
HAL Id: hal-04506462
https://hal.science/hal-04506462

Submitted on 15 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster Generation of Feasible Design Points
Bernard Yannou, Faysal Moreno, Henri Thevenot, Timothy Simpson

To cite this version:
Bernard Yannou, Faysal Moreno, Henri Thevenot, Timothy Simpson. Faster Generation of Feasi-
ble Design Points. ASME 2005 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, Sep 2005, Long Beach, France. pp.355-363,
�10.1115/DETC2005-85449�. �hal-04506462�

https://hal.science/hal-04506462
https://hal.archives-ouvertes.fr

 1

 Proceedings of IDETC’05:
ASME International 2005 Design Engineering Technical Conferences

& Computers and Information in Engineering Conferences
September 24 – 28, 2005, Long Beach, California

FASTER GENERATION OF FEASIBLE DESIGN POINTS

Bernard Yannou*
Faysal Moreno

Ecole Centrale Paris

Laboratoire Génie Industriel
Grande Voie des Vignes

92295, Châtenay-Malabry, France
bernard.yannou@ecp.fr; faysal.moreno@lgi.ecp.fr

Henri J. Thevenot
Timothy W. Simpson

Industrial Manufacturing and

Mechanical & Nuclear Engineering
The Pennsylvania State University

University Park, PA 16802 USA
henri@psu.edu; tws8@psu.edu

* Please address all correspondences to this author.

ABSTRACT
Design space exploration during conceptual design is an

active research field. Most approaches generate a number of

feasible design points (complying with the constraints) and

apply graphical post-processing to visualize correlations

between variables, the Pareto frontier or a preference structure

among the design solutions. The generation of feasible design

points is often a statistical (Monte Carlo) generation of

potential candidates sampled within initial variable domains,

followed by a verification of constraint satisfaction, which may

become inefficient if the design problem is highly constrained

since a majority of candidates that are generated do not belong

to the (small) feasible solution space. In this paper, we propose

to perform a preliminary analysis with Constraint Programming

techniques that are based on interval arithmetic to dramatically

prune the solution space before using statistical (Monte Carlo)

methods to generate candidates in the design space. This

method requires that the constraints are expressed in an

analytical form. A case study involving truss design under

uncertainty is presented to demonstrate that the computation

time for generating a given number of feasible design points is

greatly improved using the proposed method. The integration of

both techniques provides a flexible mechanism to take

successive design refinements into account within a dynamic

process of design under uncertainty.

Keywords: constraint programming, Monte Carlo simulation,

interval analysis, uncertainty, design space exploration.

INTRODUCTION
A design concept may be considered or defined (in a

somewhat restrictive manner) as a parameterized model that

links a set of design parameters or variables (referred to as

DVs) to a set of performance variables (referred to as PVs).

Consequently, a design concept does not refer to a unique

design solution but to a set of potential design solutions. Being

able to characterize the ability of a design concept to meet a set

of requirements is referred to as set-based design [1-3]. Set-

based design opposes point-to-point design, i.e., the traditional

trial-and-error process of dimensioning a design concept. Set-

based design facilitates concurrent engineering and increases

the quality of a design while lowering the number of design

iterations. One can also refer to design under uncertainty where

the challenge is to be able to look ahead at the properties of the

subset of design points depending on a given design concept to

ensure that a design satisfies the constraints and performance

requirements. This process of assessing the potential of a design

concept to meet the functional requirements frequently consists

of an exploration of the solution space, i.e., the space of

feasible design points pertaining to solutions that satisfy the

current constraints.

Figure 1 summarizes the issue of concept dimensioning.

