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Abstract  

A series of thirty-one hybrid of phenylsulfonyl furoxan and phenstatin (1a-j, 2a-j, 3a-j, 4, and 5) 

derivatives, were computationally studied as potential anti-cancer inhibitors against four cell lines, 

i.e., A2780, MDA-MB-231, HCT-116, and A549. In this work, the 2D-QSAR approach combining 

the multiple linear regression (MLR) model, and internal and external cross-validation, showed a 

satisfactory quality factor: R² = 0.85, 0.74, 0.82, and 0.75 for the four cell lines, respectively. The 

binding affinity of the hybrid agents towards the four 4GL7, 6GUE, 1M17, and 4XL7 antitumoral 

targets, was further evaluated using molecular docking and dynamics simulations (0 - 200 ns). The 

dynamics assessment parameters indicated the formation of satisfactorily stable complexes. In 

addition, all considered data sets show that the best binding affinity, including the highest docking 

score, hydrogen bond energy, and amino acid steric interactions, are well predicted for the best-

selected complexes. The developed 2D-QSAR model was leveraged to design and predict the 

biological activity of twelve new hybrid compounds (N1–N12) based on the best in vivo inhibitor, 

namely, the 3h ligand of the formula: (4-((1-(2-((4-((3crylamidophenyl)amino)quinazolin-2-

yl)thio)acetyl)piperidin-4-yl)oxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole 2-oxide). Multitargeting 

docking scores and dynamics simulations show that they exhibit satisfactorily potent antitumoral 

inhibition abilities towards the four proteins. Our in-silico outcomes would be combined with in-vitro 

and in-vivo studies to provide a perspective on the validation of their anticancer activity. In particular, 

the ADMET predictions indicate that four new designed ligands have demonstrated a good drug-like 

profile, and can be considered prospective candidates for future anti-cancer therapies. 

Keywords: Furoxan derivatives, Multi-target, anti-cancer, QSAR, Molecular docking, Dynamics, 

ADMET. 

Corresponding Authors: *E-mail (Lotfi Belkhiri): lotfi.belkhiri@umc.edu.dz 

  

mailto:lotfi.belkhiri@umc.edu.dz


1. Introduction 

Nowadays, cancer remains a significant public health challenge in the world, with millions of 

individuals being diagnosed with various forms of the disease each year. Ovarian, colon, 

prostate, and lung adenocarcinoma diseases are among the most common and deadly types of 

cancer. According to the recent American Cancer Society (ACS) [1] and the World Health 

Organization (WHO) report [2], more than half a million persons are expected to die from 

cancer in 2023 [3].  

Although numerous progress in research, prevention efforts, and treatment options that have 

led to improved outcomes for patients, such cancers are still challenging, both at the cost 

level and in terms of drugs availability [4]. Over the two past decades, to reduce the mortality 

rates of cancer, research into the mechanisms and the development of new diagnostic tools, 

based on multitargeting approaches for the design of novel anticancer drugs, have gained 

great interest [5].  

Furthermore, the cost of drug development has sharply increased along with the high rate of 

clinical trial failures. Such an increase in expenses is partially due to the inability of the “one 

drug – one target” approach to predict drug side effects and toxicity [6].  

Therefore, multitargeted treatments represent a new paradigm in the field of cancer therapy. 

In contrast to traditional chemotherapy, these therapeutic approaches exhibit a higher degree 

of specificity in targeting cells that are directly associated with tumors proliferation. 

To tackle this issue, polypharmacology as an alternative approach, confirms that multi-target 

drugs are more efficient ways of treating them as opposed to single-target drugs [7]. 

Currently, polypharmacology aims to study small molecule interactions with multiple targets. 

However, apart from developing more potent and effective multitargeting drugs, exhaustive 

polypharmacology in-vitro or in-vivo studies are not easily practical, and to design multi-

target ligands, several factors and challenges must be taken into account [6].  

Faced with tremendous challenges, wide efforts have led to a variety of novel approaches for 

predicting drug design polypharmacology. Indeed, in recent years, computational or in silico 

polypharmacology has gained significant attention to study the promiscuous nature of drugs. 

Moreover, in silico methods can substantially widen this search by providing tools able to 

predict the best drug-target binding affinities and rationalize the process by reducing 

duration, cost, and attrition rate [8] and have been recently approved by the FDA (Food & 

Drug Agency) organization [9]. 

In particular, computational polypharmacology has gained significant attention in studying 

the promiscuous nature of drugs [10], and recent achievements in the computational design of 



multitargeting drugs have established this computational approach as a promising alternative 

approach to predicting unknown targets or side effects [11].  

