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Abstract In a real Hilbert space domain setting, we study the convergence properties of the
stochastic Ravine accelerated gradient method for convex differentiable optimization. We consider
the general form of this algorithm where the extrapolation coefficients can vary with each itera-
tion, and where the evaluation of the gradient is subject to random errors. This general treatment
models a breadth of practical algorithms and numerical implementations. We show that, under a
proper tuning of the extrapolation parameters, and when the error variance associated with the
gradient evaluations or the step-size sequences vanish sufficiently fast, the Ravine method provides
fast convergence of the values both in expectation and almost surely. We also improve the con-
vergence rates from O(·) to o(·) in expectation and almost sure sense. Moreover, we show almost
sure summability property of the gradients, which implies the fast convergence of the gradients
towards zero. This property reflects the fact that the high-resolution ODE of the Ravine method
includes a Hessian-driven damping term. When the space is also separable, our analysis allows also
to establish almost sure weak convergence of the sequence of iterates provided by the algorithm.
We finally specialize the analysis to consider different parameter choices, including vanishing and
constant (heavy ball method with friction) damping parameter, and present a comprehensive land-
scape of the tradeoffs in speed and accuracy associated with these parameter choices and statistical
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Université Montpellier,
Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
hedy.attouch@umontpellier.fr

Jalal Fadili
GREYC CNRS UMR 6072
Ecole Nationale Supérieure d’Ingénieurs de Caen
14050 Caen Cedex France.
Jalal.Fadili@greyc.ensicaen.fr

Vyacheslav Kungurtsev
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University,
12000 Prague, Czechia
vyacheslav.kungurtsev@fel.cvut.cz



2 Hedy Attouch, Jalal Fadili and Vyacheslav Kungurtsev

properties on the sequence of errors in the gradient computations. We provide a thorough discus-
sion of the similarities and differences with the Nesterov accelerated gradient which satisfies similar
asymptotic convergence rates.

Keywords Ravine method · Nesterov accelerated gradient method · general extrapolation
coefficient · stochastic errors · Hessian driven damping · convergence rates · Lyapunov analysis

Mathematics Subject Classification (2020) 37N40 · 46N10 · 49M30 · 65B99 · 65K05 · 65K10 ·
90B50 · 90C25

1 Introduction

Given a real Hilbert space H, our study concerns the fast numerical resolution of the convex
minimization problem

(P) min {f(x) : x ∈ H} ,

by the Ravine accelerated gradient method. We make the following standing assumptions:{
f : H → R is differentiable, ∇f is L− Lipschitz continuous, S = argmin f 6= ∅.

(sk)k∈N is a positive sequence with skL ∈]0, 1].
(H)

The Ravine Accelerated Gradient algorithm ((RAG)γk for short) generates iterates (yk, wk)k∈N
satisfying wk = yk − sk∇f(yk)

yk+1 = wk + γk (wk − wk−1) .
((RAG)γk)

Let us indicate the role of the different parameters involved in the above algorithm:

a) The positive parameter sequence (sk)k∈N is the step-size sequence applied to the gradient based
update.

b) The non-negative extrapolation coefficients (γk)k∈N are linked to the inertial character of the
algorithm. They can be viewed as control parameters for optimization purposes.

c) In order to inform about the practical performance of algorithms realizing this method in com-
mon capplications, we will analyze the convergence rates when the gradient terms are calculated
with stochastic errors. Formally, we consider ∇f(yk) + ek instead of ∇f(yk) in (RAG)γk where
ek is a zero-mean stochastic error.

The Ravine method is often confused with Nesterov’s method [27,26], which is close in its
formulation and its convergence properties. This justifies an in-depth study of the Ravine method
and its comparison with Nesterov’s method.

1.1 Historical aspects

The Ravine method was introduced by Gelfand and Tsetlin [18] in 1961. It is a first-order method
which only uses evaluations of the gradient of f . It is closely related with the Nesterov accelerated
gradient method, with which it has often been confused. Recent research concerning the under-
standing of accelerated first-order optimization methods, seen as temporal discretized dynamic
systems, has made it possible to clarify the link between the two methods; see the recent work of
Attouch and Fadili [9].
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The Ravine method was introduced in [18] in the case of a fixed positive extrapolation coefficient
γk ≡ γ > 0. Recent research has shown the advantage of setting γk = 1 − α

k , which, for α ≥ 3,
provides asymptotic convergence rates similar to the accelerated gradient method of Nesterov. The
Ravine method mimics the flow of water in the mountains which first flows rapidly downhill through
small, steep ravines and then flows along the main river in the valley, hence its name. A geometric
view of the Ravine Accelerated Gradient method is given in Figure 1.

•

•

•

•

•

yk−1

yk

wk−1 = yk−1 − s∇f(yk−1)

wk = yk − s∇f(yk)

yk+1 = wk + s (wk − wk−1)

S = argmin f

Fig. 1 (RAG): Ravine Accelerated Gradient method

The Ravine method was a precursor of the accelerated gradient methods. It has long been
ignored but has recently appeared at the forefront of current research in numerical optimization, see
for example Polyak [30], Attouch and Fadili [9], Shi, Du, Jordan and Su [34]. It comes naturally into
the picture when considering the optimized first-order methods for smooth convex minimization,
see [15,21,28]. The Ravine and Nesterov acceleration methods are both based on the operations
of extrapolation and gradient descent, but in a reverse order. Furthermore, up to a slight change
in the extrapolation coefficients, the two algorithms are associated with the same equations, each
of them describing the evolution of different variables, explaining how the two have been casually
confused in some of the literature.

The high resolution ODE of the two algorithms gives the same inertial dynamics with Hessian-
driven damping, providing a mathematical basis to explain the similarity of their convergence
properties. A significant difference is that in the Ravine method the discretized form of the Hessian
driven term comes explicitly, while in the Nesterov method it comes implicitly by applying a Taylor
formula. This results in different extensions of the two algorithms to the non-smooth case via the
corresponding proximal gradient algorithms, an ongoing research topic. We will see that a careful
adjustment of the extrapolation parameters (γk)k∈N provides fast convergence properties of the
Ravine algorithm resembling those of the Nesterov method. Taking a general coefficient γk gives
a broad picture of the convergence properties of this class of algorithms. Moreover, it shows the
flexibility of the method, the results being unchanged taking for example γk = k

k+α instead of 1− α
k ,

as one of the many variations of the method.
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1.2 Inertial stochastic gradient descent algorithms

Due to the importance of the subject in optimization, several works have been devoted to the
study of perturbations in second-order dissipative inertial systems and in the corresponding first
order algorithms (aka momentum methods). For deterministic perturbations, the subject was first
considered for the case of a fixed viscous damping (aka heavy ball method with friction [29,31])
in [8,19], then for the accelerated gradient method of Nesterov, and of the corresponding inertial
dynamics with vanishing viscous damping, see [5,7,12,33,36].

Stochastic gradient descent methods with inertia are widely used in applications and at the core
of optimization subroutines in many applications such as machine learning. Such algorithms are
the subject of an active research work to understand their convergence behaviour and were studied
in several works, focusing exclusively on stochastic versions of Nesterov’s method and the heavy
ball method; see [24,16,20,2,1,37,17,25,22,23,13,14].

1.3 Contributions

In this paper, in a real separable Hilbertian setting, we provide a unified analysis of the convergence
properties of the Ravine method subject to noise in the gradient computation over a large class of the
extrapolation sequence parameter settings beyond the standard ones for Nesterov’s method. We will
establish fast convergence rates in expectation and in almost sure sense on the objective values (both
in O(·) and o(·)), on the gradient, and prove weak convergence of the sequence of iterates. This latter
aspect is overlooked by many existing works that focus exclusively on complexity estimates. These
results will highlight the trade-off between the decrease of the error variance and fast convergence
of the values and gradients. Our results cover some of those reviewed above as special cases for the
Nesterov and heavy ball method extrapolation coefficients. In fact, even for these special cases, we
complement the results of the literature with new ones. Moreover, we are not aware of any such a
work for the Ravine method nor with general extrapolation coefficients.

1.4 A model result

Taking γk = 1−αk yields optimal convergence rate of the values and fast convergence of the gradients
towards zero. Specifically, let the sequence (yk)k∈N generated by the stochastic Ravine method with
constant step-size wk = yk − s(∇f(yk) + ek)

yk+1 = wk +
(
1− α

k

)
(wk − wk−1) ,

where s ∈]0, 1/L], (ek)k∈N is a zero-mean stochastic noise. Let Fk be the sub-σ-algebra generated

by y0 and (wi)i≤k−1. If α > 3, E [ek | Fk] = 0 and
∑+∞
k=1 kE

[
‖ek|‖2 | Fk

]1/2
< +∞ almost surely,

then according to Theorem 4.2 and 4.3, the following convergence properties hold:

f(yk)−min
H

f = o

(
1

k2

)
and

∑
k

k2‖∇f(yk)‖2 < +∞ almost surely.

In addition, if H is also separable1, then the sequence (yk)k∈N converges weakly almost surely to
a random variable valued in argmin(f). Our results in Section 5 will be established for a much

1 Separability is crucial for proving almost sure weak convergence of the sequence of iterates.
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larger lass of the extrapolation sequence beyond 1−α/k. In particular, these results will emphasize
the trade-off between the decrease of the error variance and fast convergence of the values and
gradients.

1.5 Contents

In Section 2, we start by making the link between the Ravine and the Nesterov method. This is
instrumental because it makes it possible to transfer some known results of the Nesterov method.
Then, in Section 3 we show that the high resolution ODE of the Ravine method exhibits the
damping governed by the Hessian. Section 4 is devoted to the study of the convergence properties
of the stochastic Ravine method, with as an important result the fast convergence in mean of the
gradients towards zero. Section 5 contains illustrations of our results for various special choices of
the extrapolation (inertial) sequence γk. Finally we conclude and draw some perspectives.

2 Comparison of the Nesterov and Ravine methods

Let us first recall some basic facts concerning the Nesterov method.

2.1 Nesterov accelerated gradient method

The Nesterov Accelerated Gradient (NAG for short) method with general extrapolation coefficients
(αk)k∈N, as studied in [5], reads

{
yk = xk + αk(xk − xk−1)

xk+1 = yk − sk∇f(yk).
((NAG)αk

)

Its central role in optimization is due to the fact that a wise choice of the coefficients (αk)k∈N
provides an optimal convergence rate of the values (in the worst case).

Specifically, taking αk = 1 − α
k gives a scheme which, for α ≥ 3, generates iterates (xk)k∈N

satisfying

f(xk)−min
H

f = O
(

1

k2

)
as k → +∞, (1)

and the fast convergence towards zero of the gradients (see [9])

∑
k

k2‖∇f(xk)‖2 < +∞.

