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Abstract In a real Hilbert space domain setting, we study the convergence properties of the
stochastic Ravine accelerated gradient method for convex differentiable optimization. We con-
sider the general form of this algorithm where the extrapolation coefficients can vary with each
iteration, and where the evaluation of the gradient is subject to random errors. This general
treatment models a breadth of practical algorithms and numerical implementations. We show
that, under a proper tuning of the extrapolation parameters, and when the error variance associ-
ated with the gradient evaluations or the step-size sequences vanish sufficiently fast, the Ravine
method provides fast convergence of the values both in expectation and almost surely. We also
improve the convergence rates from O(·) to o(·) in expectation and almost sure sense. Moreover,
we show almost sure summability property of the gradients, which implies the fast convergence
of the gradients towards zero. This property reflects the fact that the high-resolution ODE of the
Ravine method includes a Hessian-driven damping term. When the space is also separable, our
analysis allows to establish almost sure weak convergence of the sequence of iterates provided by
the algorithm. We finally specialize the analysis to consider different parameter choices, includ-
ing vanishing and constant (heavy ball method with friction) damping parameter, and present a
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comprehensive landscape of the tradeoffs in speed and accuracy associated with these parameter
choices and statistical properties on the sequence of errors in the gradient computations. We
provide a thorough discussion of the similarities and differences with the Nesterov accelerated
gradient which satisfies similar asymptotic convergence rates.

Keywords Ravine method · Nesterov accelerated gradient method · general extrapolation
coefficient · stochastic errors · Hessian driven damping · convergence rates · Lyapunov analysis

Mathematics Subject Classification (2020) 37N40 · 46N10 · 49M30 · 65B99 · 65K05 ·
65K10 · 90B50 · 90C25

1 Introduction

Given a real Hilbert space H, our work concerns is concerned with fast numerical resolution of
the convex minimization problem

min {f(x) : x ∈ H} , (P)

where we make the following standing assumptions:{
f : H → R is differentiable, ∇f is L− Lipschitz continuous, S = argmin f ̸= ∅.

(sk)k∈N is a positive sequence with skL ∈]0, 1].
(H)

To solve (P), we consider the Ravine Accelerated Gradient algorithm ((RAG)γk
for short),

which generates iterates (yk, wk)k∈N satisfyingwk = yk − sk∇f(yk)

yk+1 = wk + γk (wk − wk−1) .
((RAG)γk

)

Let us indicate the role of the different parameters involved in the above algorithm:

a) The positive parameter sequence (sk)k∈N is the step-size sequence applied to the gradient
based update.

b) The non-negative extrapolation coefficients (γk)k∈N are linked to the inertial character of the
algorithm. They can be viewed as control parameters for optimization purposes.

c) In order to inform about the practical performance of algorithms realizing this method in
common applications, we will analyze the convergence properties when the gradient terms
are calculated with stochastic errors. Formally, we consider ∇f(yk)+ ek instead of ∇f(yk) in
(RAG)γk

where ek is a zero-mean stochastic noise term.

One of the motivations for this additive perturbation model comes comes from stochastic
optimization problems of the form

f(x) =

∫
Ξ

F (x, ξ)dµ(ξ) := E [F (x, ξ)] , F : H×Ξ → R (1)

where (Ξ,F , µ) is a probability space, F (x, ·) is µ-integrable for any x ∈ H, and F (·, ξ) ∈ C1(H)
for any ξ. Problem (1) is very popular in many applications including machine learning and
signal processing. As computing ∇f(x) is computationally very expensive or even impossible,
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the popular alternative is to draw m independent samples of ξ, say (ξi)1≤i≤m, and compute the
empirical average estimate

∇̂f(x) =
1

m

m∑
i=1

∇F (x, ξi). (2)

The stochastic error at iteration k of an algorithm based on the first-order information ∇f(xk)

is then ek = ∇f(xk)− ∇̂f(xk). Observe that conditioned on xk, and by independent sampling,
ek has indeed zero-mean and variance that scales as O(1/m). Thus, to make this variance verify
appropriate summability assumptions in k, that will be made clear in our analysis, one has to
take m depend on k such that it increases fast enough.

1.1 Historical aspects

The Ravine method was introduced by Gelfand and Tsetlin [19] in 1961 in the case of a fixed
positive extrapolation coefficient γk ≡ γ > 0. This method mimics the flow of water in the
mountains which first flows rapidly downhill through small, steep ravines and then flows along
the main river in the valley, hence its name. A geometric view of the Ravine Accelerated Gradient
method is given in Figure 1.

•

•

•

•

•

yk−1

yk

wk−1 = yk−1 − s∇f(yk−1)

wk = yk − s∇f(yk)

yk+1 = wk + s (wk − wk−1)

S = argmin f

Fig. 1 (RAG): Ravine Accelerated Gradient method

The Ravine method was a precursor of the accelerated gradient methods. It has long been
ignored but has recently appeared at the forefront of current research in numerical optimization,
see for example Polyak [34], Attouch and Fadili [10], Shi, Du, Jordan and Su [38]. It comes
naturally into the picture when considering the optimized first-order methods for smooth convex
minimization, see [16,24,32].

When γk = 1 − α
k , which, for α ≥ 3, the Ravine method is also closely related with the

Nesterov accelerated gradient method [31,30], with which it has often been confused. In fact, the
Ravine and Nesterov acceleration methods are both based on the operations of extrapolation and
gradient descent, but in a reverse order. Furthermore, up to a slight change in the extrapolation
coefficients, the two algorithms are associated with the same equations, each of them describing
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the evolution of different variables, explaining how the two methods have been casually confused
in some of the literature.

However, recent research concerning the understanding of accelerated first-order optimization
methods, seen as temporal discretized dynamic systems, has made it possible to clarify the link
between these two methods; see the recent work by some of the authors in [10,1]. In particular,
these works have shown that while both algorithms share the same low-resolution ODE (i.e.
of order 0 in the step-size), their super-resolution ODEs (i.e. of order 2 in the step-size) are
fundamentally distinct. This was also confirmed by numerical experiments. This link will be
further investigated for the discrete algorithms in Section 2.

1.2 Inertial stochastic gradient algorithms

Due to the importance of the subject in optimization, several works have been devoted to the
study of perturbations in second-order dissipative inertial systems and in the corresponding first
order algorithms (aka momentum methods). For deterministic perturbations, the subject was
first considered for the case of a fixed viscous damping (aka heavy ball method with friction [33,
35]) in [9,22], then for the accelerated gradient method of Nesterov, and of the corresponding
inertial dynamics with vanishing viscous damping, see [6,8,13,37,40].

Stochastic gradient descent methods with inertia are widely used in applications and at the
core of optimization subroutines in many applications such as machine learning. Such algorithms
are the subject of an active research work to understand their convergence behaviour and were
studied in several works, focusing exclusively on stochastic versions of Nesterov’s method and
the heavy ball method; see [26,28,17,20,21,23,3,2,41,18,29,25,27,14,15].

1.3 Contributions

In this work, we propose and analyse both the stochastic Nesterov and Ravine methods with
general extrapolation coefficient γk for solving infinite-dimensional optimization problems of the
form (P) in a real separable Hilbertian setting. In addition to the fact that this has not been
done in the literature before–and in fact not for the Nesterov method as well, we are motivated
by understanding the role of extrapolation on the convergence and stability properties of inertial
systems. As we will explain in more detail later, not only taking a general coefficient γk gives a
broad picture of the convergence properties of this class of algorithms, but also reveals the precise
role of γk for balancing the trade-off between stability and fast convergence. Our contributions
are the following:

• Comprehensive convergence analysis for the Stochastic Ravine method with gen-
eral extrapolation parameters: we provide a unified analysis of the convergence properties
of the Ravine method subject to noise in the gradient computation over a large class of the
extrapolation sequence parameter. Previous analyses studied the setting of Nesterov’s method
where γk = 1− α

k . While we take inspiration from the work of [6] in the deterministic case, the
extension from deterministic to stochastic errors requires a careful and comprehensive analysis.

• Complexity estimates in expectation and almost sure sense: we will establish fast
convergence rates in expectation and in almost sure sense on the objective values (both in
O(·) and o(·)) and on the gradient.

• Weak convergence guarantees for the iterate sequence: we will prove that the sequence
of iterates provided by the Ravine method converges weakly almost surely to a random variable
valued in the set of minimizers.
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• The discovery of what the influence of the extrapolation parameter is on the
convergence properties.: our results will highlight the trade-off between the decrease of the
error variance and fast convergence of the values and gradients. In particular, some choices of
the extrapolation parameter (and step-size sequences) will entail less stringent summability
conditions on the error variance for convergence, but will result in slower a convergence rate,
and vice-versa. We will see that a specific parametrization of the extrapolation parameters
provides fast convergence properties of the Ravine algorithm resembling those of the Nesterov
method. Moreover, our results show the flexibility of the method, the results being unchanged
taking for example γk = k

k+α instead of γk = 1 − α
k , as two of the many variations of the

method.

1.4 Relation to prior work

We are not aware of any such a work for inertial algorithms (neither Nesterov nor Ravine) with
general extrapolation coefficients applied to an infinite dimensional domain. Our complexity
results are valid in expectation and almost surely. While the former is the standard in the
literature, the latter is much less common, and the analysis less straightforward. Our results
in expectation also cover some of those obtained by the works reviewed above (see the list in
Section 1.2) as special cases when the extrapolation coefficients are those proposed by Nesterov
(i.e., γk = 1− α

k ) and the heavy ball method (γk constant). In fact, even for these special cases, we
complement the results of the literature with new ones. The almost sure weak convergence of the
iterates is generally overlooked by most existing works (see Section 1.2) which focus exclusively
on complexity estimates (except for the simple case of strongly convex objective functions).