In the present study, a series of thirty-one hybrids of phenylsulfonyl furoxan and phenstatin 

derivatives (1a-j, 2a-j, 3a-j, 4 and 5), based on their observed biological (IC50/µM) [12], are 

computationally investigated for the first time for their potent anti-cancer inhibition 

candidates against breast, colorectal, lung, and ovarian diseases. As reported by the same 

authors, in-vitro evaluation of their anti-tumor activity shows that most of such hybrid 

derivatives feature significantly enhanced anti-proliferation activities against several human 

cancer cell lines, i.e., A2780, MDA-MB-231, HCT-116, and A549. Importantly, among the 

synthesized molecules, compound 3h with formula {4-(2-(5-(4-bromobenzoyl)-2-

ethoxyphenoxy)ethoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole 2-oxide}, as shown on figure 1, 

exhibited the most potent anti-tumor activities against several human cancer cell lines, with 

IC50 values ranging from 0.008 to 0.021 μM [12]. 
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Figure 1: Molecular structure of 3h compound 

 

Referring to the best inhibition in-vivo score of such 3h compounds, in silico approaches, 

including 2D-QSAR, and molecular docking in combination with dynamic simulation 

techniques, were used for the four cancer cell lines, to rationalize the ability of thirty-one 

ligands towards the inhibition of multiple targets involved in anti-tumor development, and 

allows to predict novel potent multitargeting inhibition candidates.  

Statistical techniques, such as multilinear regression (MLR) [13], internal and external 

validation such as Y-randomization methods, and applicability domain (AD) [14, 15], were 

used to validate the 2D-QSAR model. Additionally, molecular docking in combination with 

dynamics simulations were carried out to predict the best ligand-protein binding affinity and 

stability of the ligand-receptor complexes. 

The results obtained from the in silico study aimed to provide valuable insights into the 

discovery and design of new twelve (N1 N12) inhibitors for the treatment of cancer, and 



their perspective development via in-vitro and in-vivo assays, particularly those related to 

multitargeting drugs approaches. 

2. Materials and methods 

2.1 QSAR modeling  

To evaluate computationally the anticancer activity of hybrid phenylsulfonyl furoxan and 

phenstatin derivatives against the four different human tumor cell lines, i.e., ovarian (A2780), 

breast (MDA-MB 231), lung adenocarcinoma (A549), and colorectal (HCT-116) [12], 2D-

QSAR approach was first used for the actual thirty-one (1a-j, 2a-j, 3a-j, 4 and 5) compounds 

with substituted (Ar) chemical structures and their observed biological activity reported in  

Table 1. The structures were generated using Avogadro software [16], and then optimized 

using Density Functional Theory (DFT) calculations with the AMS2022.107 release software 

[17] using the B3LYP functional [18, 19] coupled to the polarized triple zeta TZP basis set as 

implemented in the AMS/ADF engine. To ensure that the optimized structures were true 

minima on the potential energy surface, vibrational frequency calculations were performed at 

the same B3LYP/TZP level of theory, no imaginary frequency being observed.  

 

Table 1: Chemical structures of phenylsulfonyl furoxan and phenstatin derivatives with their 

experimental biological activities (pIC50) related to the four cell lines A2780, MDA-MB-

231, HCT 116, and A549[12]. (*) test set. 

 

Ligand 

(pIC50) 
A2780 MDA -MB-231 HCT-116 A549 Ar 

1a* 6.92 6.29 5.77 5.77 3, 4, 5-trimethoxyphenyl 

1b 5.35 4.91 4.25 4.49 2-fluorophenyl 

1c 5.53 4.33 4.45 4.28 3-fluorophenyl 

1e 5.43 4.38 4.58 5.77 4-chlorophenyl 

1f 5.49 4.49 4.32 4.49 2-bromophenyl 

1g 6.34 5.25 4.9 4.28 3-bromophenyl 

1h* 5.94 4.68 4.44 5.77 4-bromophenyl 

1i 6.77 5.92 4.91 4.49 2-naphthalenyl 

1j 4.91 3.88 3.84 4.28 6-bromonaphthalen-2-yl 

 