Starting with functional requirements, FRs, a design concept is

synthesized or proposed. This concept is structurally defined by

a number of design variables (DVs) that may be relatively

constrained (e.g., geometrically). For a given set of DV values,

current values of performance variables (PVs) can be calculated

(in case of explicit models of performances) or estimated

(through expertise or real and/or virtual metamodeling, see for

example Ref. [4]). In the traditional trial-and-error design

process, current performance values are compared to expected

performance values, called functional requirements (FRs). This

comparison first checks that performance values fit within

allowable bounds, which is the process of determining if the

studied design point is a feasible one and if it lies within the

solution space. A second outcome of this comparison is to

determine if the studied design point is an optimal Pareto

solution and/or to estimate its overall utility through a user-

specified preference aggregation model.

mailto:faysal.moreno@lgi.ecp.fr
mailto:henri@psu.edu
mailto:Tws8@psu.edu

 2

Design Variables
(DVs)

Functional
Requirements

(FRs)

Performance
Variables

(PVs)

Specification
constraints

Performance
constraints

Engineering
(geometrical and

process) constraints

Synthesis

Design Variables
(DVs)

Functional
Requirements

(FRs)

Performance
Variables

(PVs)

Specification
constraints

Performance
constraints

Engineering
(geometrical and

process) constraints

Synthesis

Figure 1. The dimensioning process for a design concept

Very simple tools can be used to explore the variability of

the dimensioning of a given concept. Simpson has proposed a

number of graphical user interfaces for dimensioning design

concepts. For instance, an I-beam dimensioning example from

Ref. [5] is shown in Figure 2. The graphical user interface

allows designers to propose and manipulate values for the DVs

using slider bars, and the corresponding performance

parameters are plotted in the 2D window. The design solutions

represented in the performance space can be flagged a

posteriori as feasible or infeasible, depending on the current DV

values that satisfy the allowable bounds or the constraints on

the I-beam’s design (see Figure 2); see Ref. [5] for more details.

Figure 2. Interface for dimensioning an I-beam [5]

More evolved design space exploration tools exist, such as

the ARL Trade Space Visualizer (ATSV), see Ref. [6]. After

generating a set of design solutions using either Monte Carlo

simulation or more rigorous Design of Experiments (DoE)

techniques, the solutions are automatically displayed within the

ATSV (see Figure 3). The selection of feasible design solutions

is automated since solutions that do not a posteriori respect all

of the constraints can be eliminated from the solution space for

further exploration. Numerous graphical post-processing tools

are available in the ATSV to better understand the solution

space: abstracting more than 3 dimensions into a 3D

representation using colors, point shapes, textures to emulate

extra dimensions, etc. (see Figure 3), finding Pareto optimal

solutions, and representing the preference of design solutions.

Figure 3. A graphical representation of the solution space in

ARL Trade Space Visualizer [6]

Another interesting design space exploration mechanism

exists in Ref. [7] which allows designers to explore a set of

statistical runs by capturing the correlations between the design

(parameters & performance)-value-tuples through sub-windows

of interest on domains (see Figure 4). Both types of solution

space explorers [6,7] require a minimal number of feasible

design points and benefit from homogeneous point densities.

The more constrained the design concept, however, the smaller

the solution space will be and the less likely one is to generate a

good set of feasible design points from the initial DV ranges.

Figure 4. Performance (left) and parameter (right)

histograms [7]

In the next section, the principles of Constraint

Programming (CP) computation and of its coupling with design

point generation are presented, provided that the constraints are

expressed in an analytical form. Then, a case study involving

dimensioning of a truss is given: the design constraints are

provided and different stages of CP computation are explained.

In next section, different strategies for generating feasible

design points are considered depending on the use of a more or

less sophisticated result from the CP computation. Finally, the

conclusions highlight how this integration is well suited to a

refinement process when designing under uncertainty.

 3

USING A PRIMARY CONSTRAINT PROGRAMMING
COMPUTATION

With Constraint Programming (CP) over reals, uncertain

performance and design variables are modeled as intervals of

allowable values. These constrained variables may be equated

to uniform distributions of values. CP techniques consist of

sophisticated evolutions of interval analysis or interval

arithmetics (see Ref. [8]) applied on a set of analytical

constraints. Starting from a set of initial domains for the

constrained variables and from a set of mathematical

constraints linking the variables, different CP consistency or

filtering techniques (such as Hull, Box, weak-3B or 3B, see

Refs. [9-11]) try to contract as much as their consistency degree

allows the variable domains so as to eliminate infeasible values.