In addition, when α > 3,

f(xk)−min
H

f = o

(
1

k2

)
as k → +∞,

∑
k

k(f(xk)−min
H

f) < +∞ (2)

and there is weak convergence of the iterates (xk)k∈N to optimal solutions, see [7,3,4,11,35].
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2.2 Passing from Nesterov method to Ravine method and vice versa

To avoid confusion between the two algorithms (RAG)γk and (NAG)αk
, we use the subscript γk for

the extrapolation coefficient in the Ravine method, and αk for the extrapolation coefficient in the
Nesterov method. A remarkable fact is that the variable yk which enters the definition of (NAG)αk

follows the (RAG)γk algorithm, with γk = αk+1. This generalizes the observation already made in
[9] for the specific choice αk = 1 − α

k . Although this is an elementary result, we give a detailed
account of it in the following theorem, due to its importance.

Theorem 2.1 (i) Let (xk)k∈N be the sequence generated by the Nesterov algorithm (NAG)αk
. Then

the associated sequence (yk)k∈N also follows the equations of the Ravine algorithm (RAG)γk with

γk = αk+1

(ii) Conversely, if (yk)k∈N is the sequence associated to the Ravine method (RAG)γk , then the sequence

(xk)k∈N defined by xk+1 := yk − sk∇f(yk) follows the Nesterov algorithm (NAG)αk
with αk =

γk−1.

Proof (i) Suppose that (xk)k∈N follows (NAG)αk
. According to the definition of yk

yk+1 = xk+1 + αk+1(xk+1 − xk)

= yk − sk∇f(yk) + αk+1

(
yk − sk∇f(yk)− (yk−1 − sk−1∇f(yk−1))

)
.

Set wk := yk − sk∇f(yk) (which is nothing but xk+1). We obtain that (yk)k∈N follows
(RAG)αk+1

, i.e.

(RAG)αk+1

wk = yk − sk∇f(yk)

yk+1 = wk + αk+1 (wk − wk−1) .

(ii) Conversely, suppose that (yk)k∈N follows the Ravine method (RAG)γk . According to the
definition of yk+1 and wk, we have

yk+1 = yk − sk∇f(yk) + γk

(
yk − sk∇f(yk)− (yk−1 − sk−1∇f(yk−1))

)
.

By definition of xk+1 = yk − sk∇f(yk), we deduce that

yk+1 = xk+1 + γk (xk+1 − xk) .

Equivalently

yk = xk + γk−1 (xk − xk−1) .

Putting together the above relations and the definition of xk+1, we obtain that (xk)k∈N follows
(NAG)γk−1

, i.e.

(NAG)γk−1

{
yk = xk + γk−1(xk − xk−1)

xk+1 = yk − sk∇f(yk).

This completes the proof. ut

Though the two methods are intimately linked as we have just seen, it is only recent advances
in the dynamical system interpretation of the two methods that revealed their close relationship
and also their differences. This is explained in the next section, where we consider the case of the
Ravine method with general extrapolation coefficients, hence generalizing the work of [9] beyond
the case αk = 1− α/k.
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3 The Ravine method from a dynamic perspective

We consider the high resolution ODE of the Ravine method, and show that it exhibits damping
governed by the Hessian. This will explain the fast convergence towards zero of the gradients
satisfied by the Ravine method, a claim that we will prove in the next section.

3.1 Dynamic tuning of the extrapolation coefficients

Let us first explain how to tune the extrapolation coefficients in the Ravine method, in order
to obtain a dynamic interpretation of the algorithm. Critical to the understanding is the link
between the Ravine method and the Nesterov method, as explained in Section 2, and the dynamic
interpretation of the Nesterov method, due to Su, Boyd and Candès [35]. Consider the inertial
gradient system

ẍ(t) + γ(t)ẋ(t) +∇f(x(t)) = 0, ((IGS)γ)

which involves a general viscous damping coefficient γ(·). The implicit time discretization of (IGS)γ ,

with time step-size h > 0, xk = x(τk), and τk = kh 2, gives

xk+1 − 2xk + xk−1

h2
+ γ(kh)

xk − xk−1

h
+∇f(xk+1) = 0.

Let s := h2. After multiplication by s, we obtain

(xk+1 − xk)− (xk − xk−1) + hγ(kh)(xk − xk−1) + s∇f(xk+1) = 0. (3)

Equivalently

xk+1 + s∇f(xk+1) = xk + (1− hγ(kh)) (xk − xk−1), (4)

which gives

xk+1 = proxsf (xk + (1− hγ(kh)) (xk − xk−1)) . (5)

We obtain the inertial proximal algorithm{
yk = xk + (1− hγ(kh)) (xk − xk−1)

xk+1 = proxsf (yk) .

Following the general procedure described in [9], which consists in replacing the proximal step by
a gradient step, we obtain (NAG)αk

with αk = 1 − hγ(kh). Taking γ(t) = α
t , we obtain (NAG)αk

with αk = 1− α
k , which provides fast convergence results. Observe that Algorithm (NAG)αk

makes
sense for any arbitrarily given sequence of positive numbers (αk)k∈N. But for this algorithm to be
directly connected by temporal discretization to the continuous dynamic (IGS)γ , it is necessary to
take αk = 1−hγ(kh). Note that the case γ(t) = α

t is special, since due to the homogeneity property
of γ(·), in this case αk does not depend on h.

Let us now use the relations established in Section 2 between the Nesterov and the Ravine
methods. Since (xk)k∈N satisfies (NAG)αk

with αk = 1 − hγ(kh), we have that the associated
sequence (yk)k∈N follows (RAG)γk with γk = αk+1 = 1− hγ((k + 1)h).

2 We take the τk notation instead of the usual tk, because tk will be used with a different meaning, and it is
used extensively in the paper.
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3.2 High resolution ODE of the Ravine method

Let us now proceed with the high resolution ODE of the Ravine method (RAG)γk . The idea is not
to let h → 0, but to take into account the terms of order h =

√
s in the asymptotic expansion,

and to neglect the term of order h2 = s. The high resolution method is extensively used in fluid
mechanics, where physical phenomena occur at multiple scales. Indeed, by following an approach
similar to that developed by Shi, Du, Jordan, and Su in [34], and Attouch and Fadili in [9], we
are going to show that the Hessian-driven damping appears in the associated continuous inertial
equation. Let us make this precise in the following result.

Theorem 3.1 The high resolution ODE with temporal step size h =
√
s of the Ravine method (RAG)γk

with γk = hγ((k + 1)h) gives the inertial dynamic with Hessian driven damping

ÿ(t) + γ(t)

(
1 +

√
s

2
γ(t)

)
ẏ(t) +

√
s∇2f(y(t))ẏ(t) +

(
1 +

√
s

2
γ(t)

)
∇f(y(t)) = 0. (6)

Proof Set γk = 1− hγ((k + 1)h). By definition of the Ravine method

yk+1 = yk − s∇f(yk) + γk

(
yk − s∇f(yk))− (yk−1 − s∇f(yk−1))

)
.

Equivalently

(yk+1 − yk)− (yk − yk−1) + (1− γk)(yk − yk−1) + s∇f(yk) + sγk

(
∇f(yk)−∇f(yk−1)

)
= 0.

After dividing by s = h2, we obtain

yk+1 − 2yk + yk−1

h2
+ (1− γk)

yk − yk−1

h2
+∇f(yk) + γk(∇f(yk)−∇f(yk−1)) = 0. (7)

Notice then that
yk − yk−1

h2
=
yk+1 − yk

h2
−
yk+1 − 2yk + yk−1

h2
.

So, (7) can be formulated equivalently as follows

γk
yk+1 − 2yk + yk−1

h2
+ (1− γk)

yk+1 − yk
h2

+∇f(yk) + γk(∇f(yk)−∇f(yk−1)) = 0. (8)

After dividing by γk, we get

yk+1 − 2yk + yk−1

h2
+

1− γk
hγk

yk+1 − yk
h

+
1

γk
∇f(yk) + (∇f(yk)−∇f(yk−1)) = 0. (9)

Building on (9), we use Taylor expansions taken at a higher order (here, order four) than for the
low resolution ODE. For each k ∈ N, set τk = (k + c)h, where c is a real parameter that will be
adjusted further. Assume that yk = Y (τk) for some smooth curve τ 7→ Y (τ) defined for τ ≥ t0 > 0.
Performing a Taylor expansion in powers of h, when h is close to zero, of the different quantities
involved in (9), we obtain

yk+1 = Y (τk+1) = Y (τk) + hẎ (τk) +
1

2
h2Ÿ (τk) +

1

6
h3

...
Y (τk) +O(h4) (10)

yk−1 = Y (τk−1) = Y (τk)− hẎ (τk) +
1

2
h2Ÿ (τk)− 1

6
h3

...
Y (τk) +O(h4). (11)

By adding (10) and (11) we obtain

yk+1 − 2yk + yk−1

h2
= Ÿ (τk) +O(h2).
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Moreover, (10) gives
yk+1 − yk

h
= Ẏ (τk) +

1

2
hŸ (τk) +O(h2).

By Taylor expansion of ∇f we have

∇f(yk)−∇f(yk−1) = h∇2f(Y (τk))Ẏ (τk) +O
(
h2
)
.

Plugging all of the above results into (9), we obtain

[Ÿ (τk) +O(h2)] +
1− γk
hγk

[
Ẏ (τk) +

1

2
hŸ (τk) +O(h2)

]
+

1

γk
∇f(Y (τk)) +

[
h∇2f(Y (τk))Ẏ (τk) +O

(
h2
)]

= 0.

Multiplying by hγk
1−γk , we obtain in an equivalent way

hγk
1− γk

Ÿ (τk) + Ẏ (τk) +
1

2
hŸ (τk) +

h

1− γk
∇f(Y (τk)) +

h2γk
1− γk

∇2f(Y (τk))Ẏ (τk) +O(h3) = 0.

Afterreduction of the terms involving Ÿ (tk), we obtain

h(1 + γk)

2(1− γk)
Ÿ (τk) + Ẏ (τk) +

h

1− γk
∇f(Y (τk)) +

h2γk
1− γk

∇2f(Y (τk))Ẏ (τk) +O(h3) = 0.

Multiplication by 2(1−γk)
h(1+γk)

then yields

Ÿ (τk) +
2(1− γk)

h(1 + γk)
Ẏ (τk) +

2

1 + γk
∇f(Y (τk)) +

2hγk
1 + γk

∇2f(Y (τk))Ẏ (τk) +O(h2) = 0. (12)

According to γk = 1− hγ((k + 1)h), and τk = (k + 1)h, we obtain

Ÿ (τk) +
γ(τk)

1− h
2 γ(τk)

Ẏ (τk) +
1

1− h
2 γ(τk)

∇f(Y (τk)) + h
1− hγ(τk)

1− h
2 γ(τk)

∇2f(Y (τk))Ẏ (τk) +O(h2) = 0.