2a 7.46 6.08 5.99 5.99 3, 4, 5-trimethoxyphenyl 

2b* 6.28 5.14 4.44 4.44 2-fluorophenyl 

2c 6.54 5.77 5.62 5.62 3-fluorophenyl 

2d 6.82 5.68 5.8 5.8  

2e 7.39 5.96 6.08 6.08 4-chlorophenyl 

2f 6.82 5.27 5.54 5.54 2-bromophenyl 

2g 7.39 5.82 5.37 5.37 3-bromophenyl 

2h* 7.92 6.82 6.96 6.96 4-bromophenyl 

2i* 6.92 5.44 6.02 6.02 2-naphthalenyl 

2j 7.54 6.25 5.96 5.96 6-bromonaphthalen-2-yl 

 
3a 6.77 6.14 5.49 5.49 3, 4, 5-trimethoxyphenyl 

3b 6.49 5.32 5.29 5.29 2-fluorophenyl 

3c* 6.28 5.14 4.44 4.44 3-fluorophenyl 

3d 6.46 5.21 5.04 5.04  

3e 6.62 4.92 4.77 4.77 4-chlorophenyl 

3f 6.26 4.95 4.66 4.66 2-bromophenyl 

3g 6.47 5.23 4.92 4.92 3-bromophenyl 

3h 6.82 5.18 5.33 5.33 4-bromophenyl 

3i 6.36 5.42 4.64 4.64 2-naphthalenyl 

3j* 6.59 5.57 5.21 5.21 6-bromonaphthalen-2-yl 

 
4* 6.06 4.73 4.57 4.57 - 

 
5 6.04 4.94 4.64 4.64 - 

To build the 2D-QSAR model, the thirty-one selected series of compounds were divided into 

a training set (23 compounds) and a test set (8 compounds). All activity values (IC50, µM) 

for the multi-target compounds were converted into negative logarithms (pIC50 = 6 ⎯ 

logIC50) and used as dependent variables for the 2D-QSAR models. The molecular 

structures of the thirty-one selected compounds and their converted pIC50 are reported in the 

Table 1.  

2.2. Descriptor generation and MLR analysis 



For each structure, over 2000 descriptors were calculated using Dragon software [20], 

including unidimensional (1D) descriptors as well as 2D and 3D ones. These latter encode a 

wide range of molecular properties, such as physicochemical, electronic, and topological 

properties. Some descriptors that might be calculated include molecular weight, boiling point, 

polarizability, electronegativity, molecular volume, and many others. Multiple linear 

regression (MLR) techniques provide useful statistical tools that quantify the relationship 

between dependent and independent variables.  

The R [21] was used to obtain the 2D-QSAR models, using the multilinear regression fits 

with linear model of the form: 

0
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Where Y and xi are the dependent (pIC50) and independent (molecular descriptors) variables, 

respectively, and the parameters:
0

  
i

a n d   are the Regression coefficients.  

The internal validation method using cross-validation leave-one-out Q
2
 parameter (LOOCV) 

[22] combined with several performance metrics, such as the coefficient of determination R², 

the adjusted coefficient of determination R²adj, the mean square error of the model MSE, Y-

randomization parameters R²rand [14], the coefficient of determination of the test set R²test, and 

applicability domain (AD), were used to validate the obtained 2D-QSAR model and to ensure 

its robustness and its reliability [23, 24].  

Importantly, Y-randomization tests are a statistical method used to evaluate the validity of the 

2D-QSAR models, so that the biological activity values (pIC50) are randomly shuffled or 

permuted while keeping the chemical structure of the compounds unchanged. Then, the 2D-

QSAR model is trained using the permuted activity values, and the resulting model is used to 

predict the original (not permitted) activity values. The process is repeated multiple times, 

and the resulting R²rand values are compared to the original R² value obtained from the model 

trained on the not permutated data. 

The applicability domain approach helps to identify outliers or influential molecules and 

defines the range of compounds for which the 2D-QSAR model is valid [25]. To define and 

describe the applicability domain of the built 2D-QSAR model, the leverage hi method [14] is 

used and is given by Equation 2:  

hi = Xi(X
T
X)-1XiT   (2) 



Where i is the training molecule set, X is the nk descriptor matrix of the training set 

molecule, and X
T
 is the transpose of the training set (X).  XiT is the transpose matrix Xi used 

to build the model.  

The critical leverage h* is defined as follows: 

 h* = 3(j + 1)/m   (3)  

Where j is the number of descriptors in the built model, and m is the number of training 

compounds set. The critical leverage is the limit value to check the best 2D-QSAR model that 

will be used to design new molecules with good predicted anticancer activity values [26]. The 

training compound will belong to the applicability domain of the model if the leverage (hi) is 

predicted less than the critical value (h
*
) [27].  

2.3. Molecular docking  

In drug discovery, molecular docking is a key tool for predicting ligand binding ability to 

target proteins [28]. Moreover, molecular docking was revealed early to be a valuable tool to 

understand and predict molecular recognition in drug discovery [29].  

In the current study, before molecular docking calculations, all thirty-one compounds were 

fully optimized using standard DFT calculations at the B3LYP/TZP level (vide supra). 

Therefore, the molecular docking technique was utilized to determine the best poses of the 

optimized compounds within the four different cancer cell lines; ovarian cancer A2780 (PDB 

ID: 4LXZ Resolution: 1.85 Å) [30], breast cancer MDA-MB 231 (PDB ID: 4GL7 

Resolution: 3.90 Å) [31], human lung adenocarcinoma A549 (PDB ID: 1M17 Resolution: 

2.60 Å) [32] and HCT116 colorectal cancer cell lines with the human cyclin-dependent 

kinase 2 (CDK2) (LPDB ID: 6GUE Resolution: 1.99 Å) [33].  