1.5 A model result

Taking γk = 1 − α
k yields optimal convergence rate of the values and fast convergence of the

gradients towards zero. Specifically, let the sequence (yk)k∈N generated by the stochastic Ravine
method with constant step-sizewk = yk − s(∇f(yk) + ek)

yk+1 = wk +
(
1− α

k

)
(wk − wk−1) ,

where s ∈]0, 1/L], (ek)k∈N is a zero-mean stochastic noise. Let Fk be the sub-σ-algebra generated

by y0 and (wi)i≤k−1. If α > 3, E [ek | Fk] = 0 and
∑+∞

k=1 kE
[
∥ek|∥2 | Fk

]1/2
< +∞ almost surely,

then according to Theorem 3.2 and 3.3, the following convergence properties hold:

f(yk)−min
H

f = o

(
1

k2

)
and

∑
k

k2∥∇f(yk)∥2 < +∞ almost surely.

In addition, if H is also separable1, then the sequence (yk)k∈N converges weakly almost surely
to a random variable valued in argmin(f). Our results in Section 4 will be established for a
much larger lass of the extrapolation sequence beyond 1 − α/k. In particular, these results will
emphasize the trade-off between the decrease of the error variance and fast convergence of the
values and gradients.

1 Separability is crucial for proving almost sure weak convergence of the sequence of iterates.
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1.6 Contents

In Section 2, we start by making the link between the Ravine and the Nesterov method. This is
instrumental because it makes it possible to transfer some known results of the Nesterov method.
Section 3 is devoted to the study of the convergence properties of the stochastic Ravine method,
with as an important result the fast convergence in mean of the gradients towards zero. Section 4
contains illustration and discussion of our results for various special choices of the extrapolation
sequence γk. Finally we provide some conclusions.

2 Comparison of the Nesterov and Ravine methods

Let us first recall some basic facts concerning the Nesterov method.

2.1 Nesterov accelerated gradient method

The Nesterov Accelerated Gradient (NAG for short) method with general extrapolation coeffi-
cients (αk)k∈N, as studied in [6], reads{

yk = xk + αk(xk − xk−1)

xk+1 = yk − sk∇f(yk).
((NAG)αk

)

Its central role in optimization is due to the fact that a wise choice of the coefficients (αk)k∈N
provides an optimal convergence rate of the values (in the worst case).

Specifically, taking αk = 1 − α
k gives a scheme which, for α ≥ 3, generates iterates (xk)k∈N

satisfying

f(xk)−min
H

f = O
(

1

k2

)
as k → +∞, (3)

and the fast convergence towards zero of the gradients (see [10])∑
k

k2∥∇f(xk)∥2 < +∞.

In addition, when α > 3,

f(xk)−min
H

f = o

(
1

k2

)
as k → +∞,

∑
k

k(f(xk)−min
H

f) < +∞ (4)

and there is weak convergence of the iterates (xk)k∈N to optimal solutions, see [8,4,5,12,39].

2.2 Passing from Nesterov method to Ravine method and vice versa

To avoid confusion between the two algorithms (RAG)γk
and (NAG)αk

, we use the subscript γk
for the extrapolation coefficient in the Ravine method, and αk for the extrapolation coefficient
in the Nesterov method. A remarkable fact is that the variable yk which enters the definition
of (NAG)αk

follows the (RAG)γk
algorithm, with γk = αk+1. This generalizes the observation

already made in [10] for the specific choice αk = 1 − α
k . Although this is an elementary result,

we give a detailed account of it in the following theorem, due to its importance.
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Theorem 2.1 (i) Let (xk)k∈N be the sequence generated by the Nesterov algorithm (NAG)αk
.

Then the associated sequence (yk)k∈N also follows the equations of the Ravine algorithm
(RAG)γk

with γk = αk+1

(ii) Conversely, if (yk)k∈N is the sequence associated to the Ravine method (RAG)γk
, then the

sequence (xk)k∈N defined by xk+1 := yk−sk∇f(yk) follows the Nesterov algorithm (NAG)αk

with αk = γk−1.

Proof (i) Suppose that (xk)k∈N follows (NAG)αk
. According to the definition of yk

yk+1 = xk+1 + αk+1(xk+1 − xk)

= yk − sk∇f(yk) + αk+1

(
yk − sk∇f(yk)− (yk−1 − sk−1∇f(yk−1))

)
.

Set wk := yk − sk∇f(yk) (which is nothing but xk+1). We obtain that (yk)k∈N follows
(RAG)αk+1

, i.e.

(RAG)αk+1

wk = yk − sk∇f(yk)

yk+1 = wk + αk+1 (wk − wk−1) .

(ii) Conversely, suppose that (yk)k∈N follows the Ravine method (RAG)γk
. According to the

definition of yk+1 and wk, we have

yk+1 = yk − sk∇f(yk) + γk

(
yk − sk∇f(yk)− (yk−1 − sk−1∇f(yk−1))

)
.

By definition of xk+1 = yk − sk∇f(yk), we deduce that

yk+1 = xk+1 + γk (xk+1 − xk) .

Equivalently
yk = xk + γk−1 (xk − xk−1) .

Putting together the above relations and the definition of xk+1, we obtain that (xk)k∈N
follows (NAG)γk−1

, i.e.

(NAG)γk−1

{
yk = xk + γk−1(xk − xk−1)

xk+1 = yk − sk∇f(yk).

This completes the proof. ⊓⊔

Though the two methods are intimately linked as we have just seen, it is only recent advances
in the dynamical system interpretation of the two methods that revealed their close relationship
and also their differences. This is explained in the next section, where we consider the case of
the Ravine method with general extrapolation coefficients, hence generalizing the work of [10]
beyond the case αk = 1− α/k.

3 Convergence properties of the stochastic Ravine method

In this section, we analyze the convergence properties of the Ravine method with stochastic
errors in the evaluation of the gradients. We first examine the fast convergence of the values and
the convergence of iterates, then we show the fast convergence of the gradients towards zero. This
section considers the algorithmic and stochastic version of the results obtained by the authors
for the corresponding continuous dynamical systems with deterministic errors [11].
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3.1 Values convergence rates and convergence of the iterates

We first start by proving the results for the Nesterov method before transferring them to the
Ravine method thanks to Theorem 2.1. In [6], the Nesterov accelerated gradient method with
a general extrapolation coefficient αk and deterministic terms was studied. Here, we consider a
stochastic version which reads for k ≥ 1yk = xk + αk(xk − xk−1)

xk+1 = yk − sk(∇f(yk) + ek)
((SNAG)αk

)

where sk ∈]0, 1/L] is a sequence of step-sizes, (ek)k∈N is a sequence of H-valued random variables.
(SNAG)αk

is initialized with x0 = x1, where x0 a H-valued, squared integrable random variable.
Taking the objective function f ≡ 0 and ek ≡ 0 in (SNAG)αk

already reveals insights for
choosing the best parameters. In this case, the algorithm (SNAG)αk

becomes xk+1−xk−αk(xk−
xk−1) = 0. This implies that for every k ≥ 1,

xk = x1 +

k−1∑
i=1

i∏
j=1

αj

 (x1 − x0).

Therefore, (xk)k∈N converges if and only if
∑+∞

i=1

∏i
j=1 αj < +∞. We are naturally led to intro-

duce the sequence (tk)k∈N defined by

tk := 1 +

+∞∑
i=k

i∏
j=k

αj . (5)

The above formula may seem complicated at a first glance. In fact, the inverse transform, which
makes it possible to pass from tk to αk has the following, simpler form

αk =
tk − 1

tk+1
. (6)

Formula (6) will ease the path of the analysis and we shall make regular use of it in the sequel.

From now on, we denote by (Ω,F ,P) a probability space. We assume that H is a real sepa-
rable Hilbert space endowed with its Borel σ-algebra, B (H). We denote a filtration on (Ω,F ,P)
by F := (Fk)k∈N where Fk is a sub-σ-algebra satisfying, for each k ∈ N, Fk ⊂ Fk+1 ⊂ F . Fur-
thermore, given a set of random variables {a0, . . . , ak} we denote by σ (a0, . . . , ak) the σ-algebra
generated by a0, . . . , ak. Finally, a statement (P ) is said to hold (P-a.s.) if

P ({ω ∈ Ω : (P ) holds}) = 1.

Using the above notation, we denote the canonical filtration associated to the iterates of algorithm
(SNAG)αk

as F with, for all k ∈ N,

Fk := σ (x0, . . . , xk)

such that all iterates up to xk are completely determined by Fk.
For the remainder of the paper, all equalities and inequalities involving random quantities

should be understood as holding (P-a.s.) even if it is not explicitly written.
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Definition 3.1 Given a filtration F , we denote by ℓ+ (F ) the set of sequences of [0,+∞[-valued
random variables (ak)k∈N such that, for each k ∈ N, ak is Fk-measurable. Then, for p ∈]0,+∞[,
we also define the following set of p-summable random variables,

ℓp+ (F ) :=

{
(ak)k∈N ∈ ℓ+ (F ) :

∑
k∈N

apk < +∞ (P-a.s.)

}
.

The set of non-negative p-summable (deterministic) sequences is denoted ℓp+.

The following theorem is a generalization of [6, Theorems 3.1, 3.2 and 3.4] to the stochastic
setting.

Theorem 3.1 Assume that (H) holds and the sequence (αk)k∈N satisfies

∀k ≥ 1,

+∞∑
i=k

i∏
j=k

αj < +∞, (K0)

∀k ≥ 1, t2k+1 − t2k ≤ tk+1. (K1)

Consider the algorithm (SNAG)αk
where sk ∈]0, 1/L] is a non-increasing sequence and (ek)k∈N

is a sequence of stochastic errors such that

E [ek | Fk] = 0 (P-a.s.) and (sktkσk)k∈N ∈ ℓ2+(F ), (K2)

where σ2
k := E

[
∥ek∥2 | Fk

]
. Then,

(i) we have the following rate of convergence in almost sure and mean sense:

f(xk)−min f = O
(

1

skt2k

)
(P-a.s.) ,

and

E [f(xk)−min f ] ≤
s1t

2
1E [f(x0)−min f ] + 1

2E
[
dist(x0, S)

2
]
+ 4

∑+∞
i=1 s2i t

2
iE
[
∥ei∥2

]
skt2k

.