This domain contraction stage is called the filtering stage. One

tries to result in the most tightened Cartesian product of

intervals, ensuring at any moment that any feasible solution is

kept inside. This last important property refers to the

completeness property and guarantees that the contraction

process results in an outer design space approximation. This

phenomenon is illustrated in Figure 5 through the two-way

propagation of uncertainty reduction: from DVs to PVs

(analysis direction) and from PVs to DVs (synthesis direction).

DVs

FRs PVs

Specification
constraints

Performance
Constraints

Engineering
(geometrical and process)

constraints

x

Initial domains

Narrowed domains

x

Initial domains

Narrowed domains

x

Initial domains

Narrowed domains

Synthesis

DVs

FRs PVs

Specification
constraints

Performance
Constraints

Engineering
(geometrical and process)

constraints

x

Initial domains

Narrowed domains

x

Initial domains

Narrowed domains

x

Initial domains

Narrowed domains

Synthesis

Figure 5. The dimensioning issue for a design concept from

a Constraint Programming perspective

In the second stage, the mechanism of domain splitting

(bisection for instance) is recursively applied in parallel with

the filtering mechanism. A search tree is built until a stopping

criterion (e.g., width of the domains, number of solutions) is

reached. This branch-and-prune algorithm allows pruning out

large parts of the design space whenever a domain is found to

be empty. At the end of the process, the design space is

approximated by a number of elementary Cartesian products of

small intervals, denoted as boxes. The resulting hull of boxes

provides the designer with valuable information about the

potential values remaining for any design variable at this stage.

Finally, a graphical representation of this collection of n-

dimensional boxes (n being the number of constrained design

variables) is easy and convenient for obtaining good pictures of

the resulting design space. The design space can be represented

by its two or three-dimensional projections on pairs or triplets

of design variables (see Ref. [12]).

Table 1 illustrates the four outer approximations of the

design space that we further consider when generating feasible

design points, namely,

- The initial domains;

- The filtered domains after the uncertainty reduction

propagation has been made for the first time;

- The hull of boxes, i.e., the projection on variable domains

of the collection of boxes that have not been considered

inconsistent after the domain splitting process (with no

guarantee of any actual solution inside); and

- The collection of boxes itself.

It is obvious that, in considering the outer approximations

in that order, the finer the approximation, the faster a

subsequent generation of feasible design points (represented in

red inside the curved-bean-shaped design space). This relates to

the efficiency of the global process, which is discussed later.

A detailed description of CP consistency techniques, of the

branch-and-prune algorithm, and of its tuning is beyond the

scope of this paper. We refer the reader to a previous paper that

contains these details (see Ref. [13]). Let us simply mention

that in this paper:

- We have used the CP platform RealPaver (see Ref. [10]),

developed by the IRIN Computer Science Department of

the Nantes (France) University.

- CP computations are performed using the weak-3B

consistency technique that has been proven in Ref. [13] to

be an efficient and convenient technique for mechanical

design problems.

- The 3D representations of design spaces have been made

with the tool Universal Solution Viewer (USV) [14].

 4

Table 1. The four outer approximations of the design space

(red curved bean) considered in this study

Initial

domain

Filtered

domains

Hull of

boxes (after

domain

splitting)

Collection of

boxes

A TRUSS DIMENSIONING DESIGN EXAMPLE

Definition of the problem
Our case study consists of dimensioning the two members

of the truss structure shown in Figure 6. This problem was

originally proposed by Wood, et al. [15] to compute imprecise

performance parameters from imprecise design parameters via

fuzzy techniques. This example has also been used by Scott, et

al. [16] in a different parameterized form to select an optimal

Pareto solution that could not be selected via a linear

aggregation function using importance weights. For this

example, we use the exact parameterization and initial design

variable ranges of the truss structure described by Wood, et al.