The PDB files were obtained from the Protein Data Bank (RCSB) [34] as shown on Figure 2. 

Virtual Molegro Docker MVD 2019.7.0 release software [35] was used to perform the 

docking simulations. 



  

 
 

Figure 2: 3D structures of proteins: tyrosine kinase (PDB ID: 1M17) (green), placental 

aromatase (PDB ID: 4GL7) (orange), cyclin-dependent kinase 2 (PDB ID: 6GUE) (red), and 

histone deacetylase 2 (PDB ID: 4LXZ) (bleu). 

 

Initially, the four protein structures (PDB codes: 4LXZ, 4GL7, 6GUE, and 1M17) have been 

preprocessed and refined, involving removing water molecules, ions, and other heteroatoms. 

The Autogrid algorithm as implemented in Molegro, was used to identify the active site that 

will be used to evaluate the interaction energy between the ligands and the proteins as 

reported in Table 2. 

 

Table 2: Coordinates of the x, y, and z centers of the active site within the proteins 

dimensioned with volume and surface 

 

Target 
x- center 

(Dimension) 

y-center 

(Dimension) 

z-center 

(Dimension) 

Surface 

A² 

Volume 

A
3
 

4LXZ 25.790 -16.070 1.001 85.760 23.040 

4GL7 86.285 51.466 43.909 706.501 327.401 

6GUE -4.807 -21.898 21.521 4.161 160.701 

1M17 27.701 3.661 49.998 842.241 261.120 

 

The dimensional parameters of Table 2 are chosen to allow large size of active sites within 

considered proteins, and to maximize the reliability and efficiency of the docking 

simulations. 



 

2.4. Molecular Dynamics (MD) 

The best conformations obtained from the molecular docking are used as starting points for 

molecular dynamics (MD) simulations. CHARMM-36-2019 release force field [36] 

implemented in the Gromacs-GPU package [37] was used to assess the stability of the best-

docked protein ligands.  

SwissParam serves as a user-free platform designed for the generation of crucial parameter 

files (ITP files) required in molecular dynamics simulations, particularly when employing the 

CHARMM force field for small organic molecules. To utilize this tool, it is essential to 

submit the molecule in SYBYL molecule (mol2) format on the SwissParam website. 

The MD technique was conducted at 1 atm and 310.15 K in a simulation box. A cubic box, 

maintaining a buffer distance of 11.5 angstroms, accommodated the models of protein and 

ligand complexes. The protein complexes underwent solvation utilizing the TIP3P 

(transferable intermolecular potential 3P) water model [38]. To neutralize the system, 

chloride anions (Cl
-
) and sodium cations (Na

+
) were introduced. The energy of the system 

was minimized using the steepest descent method for 50.000 steps, followed by a 2 nano-

second equilibration in both the canonical (NVT) and isothermal isobaric (NPT) ensembles 

using the Berendson thermostat [39], and Parrinello-Rahman pressure coupling at 1.0 bar [40] 

with a time step of 2 fs. It is noteworthy that a comprehensive approach was thoughtfully 

carried out to ensure the reliability and accuracy of our simulations. Indeed, prior to starting 

the simulations, an in-depth analysis of all assumed NVT and NPT parameters was 

performed. This assessment enabled us to establish a precise configuration, forming the 

essential foundation for the reliable execution of the simulation process.  

While minor pressure imbalances may have limited effects in the majority of contemporary 

MD simulations, we anticipate that their significance will increase as we delve into 

investigations involving progressively larger systems, especially when coupled with 

anisotropic pressure control. Our system likely aligns with the typical scenarios encountered 

in current MD simulations, which implies that the barostat parameters in GROMACS are 

accurate. 

The MD simulations were then performed for 200 ns, and the stability of protein-ligand 

complexes was assessed using the root mean square deviation (RMSD), the root mean square 

fluctuation (RMSF), and the radius of gyration (Rg). 



Extensive analysis of dynamics simulations was carried out using the principal component 

analysis (PCA), the solvent accessible surface area (SASA) [41, 42] and Free Energy Surface 

(FES). PCA is a statistical procedure to assess the collective motion in biological 

macromolecules during the course of molecular dynamic simulations. The latter, are 

performed with reduced dimensions of the dataset keeping the critical information which is 

characterized by the eigenvectors. Moreover, the SASA approach serves as a critical 

parameter for assessing the structural compactness of proteins and their ligand complexes 

during MD simulations.  