(ii) Assume in addition that, for m ∈ [0, 1[,

t2k+1 − t2k ≤ mtk+1 for every k ≥ 1, (K+
1 )

then ∑
k∈N

sktk+1(f(xk)−min f) < +∞ and
∑
k∈N

tk ∥xk − xk−1∥2 < +∞ (P-a.s.) .

If moreover
∑

k∈N
tk+1

t2k
= +∞, then

f(xk)−min f = o

(
1

skt2k

)
and ∥xk − xk−1∥ = o

(
1

tk

)
(P-a.s.) .

(iii) If αk ∈ [0, 1] for every k ≥ 1, infk sk > 0, (K+
1 ) holds and (K2) is strengthened to

E [ek | Fk] = 0 (P-a.s.) and (sktkσk)k∈N ∈ ℓ1+(F ), (K+
2 )

then the sequence (xk)k∈N converges weakly (P-a.s.) to an argmin(f)-valued random vari-
able.
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Before delving into the proof, some remarks are in order.

Remark 3.1 From claim (i), we have, for sk constant and bounded away from 0, convergence
at the rate O(1/k2) in the objective if (tkσk)k∈N ∈ ℓ2+(F ). If just (σk)k∈N ∈ ℓ2+(F ), then the
step-size must anneal at the rate sk ∼ 1/tk for an objective value convergence rate O(1/tk).

Now consider non-vanishing noise with bounded variance (i.e. lim supσk > 0, P − a.s. and
E[σ2

k]−E[σk]
2 ≤ B, 0 < B < ∞). For the choice of tk = (k−1)/(α−1), setting the step-size to be

sk = 1/k1+δ, with δ > 0, results in convergence with a rate is O(1/kδ). If sk = 1/k and the noise
does not asymptotically vanish (a.s.), convergence can only be ensured to a noise dominated
region. On the other hand, if tk = (k1+δ − 1)/(α − 1) with δ < 0, then sk = 1/k achieves a
convergence rate of O(1/kδ) if there is vanishing noise. Continuing, we see that the O(1/k2) rate
is achieved for vanishing noise and sk = 1/k(2−δ).

The last statement of claim (ii) can be modified to get the same rate as in the deterministic
case in [6, Theorem 3.4] but only at the price of a stronger summability assumption on the noise.

Proof Our proof is based on a (stochastic) Lyapunov analysis with appropriately chosen energy
functionals.
(i) Denote fk(x) := f(x) + ⟨ek, x⟩ and recall S = argmin(f). Define the sequence

Vk := skt
2
k(f(xk)− f(x⋆)) +

1

2
dist(zk, S)

2 and zk := xk−1 + tk (xk − xk−1) .

Since f is convex and L-smooth, so is fk. Let us apply (44) in Lemma A.3 on fk successively at
y = yk and x = xk, then at y = yk and x = x⋆ ∈ S. We get

fk(xk+1) ≤ fk(xk) + ⟨∇fk(yk), yk − xk⟩ −
sk
2

∥∇fk(yk)∥2 (7)

fk(xk+1) ≤ fk(x
⋆) + ⟨∇fk(yk), yk − x⋆⟩ − sk

2
∥∇fk(yk)∥2 . (8)

Multiplying (7) by tk+1 − 1 (which is non-negative by definition), then adding the (8), we derive
that

tk+1fk(xk+1) ≤ (tk+1 − 1)fk(xk) + fk(x
⋆) + ⟨∇fk(yk), (tk+1 − 1)(yk − xk) + yk − x⋆⟩

− sk
2
tk+1 ∥∇fk(yk)∥2 . (9)

It is immediate to see, using (6) and the definitions of yk and zk, that

(tk+1 − 1)(yk − xk) + yk = xk + tk+1(yk − xk) = xk−1 + (1 + tk+1αk)(xk − xk−1)

= xk−1 + tk(xk − xk−1) = zk.

Inserting this into (9) and rearranging, we get

tk+1(fk(xk+1)− fk(x
⋆)) ≤ (tk+1 − 1)(fk(xk)− fk(x

⋆)) + ⟨∇fk(yk), zk − x⋆⟩ − sk
2
tk+1 ∥∇fk(yk)∥2 .

(10)

Straightforward computation, using again (6) and the definition of yk and zk, can yield the
expression,

zk+1 − zk = −sktk+1∇fk(yk). (11)

Thus

∥zk+1 − x⋆∥2 = ∥zk − x⋆∥2 − 2sktk+1 ⟨∇fk(yk), zk − x⋆⟩+ s2kt
2
k+1 ∥∇fk(yk)∥2 .
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Dividing this by 2 and adding to (10), after multiplying the latter by sktk+1, cancels all terms
containing ∇f(yk) and we arrive at

skt
2
k+1(fk(xk+1)− fk(x

⋆)) +
1

2
∥zk+1 − x⋆∥2 ≤ sktk+1(tk+1 − 1)(fk(xk)− fk(x

⋆)) +
1

2
∥zk − x⋆∥2 .

(12)

Let us take x⋆ as the closest point to zk in S. Thus (12) is equivalent to

skt
2
k+1(fk(xk+1)− fk(x

⋆)) +
1

2
dist(zk+1, S)

2 ≤ sktk+1(tk+1 − 1)(fk(xk)− fk(x
⋆)) +

1

2
dist(zk, S)

2.

(13)

Let us now isolate the error terms. Inequality (13) is then equivalent to

skt
2
k+1(f(xk+1)−min f) +

1

2
dist(zk+1, S)

2 ≤ sktk+1(tk+1 − 1)(f(xk)−min f) +
1

2
dist(zk, S)

2

− sk
〈
ek, t

2
k+1(xk+1 − x⋆)− tk+1(tk+1 − 1)(xk − x⋆)

〉
. (14)

We have
t2k+1(xk+1 − x⋆)− tk+1(tk+1 − 1)(xk − x⋆) = tk+1(zk+1 − x⋆).

In turn, using also that sk is non-increasing, (14) becomes

sk+1t
2
k+1(f(xk+1)−min f) +

1

2
dist(zk+1, S)

2 + sk(t
2
k − t2k+1 + tk+1)(f(xk)−min f) ≤

skt
2
k(f(xk)−min f) +

1

2
dist(zk, S)

2 − sktk+1 ⟨ek, zk+1 − x⋆⟩ .

In view of the definition of Vk, this is equivalent to

Vk+1 ≤ Vk + sk(t
2
k+1 − tk+1 − t2k)(f(xk)−min f) + sktk+1 ⟨ek, zk+1 − x⋆⟩ . (15)

Taking the expectation conditionally on Fk in (15), we obtain

E [Vk+1 | Fk] ≤ Vk + sk(t
2
k+1 − tk+1 − t2k)(f(xk)−min f)− sktk+1E [⟨ek, zk+1 − x⋆⟩ | Fk] . (16)

We have

E [⟨ek, zk+1 − x⋆⟩ | Fk] = E [⟨ek, zk+1 − zk⟩ | Fk] + ⟨E [ek | Fk] , zk − x⋆⟩
= −sktk+1E [⟨ek, ∇fk(yk)⟩ | Fk] = −sktk+1E [⟨ek, ∇f(yk) + ek⟩ | Fk]

= −sktk+1E
[
∥ek∥2 | Fk

]
= −sktk+1σ

2
k,

where we used (11) in the second equality, and conditional unbiasedness (first part of (K2)) in
both the second and last inequalities, together with the fact that yk, zk and x⋆ are deterministic
conditionally on Fk. Plugging this into (16) yields

E [Vk+1 | Fk] ≤ Vk + sk(t
2
k+1 − tk+1 − t2k)(f(xk)−min f) + s2kt

2
k+1σ

2
k

≤ Vk + sk(t
2
k+1 − tk+1 − t2k)(f(xk)−min f) + 4s2kt

2
kσ

2
k, (17)

where we used that assumption (K1) implies tk+1 ≤ 2tk; see [6, Remark 3.3]. Using again (K1),
the second term in the rhs of (17) is non-positive and can then be dropped. Now, thanks to the
second part of (K2), we are in position to apply Lemma A.1 to (17) to see that Vk converges
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(P-a.s.), and consequently it is bounded (P-a.s.). Thus, there exists a [0,+∞[-valued random
variable ξ such that supk∈N Vk ≤ ξ < +∞ (P-a.s.). Therefore, for all k ≥ 1,

skt
2
k(f(xk)−min f) ≤ Vk ≤ ξ < +∞ (P-a.s.) .

Moreover, taking the total expectation in (17) and iterating gives

skt
2
kE [f(xk)−min f ] ≤ E [Vk] ≤ E [V1] + 4

k∑
i=1

s2i t
2
iE
[
∥ei∥2

]
≤

s1t
2
1E [f(x0)−min f ] +

1

2
E
[
dist(x0, S)

2
]
+ 4

+∞∑
i=1

s2i t
2
iE
[
∥ei∥2

]
< +∞,

where we used in the last inequality that x0 = x1 by assumption, and that the rhs is finite thanks
to Fubini-Tonelli’s Theorem together with (K2). This proves the first claim in the theorem.

(ii) Using (K+
1 ) in (17), we get

E [Vk+1 | Fk] ≤ Vk − sk(1−m)tk+1(f(xk)−min f) + 4s2kt
2
kσ

2
k.

We can again invoke Lemma A.1 to get that∑
k≥1

sktk+1(f(xk)−min f) < +∞ (P-a.s.) . (18)

Let

Wk := sk(f(xk)−min f) +
1

2
∥xk − xk−1∥2 .

Combining [6, Proposition 2.1] with the fact that sk is non-increasing, we have that

Wk+1 ≤ Wk − 1− α2
k

2
∥xk − xk−1∥2 − sk ⟨ek, xk+1 − xk⟩ .

