasible) 

t2=3600s 
0.0011 feasible points / s 

 
0.01% (12 feasible) 

t1=70s, t2=3600s 
0.0033 feasible points / s 

 
1.70% (1703 feasible) 

t1=59s, t2=3600s 
0.47 feasible points / s 

 
9.47% (9471 feas.) 

t1=59s, t2=3600s 
2.59 feasible points / s 

 

CONCLUSIONS 
The exploration of design concepts is a fundamental aspect 

of engineering design. Most of the time, it consists of sampling 

design points within initial domains of design variables. Next, 

these design points are detected as feasible whenever the 

constraints are checked, but in the case where the design 

problem is very constrained and where the designer has no idea 

of the size, shape, and/or location of the design space (in lieu of 

feasible design points), the ratio of the number of feasible 

design points generated to the total number of points generated 

can be close to 0. In the case where explicit constraints are 

available, Constraint Programming techniques may be used to 

proceed to a first computation of an outer approximation of the 

design space as a collection of disjointed boxes. We have 

shown that this first computation allows us to focus on the 

location of the design space for a targeted sampling of design 

points, which are much more likely to be feasible. A specific 

sampling algorithm has been developed from the result of a CP 

computation. Satisfactory results have been obtained for an 

example involving the design of a truss structure.  

We believe that this mechanism of integrating a Constraint 

Programming computation and a Monte Carlo simulation of 

design points is particularly advantageous in the case of 

successive strengthened constraints and successive zooms on 

the design space. This integration could also be a means to 

frame the frontier of the design space: externally by CP and 

internally by feasible design points (see Figure 9). Future work 

will consider larger problems to identify the trade-off between 

computation time and problem size that most likely exists.  

 

Figure 9. Framing of the frontier of design space 
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