The PCA, SASA, and FES of the systems (ligand-receptor) were generated with gmx_sasa, 

gmx_covar, and gmx_anaeig command line of GROMACS software respectively, and used 

as an index of the stability of the complexes. The probability distribution of the SASA over 

200 ns of the MD was obtained with gmx_analyze. The complexes were then determined as 

the eigenvectors of the mass-weighted covariance matrix of the backbone of the protein. 

2.5. ADMET and drug-likeness prediction   

The oral bioavailability and toxicity are also assessed through computational ADMET 

(absorption, distribution, metabolism, excretion, and toxicity) analysis [43, 44, 45, 46]. 

Indeed, the pharmacokinetic factors analysis was performed to examine the drug-likeness of 

the best-fitted ligands obtained by molecular docking. Furthermore, the pharmacokinetics and 

toxicity profile of the new twelve designed compounds were characterized in silico using the 

ADMET Predictor™ cloud version [47] and SwissADME [48]. ADMET Predictor™ is a 

statistical-based QSAR software allowing in silico pharmacokinetics and toxicological 

assessment with experimental standard ranges (https://www.simulations-

plus.com/software/admetpredictor/). 

Indeed, lipophilicity or octanol-water partition coefficient LogP, 2D polar surface area (PSA). 

Gastrointestinal absorption (GI), molar solubility in water LogS (mg/mL), blood-brain barrier 

(BBB) permeability, human gastrointestinal absorption (GI), and other factors that are 

expressed in log units, and the toxicity of the potential new inhibitors are predicted. 

Furthermore, bioavailability score are among the pharmacokinetic characteristics considered 

to assess drug-likeness, according to the Lipinski’s rule of five.  

Moreover, according to ADMET Predictor™ analysis, absorption risk (Absn_Risk) with a 

score in the range of 0-8 indicating the number of potential oral absorption problems a 

compound is likely to have. Also, the full ADMET risk parameter (ADMET_Risk) with a 

https://www.simulations-plus.com/software/admetpredictor/
https://www.simulations-plus.com/software/admetpredictor/


score range of 0-22 indicates the number of potential ADMET problems a compound might 

have. The P-glycoprotein substrate and inhibitor ability are predicted by Pgp_Substr and 

Pgp_Inh parameters, respectively.  

Metabolism is predicted based on the CYP models for substrate or inhibition. These latter 

were calculated and checked for compliance with their standard ranges.  

3. Results and discussion 

3.1 QSAR analysis 

The 2D-QSAR technique was utilized on the considered dataset of thirty-one hybrids of 

phenylsulfonyl furoxan and phenstatin derivatives, which revealed recently significant multi-

target anticancer inhibition activity [12]. Our in silico study involves different cell lines; 

A2780, MDA-MB-231, HCT116, and A549 related to the four tumor cancer types i.e. breast, 

colorectal, lung, and ovarian diseases, respectively.  

Therefore, 2D-QSAR model was developed using multiple linear regression (MLR) 

technique, and the statistical parameters were computed using the R-studio software [21]. The 

developed equations for each cell line with six and seven molecular descriptors showed 

significant correlations between the predicted pIC50 values of biological activity, and the 

molecular descriptor, as given by equations (4–7) for each cell line, are obtained as follows: 

Cell line (A2780): 

pIC50 = 0.004 *MW – 0.77 *nX + 12.3 *MSD – 3.85 *MATS1m -0.0173 *DISPm +9.28 *E2v – 0.379  (4) 

Cell line (MDA-MB 231):  

pIC50 = 0.0025*MW – 0.807*nX + 9.48*MSD – 3.41*MATS1m +1.91*MATS6m +7.78*E2v + 0.09  (5) 

Cell line (HCT116): 

pIC50 = 0.0023*MW - 0.435*nX - 0.63*GATS4m - 0.0358*DISPm -1.53*Mor13u - 1.6*E3m + 9.16*E2v 

+2.41             (6) 

Cell line (A549): 

pIC50 = 0.0025*MW – 0.19*nX +2.55*MSD – 2.39*MATS1m + 2.1*MATS6m + 7.44 *E2v + 5.26  (7)  

where the molecular descriptors (MW, nX, MSD, MATS1m, MATS6m, E2v) are defined as 

follows: 

Molecular 

descriptor 

Description 

MW  : (Molecular Weight) the sum of atomic weights in a molecule. 

nX  : (Number of Atoms of Type X) count of atoms of a specific type X. 



MSD  : (Mean Squared Deviation) a statistical measure of dispersion in a set of 

values. 

MATS1m  : (Moran Autocorrelation of lag 1 weighted by atomic masses) is au 

autocorrelation of atomic masses with a lag of 1. 

MATS6m  : (Moran Autocorrelation of lag 6 weighted by atomic mass) is an 

autocorrelation of atomic masses with a lag of 6. 