Taking the expectation conditionally on Fk, we obtain

E [Wk+1 | Fk] ≤ Wk − 1− α2
k

2
∥xk − xk−1∥2 − skE [⟨ek, xk+1 − xk⟩ | Fk] . (19)

We have

E [⟨ek, xk+1 − xk⟩ | Fk] = E [⟨ek, xk+1 − yk⟩ | Fk] = −skE [⟨ek, ∇fk(yk)⟩ | Fk] = −skE
[
∥ek∥2 | Fk

]
,

where we used the algorithm update of xk+1 in the second inequality, and conditional unbiased-
ness (first part of (K2)) in the second and last inequalities together with xk, yk being conditionally
deterministic on Fk. Inserting this into (19) yields

E [Wk+1 | Fk] ≤ Wk − 1− α2
k

2
∥xk − xk−1∥2 + s2kσ

2
k. (20)

Multiplying (20) by t2k+1 and rearranging entails

E
[
t2k+1Wk+1 | Fk

]
≤ t2k+1Wk − t2k+1

1− α2
k

2
∥xk − xk−1∥2 + s2kt

2
k+1σ

2
k

= t2kWk + sk(t
2
k+1 − t2k)(f(xk)−min f) +

t2k+1 − t2k − t2k+1(1− α2
k)

2
∥xk − xk−1∥2 + s2kt

2
k+1σ

2
k

≤ t2kWk +msktk+1(f(xk)−min f)− tk
2
∥xk − xk−1∥2 + 4s2kt

2
kσ

2
k. (21)
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In the equality, we used the expression of Wk. In the second inequality we used (K+
1 ) and that

tk = 1 + tk+1αk and (K1) which gives

t2k+1 − t2k − t2k+1(1− α2
k) = (tk − 1)2 − t2k = −2tk + 1 ≤ −tk

as tk ≥ 1. We have already proved above (see (18)) that (sktk+1(f(xk)−min f))k∈N ∈ ℓ1+(F ).
Combining this with the second part of (K2) allows us to invoke again Lemma A.1 on (21) to
deduce that ∑

k≥1

tk ∥xk − xk−1∥2 < +∞ (P-a.s.) . (22)

Moreover, Lemma A.1 also implies that t2kWk converges (P-a.s.). On the other hand, we have

tk+1Wk = sktk+1(f(xk)−min f)+
tk+1

2
∥xk − xk−1∥2 ≤ sktk+1(f(xk)−min f)+tk ∥xk − xk−1∥2 ,

and thus (18) and (22) imply that∑
k≥1

tk+1Wk < +∞ (P-a.s.) .

In turn ∑
k≥1

tk+1Wk =
∑
k≥1

tk+1

t2k
t2kWk < +∞ (P-a.s.)

entailing that lim infk→+∞ t2kWk = 0 (P-a.s.). This together with (P-a.s.) convergence of t2kWk

shown just above gives that

Wk = o

(
1

t2k

)
.

Returning to the definition of Wk proves the assertions.

(iii) The crux of the proof consists in applying Opial’s Lemma on a set of events of probability
one. Observe that (K+

2 ) implies (K2). Thus Lemma A.1 applied to (21) ensures also that t2kWk

converges (P-a.s.). In particular, this implies that tk ∥xk − xk−1∥ is bounded (P-a.s.). From the
proof of claim (i), we also know that (P-a.s.), Vk converges, hence (zk)k∈N is bounded. In view
of the definition of zk, we obtain that (xk)k∈N is bounded (P-a.s.). Moreover, since tk ≥ 1 and
s = infk sk > 0, we get from (ii) that (P-a.s.)

s
∑
k≥1

(f(xk)−min f) ≤
∑
k≥1

sktk+1(f(xk)−min f) < +∞,

and thus limk→+∞ f(xk) = min f (P-a.s.).
Let Ω̂ be the set of events on which the last statement holds and Ω̌ on which boundedness

of (xk)k∈N holds. Both sets are of probability one. For any ω ∈ Ω̂ ∩ Ω̌, let (xkj
(ω))j≥1 be any

converging subsequence, and x̄(ω) its weak cluster point.

f(x̄(ω)) = lim
j→∞

f(xkj
(ω)) = lim

k→∞
f(xk(ω)) = min f,

which means that x̄(ω) ∈ S. This implies that (P-a.s.) each weak cluster point of (xk)k∈N belongs
to S = argmin(f). In other words, the second condition of Opial’s lemma holds (P-a.s.).
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Let x⋆ ∈ S and define hk := 1
2 ∥xk − x⋆∥2. We now show that limk→+∞ hk exists (P-a.s.).

For this, we use a standard argument that can be found e.g. in [12,6]. By [6, Proposition 2.3],
we have

hk+1 − hk − αk(hk − hk−1) ≤
αk(1 + αk)

2
∥xk − xk−1∥2 − sk(fk(xk+1)− fk(x

⋆)

≤ ∥xk − xk−1∥2 − sk(f(xk+1)−min f)− sk ⟨ek, xk+1 − x⋆⟩

≤ ∥xk − xk−1∥2 − sk ⟨ek, xk+1 − x⋆⟩ .

In the second inequality we used that αk ∈ [0, 1], and the last one minimality of x⋆. Almost
sure boundedness of xk implies that there exists a [0,+∞[-valued random variable η such that
supk∈N ∥xk − x⋆∥ ≤ η < +∞ (P-a.s.). Thus

hk+1 − hk − αk(hk − hk−1) ≤ ∥xk − xk−1∥2 + ηsk ∥ek∥ . (23)

Multiplying (23) by tk+1, taking the positive part and the conditional expectation, we end up
having

E [tk+1(hk+1 − hk)+ | Fk] ≤ tk+1αk(hk − hk−1)+ + tk+1 ∥xk − xk−1∥2 + ηsktk+1E [∥ek∥ | Fk]

≤ (tk − 1)(hk − hk−1)+ + tk+1 ∥xk − xk−1∥2 + 2ηsktkE
[
∥ek∥2 | Fk

]1/2
= tk(hk − hk−1)+ − (hk − hk−1)+ + tk+1 ∥xk − xk−1∥2 + 2ηsktkσk.

where we used that tk = 1 + tk+1αk, that tk+1 ≤ 2tk and Jensen’s inequality. As the last two
terms in the rhs are summable (P-a.s.), we get using Lemma A.1 that ((hk − hk−1)+)k∈N ∈ ℓ1+(F )
(P-a.s.). In turn, since hk is non-negative, we get by a classical argument that limk→+∞ hk exists.

Note that the set of events of probability on which limk→+∞ hk exists depends on x⋆. To
make this uniform on S we use a separability argument.

Indeed, we have just shown that there exists a set of events Ωx⋆ (that depends on x⋆) such
that P(Ωx⋆) = 1 and for all ω ∈ Ωx⋆ , (∥xk(ω)− x⋆∥)k∈N converges. We now show that there
exists a set of events independent of x⋆, whose probability is one and such that the above still
holds on this set. Since H is separable, there exists a countable set U ⊆ S, such that cl(U) = S.
Let Ω̃ =

⋂
u∈U Ωu. Since U is countable, a union bound shows

P(Ω̃) = 1− P

(⋃
u∈U

Ωc
u

)
≥ 1−

∑
u∈U

P(Ωc
u) = 1.

For arbitrary x⋆ ∈ S, there exists a sequence (uj)j∈N ⊂ U such that uj converges strongly to x⋆.
Thus for every j ∈ N there exists τj : Ωuj

→ R+ such that

lim
k→+∞

∥xk(ω)− uj∥ = τj(ω), ∀ω ∈ Ωuj . (24)

Now, let ω ∈ Ω̃. Since Ω̃ ⊂ Ωuj
for any j ≥ 1, and using the triangle inequality and (24), we

obtain that

τj(ω)− ∥uj − x⋆∥ ≤ lim inf
k→+∞

∥xk(ω)− x⋆∥ ≤ lim sup
k→+∞

∥xk(ω)− x⋆∥ ≤ τj(ω) + ∥uj − x⋆∥ .

Passing to j → +∞, we deduce

lim sup
j→+∞

τj(ω) ≤ lim inf
k→+∞

∥xk(ω)− x⋆∥ ≤ lim sup
k→+∞

∥xk(ω)− x⋆∥ ≤ lim inf
j→+∞

τj(ω),
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whence we deduce that limj→+∞ τj(ω) exists for all ω ∈ Ω̃. In turn, (P-a.s.), limk→+∞ ∥xk − x⋆∥
exists and is equal to limj→+∞ τj for any x⋆ ∈ S.

We are now in position to apply Opial’s Lemma at any ω ∈ Ω̂∩Ω̌∩Ω̃, since P(Ω̂∩Ω̌∩Ω̃) = 1,
to conclude. ⊓⊔

Let us now return to the Ravine algorithm. A simple adaptation of the proof of Theorem 2.1
applied to (SNAG)αk

(just replace f by f + ⟨ek, ·⟩, and follow similar algebraic manipulations)
gives that the associated sequence (yk)k∈N defined by

yk = xk + αk(xk − xk−1),

follows the stochastic Ravine accelerated gradient algorithm with γk = αk+1, i.e. for all k ≥ 1wk = yk − sk(∇f(yk) + ek)

yk+1 = wk + αk+1 (wk − wk−1) .
((SRAG)αk+1

)

(SRAG)αk+1
is initialized with y0 and w−1 = y0, where y0 is a H-valued, squared integrable

random variable. According to this relationship between the Nesterov and the Ravine method
highlighted in Theorem 2.1, the results of Theorem 3.1 can now be transposed to (SRAG)αk+1

.

For this, we denote the canonical filtration associated to (SRAG)αk+1
as F = (Fk)k∈N with,

∀k ≥ N, Fk = σ(y0, (wi)i≤k−1).

Theorem 3.2 Assume the conditions presented in (H). Let (yk)k∈N be the sequence generated by
(SRAG)αk+1

where sk ∈]0, 1/L] is a non-increasing sequence, (αk)k∈N ⊂ [0, 1] satisfies (K0) and

(K+
1 ) with

∑
k∈N

tk+1

t2k
= +∞, and (ek)k∈N is a sequence of stochastic errors satisfying (K+

2 ).

Then, the sequence (yk)k∈N satisfies

∑
k∈N

sktk+1(f(yk)−min f) < +∞ and f(yk)−min
H

f = o

(
1

skt2k

)
as k → +∞ (P-a.s.) .