By neglecting the term of order s = h2, and keeping the terms of order h =
√
s, we obtain the

inertial dynamic with Hessian driven damping

Ÿ (t) + γ(t)

(
1 +

√
s

2
γ(t)

)
Ẏ (t) +

√
s∇2f(Y (t))Ẏ (t) +

(
1 +

√
s

2
γ(t)

)
∇f(Y (t)) = 0.

This completes the proof. ut

Remark 3.1 The high resolution ODE of the Ravine method exhibits Hessian driven damping. In

addition, it incorporates a gradient correcting term weighted with a coefficient of
(

1 +
√
s

2 γ(t)
)

.

This is in accordance with [9] and [34]. Surprisingly, there is also a correction which appears in the

viscosity term, the coefficient
(

1 +
√
s

2 γ(t)
)

in front of the velocity. Indeed as we already observed,

the Nesterov case is very specific. When γ(t) = α
t , we have s = 1−hγ((k+1)h) = 1− α

k+1 . Returning
to (12), we have

2(1− s)
h(1 + s)

=
α

h(k + 1− α
2 )
.

Taking τk = h(k + 1− α
2 ) gives γ(·) as the viscosity coefficient of the limit equation.
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4 Convergence properties of the stochastic Ravine method

In this section, we analyze the convergence properties of the Ravine method with stochastic errors
in the eveluation of the gradients. We first examine the fast convergence of the values and the
convergence of iterates, then we show the fast convergence of the gradients towards zero. This
section considers the algorithmic and stochastic version of the results obtained by the authors for
the corresponding continuous dynamical systems with deterministic errors [10].

4.1 Values convergence rates and convergence of the iterates

We first start by proving the results for the Nesterov method before transferring them to the Ravine
method thanks to Theorem 2.1. In [5], the Nesterov accelerated gradient method with a general
extrapolation coefficient αk and deterministic terms was studied. Here, we consider a stochastic
version which reads for k ≥ 1 yk = xk + αk(xk − xk−1)

xk+1 = yk − sk(∇f(yk) + ek)
((SNAG)αk

)

where sk ∈]0, 1/L] is a sequence of step-sizes, (ek)k∈N is a sequence of H-valued random variables.
(SNAG)αk

is initialized with x0 = x1, where x0 a H-valued, squared integrable random variable.
Taking the objective function f ≡ 0 and ek ≡ 0 in (SNAG)αk

already reveals insights for choosing
the best parameters. In this case, the algorithm (SNAG)αk

becomes xk+1−xk−αk(xk−xk−1) = 0.
This implies that for every k ≥ 1,

xk = x1 +

k−1∑
i=1

i∏
j=1

αj

 (x1 − x0).

Therefore, (xk)k∈N converges if and only if
∑+∞
i=1

∏i
j=1 αj < +∞. We are naturally led to introduce

the sequence (tk)k∈N defined by

tk := 1 +
+∞∑
i=k

i∏
j=k

αj . (13)

The above formula may seem complicated at a first glance. In fact, the inverse transform, which
makes it possible to pass from tk to αk has the following, simpler form

αk =
tk − 1

tk+1
. (14)

Formula (14) will ease the path of the analysis and we shall make regular use of it in the sequel.

From now on, we denote by (Ω,F ,P) a probability space. We assume that H is a real separable
Hilbert space endowed with its Borel σ-algebra, B (H). We denote a filtration on (Ω,F ,P) by
F := (Fk)k∈N where Fk is a sub-σ-algebra satisfying, for each k ∈ N, Fk ⊂ Fk+1 ⊂ F . Furthermore,
given a set of random variables {a0, . . . , ak} we denote by σ (a0, . . . , ak) the σ-algebra generated by
a0, . . . , ak. Finally, a statement (P ) is said to hold (P-a.s.) if

P ({ω ∈ Ω : (P ) holds}) = 1.

Using the above notation, we denote the canonical filtration associated to the iterates of algorithm
(SNAG)αk

as F with, for all k ∈ N,

Fk := σ (x0, . . . , xk)
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such that all iterates up to xk are completely determined by Fk.
For the remainder of the paper, all equalities and inequalities involving random quantities should

be understood as holding (P-a.s.) even if it is not explicitly written.

Definition 4.1 Given a filtration F , we denote by `+ (F ) the set of sequences of [0,+∞[-valued
random variables (ak)k∈N such that, for each k ∈ N, ak is Fk-measurable. Then, for p ∈]0,+∞[, we
also define the following set of p-summable random variables,

`p+ (F ) :=

{
(ak)k∈N ∈ `+ (F ) :

∑
k∈N

apk < +∞ (P-a.s.)

}
.

The set of non-negative p-summable (deterministic) sequences is denoted `p+.

The following theorem is a generalization of [5, Theorems 3.1, 3.2 and 3.4] to the stochastic
setting.

Theorem 4.1 Assume that (H) holds and the sequence (αk)k∈N satisfies

∀k ≥ 1,
+∞∑
i=k

i∏
j=k

αj < +∞, (K0)

∀k ≥ 1, t2k+1 − t
2
k ≤ tk+1. (K1)

Consider the algorithm (SNAG)αk
where sk ∈]0, 1/L] is a non-increasing sequence and (ek)k∈N is a

sequence of stochastic errors such that

E [ek | Fk] = 0 (P-a.s.) and (sktkσk)k∈N ∈ `
2
+(F ), (K2)

where σ2k := E
[
‖ek‖2 | Fk

]
. Then,

(i) we have the following rate of convergence in almost sure and mean sense:

f(xk)−min f = O
(

1

skt
2
k

)
(P-a.s.) ,

and

E [f(xk)−min f ] ≤
s1t

2
1E [f(x0)−min f ] + 1

2E
[
dist(x0, S)2

]
+ 4

∑+∞
i=1 s

2
i t

2
iE
[
‖ei‖2

]
skt

2
k

.

(ii) Assume in addition that, for m ∈ [0, 1[,

t2k+1 − t
2
k ≤ mtk+1 for every k ≥ 1, (K+

1 )

then ∑
k∈N

sktk+1(f(xk)−min f) < +∞ and
∑
k∈N

tk ‖xk − xk−1‖2 < +∞ (P-a.s.) .

If moreover
∑
k∈N

tk+1

t2k
= +∞, then

f(xk)−min f = o

(
1

skt
2
k

)
and ‖xk − xk−1‖ = o

(
1

tk

)
(P-a.s.) .
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(iii) If αk ∈ [0, 1] for every k ≥ 1, infk sk > 0, (K+
1 ) holds and (K2) is strengthened to

E [ek | Fk] = 0 (P-a.s.) and (sktkσk)k∈N ∈ `
1
+(F ), (K+

2 )

then the sequence (xk)k∈N converges weakly (P-a.s.) to an argmin(f)-valued random variable.

Before delving into the proof, some remarks are in order.

Remark 4.1 From claim (i), we have, for sk constant and bounded away from 0, convergence at the
rate O(1/k2) in the objective if (tkσk)k∈N ∈ `2+(F ). If just (σk)k∈N ∈ `2+(F ), then the step-size
must anneal at the rate sk ∼ 1/tk for an objective value convergence rate O(1/tk).

Now consider non-vanishing noise with bounded variance (i.e. lim supσk > 0, P − a.s. and
E[σ2k]− E[σk]2 ≤ B, 0 < B <∞). For the choice of tk = (k − 1)/(α− 1), setting the step-size to be
sk = 1/k1+δ, with δ > 0, results in convergence with a rate is O(1/kδ). If sk = 1/k and the noise
does not asymptotically vanish (a.s.), convergence can only be ensured to a noise dominated region.
On the other hand, if tk = (k1+δ − 1)/(α − 1) with δ < 0, then sk = 1/k achieves a convergence
rate of O(1/kδ) if there is vanishing noise. Continuing, we see that the O(1/k2) rate is achieved for
vanishing noise and sk = 1/k(2−δ).

The last statement of claim (ii) can be modified to get the same rate as in the deterministic
case in [5, Theorem 3.4] but only at the price of a stronger summability assumption on the noise.

Proof Our proof is based on a (stochastic) Lyapunov analysis with appropriately chosen energy
functionals.
(i) Denote fk(x) := f(x) + 〈ek, x〉 and recall S = argmin(f). Define the sequence

Vk := skt
2
k(f(xk)− f(x?)) +

1

2
dist(zk, S)2 and zk := xk−1 + tk (xk − xk−1) .

Since f is convex and L-smooth, so is fk. Let us apply (52) in Lemma A.3 on fk successively at
y = yk and x = xk, then at y = yk and x = x? ∈ S. We get

fk(xk+1) ≤ fk(xk) + 〈∇fk(yk), yk − xk〉 −
sk
2
‖∇fk(yk)‖2 (15)

fk(xk+1) ≤ fk(x?) +
〈
∇fk(yk), yk − x?

〉
− sk

2
‖∇fk(yk)‖2 . (16)

Multiplying (15) by tk+1− 1 (which is non-negative by definition), then adding the (16), we derive
that

tk+1fk(xk+1) ≤ (tk+1 − 1)fk(xk) + fk(x?) +
〈
∇fk(yk), (tk+1 − 1)(yk − xk) + yk − x?

〉
− sk

2
tk+1 ‖∇fk(yk)‖2 . (17)

It is immediate to see, using (14) and the definitions of yk and zk, that

(tk+1 − 1)(yk − xk) + yk = xk + tk+1(yk − xk) = xk−1 + (1 + tk+1αk)(xk − xk−1)

= xk−1 + tk(xk − xk−1) = zk.

Inserting this into (17) and rearranging, we get

tk+1(fk(xk+1)− fk(x?)) ≤ (tk+1 − 1)(fk(xk)− fk(x?)) +
〈
∇fk(yk), zk − x?

〉
− sk

2
tk+1 ‖∇fk(yk)‖2 .

(18)

Straightforward computation, using again (14) and the definition of yk and zk, can yield the ex-
pression,

zk+1 − zk = −sktk+1∇fk(yk). (19)
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Thus ∥∥zk+1 − x?
∥∥2 =

∥∥zk − x?∥∥2 − 2sktk+1

〈
∇fk(yk), zk − x?

〉
+ s2kt

2
k+1 ‖∇fk(yk)‖2 .