E2v  : (Balaban-like index from electronegativity weighted by van der Waals 

volumes) combines electronegativity and van der Waals volumes for electronic 

and spatial characteristics. 

The results of statistical parameters (R
2
, R

2
adj, MSE, Q

2
, R

2
test) for the four cell lines are 

reported in Table 3.  

Table 3: Statistical parameters of the built 2D-QASR models of the four cell lines 

 A2780 MDA-MB-231 HCT-116 A549 

R² 0.85 0.74 0.82 0.75 

R²adj 0.79 0.64 0.74 0.661 

MSE 0.094 0.097 0.110 0.011 

Validation LOOCV 

Q
2
 0.690 0.650 0.610 0.608 

External Validation 

R²test 0.761 0.730 0.710 0.701 

Y-randomization 

R²rand 0.160 0.081 0.110 0.190 

 

It is noteworthy that the predicted biological activities (pIC50) of the thirty-one compounds 

(Table 4), are in good agreement with those in vitro observed [12], which in turn indicate that 

the MLR models are satisfactorily reliable.  

Table 4: Experimental and predicted activities of the thirty-one compounds dataset of all cell 

lines. (*) are test set. 

pIC50 Experimental Predicted 

Mol_ID A2780 
MDA-

MB-231 
HCT-116 A549 A2780 

MDA-

MB-231 

HCT-

116 
A549 

1a* 6.92 6.29 5.77 5.77 7.11 6.36 5.7 5.88 

1b 5.35 4.91 4.25 4.49 5.45 4.37 4.26 4.18 



1c 5.53 4.33 4.45 4.28 5.54 4.47 4.34 4.23 

1e 5.43 4.38 4.58 4.58 5.44 4.67 4.35 4.45 

1f 5.49 4.49 4.32 4.32 5.59 4.44 4.18 4.25 

1g 6.34 5.25 4.9 4.9 6.26 5.15 4.83 4.89 

1h* 5.94 4.68 4.44 4.44 5.82 4.67 4.22 4.43 

1i 6.77 5.92 4.91 4.91 6.46 5.74 4.97 5.00 

1j 4.91 3.88 3.84 3.84 5.19 4.5 4.42 4.54 

2a 7.46 6.08 5.99 5.99 7.29 6.2 5.84 5.69 

2b* 6.28 5.14 4.44 4.44 6.8 5.57 4.26 5.12 

2c 6.54 5.77 5.62 5.62 6.74 5.54 5.63 5.6 

2d 6.82 5.68 5.8 5.8 6.8 5.64 5.96 5.7 

2e 7.39 5.96 6.08 6.08 7.34 5.96 6.06 5.92 

2f 6.82 5.27 5.54 5.54 7.26 5.72 5.55 5.64 

2g 7.39 5.82 5.37 5.37 7.24 5.75 5.43 5.66 

2h* 7.92 6.82 6.96 6.96 7.38 6.25 6.85 6.06 

2i* 6.92 5.44 6.02 6.02 6.85 5.38 6.21 5.91 

2j 7.54 6.25 5.96 5.96 7.04 5.67 5.65 5.62 

3a 6.77 6.14 5.49 5.49 6.78 5.76 5.14 5.14 

3b 6.49 5.32 5.29 5.29 6.04 4.95 4.76 4.9 

3c* 6.28 5.14 4.44 4.44 6.21 4.89 4.58 4.05 

3d 6.46 5.21 5.04 5.04 6.1 5.06 4.88 5.00 

3e 6.62 4.92 4.77 4.77 6.53 5.26 4.85 5.11 

3f 6.26 4.95 4.66 4.66 6.75 5.16 5.22 4.97 

3g 6.47 5.23 4.92 4.92 6.67 5.15 4.99 4.95 

3h 6.82 5.18 5.33 5.33 6.69 5.34 5.33 5.15 

3i 6.36 5.42 4.64 4.64 6.89 5.93 4.86 5.33 

3j* 6.59 5.57 5.21 5.21 6.8 5.96 5.36 5.83 

4* 6.06 4.73 4.57 4.57 5.94 4.73 4.62 4.57 

5 6.04 4.94 4.64 4.64 5.97 4.86 4.86 4.51 

This high correlation between predicted pIC50 and observed biological activity is also 

illustrated on Figure 3. Indeed, the scatter William’s plots of observed biological activities vs. 

predicted MLR.pIC50 data values of pIC50 for the 2D-QSAR models of A2780, MDA-MB-

231, HCT-116, and A549 cell lines, sustain the high R
2
 correlation approach and show that 

the selected descriptors are well linearly correlated with the observed anticancer biological 

(pIC50) activity values. 
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Figure 3: Scatter plots of observed vs. predicted values of pIC50 for 2D-QSAR models and 

William’s plots of A2780, MDA-MB-231, HCT-116, and A549 cell lines 



Furthermore, the coefficient of determination R² values (Table 3), obtained from the multiple 

linear regression (MLR) analysis, ranged from 0.74 to 0.85 for A2780, MDA-MB-231, 

HCT116, and A549 cell lines (Table 3), indicating that the best-fitting MLR constructed 

model accounts from 74 to 85 percent of the experimental pIC50 values.  