Moreover, if infk sk > 0, then the sequence (yk)k∈N converges weakly (P-a.s.) to an argmin(f)-
valued random variable.

Proof According to Theorem 2.1, the sequence (xk)k∈N defined by

xk+1 = yk − sk(∇f(yk) + ek) (25)

is equivalent to Algorithm (SNAG)αk
. It then follows from Theorem 3.1(ii) that

f(xk)−min f = o

(
1

skt2k

)
and ∥xk − xk−1∥ = o

(
1

tk

)
(P-a.s.) . (26)

In addition, in view of condition (K+
2 ), we can apply Lemma A.2 with εk = (sktkσk)k∈N to infer

that
+∞∑
k=1

sktk ∥ek∥ < +∞ (P-a.s.) , (27)

and thus

sk ∥ek∥ = o

(
1

tk

)
(P-a.s.) . (28)
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Rearrange the terms in (25) to obtain the expression ∇f(yk) = − 1
sk
(xk+1 − yk) − ek. Using,

successively, the convexity of f , the Cauchy-Schwartz inequality, and the triangle inequality, we
obtain

f(yk)−min
H

f ≤ f(xk)−min
H

f +
1

sk
⟨xk+1 − yk + skek, xk − yk⟩

≤ f(xk)−min
H

f +
1

sk
(∥xk+1 − yk∥+ sk∥ek∥) ∥xk − yk∥

≤ f(xk)−min
H

f +
1

sk
(∥xk+1 − xk∥+ ∥xk − yk∥+ sk∥ek∥) ∥xk − yk∥. (29)

Using again the link between (SRAG)αk+1
and (SNAG)αk

, we have

yk = xk + αk (xk − xk−1) .

Therefore, since αk ∈ [0, 1],

∥yk − xk∥ ≤ ∥xk − xk−1∥. (30)

Combining (26), (28), (29) and (30) we obtain

f(yk)−min
H

f ≤ f(xk)−min
H

f +
1

sk
(∥xk+1 − xk∥+ ∥xk − xk−1∥+ sk∥ek∥) ∥xk − xk−1∥

= o

(
1

skt2k

)
(P-a.s.)

where we used that tk+1 ≤ 2tk in the last equality. In addition, using Young’s inequality, that
(xk)k∈N is bounded (P-a.s.), (27) and the summability claims of Theorem 3.1(ii), we get that
(P-a.s.),

∑
k∈N

sktk+1(f(yk)−min f) ≤
∑
k∈N

sktk+1(f(xk)−min f) +
∑
k∈N

tk+1

2
∥xk+1 − xk∥2

+ 3
∑
k∈N

tk∥xk − xk−1∥2 + 4η
∑
k∈N

tksk∥ek∥ < +∞,

where η is the [0,+∞[-valued random variable such that supk∈N ∥xk∥ ≤ η < +∞ (P-a.s.).
Now, from (26) and (30), we also have ∥yk − xk∥ = o

(
1
tk

)
(P-a.s.). Consequently, yk − xk

converges strongly (P-a.s.) to zero. Since the sequence (xk)k∈N converges weakly, it follows that
the sequence (yk)k∈N converges weakly (P-a.s.) to the same limit as (xk)k∈N, and we know from
Theorem 3.1(iii) that the latter indeed converges weakly (P-a.s.) to an argmin(f)-valued random
variable. ⊓⊔

3.2 Fast convergence of the gradients towards zero

In this section, the previous results on the stochastic Ravine method (SRAG)αk+1
are completed

in also showing the fast convergence towards zero of the gradients. This will necessitate a specific
and intricate Lyapunov analysis2.

2 Observe that embarking from (7)-(8) and using the refined estimate in (44) is not sufficient to get the result.
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Recall fk(x) := f(x) + ⟨ek, x⟩ from the proof of Theorem 3.1. The formula in Lemma 3.1
hereafter will play a key role in our Lyapunov analysis, and will serve as the constitutive formu-
lation of the algorithm. It corresponds to the Hamiltonian formulation of the algorithm involving
the discrete velocities which are defined by, for each k ∈ N

vk :=
1

h
(yk − yk−1) (31)

where we recall that h =
√
s.

Lemma 3.1 Let (yk)k∈N be generated by (SRAG)αk+1
. Then, for all k ∈ N

tk+1(vk + h∇fk−1(yk−1))− (tk − 1)(vk−1 + h∇fk−2(yk−2)) = −h(tk − 1)∇fk−1(yk−1). (32)

Proof According to the algorithm recursion, we have

yk = yk−1 − h2∇fk−1(yk−1) + αk

(
yk−1 − h2∇fk−1(yk−1)−

(
yk−2 − h2∇fk−2(yk−2)

))
= yk−1 + αk(yk−1 − yk−2)− h2

(
∇fk−1(yk−1) + αk

(
∇fk−1(yk−1)−∇fk−2(yk−2)

))
.

Equivalently,

0 = (yk − yk−1)− αk(yk−1 − yk−2) + h2∇fk−1(yk−1) + h2αk(∇fk−1(yk−1)−∇fk−2(yk−2))

= αk(yk − yk−1)− αk(yk−1 − yk−2) + (1− αk)(yk − yk−1) + h2∇fk−1(yk−1)

+ h2αk(∇fk−1(yk−1)−∇fk−2(yk−2)).

Let us make vk appear by multiplying this equality by 1
hαk

. We then get

0 = vk − vk−1 +
1− αk

αk
vk +

h

αk
∇fk−1(yk−1) + h(∇fk−1(yk−1)−∇fk−2(yk−2))

= (vk + h∇fk−1(yk−1))− (vk−1 + h∇fk−2(yk−2)) +
1− αk

αk
vk +

h

αk
∇fk−1(yk−1).

After multiplication by αk

1−αk
, we arrive at

0 =
αk

1− αk
(vk + h∇fk−1(yk−1))−

αk

1− αk
(vk−1 + h∇fk−2(yk−2)) + vk +

h

1− αk
∇fk−1(yk−1)

=

(
1 +

αk

1− αk

)
(vk + h∇fk−1(yk−1))−

αk

1− αk
(vk−1 + h∇fk−2(yk−2))− h∇fk−1(yk−1)

+
h

1− αk
∇fk−1(yk−1).

We thus obtain

1

1− αk
(vk + h∇fk−1(yk−1))−

αk

1− αk
(vk−1 + h∇fk−2(yk−2)) = − hαk

1− αk
∇fk−1(yk−1).

Equivalently

(vk + h∇fk−1(yk−1))− αk(vk−1 + h∇fk−2(yk−2)) = −hαk∇fk−1(yk−1). (33)

In view of (6), the last equality is also equivalent to (32). This completes the proof of the Lemma.
⊓⊔
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Recall the canonical filtration associated to (SRAG)αk+1
as F = (Fk)k∈N with, ∀k ≥ N,

Fk = σ(y0, (wi)i≤k−1).

Theorem 3.3 Let us assume the conditions defined in (H). Let (yk)k∈N be the sequence generated

by (SRAG)αk+1
where sk ≡ s ∈]0, 1/L], (αk)k∈N ⊂ [0, 1] satisfy (K0) and (K+

1 ). Assume that

(ek)k∈N is a sequence of stochastic errors subject to conditions (K+
2 ). Then the sequence of

gradients (∇f(yk))k∈N converges to zero with∑
k∈N

t2k+1∥∇f(yk)∥2 < +∞ (P-a.s.) .

Proof Our Lyapunov analysis is based on the sequence (Ek)k∈N defined as

Ek := h2(tk+1 − 1)tk+1(f(yk−1)−min f) +
1

2
dist(zk, S)

2,

zk := yk + h(tk+1 − 1)
(
vk + h∇fk−1(yk−1)

)
.

Let x⋆ be the closest point to zk in S. By definition of Ek, we have

Ek+1 − Ek ≤ h2(tk+1 − 1)tk+1(f(yk)− f(yk−1))

+ h2
(
(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f) +

1

2
∥zk+1 − x⋆∥2 − 1

2
∥zk − x⋆∥2. (34)

Let us compute this last expression with the help of the elementary inequality

1

2
∥zk+1 − x⋆∥2 − 1

2
∥zk − x⋆∥2 = ⟨zk+1 − zk, zk+1 − x⋆⟩ − 1

2
∥zk+1 − zk∥2. (35)

Recall the constitutive equation given by (32) that we write as follows

tk+2(vk+1 + h∇fk(yk))− (tk+1 − 1)(vk + h∇fk−1(yk−1)) = −h(tk+1 − 1)∇fk(yk). (36)

Using successively the definition of zk and (36), we obtain

zk+1 − zk = (yk+1 − yk) + h(tk+2 − 1)
(
vk+1 + h∇fk(yk)

)
− h(tk+1 − 1)

(
vk + h∇fk−1(yk−1)

)
= hvk+1 − h

(
vk+1 + h∇fk(yk)

)
− h2(tk+1 − 1)∇fk(yk) = −h2tk+1∇fk(yk).

This together with the definition of zk yields

zk+1 = zk − h2tk+1∇fk(yk) = yk + h(tk+1 − 1)
(
vk + h∇fk−1(yk−1)

)
− h2tk+1∇fk(yk).

Plugging this into (35), we deduce that

1

2
∥zk+1 − x⋆∥2 − 1

2
∥zk − x⋆∥2 = −1

2
h4t2k+1∥∇fk(yk)∥2

−h2tk+1

〈
∇fk(yk), yk − x⋆ + h(tk+1 − 1)

(
vk + h∇fk−1(yk−1)

)
− h2tk+1∇fk(yk)

〉
=

1

2
h4t2k+1∥∇fk(yk)∥2 − h2tk+1

〈
∇fk(yk), yk − x⋆ + h(tk+1 − 1)

(
vk + h∇fk−1(yk−1)

)〉
.