[15], but we have chosen the more complex design constraints

and performance parameters used by Scott, et al. [16].

E

B
D

L

C

A

L/3

W

E
w

t

Cross section E-E

60°

Figure 6. The parameterization of the truss structure

The requirement is to design a mechanical structure

supporting an overhanging vertical load at a distance L from the

wall with a minimal mass. One possible configuration (see

Figure 6) consists in a two-member pin-jointed bracket with a

horizontal member (CD) and a compression member (AB)

attached to the wall at an angle of sixty degrees. The common

pin is located at two thirds of L from the wall. Both members

have rectangular cross sections: wABt for (AB) and wCDt for

(CD), w standing for width and t for thickness. Additional

design decisions have been made: the material of both members

is steel, and we impose wCD = wAB - 0.025. The designer has to

make decisions for the values of the following design variables:

t, wAB and L. Moreover, the specification of the overhanging

load W is imprecise, varying from 15-20 kN; consequently, W

is treated as a fourth design variable.

The two mechanical constraints to satisfy are:

- the maximum bending stress, b, in member (CD) must be

less than or equal to the allowable bending limit, r (here

225 MPa for steel).

- the compression force FAB in member (AB) must be less

then or equal to the buckling limit Fb.

The maximum bending stress, b, is located at point B (see the

bending moment diagram in Figure 7) and is given by the

following formulas involving WCD, the weight of member (CD):

 5





−=

=








+

=
025.0

 with
6

2

2

ABCD

CDCD

CD

CD

b
ww

tLgwW

tw

W
WL


 (1)

The compression force in member (AB) is given by the

following formulas involving WAB, the weight of member (AB):

LLtLgwW

W
W

WW
WF

ABABABAB

CDABCD
AB

9

34
 and with

22

3

3232

9
22

==

















++

















++=



 (2)

Figure 7. The bending moment in the truss

The buckling limit in member (AB) is given as:

2

3

2 64

²9²

L

tEw

L

EI
F AB

AB

AB
b


== (3)

The performance variables are the mass M of the structure

(to be minimized) and the safety factor, s, i.e., the amount of

over-dimensioning beyond the satisfaction of the two

mechanical constraints. The mass M is given by:

CDAB WWM += (4)

The safety factor of the truss structure s is the minimum

between the safety factor below the allowable bending limit, b,

namely, s, and the safety factor below the buckling limit, Fb,

namely, sF, which is expressed as:

()F

AB

b
F

b

r sss
F

F
ss ,min,, 




=== (5)

The two mechanical constraints may be merely expressed

by: 1,1  Fss or simply by the single constraint:

 1s (6)

Modeling the Constraint Programming problem
To define a Constraint Programming problem, the initial

domains (ranges) of the performance and design variables must

be defined; Table 2 summarizes these for this example. The

design variables domains are those defined by Wood, et al. [15].

In fixing the lower bound of the safety factors s, sF and s to 1,

the mechanical constraints are taken into account. The lower

bound of mass is simply set to 0 with no further information.

Table 2. Initial ranges of design and performance variables

Design variables Performance

variables

Constants

 
 

 
 0000215000,

43,

0.130.04,

0.100.04,









W

L

w

t

AB

 
 
 

 +

+

+

+

1,

1,

1,

,0

s

s

s

M

F



Pa

smg

mkg

PaE

r

6

2

3

9

10225

81.9

7830

10207

=

=

=

=





An important rule in the modeling of a CP problem is that

intermediary variables that designers are not interested in must

be eliminated from the set of constraints so as not to consider

those variables in the design space and to get the best domain

contraction for the actual design and performance variables.

This is why:

- Variables WAB, WCD, wCD, Fb and LAB must be replaced by

their expressions in t, wAB, L and W in the constraints.