Dividing this by 2 and adding to (18), after multiplying the latter by sktk+1, cancels all terms
containing ∇f(yk) and we arrive at

skt
2
k+1(fk(xk+1)− fk(x?)) +

1

2

∥∥zk+1 − x?
∥∥2 ≤ sktk+1(tk+1 − 1)(fk(xk)− fk(x?)) +

1

2

∥∥zk − x?∥∥2 .
(20)

Let us take x? as the closest point to zk in S. Thus (20) is equivalent to

skt
2
k+1(fk(xk+1)− fk(x?)) +

1

2
dist(zk+1, S)2 ≤ sktk+1(tk+1 − 1)(fk(xk)− fk(x?)) +

1

2
dist(zk, S)2.

(21)

Let us now isolate the error terms. Inequality (21) is then equivalent to

skt
2
k+1(f(xk+1)−min f) +

1

2
dist(zk+1, S)2 ≤ sktk+1(tk+1 − 1)(f(xk)−min f) +

1

2
dist(zk, S)2

− sk
〈
ek, t

2
k+1(xk+1 − x?)− tk+1(tk+1 − 1)(xk − x?)

〉
. (22)

We have
t2k+1(xk+1 − x?)− tk+1(tk+1 − 1)(xk − x?) = tk+1(zk+1 − x?).

In turn, using also that sk is non-increasing, (22) becomes

sk+1t
2
k+1(f(xk+1)−min f) +

1

2
dist(zk+1, S)2 + sk(t2k − t

2
k+1 + tk+1)(f(xk)−min f) ≤

skt
2
k(f(xk)−min f) +

1

2
dist(zk, S)2 − sktk+1

〈
ek, zk+1 − x?

〉
.

In view of the definition of Vk, this is equivalent to

Vk+1 ≤ Vk + sk(t2k+1 − tk+1 − t2k)(f(xk)−min f) + sktk+1

〈
ek, zk+1 − x?

〉
. (23)

Taking the expectation conditionally on Fk in (23), we obtain

E [Vk+1 | Fk] ≤ Vk + sk(t2k+1 − tk+1 − t2k)(f(xk)−min f)− sktk+1E
[〈
ek, zk+1 − x?

〉
| Fk

]
. (24)

We have

E
[〈
ek, zk+1 − x?

〉
| Fk

]
= E [〈ek, zk+1 − zk〉 | Fk] + E

[〈
ek, zk − z?

〉
| Fk

]
= −sktk+1E [〈ek, ∇fk(yk)〉 | Fk] = −sktk+1E [〈ek, ∇f(yk) + ek〉 | Fk]

= −sktk+1E
[
‖ek‖2 | Fk

]
= −sktk+1σ

2
k,

where we used (19) in the second equality, and conditional unbiasedness (first part of (K2)) in
both the second and last inequalities, together with the fact that yk, zk and z? are deterministic
conditionally on Fk. Plugging this into (24) yields

E [Vk+1 | Fk] ≤ Vk + sk(t2k+1 − tk+1 − t2k)(f(xk)−min f) + s2kt
2
k+1σ

2
k

≤ Vk + sk(t2k+1 − tk+1 − t2k)(f(xk)−min f) + 4s2kt
2
kσ

2
k, (25)

where we used that assumption (K1) implies tk+1 ≤ 2tk; see [5, Remark 3.3]. Using again (K1), the
second term in the rhs of (25) is non-positive and can then be dropped. Now, thanks to the second
part of (K2), we are in position to apply Lemma A.1 to (25) to see that Vk converges (P-a.s.), and
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consequently it is bounded (P-a.s.). Thus, there exists a [0,+∞[-valued random variable ξ such that
supk∈N Vk ≤ ξ < +∞ (P-a.s.). Therefore, for all k ≥ 1,

s2kt
2
k(f(xk)−min f) ≤ Vk < +∞ (P-a.s.) .

Moreover, taking the total expectation in (25) and iterating gives

s2kt
2
kE [f(xk)−min f ] ≤ E [Vk] ≤ E [V1] + 4

k∑
i=1

s2i t
2
iE
[
‖ei‖2

]
≤

s1t
2
1E [f(x0)−min f ] +

1

2
E
[
dist(x0, S)2

]
+ 4

+∞∑
i=1

s2i t
2
iE
[
‖ei‖2

]
< +∞,

where we used in the last inequality that x0 = x1 by assumption, and that the rhs is finite thanks
to Fubini-Tonelli’s Theorem together with (K2). This proves the first claim in the theorem.

(ii) Using (K+
1 ) in (25), we get

E [Vk+1 | Fk] ≤ Vk − sk(1−m)tk+1(f(xk)−min f) + 4s2kt
2
kσ

2
k.

We can again invoke Lemma A.1 to get that∑
k≥1

sktk+1(f(xk)−min f) < +∞ (P-a.s.) . (26)

Let

Wk := sk(f(xk)−min f) +
1

2
‖xk − xk−1‖2 .

Combining [5, Proposition 2.1] with the fact that sk is non-increasing, we have that

Wk+1 ≤Wk −
1− α2

k

2
‖xk − xk−1‖2 − sk 〈ek, xk+1 − xk〉 .

Taking the expectation conditionally on Fk, we obtain

E [Wk+1 | Fk] ≤Wk −
1− α2

k

2
‖xk − xk−1‖2 − skE [〈ek, xk+1 − xk〉 | Fk] . (27)

We have

E [〈ek, xk+1 − xk〉 | Fk] = E [〈ek, xk+1 − yk〉 | Fk] = −skE [〈ek, ∇fk(yk)〉 | Fk] = −skE
[
‖ek‖2 | Fk

]
,

where we used the algorithm update of xk+1 in the second inequality, and conditional unbiasedness
(first part of (K2)) in the second and last inequalities together with xk, yk being conditionally
deterministic on Fk. Inserting this into (27) yields

E [Wk+1 | Fk] ≤Wk −
1− α2

k

2
‖xk − xk−1‖2 + s2kσ

2
k. (28)

Multiplying (28) by t2k+1 and rearranging entails

E
[
t2k+1Wk+1 | Fk

]
≤ t2k+1Wk − t2k+1

1− α2
k

2
‖xk − xk−1‖2 + s2kt

2
k+1σ

2
k

= t2kWk + sk(t2k+1 − t
2
k)(f(xk)−min f) +

t2k+1 − t
2
k − t

2
k+1(1− α2

k)

2
‖xk − xk−1‖2 + s2kt

2
k+1σ

2
k

≤ t2kWk +msktk+1(f(xk)−min f)− tk
2
‖xk − xk−1‖2 + 4s2kt

2
kσ

2
k. (29)
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In the equality, we used the expression of Wk. In the second inequality we used (K+
1 ) and that

tk = 1 + tk+1αk and (K1) which gives

t2k+1 − t
2
k − t

2
k+1(1− α2

k) = (tk − 1)2 − t2k = −2tk + 1 ≤ −tk

as tk ≥ 1. We have already proved above (see (26)) that (sktk+1(f(xk)−min f))k∈N ∈ `1+(F ).
Combining this with the second part of (K2) allows us to invoke again Lemma A.1 on (29) to
deduce that ∑

k≥1

tk ‖xk − xk−1‖2 < +∞ (P-a.s.) . (30)

Moreover, Lemma A.1 also implies that t2kWk converges (P-a.s.). On the other hand, we have

tk+1Wk = sktk+1(f(xk)−min f) +
tk+1

2
‖xk − xk−1‖2 ≤ sktk+1(f(xk)−min f) + tk ‖xk − xk−1‖2 ,

and thus (26) and (30) imply that ∑
k≥1

tk+1Wk < +∞ (P-a.s.) .

In turn ∑
k≥1

tk+1Wk =
∑
k≥1

tk+1

t2k
t2kWk < +∞ (P-a.s.)

entailing that lim infk→+∞ t2kWk = 0 (P-a.s.). This together with (P-a.s.) convergence of t2kWk

shown just above gives that

Wk = o

(
1

t2k

)
.

Returning to the definition of Wk proves the assertions.

(iii) The crux of the proof consists in applying Opial’s Lemma on a set of events of probability one.
Observe that (K+

2 ) implies (K2). Thus Lemma A.1 applied to (29) ensures also that t2kWk converges
(P-a.s.). In particular, this implies that tk ‖xk − xk−1‖ is bounded (P-a.s.). From the proof of claim
(i), we also know that (P-a.s.), Vk converges, hence (zk)k∈N is bounded. In view of the definition of
zk, we obtain that (xk)k∈N is bounded (P-a.s.). Moreover, since tk ≥ 1 and s = infk sk > 0, we get
from (ii) that (P-a.s.)

s
∑
k≥1

(f(xk)−min f) ≤
∑
k≥1

sktk+1(f(xk)−min f) < +∞,

and thus limk→+∞ f(xk) = min f (P-a.s.).
Let Ω̂ be the set of events on which the last statement holds and Ω̌ on which boundedness

of (xk)k∈N holds. Both sets are of probability one. For any ω ∈ Ω̂ ∩ Ω̌, let (xkj (ω))j≥1 be any
converging subsequence, and x̄(ω) its weak cluster point.

f(x̄(ω)) = lim
j→∞

f(xkj (ω)) = lim
k→∞

f(xk(ω)) = min f,

which means that x̄(ω) ∈ S. This implies that (P-a.s.) each weak cluster point of (xk)k∈N belongs
to S = argmin(f). In other words, the second condition of Opial’s lemma holds (P-a.s.).

Let x? ∈ S and define hk := 1
2 ‖xk − x

?‖2. We now show that limk→+∞ hk exists (P-a.s.). For
this, we use a standard argument that can be found e.g. in [11,5]. By [5, Proposition 2.3], we have

hk+1 − hk − αk(hk − hk−1) ≤ αk(1 + αk)

2
‖xk − xk−1‖2 − sk(fk(xk+1)− fk(x?)

≤ ‖xk − xk−1‖2 − sk(f(xk+1)−min f)− sk
〈
ek, xk+1 − x?

〉
≤ ‖xk − xk−1‖2 − sk

〈
ek, xk+1 − x?