Let us arrange the above expression so as to group the products of ∇fk(yk). For this, we use
(32) again, written as,

(tk+1 − 1)(vk + h∇fk−1(yk−1)) = tk+2(vk+1 + h∇fk(yk)) + h(tk+1 − 1)∇fk(yk). (37)
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Therefore,

yk − x⋆ + h(tk+1 − 1)
(
vk + h∇fk−1(yk−1)

)
= yk − x⋆ + htk+2(vk+1 + h∇fk(yk)) + h2(tk+1 − 1)∇fk(yk)

= yk − x⋆ + htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk).

Collecting the above results we obtain

1

2
∥zk+1 − x⋆∥2 − 1

2
∥zk − x⋆∥2 =

1

2
h4t2k+1∥∇fk(yk)∥2

− h2tk+1

〈
∇fk(yk), yk − x⋆ + htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk)

〉
.

Inserting this in (34) we get

Ek+1 − Ek ≤ h2(tk+1 − 1)tk+1(f(yk)− f(yk−1))

+ h2
(
(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f) +

1

2
h4t2k+1∥∇fk(yk)∥2

− h2tk+1

〈
∇fk(yk), yk − x⋆ + htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk)

〉
. (38)

In view of the basic gradient inequality for convex differentiable functions whose gradient is
L-Lipschitz continuous, we have

f(yk−1) ≥ f(yk) + ⟨∇f(yk), yk−1 − yk⟩+
1

2L
∥∇f(yk)−∇f(yk−1)∥2.

min f ≥ f(yk) + ⟨∇f(yk), x
⋆ − yk⟩+

1

2L
∥∇f(yk)∥2 .

Combining the above inequalities with (38), and using ∇fk(yk) = ∇f(yk) + ek, we get

Ek+1 − Ek ≤ −h2(tk+1 − 1)tk+1

(
⟨∇f(yk), yk−1 − yk⟩+

1

2L
∥∇f(yk)−∇f(yk−1)∥2

)
+ h2

(
(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f)− h2tk+1 (f(yk)−min f)

+
1

2
h4t2k+1∥∇fk(yk)∥2 − h2tk+1

〈
∇fk(yk), htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk)

〉
− h2tk+1 ⟨yk − x⋆, ek⟩ . (39)

Next rearrange the last inequality by grouping terms on the right hand side with common ex-
pressions. To begin with, rewrite the second and third summand as follows:

h2
(
(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f)− h2tk+1(f(yk)−min f) =

− h2
(
t2k+1 − t2k+2 + tk+2

)
(f(yk)−min f).

For the following expression grouping two of the summands above, we use the definition of vk
for the first equality, and the constitutive equation (37) for the third,

− h2(tk+1 − 1)tk+1 ⟨∇f(yk), yk−1 − yk⟩ − h2tk+1 ⟨∇fk(yk), htk+2vk+1⟩
= h3(tk+1 − 1)tk+1 ⟨∇f(yk), vk⟩ − h3tk+1tk+2 ⟨∇fk(yk), vk+1⟩
= h3tk+1 ⟨∇f(yk), (tk+1 − 1)vk − tk+2vk+1⟩ − h3tk+1tk+2 ⟨vk+1, ek⟩

= h3tk+1

(
⟨∇f(yk),−h(tk+1 − 1)∇fk−1(yk−1) + h(tk+1 + tk+2 − 1)∇fk(yk)⟩

)
− h3tk+1tk+2 ⟨vk+1, ek⟩

= h4tk+1

(
⟨∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)⟩

)
− h3tk+1tk+2 ⟨vk+1, ek⟩+ h4tk+1(tk+1 + tk+2 − 1) ⟨∇f(yk), ek⟩ − h4tk+1(tk+1 − 1) ⟨∇f(yk), ek−1⟩ .
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In addition

1

2
h4t2k+1∥∇fk(yk)∥2−h4tk+1(tk+2+tk+1−1)∥∇fk(yk)∥2 = −1

2
h4tk+1(2tk+2+tk+1−2)∥∇fk(yk)∥2.

Collecting the last three estimates and applying the inequalities to (39), we obtain

Ek+1 − Ek + h2
(
t2k+1 − t2k+2 + tk+2

)
(f(yk)−min f)

≤ − h2

2L
(tk+1 − 1)tk+1∥∇f(yk)−∇f(yk−1)∥2

+ h4tk+1

(
⟨∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)⟩

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)∥∇f(yk) + ek∥2

− h2tk+1 ⟨ek, yk − x⋆⟩ − h3tk+1tk+2 ⟨vk+1, ek⟩
+ h4tk+1(tk+1 + tk+2 − 1) ⟨∇f(yk), ek⟩ − h4tk+1(tk+1 − 1) ⟨∇f(yk), ek−1⟩ .

After developing the expression ∥∇f(yk) + ek∥2, we arrive at

Ek+1 − Ek + h2
(
t2k+1 − t2k+2 + tk+2

)
(f(yk)−min f)

≤ − h2

2L
(tk+1 − 1)tk+1∥∇f(yk)−∇f(yk−1)∥2

+ h4tk+1

(
⟨∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)⟩

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)

(
∥∇f(yk)∥2 + ∥ek∥2 + 2 ⟨∇f(yk), ek⟩

)
− h2tk+1 ⟨ek, yk − x⋆⟩ − h3tk+1tk+2 ⟨vk+1, ek⟩
+ h4tk+1(tk+1 + tk+2 − 1) ⟨∇f(yk), ek⟩ − h4tk+1(tk+1 − 1) ⟨∇f(yk), ek−1⟩ .

Taking the expectation conditionally on Fk and using conditional unbiasedness in (K+
2 ), we get

that (P-a.s.)

E [Ek+1 | Fk]− Ek + h2
(
t2k+1 − t2k+2 + tk+2

)
(f(yk)−min f)

≤ − h2

2L
(tk+1 − 1)tk+1∥∇f(yk)−∇f(yk−1)∥2

+ h4tk+1

(
⟨∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)⟩

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)∥∇f(yk)∥2 −

1

2
h4tk+1(2tk+2 + tk+1 − 2)σ2

k

+ h3tk+1tk+2E
[
∥vk+1∥2 | Fk

]1/2
σk,

where we used Cauchy-Schwartz inequality in the last term. Now we rely on Theorem 3.1, and
in particular on (26) and (30) to infer that

∥vk+1∥ =
1

h
∥yk+1 − yk∥ ≤ 1

h
∥yk+1 − xk+1∥+

1

h
∥xk+1 − xk∥+

1

h
∥xk − yk∥

≤ 2

h
∥xk+1 − xk∥+

1

h
∥xk − xk−1∥ = o

(
1

tk+1

)
+ o

(
1

tk

)
= o

(
1

tk+1

)
(P-a.s.) .
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In the last equality we used again that (K+
1 ) implies tk+1 ≤ 2tk. Therefore, there exists a non-

negative random variable η with ess sup η < +∞ such that E
[
∥vk+1∥2 | Fk

]1/2
≤ η/tk+1, and in

turn

E [Ek+1 | Fk]− Ek + h2
(
t2k+1 − t2k+2 + tk+2

)
(f(yk)−min f)

≤ − h2

2L
(tk+1 − 1)tk+1∥∇f(yk)−∇f(yk−1)∥2

+ h3tk+1

(
⟨∇f(yk),−h(tk+1 − 1)∇f(yk−1) + h(tk+1 + tk+2 − 1)∇f(yk)⟩

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)∥∇f(yk)∥2 + 4ηh3tkσk,

where we used again that tk+2 ≤ 4tk and we discarded the term involving σ2
k since tk ≥ 1 and

thus 2tk+2 + tk+1 − 2 ≥ 1. Equivalently,

E [Ek+1 | Fk]−Ek+h2
(
t2k+1−t2k+2+tk+2

)
(f(yk)−min f) ≤ −R(∇f(yk−1),∇f(yk))+4ηh3tkσk,

(40)
where R is the quadratic form

R(X,Y ) =
h2

2L
(tk+1 − 1)tk+1∥Y −X∥2 + 1

2
h4tk+1(2tk+2 + tk+1 − 2)∥Y ∥2

− h3tk+1 (⟨Y, −h(tk+1 − 1)X + h(tk+1 + tk+2 − 1)Y ⟩) . (41)

To conclude, we just need to prove that R is nonnegative. A standard procedure consists in
computing a lower-bound minX R(X,Y ) for fixed Y . By taking the derivative of R with respect
to X, we obtain that the minimum is achieved at X̄ with X̄ − Y = −h2LY . Therefore,

min
X

R(X,Y ) =
h2L

2
(tk+1 − 1)tk+1h

4∥Y ∥2 + 1

2
h4tk+1(2tk+2 + tk+1 − 2)∥Y ∥2

− h3tk+1

(〈
Y, −h(tk+1 − 1)(1− h2L)Y + h(tk+1 + tk+2 − 1)Y

〉)
.

After reduction, we get

min
X

R(X,Y ) =
h4tk+1

2

(
(tk+1 − 1)(2− h2L)− 1

)
∥Y ∥2. (42)

According to assumption (K+
1 ), the coefficient of f(yk)−min f in (40) is positive. We therefore

discard this term in the rest of the proof. Combining (42) with (40), we obtain

E [Ek+1 | Fk]− Ek ≤ −h4tk+1

2

(
(tk+1 − 1)(2− h2L)− 1

)
∥∇f(yk)∥2 + 4ηh3tkσk.

Since h2 ∈]0, 1/L] and tk ≥ 1, this can also be bounded as

E [Ek+1 | Fk] ≤ Ek − h2tk+1

2L

(
(tk+1 − 1)(2− h2L)− 1

)
∥∇f(yk)∥2 +

4ηh

L
tkσk

≤ Ek − h2tk+1(tk+1 − 2)

2L
∥∇f(yk)∥2 +

4ηh

L
tkσk

= Ek −
h2t2k+1

2L
∥∇f(yk)∥2 +

h2tk+1

L
∥∇f(yk)∥2 +

4ηh

L
tkσk

≤ Ek −
h2t2k+1

2L
∥∇f(yk)∥2 + 2h2tk+1(f(yk)−min f) +

4ηh

L
tkσk,
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where we used co-coercivity of ∇f in the last inequality. The summability assumption in (K+
2 )

together with the summability result in Theorem 3.2 allow then to invoke Lemma A.1 to get the
claim. Observe that this also gives that Ek converges (P-a.s.) to a non-negative valued random
variable. ⊓⊔

Remark 3.2 Since tk ≥ 1, a direct consequence of the gradient summability shown in Theorem 3.3
is that the gradient sequence (∇f(yk))k∈N tends to zero (P-a.s.) at least as quickly as at the
rate o(1/tk). Observe also that this analysis gives another proof for the fast convergence of the
function values (just carry on the proof starting from (40) without discarding the term involving
the function values).