- Variables s and sF must not be considered as performance

variables in which the designer is interested, and they must

not be bisected during the splitting process. A special

mechanism exists in RealPaver [10] for hiding such

variables in the enumerated boxes. When these variables

are defined as functions of other variables, it symbolically

replaces internal occurrences of the variables by their

expressions, even though the initial domains may be

defined on them. The intermediary variables to be hidden

are preceded by a $ sign in Eq. (7).

- In addition, the number of occurrences of the same variable

must be minimized as much as possible to avoid the

dependency problem (see Ref. [11]). The dependency

problem occurs due to the fact that a variable occurrence is

suddenly replaced by its current domain during the solution

process. Subsequently, the multiple occurrences of a given

variable within a given constraint and even between

different constraints are decorrelated. This decorrelation

results in relaxed constraints and then in larger domains.

This is why it is often necessary to reformulate constraints

by decreasing the number of occurrences of the same

variable by appropriate factorization strategies (see Ref.

[17]). The choice of the weak-3B-consistency global

consistency technique (as opposed to local consistency

techniques like hull or box) partly overcomes this problem

(see Refs. [13] and [18]).

 6

Finally, the constrained problem is entirely expressed by

the four following constraints:

()

()

()

()





















=














−













+=









−++

























−







++










=









−+

−
=

F

AB

ABAB

AB

F

AB

ABr

sss

wgtLM

wgtLWwgtLW

L

tEw

s

wgtLWL

tw
s

$,$min

025.0
9

34
1

025.0
2

1
025.0

39

8
1

2

1
3

32

²3

$

025.0
6

1
2

025.0
$

22

2

3

2















 (7)

The design scenario

After considering the sole constraint 1s , and starting

from initial domains of Table 2, the first filtering stage followed

by the domain splitting stage into 1000 boxes has led to the first

collection of boxes and hull of boxes visible in the first row of

Table 3 (Case #1). This first CP computation already leads to

noticeable domain reduction. M is ensured to stand between

2077.9 and 6300.9 N, the safety factor is already guaranteed to

be lower than 2.567, and the lower bounds of t and wAB have

been tightened. The shape of the design space (using 3D box

projections of {t, wAV, L}, {L, W, M}, and {W, M, s}) confirms

some intuitive trends: the greater the supported weight W or the

structure length L, the greater the structure mass M and the

lower the safety factor. However, the fact that there seems to

exist a given safety factor for which the mass M is the greatest

is not so intuitive and reveals that simultaneously minimizing

M and maximizing s is a difficult task (see Ref. [16]).

If the designer notes that there is a sufficient degree of

freedom for further constraint on the design, then the

specifications on M and s can be strengthened. Increasing the

lower bound of the safety factor to 1.5, given that the safety

factor is close to 1, is risky; therefore, let us impose 3200M

on the structure mass to control it better. After recomputation,

the design space has been dramatically reduced. As a first

consequence, the length L can no longer be 4 m; it is limited to

3.15 m. The safety factor domain is importantly tightened, and

s is guaranteed to be lower than 1.664. The smallest mass M is

now 2926.5 N. The domains of wAB and W are also tightened

considerably. The designer is now informed that the

overhanging load can no longer be greater than 16638 N. It has

been useful to keep variability on the specified load since this

flexibility has been used to find a better design.

IMPROVED STRATEGIES FOR GENERATING
FEASIBLE DESIGN POINTS

We would like to globally measure the efficiency of a CP

computation of an outer approximate design space in the

generation of a given number of feasible design spaces in two

cases:

- The case of a “not so constrained” design problem, which

means that the initial domain is not large compared to the

effective solution space. This is the situation of Case #1 of

the specification constraints on the truss structure.

- The case of a “highly constrained” design problem, which

means that the initial domains are much larger than the

actual solution space. This is the case of Case #2 of the

specification constraints on the truss structure.

Four strategies are considered for generating design points

when assuming uniform distributions on design variables {t,

wAB, L, W}:

- From initial domains (see Table 2). This amounts to a

priori totally ignoring the location of feasible design

points.