〉
.
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In the second inequality we used that αk ∈ [0, 1], and the last one minimality of x?. Almost
sure boundedness of xk implies that there exists a [0,+∞[-valued random variable η such that
supk∈N ‖xk − x

?‖ ≤ η < +∞ (P-a.s.). Thus

hk+1 − hk − αk(hk − hk−1) ≤ ‖xk − xk−1‖2 + ηsk ‖ek‖ . (31)

Multiplying (31) by tk+1, taking the positive part and the conditional expectation, we end up
having

E [tk+1(hk+1 − hk)+ | Fk] ≤ tk+1αk(hk − hk−1)+ + tk+1 ‖xk − xk−1‖2 + ηsktk+1E [‖ek‖ | Fk]

≤ (tk − 1)(hk − hk−1)+ + tk+1 ‖xk − xk−1‖2 + 2ηsktkE
[
‖ek‖2 | Fk

]1/2
= tk(hk − hk−1)+ − (hk − hk−1)+ + tk+1 ‖xk − xk−1‖2 + 2ηsktkσk.

where we used that tk = 1 + tk+1αk, that tk+1 ≤ 2tk and Jensen’s inequality. As the last two
terms in the rhs are summable (P-a.s.), we get using Lemma A.1 that ((hk − hk−1)+)k∈N ∈ `

1
+(F )

(P-a.s.). In turn, since hk is non-negative, we get by a classical argument that limk→+∞ hk exists.
Note that the set of events of probability on which limk→+∞ hk exists depends on x?. To make

this uniform on S we use a separability argument.
Indeed, we have just shown that there exists a set of events Ωx? (that depends on x?) such that

P(Ωx?) = 1 and for all ω ∈ Ωx? , (‖xk(ω)− x?‖)k∈N converges. We now show that there exists a set
of events independent of x?, whose probability is one and such that the above still holds on this set.
Since H is separable, there exists a countable set U ⊆ S, such that cl(U) = S. Let Ω̃ =

⋂
u∈U Ωu.

Since U is countable, a union bound shows

P(Ω̃) = 1− P

( ⋃
u∈U

Ωcu

)
≥ 1−

∑
u∈U

P(Ωcu) = 1.

For arbitrary x? ∈ S, there exists a sequence (uj)j∈N ⊂ U such that uj converges strongly to x?.
Thus for every j ∈ N there exists τj : Ωuj → R+ such that

lim
k→+∞

∥∥xk(ω)− uj
∥∥ = τj(ω), ∀ω ∈ Ωuj . (32)

Now, let ω ∈ Ω̃. Since Ω̃ ⊂ Ωuj for any j ≥ 1, and using the triangle inequality and (32), we obtain
that

τj(ω)−
∥∥uj − x?∥∥ ≤ lim inf

k→+∞

∥∥xk(ω)− x?
∥∥ ≤ lim sup

k→+∞

∥∥xk(ω)− x?
∥∥ ≤ τj(ω) +

∥∥uj − x?∥∥ .
Passing to j → +∞, we deduce

lim sup
j→+∞

τj(ω) ≤ lim inf
k→+∞

∥∥xk(ω)− x?
∥∥ ≤ lim sup

k→+∞

∥∥xk(ω)− x?
∥∥ ≤ lim inf

j→+∞
τj(ω),

whence we deduce that limj→+∞ τj(ω) exists for all ω ∈ Ω̃. In turn, (P-a.s.), limk→+∞ ‖xk − x?‖
exists and is equal to limj→+∞ τj for any x? ∈ S.

We are now in position to apply Opial’s Lemma at any ω ∈ Ω̂ ∩ Ω̌ ∩ Ω̃, since P(Ω̂ ∩ Ω̌ ∩ Ω̃) = 1,
to conclude. ut

Let us now return to the Ravine algorithm. A simple adaptation of the proof of Theorem 2.1
applied to (SNAG)αk

(just replace f by f+〈ek, ·〉, and follow similar algebraic manipulations) gives
that the associated sequence (yk)k∈N defined by

yk = xk + αk(xk − xk−1),
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follows the stochastic Ravine accelerated gradient algorithm with γk = αk+1, i.e. for all k ≥ 1wk = yk − sk(∇f(yk) + ek)

yk+1 = wk + αk+1 (wk − wk−1) .
((SRAG)αk+1

)

(SRAG)αk+1
is initialized with y0 and w−1 = y0, where y0 is a H-valued, squared integrable random

variable. According to this relationship between the Nesterov and the Ravine method highlighted
in in Theorem 2.1, the results of Theorem 4.1 can now be transposed to (SRAG)αk+1

. For this,

we denote the canonical filtration associated to (SRAG)αk+1
as F = (Fk)k∈N with, ∀k ≥ N, Fk =

σ(y0, (wi)i≤k−1).

Theorem 4.2 Assume the conditions presented in (H). Let (yk)k∈N be the sequence generated by

(SRAG)αk+1
where sk ∈]0, 1/L] is a non-increasing sequence, (αk)k∈N ⊂ [0, 1] satisfies (K0) and (K+

1 )

with
∑
k∈N

tk+1

t2k
= +∞, and (ek)k∈N is a sequence of stochastic errors satisfying (K+

2 ). Then, the

sequence (yk)k∈N satisfies

∑
k∈N

sktk+1(f(yk)−min f) < +∞ and f(yk)−min
H

f = o

(
1

skt
2
k

)
as k → +∞ (P-a.s.) .

Moreover, if infk sk > 0, then the sequence (yk)k∈N converges weakly (P-a.s.) to an argmin(f)-valued

random variable.

Proof According to Theorem 2.1, the sequence (xk)k∈N defined by

xk+1 = yk − sk(∇f(yk) + ek) (33)

is equivalent to Algorithm (SNAG)αk
. It then follows from Theorem 4.1(ii) that

f(xk)−min f = o

(
1

skt
2
k

)
and ‖xk − xk−1‖ = o

(
1

tk

)
(P-a.s.) . (34)

In addition, in view of condition (K+
2 ), we can apply Lemma A.2 with εk = (sktkσk)k∈N to infer

that
+∞∑
k=1

sktk ‖ek‖ < +∞ (P-a.s.) , (35)

and thus

sk ‖ek‖ = o

(
1

tk

)
(P-a.s.) . (36)

Rearrange the terms in (33) to obtain the expression ∇f(yk) = − 1
sk

(xk+1− yk)− ek. Using, succes-
sively, the convexity of f , the Cauchy-Schwartz inequality, and the triangle inequality, we obtain

f(yk)−min
H

f ≤ f(xk)−min
H

f +
1

sk
〈xk+1 − yk + skek, xk − yk〉

≤ f(xk)−min
H

f +
1

sk
(‖xk+1 − yk‖+ sk‖ek‖) ‖xk − yk‖

≤ f(xk)−min
H

f +
1

sk
(‖xk+1 − xk‖+ ‖xk − yk‖+ sk‖ek‖) ‖xk − yk‖. (37)

Using again the link between (SRAG)αk+1
and (SNAG)αk

, we have

yk = xk + αk (xk − xk−1) .
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Therefore, since αk ∈ [0, 1],

‖yk − xk‖ ≤ ‖xk − xk−1‖. (38)

Combining (34), (36), (37) and (38) we obtain

f(yk)−min
H

f ≤ f(xk)−min
H

f +
1

sk
(‖xk+1 − xk‖+ ‖xk − xk−1‖+ sk‖ek‖) ‖xk − xk−1‖

= o

(
1

skt
2
k

)
(P-a.s.)

where we used that tk+1 ≤ 2tk in the last equality. In addition, using Young’s inequality, that
(xk)k∈N is bounded (P-a.s.), (35) and the summability claims of Theorem 4.1(ii), we get that
(P-a.s.),∑

k∈N
sktk+1(f(yk)−min f) ≤

∑
k∈N

sktk+1(f(xk)−min f) +
∑
k∈N

tk+1

2
‖xk+1 − xk‖2

+ 3
∑
k∈N

tk‖xk − xk−1‖2 + 4η
∑
k∈N

tksk‖ek‖ < +∞,

where η is the [0,+∞[-valued random variable such that supk∈N ‖xk‖ ≤ η < +∞ (P-a.s.).

Now, from (34) and (38), we also have ‖yk − xk‖ = o
(

1
tk

)
(P-a.s.). Consequently, yk − xk

converges strongly (P-a.s.) to zero. Since the sequence (xk)k∈N converges weakly, it follows that
the sequence (yk)k∈N converges weakly (P-a.s.) to the same limit as (xk)k∈N, and we know from
Theorem 4.1(iii) that the latter indeed converges weakly (P-a.s.) to an argmin(f)-valued random
variable. ut

4.2 Fast convergence of the gradients towards zero

In this section, the previous results on the stochastic Ravine method (SRAG)αk+1
are completed

in also showing the fast convergence towards zero of the gradients. This will necessitate a specific
and intricate Lyapunov analysis3.

Recall fk(x) := f(x)+〈ek, x〉 from the proof of Theorem 4.1. The formula in Lemma 4.1 hereafter
will play a key role in our Lyapunov analysis, and will serve as the constitutive formulation of the
algorithm. It corresponds to the Hamiltonian formulation of the algorithm involving the discrete
velocities which are defined by, for each k ∈ N

vk :=
1

h
(yk − yk−1) (39)

where we recall that h =
√
s.

Lemma 4.1 Let (yk)k∈N be generated by (SRAG)αk+1
. Then, for all k ∈ N

tk+1(vk + h∇fk−1(yk−1))− (tk − 1)(vk−1 + h∇fk−2(yk−2)) = −h(tk − 1)∇fk−1(yk−1). (40)

Proof According to the algorithm recursion, we have

yk = yk−1 − h2∇fk−1(yk−1) + αk

(
yk−1 − h2∇fk−1(yk−1)−

(
yk−2 − h2∇fk−2(yk−2)

))
= yk−1 + αk(yk−1 − yk−2)− h2

(
∇fk−1(yk−1) + αk

(
∇fk−1(yk−1)−∇fk−2(yk−2)

))
.

3 Observe that embarking from (15)-(16) and using the refined estimate in (52) is not sufficient to get the result.
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Equivalently,

0 = (yk − yk−1)− αk(yk−1 − yk−2) + h2∇fk−1(yk−1) + h2αk(∇fk−1(yk−1)−∇fk−2(yk−2))

= αk(yk − yk−1)− αk(yk−1 − yk−2) + (1− αk)(yk − yk−1) + h2∇fk−1(yk−1)

+ h2αk(∇fk−1(yk−1)−∇fk−2(yk−2)).

Let us make vk appear by multiplying this equality by 1
hαk

. We then get

0 = vk − vk−1 +
1− αk
αk

vk +
h

αk
∇fk−1(yk−1) + h(∇fk−1(yk−1)−∇fk−2(yk−2))

= (vk + h∇fk−1(yk−1))− (vk−1 + h∇fk−2(yk−2)) +
1− αk
αk

vk +
h

αk
∇fk−1(yk−1).

After multiplication by αk
1−αk

, we arrive at

0 =
αk

1− αk
(vk + h∇fk−1(yk−1))− αk

1− αk
(vk−1 + h∇fk−2(yk−2)) + vk +

h

1− αk
∇fk−1(yk−1)

=

(
1 +

αk
1− αk

)
(vk + h∇fk−1(yk−1))− αk

1− αk
(vk−1 + h∇fk−2(yk−2))− h∇fk−1(yk−1)

+
h

1− αk
∇fk−1(yk−1).