Note that the above proof has been notably simplified by using the conclusions already
obtained in Theorem 3.2, and in particular to properly bound the terms involving vk+1 (which
are not in Fk). Extending this proof to the case where the step-size sk is varying appears to be
straightforward, but comes at the price of tedious and longer computations. We avoid this for
the sake of brevity.

4 Discussion of Particular Parameter Choices

Let consider the theoretical guarantees obtained under the condition that there exists c ∈ [0, 1[
such that, for every k ≥ 1

1

1− αk+1
− 1

1− αk
≤ c. (43)

This implies some important properties of tk. One significant observation is a trade-off between
stability to errors and fast convergence of ((SRAG)αk+1

). Some choices of αk will be less stringent
on the required summability of the error variance for convergence, but will result in slower
convergence rate and vice-versa.

In presenting the details, let us start with the following results that were obtained in [5,
Proposition 3.3, 3.4]. The first one presents some general conditions on (αk) and c that ensure
the satisfaction of (K0) and (K1) (resp. (K

+
1 )). The second one provides an explicit expression

of tk as a function of αk.

Proposition 4.1 Let c ∈ [0, 1[ and let (αk)k∈N be a sequence satisfying αk ∈ [0, 1[ together with
inequality (43) for every k ≥ 1. Then condition (K0) is satisfied. Moreover, we have for every
k ≥ 1,

tk+1 ≤ 1

(1− c)(1− αk)
.

If c ≤ 1/3 (resp. c < 1/3), then condition (K1) (resp. (K
+
1 )) is fulfilled.

Proposition 4.2 Let (αk)k∈N be a sequence such that αk ∈ [0, 1[ for every k ≥ 1. Given c ∈
[0, 1[, assume that

lim
k→+∞

1

1− αk+1
− 1

1− αk
= c.

Then, we have

tk+1 ∼ 1

(1− c)(1− αk)
as k → +∞.

Let us now consider several possible iterative regimes defining αk.
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4.1 Case 1: αk = 1− α

k
, α > 0:

This corresponds to the choice made in the (deterministic) Nesterov and Ravine methods studied
in [10]. In this case, for every k ≥ 1,

1

1− αk+1
− 1

1− αk
=

k + 1

α
− k

α
=

1

α
.

Therefore, condition (43) is satisfied with c = 1
α . If α ≥ 3 (resp. α > 3), we have c ∈]0, 1/3] (resp.

c ∈]0, 1/3[). According to Proposition 4.2, we have for every k ≥ 1,

tk+1 ∼ 1

(1− c)(1− αk)
=

α

α− 1

k

α
=

k

α− 1
.

Indeed, one can easily show that the equality tk+1 = k
α−1 is satisfied. Moreover,

tk+1/t
2
k = k(α− 1)/(k − 1)2 ≥ (α− 1)/(k − 1) ⇒

∑
k∈N

tk+1

t2k
= +∞.

Thus, specializing Theorem 3.2 and Theorem 3.3, we obtain the following statement.

Corollary 4.1 Assume that (H) holds. Let (yk)k∈N be the sequence generated by (SRAG)αk+1

with αk = 1− α
k where α > 3, and sk ∈]0, 1/L] is a non-increasing sequence. Assume that

E [ek | Fk] = 0 (P-a.s.) and (kskσk)k∈N ∈ ℓ1+(F ).

Then, the following holds (P-a.s.):

(i) f(yk)−minH f = o
(

1
skk2

)
and ∥yk − yk−1∥ = o

(
1
k

)
;

(ii)
∑
k∈N

ksk(f(yk)−min
H

f) < +∞ and
∑
k∈N

k∥yk − yk−1∥2 < +∞ ;

(iii) If moreover infk sk > 0, then
∑

k∈N k2∥∇f(yk)∥2 < +∞ and (yk)k∈N converges weakly
(P-a.s.) to an argmin(f)-valued random variable.

Another possible choice would be αk = k
k+α in which case we obtain exactly the same results

as in Corollary 4.1. This corresponds to the popular choice of the the Nesterov extrapolation
parameter. For (SNAG)αk

with this choice of αk, we recover and complete the results obtained
in the literature; see e.g., [3,2,27,25].

4.2 Case 2: αk = 1− α

kr
, α > 0, r ∈]0, 1[:

In this case, we have

1

1− αk+1
− 1

1− αk
=

1

α
(k + 1)r − 1

α
kr =

kr

α
((1 + 1/k)r − 1) ∼ r

α
kr−1 → 0 as k → +∞.

For each c > 0, the condition 1/(1 − αk+1) − 1/(1 − αk) ≤ c is satisfied for k large enough. On

the other hand, we deduce from Proposition 4.2 that tk ∼ kr

α
as k → +∞. This implies that

k∑
i=1

ti ∼
1

α(1 + r)
k1+r as k → +∞. Theorem 3.2 and Theorem 3.3 under this specification yields

the following result.
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Corollary 4.2 Assume that (H) holds. Let (yk)k∈N be the sequence generated by (SRAG)αk+1

with αk = 1 − α
kr where α > 0 and r ∈]0, 1[, and sk ∈]0, 1/L] is an non-increasing sequence.

Assume that

E [ek | Fk] = 0 (P-a.s.) and (krskσk)k∈N ∈ ℓ1+(F ).

Then, the following holds (P-a.s.):

(i) f(yk)−minH f = o
(

1
skk2r

)
and ∥yk − yk−1∥ = o

(
1
kr

)
;

(ii)
∑
k∈N

krsk(f(yk)−min
H

f) < +∞ and
∑
k∈N

kr∥yk − yk−1∥2 < +∞ ;

(iii) If moreover infk sk > 0, then
∑

k∈N k2r∥∇f(yk)∥2 < +∞ and (yk)k∈N converges weakly
(P-a.s.) to an argmin(f)-valued random variable.

It is clear from this result that this choice of αk allows for a less stringent summability
condition on the stochastic errors, but this comes at the price of a slower convergence rate. We
are not aware of any such a result in the literature.

4.3 Case 3: αk constant:

This corresponds to the choice made in the Polyak’s heavy ball with friction method [33,35].
Since αk ≡ α ∈ [0, 1[ for every k ≥ 1, condition (43) is clearly satisfied with c = 0. In turn,
tk ≡ 1/(1− α) for all k ≥ 1. Applying Theorem 3.2 and Theorem 3.3 we get the following.

Corollary 4.3 Assume that (H) holds. Let (yk)k∈N be the sequence generated by (SRAG)αk+1

with αk ≡ α ∈ [0, 1[, and sk ∈]0, 1/L] is an non-increasing sequence. Assume that

E [ek | Fk] = 0 (P-a.s.) and (skσk)k∈N ∈ ℓ1+(F ).

Then, the following holds (P-a.s.):

(i)
∑
k∈N

sk(f(yk)−min
H

f) < +∞ and
∑
k∈N

∥yk − yk−1∥2 < +∞ ;

(ii) If moreover infk sk > 0, then
∑

k∈N ∥∇f(yk)∥2 < +∞ and (yk)k∈N converges weakly (P-a.s.)
to an argmin(f)-valued random variable.

For (SNAG)αk
with this choice of αk, we recover and complete the results obtained in the

literature; see e.g., [41,18,29,14].

5 Conclusion

In this paper we studied the convergence properties of the stochastic Ravine optimization algo-
rithm. We verified the intuition provided by recent analysis from the dynamics systems perspec-
tive showing that the Ravine and Nesterov accelerated gradient methods behave similarly, with
identical convergence properties. Specifically, we showed that the same asymptotic guarantees
as well as convergence rates apply with respect to function values, gradients and convergence of
the iterates.
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A Auxiliary lemmas

We here collect some important results that play a crucial role in the convergence analysis of (SNAG)αk
.

Lemma A.1 (Convergence of non-negative almost supermartingales [36]) Given a filtration R =
(Rk)k∈N and the sequences of real-valued random variables (rk)k∈N ∈ ℓ+ (R), (ak)k∈N ∈ ℓ+ (R), and (zk)k∈N ∈
ℓ1+ (R) satisfying, for each k ∈ N

E [rk+1 | Rk]− rk ≤ −ak + zk (P-a.s.)

it holds that (ak)k∈N ∈ ℓ1+ (R) and (rk)k∈N converges (P-a.s.) to a random variable valued in [0,+∞[.

The following lemma is a consequence of Lemma A.1; see also the discussion in [36, Section 3].

Lemma A.2 Given a filtration R = (Rk)k∈N, let the sequence of random variables (εk)k∈N ∈ ℓ+(R) such that((
E
[
ε2k | Rk−1

])1/2)
k∈N

∈ ℓ1+ (R). Then

∑
k∈N

εk < +∞ (P-a.s.) .

Proof Let ζk = εk − E [εk | Rk−1] and rk =
(∑k

i=1 ζi

)2
. We obviously have E [ζk+1 | Rk] = 0. Thus

E [rk+1 | Rk] =

(
k∑

i=1

ζi

)2

+

k∑
i=1

ζiE [ζk+1 | Rk] + E
[
ζ2k+1 | Rk

]
= rk + E

[
ζ2k+1 | Rk

]
= rk +Var

[
ε2k+1 | Rk

]
≤ rk + E

[
ε2k+1 | Rk

]
.