- From the hull of boxes of Case #1 (see Table 3). This hull

of boxes is a first outer approximation of the design space

corresponding to the constrained system: 1s .

- From the hull of boxes of Case #2 (see Table 3). This hull

of boxes is a first outer approximation of the design space

corresponding to the highly constrained system:

3200,5.1  Ms .

- From the collection of boxes of Case #2 (see Table 3). This

corresponds to a second finer outer approximation of the

constrained system: 3200,5.1  Ms .

This last generation strategy was required to implement a

specific algorithm. The collection of boxes issued from the CP

computation will be disjointed by construction (see Figure 8 for

a textual representation). The first operation consists of

projecting this collection of boxes over the subspace of design

variables {t, wAB, L, W}. Next, for all of the remaining boxes,

the volume is computed. In considering the total volume and

the approximate total number of generated design points (here

100,000 trials are expected), an approximate number of trials is

calculated for each remaining box in proportion of its volume.

Finally, this calculated number of trials is sampled within the

considered remaining box to ensure a constant density of

generated design points in the subspace of design variables {t,

wAB, L, W}.

 7

Table 3. CP computation of the truss structure - considering two series of specification constraints

Specification

Constraints

 Lwt AB,, projection  MWL ,, projection  sMW ,, projection Hull of boxes

Case #1

1s

 
 

 
 

 
 567.21,

9.30062077.9,

0000215000,

43,

0.130.0654,

0.10.0621,













s

M

W

L

w

t

AB

Case #2

3200

5.1





M

s

 
 

 
 

 
 664.11.5,

32002926.5,

1663815000,

150.33,

0.10260.0859,

0.10.0887,













s

M

W

L

w

t

AB

Figure 8. Textual representation of a collection of boxes

Table 4 provides the ratios of design points that have been

detected as feasible, i.e., respecting the specification constraints

in Case #1 and Case #2. The results confirm our expectations.

For the “not so constrained” design problem (Case #1), the

initial ratio of feasible design points to total number of points

generated is satisfactory with 15% because the design space is

still large relatively to the initial domains, and many design

points directly fall within the design space. When considering a

better outer approximation of the design space with the hull of

boxes of Case #1, this ratio is significantly increased to 33%.

For the “highly constrained” design problem (Case #2), the

ratio of feasible design points is dramatically low since only 4

trials over 100,000 were respecting the specifications of Case

#2 when starting from the initial domains. Indeed, the design

space is much narrower, compared to the initial domains, due to

strong constraints (see Table 3). This ratio reaches 1.7% when

the design points are generated from the hull of boxes of Case

#2. This low score compared to Case #1 (33%) means that

many Cartesian products within the hull domains are not valid,

and consequently that the design space is less complicated.

Finally, this latter ratio is improved by a factor of 5 to reach

9.5% when the design points are generated from the collection

of boxes finely approximating the design space. This final score

is satisfactory since Case #2 represents a difficult case.

Theoretically, this last ratio could reach 100% provided that:

- The filtering technique is highly consistent (a technique is

highly consistent at the condition that any box containing

no design point is detected inconsistent and ruled out from

the list of solution boxes); and

- The domain splitting is infinitely fine.

For example, this ratio of 9.5% would be improved by

adopting a 3B-consistency filtering technique instead of a

weak-3B-consistency technique (see Ref. [13] for a comparison

of techniques’ efficiency) and in enumerating 2000 boxes

instead of 1000 boxes. However, the computation time for CP

would increase needlessly because of a posteriori constraint

checking from worse design point generation would be more

time-saving.

The computation time for generating the feasible design

points mentioned in table 1 is the sum of:

 8

- time t1 for the constraint programming computation which

varies here from 49 to 70 seconds (not applicable to

column #1 of table 1),

- time t2 for the Monte-Carlo generation of 100,000 design

points within allowable interval bounds and for the later

corresponding constraint checking. Here, we have

considered in a first approximation that an elementary

constraint checking was constant in time, independently of

the feasibility/infeasibility of the design point, leading to

an approximate 3600 seconds in all cases (for 100,000

trials).