We thus obtain

1

1− αk
(vk + h∇fk−1(yk−1))− αk

1− αk
(vk−1 + h∇fk−2(yk−2)) = − hαk

1− αk
∇fk−1(yk−1).

Equivalently

(vk + h∇fk−1(yk−1))− αk(vk−1 + h∇fk−2(yk−2)) = −hαk∇fk−1(yk−1). (41)

In view of (14), the last equality is also equivalent to (40). This completes the proof of the Lemma.
ut

Recall the canonical filtration associated to (SRAG)αk+1
as F = (Fk)k∈N with, ∀k ≥ N, Fk =

σ(y0, (wi)i≤k−1).

Theorem 4.3 Let us assume the conditions defined in (H). Let (yk)k∈N be the sequence generated by

(SRAG)αk+1
where sk ≡ s ∈]0, 1/L], (αk)k∈N ⊂ [0, 1] satisfy (K0) and (K+

1 ). Assume that (ek)k∈N is

a sequence of stochastic errors subject to conditions (K+
2 ). Then the sequence of gradients (∇f(yk))k∈N

converges to zero with ∑
k∈N

t2k+1‖∇f(yk)‖2 < +∞ (P-a.s.) .

Proof Our Lyapunov analysis is based on the sequence (Ek)k∈N defined as

Ek := h2(tk+1 − 1)tk+1(f(yk−1)−min f) +
1

2
dist(zk, S)2,

zk := yk + h(tk+1 − 1)
(
vk + h∇fk−1(yk−1)

)
.

Let x? be the closest point to zk in S. By definition of Ek, we have

Ek+1 − Ek ≤ h2(tk+1 − 1)tk+1(f(yk)− f(yk−1))

+ h2
(

(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f) +

1

2
‖zk+1 − x?‖2 −

1

2
‖zk − x?‖2. (42)
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Let us compute this last expression with the help of the elementary inequality

1

2
‖zk+1 − x?‖2 −

1

2
‖zk − x?‖2 =

〈
zk+1 − zk, zk+1 − x?

〉
− 1

2
‖zk+1 − zk‖2. (43)

Recall the constitutive equation given by (40) that we write as follows

tk+2(vk+1 + h∇fk(yk))− (tk+1 − 1)(vk + h∇fk−1(yk−1)) = −h(tk+1 − 1)∇fk(yk). (44)

Using successively the definition of zk and (44), we obtain

zk+1 − zk = (yk+1 − yk) + h(tk+2 − 1)
(
vk+1 + h∇fk(yk)

)
− h(tk+1 − 1)

(
vk + h∇fk−1(yk−1)

)
= hvk+1 − h

(
vk+1 + h∇fk(yk)

)
− h2(tk+1 − 1)∇fk(yk) = −h2tk+1∇fk(yk).

This together with the definition of zk yields

zk+1 = zk − h2tk+1∇fk(yk) = yk + h(tk+1 − 1)
(
vk + h∇fk−1(yk−1)

)
− h2tk+1∇fk(yk).

Plugging this into (43), we deduce that

1

2
‖zk+1 − x?‖2 −

1

2
‖zk − x?‖2 = −1

2
h4t2k+1‖∇fk(yk)‖2

−h2tk+1

〈
∇fk(yk), yk − x? + h(tk+1 − 1)

(
vk + h∇fk−1(yk−1)

)
− h2tk+1∇fk(yk)

〉
=

1

2
h4t2k+1‖∇fk(yk)‖2 − h2tk+1

〈
∇fk(yk), yk − x? + h(tk+1 − 1)

(
vk + h∇fk−1(yk−1)

)〉
.

Let us arrange the above expression so as to group the products of ∇fk(yk). For this, we use (40)
again, written as,

(tk+1 − 1)(vk + h∇fk−1(yk−1)) = tk+2(vk+1 + h∇fk(yk)) + h(tk+1 − 1)∇fk(yk). (45)

Therefore,

yk − x? + h(tk+1 − 1)
(
vk + h∇fk−1(yk−1)

)
= yk − x? + htk+2(vk+1 + h∇fk(yk)) + h2(tk+1 − 1)∇fk(yk)

= yk − x? + htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk).

Collecting the above results we obtain

1

2
‖zk+1 − x?‖2 −

1

2
‖zk − x?‖2 =

1

2
h4t2k+1‖∇fk(yk)‖2

− h2tk+1

〈
∇fk(yk), yk − x? + htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk)

〉
.

Inserting this in (42) we get

Ek+1 − Ek ≤ h2(tk+1 − 1)tk+1(f(yk)− f(yk−1))

+ h2
(

(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f) +

1

2
h4t2k+1‖∇fk(yk)‖2

− h2tk+1

〈
∇fk(yk), yk − x? + htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk)

〉
. (46)
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In view of the basic gradient inequality for convex differentiable functions whose gradient is L-
Lipschitz continuous, we have

f(yk−1) ≥ f(yk) + 〈∇f(yk), yk−1 − yk〉+
1

2L
‖∇f(yk)−∇f(yk−1)‖2.

min f ≥ f(yk) +
〈
∇f(yk), x? − yk

〉
+

1

2L
‖∇f(yk)‖2 .

Combining the above inequalities with (46), and using ∇fk(yk) = ∇f(yk) + ek, we get

Ek+1 − Ek ≤ −h2(tk+1 − 1)tk+1

(
〈∇f(yk), yk−1 − yk〉+

1

2L
‖∇f(yk)−∇f(yk−1)‖2

)
+ h2

(
(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f)− h2tk+1 (f(yk)−min f)

+
1

2
h4t2k+1‖∇fk(yk)‖2 − h2tk+1

〈
∇fk(yk), htk+2vk+1 + h2(tk+2 + tk+1 − 1)∇fk(yk)

〉
− h2tk+1

〈
yk − x?, ek

〉
. (47)

Next rearrange the last inequality by grouping terms on the right hand side with common expres-
sions. To begin with, rewrite the second and third summand as follows:

h2
(

(tk+2 − 1)tk+2 − (tk+1 − 1)tk+1

)
(f(yk)−min f)− h2tk+1(f(yk)−min f) =

− h2
(
t2k+1 − t

2
k+2 + tk+2

)
(f(yk)−min f).

For the following expression grouping two of the summands above, we use the definition of vk for
the first equality, and the constitutive equation (45) for the third,

− h2(tk+1 − 1)tk+1 〈∇f(yk), yk−1 − yk〉 − h2tk+1 〈∇fk(yk), htk+2vk+1〉

= h3(tk+1 − 1)tk+1 〈∇f(yk), vk〉 − h3tk+1tk+2 〈∇fk(yk), vk+1〉

= h3tk+1 〈∇f(yk), (tk+1 − 1)vk − tk+2vk+1〉 − h3tk+1tk+2 〈vk+1, ek〉

= h3tk+1

(
〈∇f(yk),−h(tk+1 − 1)∇fk−1(yk−1) + h(tk+1 + tk+2 − 1)∇fk(yk)〉

)
− h3tk+1tk+2 〈vk+1, ek〉

= h4tk+1

(
〈∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)〉

)
− h3tk+1tk+2 〈vk+1, ek〉+ h4tk+1(tk+1 + tk+2 − 1) 〈∇f(yk), ek〉 − h4tk+1(tk+1 − 1) 〈∇f(yk), ek−1〉 .

In addition

1

2
h4t2k+1‖∇fk(yk)‖2−h4tk+1(tk+2 + tk+1−1)‖∇fk(yk)‖2 = −1

2
h4tk+1(2tk+2 + tk+1−2)‖∇fk(yk)‖2.

Collecting the last three estimates and applying the inequalities to (47), we obtain

Ek+1 − Ek + h2
(
t2k+1 − t

2
k+2 + tk+2

)
(f(yk)−min f)

≤ − h
2

2L
(tk+1 − 1)tk+1‖∇f(yk)−∇f(yk−1)‖2

+ h4tk+1

(
〈∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)〉

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)‖∇f(yk) + ek‖2

− h2tk+1

〈
ek, yk − x?

〉
− h3tk+1tk+2 〈vk+1, ek〉

+ h4tk+1(tk+1 + tk+2 − 1) 〈∇f(yk), ek〉 − h4tk+1(tk+1 − 1) 〈∇f(yk), ek−1〉 .
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After developing the expression ‖∇f(yk) + ek‖2, we arrive at

Ek+1 − Ek + h2
(
t2k+1 − t

2
k+2 + tk+2

)
(f(yk)−min f)

≤ − h
2

2L
(tk+1 − 1)tk+1‖∇f(yk)−∇f(yk−1)‖2

+ h4tk+1

(
〈∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)〉

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)

(
‖∇f(yk)‖2 + ‖ek‖2 + 2 〈∇f(yk), ek〉

)
− h2tk+1

〈
ek, yk − x?

〉
− h3tk+1tk+2 〈vk+1, ek〉

+ h4tk+1(tk+1 + tk+2 − 1) 〈∇f(yk), ek〉 − h4tk+1(tk+1 − 1) 〈∇f(yk), ek−1〉 .

Taking the expectation conditionally on Fk and using conditional unbiasedness in (K+
2 ), we get

that (P-a.s.)

E [Ek+1 | Fk]− Ek + h2
(
t2k+1 − t

2
k+2 + tk+2

)
(f(yk)−min f)

≤ − h
2

2L
(tk+1 − 1)tk+1‖∇f(yk)−∇f(yk−1)‖2

+ h4tk+1

(
〈∇f(yk),−(tk+1 − 1)∇f(yk−1) + (tk+1 + tk+2 − 1)∇f(yk)〉

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)‖∇f(yk)‖2 − 1

2
h4tk+1(2tk+2 + tk+1 − 2)σ2k

+ h3tk+1tk+2E
[
‖vk+1‖2 | Fk

]1/2
σk,

where we used Cauchy-Schwartz inequality in the last term. Now we rely on Theorem 4.1, and in
particular on (34) and (38) to infer that

‖vk+1‖ =
1

h
‖yk+1 − yk‖ ≤

1

h
‖yk+1 − xk+1‖+

1

h
‖xk+1 − xk‖+

1

h
‖xk − yk‖

≤ 2

h
‖xk+1 − xk‖+

1

h
‖xk − xk−1‖ = o

(
1

tk+1

)
+ o

(
1

tk

)
= o

(
1

tk+1

)
(P-a.s.) .