It is easy to see that
((

E
[
ε2k | Rk−1

])1/2)
k∈N

∈ ℓ1+ (R) implies
(
E
[
ε2k | Rk−1

])
k∈N ∈ ℓ1+ (R), and we can apply

Lemma (A.1) to get that

lim
k→+∞

rk

exists and is finite (P-a.s.). Using Jensen’s inequality we have

0 ≤
k∑

i=1

εi =
k∑

i=1

ζi +
k∑

i=1

E [εi | Ri−1] ≤ r
1/2
k +

k∑
i=1

(
E
[
ε2i | Ri−1

])1/2
.

Passing to the limit using that
((

E
[
ε2k | Rk−1

])1/2)
k∈N

∈ ℓ1+ (R) proves the claim. ⊓⊔

Lemma A.3 (Extended descent lemma) Let g : H → R be a convex function whose gradient is L-Lipschitz
continuous. Let s ∈]0, 1/L]. Then for all (x, y) ∈ H2, we have

g(y − s∇g(y)) ≤ g(x) + ⟨∇g(y), y − x⟩ −
s

2
∥∇g(y)∥2 −

s

2
∥∇g(x)−∇g(y)∥2 . (44)

See e.g. [7, Lemma 1]

B The Ravine method from a dynamic perspective

In this section, we consider the high resolution ODE of the Ravine method, and show that it exhibits damping
governed by the Hessian. This will explain the fast convergence towards zero of the gradients satisfied by the
Ravine method.
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B.1 Dynamic tuning of the extrapolation coefficients

Let us first explain how to tune the extrapolation coefficients in the Ravine method, in order to obtain a dynamic
interpretation of the algorithm. Critical to the understanding is the link between the Ravine method and the
Nesterov method, as explained in Section 2, and the dynamic interpretation of the Nesterov method, due to Su,
Boyd and Candès [39]. Consider the inertial gradient system

ẍ(t) + γ(t)ẋ(t) +∇f(x(t)) = 0, ((IGS)γ)

which involves a general viscous damping coefficient γ(·). The implicit time discretization of (IGS)γ , with time

step-size h > 0, xk = x(τk), and τk = kh 3, gives

xk+1 − 2xk + xk−1

h2
+ γ(kh)

xk − xk−1

h
+∇f(xk+1) = 0.

Let s := h2. After multiplication by s, we obtain

(xk+1 − xk)− (xk − xk−1) + hγ(kh)(xk − xk−1) + s∇f(xk+1) = 0. (45)

Equivalently

xk+1 + s∇f(xk+1) = xk + (1− hγ(kh)) (xk − xk−1), (46)

which gives

xk+1 = proxsf (xk + (1− hγ(kh)) (xk − xk−1)) . (47)

We obtain the inertial proximal algorithm{
yk = xk + (1− hγ(kh)) (xk − xk−1)

xk+1 = proxsf (yk) .

Following the general procedure described in [10], which consists in replacing the proximal step by a gradient
step, we obtain (NAG)αk

with αk = 1 − hγ(kh). Taking γ(t) = α
t
, we obtain (NAG)αk

with αk = 1 − α
k
,

which provides fast convergence results. Observe that Algorithm (NAG)αk
makes sense for any arbitrarily given

sequence of positive numbers (αk)k∈N. But for this algorithm to be directly connected by temporal discretization
to the continuous dynamic (IGS)γ , it is necessary to take αk = 1−hγ(kh). Note that the case γ(t) = α

t
is special,

since due to the homogeneity property of γ(·), in this case αk does not depend on h.

Let us now use the relations established in Section 2 between the Nesterov and the Ravine methods. Since
(xk)k∈N satisfies (NAG)αk

with αk = 1−hγ(kh), we have that the associated sequence (yk)k∈N follows (RAG)γk

with γk = αk+1 = 1− hγ((k + 1)h).

B.2 High resolution ODE of the Ravine method

Let us now proceed with the high resolution ODE of the Ravine method (RAG)γk
. The idea is not to let h → 0,

but to take into account the terms of order h =
√
s in the asymptotic expansion, and to neglect the term of order

h2 = s. The high resolution method is extensively used in fluid mechanics, where physical phenomena occur at
multiple scales. Indeed, by following an approach similar to that developed by Shi, Du, Jordan, and Su in [38],
and Attouch and Fadili in [10], we are going to show that the Hessian-driven damping appears in the associated
continuous inertial equation. Let us make this precise in the following result.

Theorem B.1 The high resolution ODE with temporal step size h =
√
s of the Ravine method (RAG)γk

with

γk = hγ((k + 1)h) gives the inertial dynamic with Hessian driven damping

ÿ(t) + γ(t)

(
1 +

√
s

2
γ(t)

)
ẏ(t) +

√
s∇2f(y(t))ẏ(t) +

(
1 +

√
s

2
γ(t)

)
∇f(y(t)) = 0. (48)

3 We take the τk notation instead of the usual tk, because tk will be used with a different meaning, and it is
used extensively in the paper.
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Proof Set γk = 1− hγ((k + 1)h). By definition of the Ravine method

yk+1 = yk − s∇f(yk) + γk

(
yk − s∇f(yk))− (yk−1 − s∇f(yk−1))

)
.

Equivalently

(yk+1 − yk)− (yk − yk−1) + (1− γk)(yk − yk−1) + s∇f(yk) + sγk

(
∇f(yk)−∇f(yk−1)

)
= 0.

After dividing by s = h2, we obtain

yk+1 − 2yk + yk−1

h2
+ (1− γk)

yk − yk−1

h2
+∇f(yk) + γk(∇f(yk)−∇f(yk−1)) = 0. (49)

Notice then that
yk − yk−1

h2
=

yk+1 − yk

h2
−

yk+1 − 2yk + yk−1

h2
.

So, (49) can be formulated equivalently as follows

γk
yk+1 − 2yk + yk−1

h2
+ (1− γk)

yk+1 − yk

h2
+∇f(yk) + γk(∇f(yk)−∇f(yk−1)) = 0. (50)

After dividing by γk, we get

yk+1 − 2yk + yk−1

h2
+

1− γk

hγk

yk+1 − yk

h
+

1

γk
∇f(yk) + (∇f(yk)−∇f(yk−1)) = 0. (51)

Building on (51), we use Taylor expansions taken at a higher order (here, order four) than for the low resolution
ODE. For each k ∈ N, set τk = (k + c)h, where c is a real parameter that will be adjusted further. Assume that
yk = Y (τk) for some smooth curve τ 7→ Y (τ) defined for τ ≥ t0 > 0. Performing a Taylor expansion in powers of
h, when h is close to zero, of the different quantities involved in (51), we obtain

yk+1 = Y (τk+1) = Y (τk) + hẎ (τk) +
1

2
h2Ÿ (τk) +

1

6
h3

...
Y (τk) +O(h4) (52)

yk−1 = Y (τk−1) = Y (τk)− hẎ (τk) +
1

2
h2Ÿ (τk)−

1

6
h3

...
Y (τk) +O(h4). (53)

By adding (52) and (53) we obtain

yk+1 − 2yk + yk−1

h2
= Ÿ (τk) +O(h2).

Moreover, (52) gives
yk+1 − yk

h
= Ẏ (τk) +

1

2
hŸ (τk) +O(h2).

By Taylor expansion of ∇f we have

∇f(yk)−∇f(yk−1) = h∇2f(Y (τk))Ẏ (τk) +O
(
h2
)
.

Plugging all of the above results into (51), we obtain

[Ÿ (τk) +O(h2)] +
1− γk

hγk

[
Ẏ (τk) +

1

2
hŸ (τk) +O(h2)

]
+

1

γk
∇f(Y (τk)) +

[
h∇2f(Y (τk))Ẏ (τk) +O

(
h2
)]

= 0.

Multiplying by hγk
1−γk

, we obtain in an equivalent way

hγk

1− γk
Ÿ (τk) + Ẏ (τk) +

1

2
hŸ (τk) +

h

1− γk
∇f(Y (τk)) +

h2γk

1− γk
∇2f(Y (τk))Ẏ (τk) +O(h3) = 0.

After reduction of the terms involving Ÿ (tk), we obtain

h(1 + γk)

2(1− γk)
Ÿ (τk) + Ẏ (τk) +

h

1− γk
∇f(Y (τk)) +

h2γk

1− γk
∇2f(Y (τk))Ẏ (τk) +O(h3) = 0.
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Multiplication by
2(1−γk)
h(1+γk)

then yields

Ÿ (τk) +
2(1− γk)

h(1 + γk)
Ẏ (τk) +

2

1 + γk
∇f(Y (τk)) +

2hγk

1 + γk
∇2f(Y (τk))Ẏ (τk) +O(h2) = 0. (54)

According to γk = 1− hγ((k + 1)h), and τk = (k + 1)h, we obtain

Ÿ (τk) +
γ(τk)

1− h
2
γ(τk)

Ẏ (τk) +
1

1− h
2
γ(τk)

∇f(Y (τk)) + h
1− hγ(τk)

1− h
2
γ(τk)

∇2f(Y (τk))Ẏ (τk) +O(h2) = 0.

By neglecting the term of order s = h2, and keeping the terms of order h =
√
s, we obtain the inertial dynamic

with Hessian driven damping

Ÿ (t) + γ(t)

(
1 +

√
s

2
γ(t)

)
Ẏ (t) +

√
s∇2f(Y (t))Ẏ (t) +

(
1 +

√
s

2
γ(t)

)
∇f(Y (t)) = 0.

This completes the proof. ⊓⊔

Remark B.1 The high resolution ODE of the Ravine method exhibits Hessian driven damping. In addition, it

incorporates a gradient correcting term weighted with a coefficient of
(
1 +

√
s

2
γ(t)

)
. This is in accordance with [10]

and [38]. Surprisingly, there is also a correction which appears in the viscosity term, the coefficient
(
1 +

√
s

2
γ(t)

)
in front of the velocity. Indeed as we already observed, the Nesterov case is very specific. When γ(t) = α

t
, we have

s = 1− hγ((k + 1)h) = 1− α
k+1

. Returning to (54), we have

2(1− s)

h(1 + s)
=

α

h(k + 1− α
2
)
.

Taking τk = h(k + 1− α
2
) gives γ(·) as the viscosity coefficient of the limit equation.
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