The extra time for the MC generation of design points from

the collection of boxes turned out to be negligible in

comparison with the later constraint checking. Finally, the

efficiency of the different cases must be compared for a given

number of feasible design points found and an efficiency

indicator may be defined by:

21

pointsdesignfeasibleofNumber

tt
Efficiency

+
= (8)

For the “not so constrained” design problem (Case #1), our

method speeds up the generation of feasible design points by a

factor of 2. But, For the “highly constrained” design problem

(Case #2), our method speeds up the generation of feasible

design points by a factor of 2300.

Table 4. Ratios of feasible design points from 4 Monte Carlo generation strategies (over 100,000 trials)

 Initial domains

 
 

 
 0000215000,

43,

0.130.04,

0.100.04,









W

L

w

t

AB

Hull of boxes Case#1

 
 

 
 0000215000,

43,

0.130.0654,

0.10.0621,









W

L

w

t

AB

Hull of boxes Case#2

 
 

 
 1663815000,

150.33,

0.10260.0859,

0.10.0887,









W

L

w

t

AB

Collection of

boxes Case#2

C
a
se

#
1

1s

14.97% (14,969 feasible)

t2=3600s
4.16 feasible points / s

33.30% (33,300 feasible)

t1=49s, t2=3600s
9.13 feasible points / s

C
a
se

#
2

3200

5.1





M

s

0.00% (4 feasible)

t2=3600s
0.0011 feasible points / s

0.01% (12 feasible)

t1=70s, t2=3600s
0.0033 feasible points / s

1.70% (1703 feasible)

t1=59s, t2=3600s
0.47 feasible points / s

9.47% (9471 feas.)

t1=59s, t2=3600s
2.59 feasible points / s

CONCLUSIONS
The exploration of design concepts is a fundamental aspect

of engineering design. Most of the time, it consists of sampling

design points within initial domains of design variables. Next,

these design points are detected as feasible whenever the

constraints are checked, but in the case where the design

problem is very constrained and where the designer has no idea

of the size, shape, and/or location of the design space (in lieu of

feasible design points), the ratio of the number of feasible

design points generated to the total number of points generated

can be close to 0. In the case where explicit constraints are

available, Constraint Programming techniques may be used to

proceed to a first computation of an outer approximation of the

design space as a collection of disjointed boxes. We have

shown that this first computation allows us to focus on the

location of the design space for a targeted sampling of design

points, which are much more likely to be feasible. A specific

sampling algorithm has been developed from the result of a CP

computation. Satisfactory results have been obtained for an

example involving the design of a truss structure.

We believe that this mechanism of integrating a Constraint

Programming computation and a Monte Carlo simulation of

design points is particularly advantageous in the case of

successive strengthened constraints and successive zooms on

the design space. This integration could also be a means to

frame the frontier of the design space: externally by CP and

internally by feasible design points (see Figure 9). Future work

will consider larger problems to identify the trade-off between

computation time and problem size that most likely exists.

Figure 9. Framing of the frontier of design space

 9

REFERENCES

[1] Finch W.W., 1999, "Set-Based Models of Product Platform

Design and Manufacturing Processes", Proc. DETC'99:

ASME 1999 Design Engineering Technical Conference, Las

Vegas, NV, USA, Paper No. DETC99/DTM-8763.

[2] Finch W.W., Ward A.C., 1997, "A Set-Based System for

Eliminating Infeasible Designs in Engineering Problems

Dominated by Uncertainty", Proc. DETC'97: ASME /

Design Engineering Technical Conference, Sacramento,

CA, USA, Paper No. DETC97/DTM-3886.

[3] Ward A.C., Liker J.K., Sobek D.K., Cristiano J.J., 1994,

"Set-Based Concurrent Engineering and Toyota", Proc.