In the last equality we used again that (K+
1 ) implies tk+1 ≤ 2tk. Therefore, there exists a non-

negative random variable η with ess sup η < +∞ such that E
[
‖vk+1‖2 | Fk

]1/2 ≤ η/tk+1, and in
turn

E [Ek+1 | Fk]− Ek + h2
(
t2k+1 − t

2
k+2 + tk+2

)
(f(yk)−min f)

≤ − h
2

2L
(tk+1 − 1)tk+1‖∇f(yk)−∇f(yk−1)‖2

+ h3tk+1

(
〈∇f(yk),−h(tk+1 − 1)∇f(yk−1) + h(tk+1 + tk+2 − 1)∇f(yk)〉

)
− 1

2
h4tk+1(2tk+2 + tk+1 − 2)‖∇f(yk)‖2 + 4ηh3tkσk,

where we used again that tk+2 ≤ 4tk and we discarded the term involving σ2k since tk ≥ 1 and thus
2tk+2 + tk+1 − 2 ≥ 1. Equivalently,

E [Ek+1 | Fk]−Ek+h2
(
t2k+1−t

2
k+2+tk+2

)
(f(yk)−min f) ≤ −R(∇f(yk−1),∇f(yk))+4ηh3tkσk, (48)
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where R is the quadratic form

R(X,Y ) =
h2

2L
(tk+1 − 1)tk+1‖Y −X‖2 +

1

2
h4tk+1(2tk+2 + tk+1 − 2)‖Y ‖2

− h3tk+1 (〈Y, −h(tk+1 − 1)X + h(tk+1 + tk+2 − 1)Y 〉) . (49)

To conclude, we just need to prove that R is nonnegative. A standard procedure consists in com-
puting a lower-bound minX R(X,Y ) for fixed Y . By taking the derivative of R with respect to X,
we obtain that the minimum is achieved at X̄ with X̄ − Y = −h2LY . Therefore,

min
X

R(X,Y ) =
h2L

2
(tk+1 − 1)tk+1h

4‖Y ‖2 +
1

2
h4tk+1(2tk+2 + tk+1 − 2)‖Y ‖2

− h3tk+1

(〈
Y, −h(tk+1 − 1)(1− h2L)Y + h(tk+1 + tk+2 − 1)Y

〉)
.

After reduction, we get

min
X

R(X,Y ) =
h4tk+1

2

(
(tk+1 − 1)(2− h2L)− 1

)
‖Y ‖2. (50)

According to assumption (K+
1 ), the coefficient of f(yk) − min f in (48) is positive. We therefore

discard this term in the rest of the proof. Combining (50) with (48), we obtain

E [Ek+1 | Fk]− Ek ≤ −
h4tk+1

2

(
(tk+1 − 1)(2− h2L)− 1

)
‖∇f(yk)‖2 + 4ηh3tkσk.

Since h2 ∈]0, 1/L] and tk ≥ 1, this can also be bounded as

E [Ek+1 | Fk] ≤ Ek −
h2tk+1

2L

(
(tk+1 − 1)(2− h2L)− 1

)
‖∇f(yk)‖2 +

4ηh

L
tkσk

≤ Ek −
h2tk+1(tk+1 − 2)

2L
‖∇f(yk)‖2 +

4ηh

L
tkσk

= Ek −
h2t2k+1

2L
‖∇f(yk)‖2 +

h2tk+1

L
‖∇f(yk)‖2 +

4ηh

L
tkσk

≤ Ek −
h2t2k+1

2L
‖∇f(yk)‖2 + 2h2tk+1(f(yk)−min f) +

4ηh

L
tkσk,

where we used co-coercivity of ∇f in the last inequality. The summability assumption in (K+
2 )

together with the summability result in Theorem 4.2 allow then to invoke Lemma A.1 to get the
claim. Observe that this also gives that Ek converges (P-a.s.) to a non-negative valued random
variable. ut

Remark 4.2 Since tk ≥ 1, a direct consequence of the gradient summability shown in Theorem 4.3
is that the gradient sequence (∇f(yk))k∈N tends to zero (P-a.s.) at least as quickly as at the rate
o(1/tk). Observe also that this analysis gives another proof for the fast convergence of the function
values (just carry on the proof starting from (48) without discarding the term involving the function
values).

Note that the above proof has been notably simplified by using the conclusions already obtained
in Theorem 4.2, and in particular to properly bound the terms involving vk+1 (which are not in Fk).
Extending this proof to the case where the step-size sk is varying appears to be straightforward,
but comes at the price of tedious and longer computations. We avoid this for the sake of brevity.
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5 Application to Particular Parameter Choices

Let consider the theoretical guarantees obtained under the condition that there exists c ∈ [0, 1[
such that, for every k ≥ 1

1

1− αk+1
− 1

1− αk
≤ c. (51)

This implies some important properties of tk. One significant observation is a trade-off between
stability to errors and fast convergence of ((SRAG)αk+1

). Some choices of αk will be less stringent on
the required summability of the error variance for convergence, but will result in slower convergence
rate and vice-versa.

In presenting the details, let us start with the following results that were obtained in [4, Propo-
sition 3.3, 3.4]. The first one presents some general conditions on (αk) and c that ensure the
satisfaction of (K0) and (K1) (resp. (K+

1 )). The second one provides an explicit expression of tk as
a function of αk.

Proposition 5.1 Let c ∈ [0, 1[ and let (αk)k∈N be a sequence satisfying αk ∈ [0, 1[ together with

inequality (51) for every k ≥ 1. Then condition (K0) is satisfied. Moreover, we have for every k ≥ 1,

tk+1 ≤
1

(1− c)(1− αk)
.

If c ≤ 1/3 (resp. c < 1/3), then condition (K1) (resp. (K+
1 )) is fulfilled.

Proposition 5.2 Let (αk)k∈N be a sequence such that αk ∈ [0, 1[ for every k ≥ 1. Given c ∈ [0, 1[,
assume that

lim
k→+∞

1

1− αk+1
− 1

1− αk
= c.

Then, we have

tk+1 ∼
1

(1− c)(1− αk)
as k → +∞.

Let us now consider several possible iterative regimes defining αk.

5.1 Case 1: αk = 1− α

k
, α > 0:

This corresponds to the choice made in the (deterministic) Nesterov and Ravine methods studied
in [9]. In this case, for every k ≥ 1,

1

1− αk+1
− 1

1− αk
=
k + 1

α
− k

α
=

1

α
.

Therefore, condition (51) is satisfied with c = 1
α . If α ≥ 3 (resp. α > 3), we have c ∈]0, 1/3] (resp.

c ∈]0, 1/3[). According to Proposition 5.2, we have for every k ≥ 1,

tk+1 ∼
1

(1− c)(1− αk)
=

α

α− 1

k

α
=

k

α− 1
.

Indeed, one can easily show that the equality tk+1 = k
α−1 is satisfied. Moreover,

tk+1/t
2
k = k(α− 1)/(k − 1)2 ≥ (α− 1)/(k − 1)⇒

∑
k∈N

tk+1

t2k
= +∞.

Thus, specializing Theorem 4.2 and Theorem 4.3, we obtain the following statement.
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Corollary 5.1 Assume that (H) holds. Let (yk)k∈N be the sequence generated by (SRAG)αk+1
with

αk = 1− α
k where α > 3, and sk ∈]0, 1/L] is a non-increasing sequence. Assume that

E [ek | Fk] = 0 (P-a.s.) and (kskσk)k∈N ∈ `
1
+(F ).

Then, the following holds (P-a.s.):

(i) f(yk)−minH f = o
(

1
skk2

)
and ‖yk − yk−1‖ = o

(
1
k

)
;

(ii)
∑
k∈N

ksk(f(yk)−min
H

f) < +∞ and
∑
k∈N

k‖yk − yk−1‖2 < +∞ ;

(iii) If moreover infk sk > 0, then
∑
k∈N k

2‖∇f(yk)‖2 < +∞ and (yk)k∈N converges weakly (P-a.s.)
to an argmin(f)-valued random variable.

Another possible choice would be αk = k
k+α in which case we obtain exactly the same results

as in Corollary 5.1. This corresponds to the popular choice of the the Nesterov extrapolation
parameter. For (SNAG)αk

with this choice of αk, we recover and complete the results obtained in
the literature; see e.g., [2,1,23,22].

5.2 Case 2: αk = 1− α

kr
, α > 0, r ∈]0, 1[:

In this case, we have

1

1− αk+1
− 1

1− αk
=

1

α
(k + 1)r − 1

α
kr =

kr

α
((1 + 1/k)r − 1) ∼ r

α
kr−1 → 0 as k → +∞.

For each c > 0, the condition 1/(1 − αk+1) − 1/(1 − αk) ≤ c is satisfied for k large enough. On

the other hand, we deduce from Proposition 5.2 that tk ∼
kr

α
as k → +∞. This implies that

k∑
i=1

ti ∼
1

α(1 + r)
k1+r as k → +∞. Theorem 4.2 and Theorem 4.3 under this specification yields

the following result.

Corollary 5.2 Assume that (H) holds. Let (yk)k∈N be the sequence generated by (SRAG)αk+1
with

αk = 1− α
kr where α > 0 and r ∈]0, 1[, and sk ∈]0, 1/L] is an non-increasing sequence. Assume that

E [ek | Fk] = 0 (P-a.s.) and (krskσk)k∈N ∈ `
1
+(F ).

Then, the following holds (P-a.s.):

(i) f(yk)−minH f = o
(

1
skk2r

)
and ‖yk − yk−1‖ = o

(
1
kr

)
;

(ii)
∑
k∈N

krsk(f(yk)−min
H

f) < +∞ and
∑
k∈N

kr‖yk − yk−1‖2 < +∞ ;

(iii) If moreover infk sk > 0, then
∑
k∈N k

2r‖∇f(yk)‖2 < +∞ and (yk)k∈N converges weakly (P-a.s.)
to an argmin(f)-valued random variable.

It is clear from this result that this choice of αk allows for a less stringent summability condition
on the stochastic errors, but this comes at the price of a slower convergence rate. We are not aware
of any such a result in the literature.
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5.3 Case 3: αk constant:

This corresponds to the choice made in the Polyak’s heavy ball with friction method [29,31]. Since
αk ≡ α ∈ [0, 1[ for every k ≥ 1, condition (51) is clearly satisfied with c = 0. In turn, tk ≡ 1/(1− α)
for all k ≥ 1. Applying Theorem 4.2 and Theorem 4.3 we get the following.

Corollary 5.3 Assume that (H) holds. Let (yk)k∈N be the sequence generated by (SRAG)αk+1
with

αk ≡ α ∈ [0, 1[, and sk ∈]0, 1/L] is an non-increasing sequence. Assume that

E [ek | Fk] = 0 (P-a.s.) and (skσk)k∈N ∈ `
1
+(F ).

Then, the following holds (P-a.s.):

(i)
∑
k∈N

sk(f(yk)−min
H

f) < +∞ and
∑
k∈N
‖yk − yk−1‖2 < +∞ ;

(ii) If moreover infk sk > 0, then
∑
k∈N ‖∇f(yk)‖2 < +∞ and (yk)k∈N converges weakly (P-a.s.) to

an argmin(f)-valued random variable.