Moreover, the adjusted squared (R²adj) values provide an accurate estimate of the MLR 

model's fit by taking into account the number of predicted variables in the model. The values 

obtained for A2780, MDA-MB-231, HCT116, and A549 cell lines are 0.79, 0.64, 0.69, and 

0.66, respectively, which indicate a good fit for the models. 

The MSE value measures the average squared difference between the predicted and actual 

values of the response variable. The lower the MSE value, the better fit of the model to the 

data. In our case, the MSE values obtained for A2780, MDA-MB-231, HCT116, and A549 

are 0.094, 0.097, 0.110, and 0.011, respectively. These results indicate that the MLR models 

have a relatively low error rate and can predict satisfactorily the pIC50 values of new 

compounds. For internal validation, the squared leave-one-out cross-validated (LOOCV) Q² 

values obtained for the MLR models for these cell lines (Table 3), are all greater than 0.6, 

sustaining the reliability of the 2D-QSAR models. 

Also, external validation is an important step in the 2D-QSAR model development as it 

provides an assessment of how well the model will perform on new and unseen data. The 

R²test values obtained for the MLR models for A2780, MDA-MB-231, HCT116, and A549 

cell lines (Table 3), are higher than 0.70, which indicates a good fit of the validation data. 

Besides, this means that the 2D-QSAR model is satisfactory and reliable for predicting the 

activity of new multitargeting compounds relative to such cell lines.  

It is of interest that such external validation (R²test), including training and testing series, 

should be conducted randomly to confirm the robustness of the models [15]. Indeed, as 

shown in Table 3, the Y-randomization (R²rand) approach shows low-test values, ranging from 

0.08 to 0.19, indicating that the original R²test values obtained from the training model on the 

unpermuted data are significantly higher than the obtained R²test values from the training 

model on the permuted data.  

One can conclude that the 2D-QSAR model is built on a real relationship between the 

molecular descriptors and the activity values (Eq. 4-7), instead of being founded on random 

connections. 



Turning back to the Williams plot Figure 3), which displays standardized residual values 

against leverage values, is an important tool used to determine the applicability domain (AD) 

of a building 2D-QSAR model. This graphical analysis helps to identify and exclude outlier 

compounds that could compromise the model's reliability and accuracy. Indeed, Figure 3 

shows that the 2D-QSAR model was constructed using 6 and 7 descriptors for a training set 

of 23 compounds, with a normalized residue limit of 3.  

The leverage hi (Eq. 2) values were determined, and it was found that all the compounds in 

the training and test sets were within the domain of applicability since their leverage values 

were lower than the critical limit (h
*
= 3(6 + 1)/32 = 0.67), and their standardized residuals 

were within the range of ±3. 

3.2. Molecular Docking  

To validate the molecular docking analysis, it is crucial to carry out a re-docking test, keeping 

the protein structure fixed, and the ligand re-docked into its crystal-binding pocket. The 

comparison is based on the root mean square deviation (RMSD) between the docked and 

crystal structure poses. The docking technique is considered satisfactory if the RMSD range 

does not exceed 2Å [49, 50]. The re-docking experiment was performed using Molegro 

software for each of the four protein structures as shown on Figure 4. Indeed, the best pose 

obtained gave RMSD values of 0.69, 0.90, 1.80, and 1.57 Å for 4GL7, 6GUE, 1M17, and 

4LXZ targets, respectively. These results suggest that the re-docking test reproduces 

satisfactorily the active site of the crystal reference ligand poses within the four proteins.  

. 

 

Figure 4: Conformational relationship between the pose and its reference ligand in the 

inhibitor pocket (Red = Original, Green = Docked) 

In the second step, molecular docking analysis was performed to investigate the best residues 

interactions that contribute to the anti-cancer activity of the multitargeting compounds under 

consideration. The results for the twelve ligand-receptor complexes involving the best-



predicted inhibitors (2e, 2i, 2j, 2h, 3c, 3h, 3i) associated with the four cell lines (4GL7, 

6GUE, 1M17, 4XL7), including the highest docking score (kcal/mol), hydrogen bond energy 

(kcal/mol), and amino acid steric interactions, are reported in Table 5.  

Table 5: Molecular docking results of docking scores and hydrogen bonds (kcal/mol) for the 

three best ligand-receptor compounds and the native ligands. 