DETC'94: ASME / Design Engineering Technical

Conference, Sacramento, CA, USA, pp. 79-90.

[4] Qian Z., Seepersad C.C., Joseph V.R., Jeff Wu, C. F., Allen

J.K., 2004, "Building Surrogate Models based on Detailed

and Approximate Simulations", Proc. DETC/DAC: ASME

Design Engineering Technical Conferences / Design

Automation Conference, Salt Lake City, UT, USA, Paper

No. DETC2004/57486.

[5] Barron K., Simpson T.W., Rothrock L., Frecker M., Barton

R., Ligetti C., 2004, "Graphical User Interfaces for

Engineering Design: Impact of Response Delay and

Training on User Performance", Proc. DETC/DTM: ASME

Design Engineering Technical Conferences / Design

Theories and Methodologies, Salt Lake City, UT, USA,

Paper No. DETC2004/DTM-57085.

[6] Stump G., Yukish M.A., Simpson T.W., 2004, "The ARL

Trade Space Visualizer: An Engineering Decision-Making

Tool", 10th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, AIAA, AIAA-2004-4568.

[7] Tweedie L., Spence R., Dawkes H., Su H., 1996,

"Externalising Abstract Mathematical Models", Proc.

Conference on Human Factors in Computing Systems, April

13-18, 1996, Vancouver, British Columbia, Canada.

[8] Moore R.E., 1979, Methods and Applications of Interval

Analysis, SIAM Studies in Applied Mathematics, SIAM,

Philadelphia, PA, USA.

[9] Benhamou F., Goualard F., Granvilliers L., Puget J.-F.,

1999, "Revising Hull and Box Consistency", in Proc. of

ICLP'99, The MIT Press, Las Cruces, NM, USA.

[10] Granvilliers L., 2002, "RealPaver User's Manual (V0.2),

http://www.sciences.univ-

nantes.fr/info/perso/permanents/

granvil/realpaver/main.html, Nantes University, Lab of

Computer Science IRIN, France.

[11] Granvilliers L., Benhamou F., Huens E., 2001,

"Constraint Propagation (Chapter 5)", in COCONUT

Deliverable D1 - Algorithms for Solving Nonlinear

Constrained and Optimization Problems: The State of the

Art, The Coconut Project, pp. 113-149.

[12] Sam J., 1995, "Constraint Consistency Techniques for

Continuous Domains", Ph.D. Thesis number 1423, Ecole

Polytechnique Fédérale de Lausanne, EPFL, France.

[13] Yannou B., Harmel G., 2004, "A Comparative Study of

Constraint Programming Techniques over Intervals in

Preliminary Design", Proc. DETC/DAC: ASME Design

Engineering Technical Conferences / Design Automation

Conference, Salt Lake City, UT, USA, Paper No.

DETC2004/57152.

[14] Christie M., 2002, "Universal Solution Viewer, USV:

User Manual", IRIN Lab, Nantes University, France.

[15] Wood K.L., Antonsson E.K., Beck J.L., 1989,

"Computations with Imprecise Parameters in Engineering

Design: Background and Theory", ASME Journal of

Mechanisms, Transmissions and Automation in Design,

111(4), pp. 616-625.

[16] Scott M.J., Antonsson E.K., 2000, "Using Indifference

Points in Engineering Decisions", Proc. Of the

ASME/DETC2000/DTM, Baltimore, MD, USA, Paper No.

DETC2000/DTM-14559.

[17] Ceberio M., Granvilliers L., 2000, "Solving Nonlinear

Systems by Constraint Inversion and Interval Arithmetic",

Proc. AISC'2000: 5th International Conference on

Artificial Intelligence and Symbolic Computation,

Madrid, Spain, pp. 127-141.

[18] Lhomme O., Gotlieb A., Rueher M., Taillibert P., 1996,

"Boosting the Interval Narrowing Algorithm", Proc.

ICLP, MIT Press, Cambridge, MA, USA.