For (SNAG)αk
with this choice of αk, we recover and complete the results obtained in the

literature; see e.g., [37,17,25,13].

6 Conclusion, perspectives

In this paper we studied the convergence properties of the stochastic Ravine optimization algo-
rithm. We verified the intuition provided by recent analysis from the dynamics systems perspective
showing that the Ravine and Nesterov accelerated gradient methods behave similarly, with identi-
cal convergence properties. Specifically, we showed that the same asymptotic guarantees as well as
convergence rates apply with respect to function values, gradients and convergence of the iterates.

A Auxiliary lemmas

We here collect some important results that play a crucial role in the convergence analysis of (SNAG)αk
.

Lemma A.1 (Convergence of non-negative almost supermartingales [32]) Given a filtration R =
(Rk)k∈N and the sequences of real-valued random variables (rk)k∈N ∈ `+ (R), (ak)k∈N ∈ `+ (R), and (zk)k∈N ∈
`1+ (R) satisfying, for each k ∈ N

E [rk+1 | Rk]− rk ≤ −ak + zk (P-a.s.)

it holds that (ak)k∈N ∈ `1+ (R) and (rk)k∈N converges (P-a.s.) to a random variable valued in [0,+∞[.

The following lemma is a consequence of Lemma A.1; see also the discussion in [32, Section 3].

Lemma A.2 Given a filtration R = (Rk)k∈N, let the sequence of random variables (εk)k∈N ∈ `+(R) such that((
E
[
ε2k | Rk−1

])1/2)
k∈N
∈ `1+ (R). Then

∑
k∈N

εk < +∞ (P-a.s.) .

Proof Let ζk = εk − E [εk | Rk−1] and rk =
(∑k

i=1 ζi

)2
. We obviously have E [ζk+1 | Rk] = 0. Thus

E [rk+1 | Rk] =

(
k∑
i=1

ζi

)2

+

k∑
i=1

ζiE [ζk+1 | Rk] + E
[
ζ2k+1 | Rk

]
= rk + E

[
ζ2k+1 | Rk

]
= rk + Var

[
ε2k+1 | Rk

]
≤ rk + E

[
ε2k+1 | Rk

]
.
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It is easy to see that
((

E
[
ε2k | Rk−1

])1/2)
k∈N
∈ `1+ (R) implies

(
E
[
ε2k | Rk−1

])
k∈N ∈ `

1
+ (R), and we can apply

Lemma (A.1) to get that
lim

k→+∞
rk

exists and is finite (P-a.s.). Using Jensen’s inequality we have

0 ≤
k∑
i=1

εi =

k∑
i=1

ζi +

k∑
i=1

E [εi | Ri−1] ≤ r1/2k +

k∑
i=1

(
E
[
ε2i | Ri−1

])1/2
.

Passing to the limit using that
((

E
[
ε2k | Rk−1

])1/2)
k∈N
∈ `1+ (R) proves the claim. ut

Lemma A.3 (Extended descent lemma) Let g : H → R be a convex function whose gradient is L-Lipschitz
continuous. Let s ∈]0, 1/L]. Then for all (x, y) ∈ H2, we have

g(y − s∇g(y)) ≤ g(x) + 〈∇g(y), y − x〉 −
s

2
‖∇g(y)‖2 −

s

2
‖∇g(x)−∇g(y)‖2 . (52)

See e.g. [6, Lemma 1]

References

1. Allen-Zhu, Z.: Katyusha: the first direct acceleration of stochastic gradient methods. J. Mach. Learn. Res.
18, Paper No. 221, 51 (2017)

2. Assran, M., Rabbat, M.: On the convergence of nesterov’s accelerated gradient method in stochastic settings.
In: Proceedings of the 37th International Conference on Machine Learning, vol. 119, pp. 410–420 (2020)

3. Attouch, H., Cabot, A.: Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity.
J. Differential Equations 263(9), 5412–5458 (2017). DOI 10.1016/j.jde.2017.06.024. URL https://doi.org/
10.1016/j.jde.2017.06.024

4. Attouch, H., Cabot, A.: Convergence rates of inertial forward-backward algorithms. SIAM J. Optim. 28(1),
849–874 (2018). DOI 10.1137/17M1114739. URL https://doi.org/10.1137/17M1114739

5. Attouch, H., Cabot, A., Chbani, Z., Riahi, H.: Inertial forward-backward algorithms with perturbations:
application to Tikhonov regularization. J. Optim. Theory Appl. 179(1), 1–36 (2018). DOI 10.1007/
s10957-018-1369-3. URL https://doi.org/10.1007/s10957-018-1369-3

6. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems with
Hessian driven damping. Math. Program. 193(1, Ser. A), 113–155 (2022). DOI 10.1007/s10107-020-01591-1.
URL https://doi.org/10.1007/s10107-020-01591-1

7. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algo-
rithms with asymptotic vanishing viscosity. Math. Program. 168(1-2, Ser. B), 123–175 (2018). DOI
10.1007/s10107-016-0992-8. URL https://doi.org/10.1007/s10107-016-0992-8

8. Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated
equilibria. J. Differential Equations 179(1), 278–310 (2002). DOI 10.1006/jdeq.2001.4034. URL https:
//doi.org/10.1006/jdeq.2001.4034

9. Attouch, H., Fadili, J.: From the ravine method to the Nesterov method and vice versa: a dynamical system
perspective. SIAM J. Optim. 32(3), 2074–2101 (2022). DOI 10.1137/22M1474357. URL https://doi.org/
10.1137/22M1474357

10. Attouch, H., Fadili, J., Kungurtsev, V.: On the effect of perturbations in first-order optimization methods
with inertia and Hessian driven damping. Evol. Equ. Control Theory 12(1), 71–117 (2023). DOI 10.3934/
eect.2022022. URL https://doi.org/10.3934/eect.2022022

11. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward method
is actually faster than 1/k2. SIAM J. Optim. 26(3), 1824–1834 (2016). DOI 10.1137/15M1046095. URL
https://doi.org/10.1137/15M1046095

12. Aujol, J.F., Dossal, C.: Stability of over-relaxations for the forward-backward algorithm, application to
FISTA. SIAM J. Optim. 25(4), 2408–2433 (2015). DOI 10.1137/140994964. URL https://doi.org/10.
1137/140994964

13. Defazio, A., Jelassi, S.: Adaptivity without compromise: a momentumized, adaptive, dual averaged gradient
method for stochastic optimization. J. Mach. Learn. Res. 23, Paper No. [144], 34 (2022). DOI 10.22405/
2226-8383-2022-23-5-130-144. URL https://doi.org/10.22405/2226-8383-2022-23-5-130-144

14. Driggs, D., Ehrhardt, M.J., Schönlieb, C.B.: Accelerating variance-reduced stochastic gradient methods.
Math. Program. 191(2, Ser. A), 671–715 (2022). DOI 10.1007/s10107-020-01566-2. URL https://doi.
org/10.1007/s10107-020-01566-2

https://doi.org/10.1016/j.jde.2017.06.024
https://doi.org/10.1016/j.jde.2017.06.024
https://doi.org/10.1137/17M1114739
https://doi.org/10.1007/s10957-018-1369-3
https://doi.org/10.1007/s10107-020-01591-1
https://doi.org/10.1007/s10107-016-0992-8
https://doi.org/10.1006/jdeq.2001.4034
https://doi.org/10.1006/jdeq.2001.4034
https://doi.org/10.1137/22M1474357
https://doi.org/10.1137/22M1474357
https://doi.org/10.3934/eect.2022022
https://doi.org/10.1137/15M1046095
https://doi.org/10.1137/140994964
https://doi.org/10.1137/140994964
https://doi.org/10.22405/2226-8383-2022-23-5-130-144
https://doi.org/10.1007/s10107-020-01566-2
https://doi.org/10.1007/s10107-020-01566-2


28 Hedy Attouch, Jalal Fadili and Vyacheslav Kungurtsev

15. Drori, Y., Teboulle, M.: Performance of first-order methods for smooth convex minimization: a novel approach.
Math. Program. 145(1-2, Ser. A), 451–482 (2014). DOI 10.1007/s10107-013-0653-0. URL https://doi.org/
10.1007/s10107-013-0653-0

16. Frostig, R., R. Ge, S.K., Sidford, A.: Un-regularizing: approximate proximal point and faster stochastic
algorithms for empirical risk minimization. In: Proceedings of the 32nd International Conference on Machine
Learning, vol. 37, pp. 2540–2548 (2015)

17. Gadat, S., Panloup, F., Saadane, S.: Stochastic heavy ball. Electron. J. Stat. 12(1), 461–529 (2018). DOI
10.1214/18-EJS1395. URL https://doi.org/10.1214/18-EJS1395

18. Gelfand, I., Tsetlin, M.: Printszip nelokalnogo poiska v sistemah avtomatich. Optimizatsii, Dokl. AN SSSR
137, 295–298 (1961). (in Russian)

19. Haraux, A., Jendoubi, M.A.: On a second order dissipative ODE in Hilbert space with an integrable source
term. Acta Math. Sci. Ser. B (Engl. Ed.) 32(1), 155–163 (2012). DOI 10.1016/S0252-9602(12)60009-5. URL
https://doi.org/10.1016/S0252-9602(12)60009-5

20. Jain, P., Netrapalli, P., Kakade, S.M., Kidambi, R., Sidford, A.: Parallelizing stochastic gradient descent for
least squares regression: mini-batching, averaging, and model misspecification. J. Mach. Learn. Res. 18, Paper
No. 223, 42 (2017)

21. Kim, D., Fessler, J.A.: Optimized first-order methods for smooth convex minimization. Math. Pro-
gram. 159(1-2, Ser. A), 81–107 (2016). DOI 10.1007/s10107-015-0949-3. URL https://doi.org/10.1007/
s10107-015-0949-3

22. Laborde, M., Oberman, A.: A lyapunov analysis for accelerated gradient methods: from deterministic to
stochastic case. In: S. Chiappa, R. Calandra (eds.) Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 108, pp. 602–612.
PMLR (2020). URL https://proceedings.mlr.press/v108/laborde20a.html

23. Lan, G.: First-order and stochastic optimization methods for machine learning. Springer Series in the Data
Sciences. Springer, Cham ([2020] c©2020). DOI 10.1007/978-3-030-39568-1. URL https://doi.org/10.1007/
978-3-030-39568-1

24. Lin, H., Mairal, J., Harchaoui, Z.: Catalyst acceleration for first-order convex optimization: from theory to
practice. J. Mach. Learn. Res. 18, Paper No. 212, 54 (2017)
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