Receptor Ligand 
Mol Docking Score 

(kcal/mol) 

Hydrogen Bond 

(kcal/mol) 

 

4GL7 

Native 

0XJ_601  
-146.225 -5.649 

2j -174.681 -4.939 

3i -169.688 -3.294 

2e -163.814 -0.684 

 

6GUE 

Native 

FB8_301 
-132.743 -3.42109 

3c -146.157 0 

2e -142.190 0 

2j -141.930 -0.417 

 

1M17 

Native-AQ4 -111.383 -2.718 

3h -126.561 -1.172 

2i -125.908 -2.475 

2h -123.204 -1.812 

 

4LXZ 

Native 

SHH_407 
-102.362 -1.576 

2j -140.314 -0.483 

2i -126.736 -3.827 

2e -125.312 0 

 

On the Figure 5, are shown the potent 2-D interactions between the best ligands 

scoring and active site residues of the four target complexes i.e., 2j-4GL7, 3c-6GUE, 2h-

1M17, 2j-4LXZ. It’s noteworthy that multitargeting simulations aimed to predict how well 

the compounds might best bind to the protein. Indeed, according to the LigPlot analysis [51] 

and the results of Table 5.  

These tables compare the differences between the native ligands and other ligands for each 

receptor in terms of molecular docking scores and hydrogen bond energies. Negative values 

indicate that the native ligand has a higher docking score or higher hydrogen bond energy 



than the compared ligands 2j, 3i, 3c, 2e, 3h, 2i, and 2h, suggesting a potentially stronger 

binding affinity or stability with these ligands. 

The predicted interactions between ligands and active sites, show that the 2j-4GL7 complex, 

exhibits the best scoring energy (-174.681 kcal/mol) and is stabilized mainly by three strong 

hydrogen bond interactions with Cys437, Ala438, and Gly439 residues, totalizing H-bonds of 

-4.94 kcal/mol (3.1 Å). Moreover, the second-best scoring 3c-6GUE complex (-146.16 

kcal/mol), is stabilized mainly by steric interactions with no H-bond interactions, which 

further contribute strongly to the cohesive environment. For the third 1M17 target, the best-

observed in-vivo evaluated 3h compound [12], show slightly higher docking score kcal/mol) 

than the interacting 2i  and  2h ligands scores (-126.5 vs. -125.9 and -123.2 kcal/mom).  

Similarly, for the best observed antitumoral in-vivo 3h scores, the molecular docking 

simulations with the 1M17 protein Figure 5), show two strong H-bond interactions with 

GLU722 and PHE699 amino acids, totalizing -1.812 kcal/mol. Steric interactions LEU763-

723, ASP831, GLY833, GLU738, GLY700 and ILE735 residues, were also seen and are 

almost identical to those found in the complex produced by compound 2j. In contrast, the 

complex (2j-4LXZ) exhibits predominantly steric interactions with relatively weak hydrogen 

bonds within the complex.  

                                         



 

Figure 5: 2-D interactions between the active site residues of the targets and best docking 

score ligands (2j-4GL7, 3c-6GUE, 3h-1M17, and 2j-4LXZ) 

In conclusion, both hydrogen bond and steric interactions play a crucial role in stabilizing the 

compounds and enhancing their biological activity. The inhibitory impact of 2j, 3c, 2h and 

3h against multi-target cancers (ovarian, breast, colorectal, and lung) was strengthened by 

interactions with specific active sites of the targeted protein. 

3.3. Molecular dynamics (MD) 

Nowadays, the MD simulation is commonly used in various in silico biological applications 

to simulate the structural and physiological perturbations with real-time mobility of the 

complexes. The analysis of trajectory was performed using GROMACS utilities, and are 

obtained at the end of the simulation providing useful and detailed information on the 

stability of the proteins alones, and ligand-receptor complexes, as well as their molecular 

interactions. 

The preliminary assessment of MD simulation data was carried out using the root-

mean-square deviations (RMSD) of the backbone of all systems with respect to their initial 

coordinates to explore the stability of the four proteins alones, and their complexes. 

Furthermore, the root mean square fluctuation (RMSF), radius of gyration (Rg), the principal 

component analysis (PCA), and solvent accessible surface area (SASA) as well as free energy 



surface (FES) approaches of the systems backbone, were carried out to explore the stability 

of high scoring multitargeting ligands within the four 4XLZ, 1M17, 4GL7, and GUE targets.  

To analyze the stability of the proteins and their complexes, the resultant trajectories of the 

RMSD, RMSF, and Rg were further analyzed using g_rmsd, g_rmsf, and g_gyrate 

GROMACS utilities, respectively, and are depicted on figures 6, 7, and 8, respectively. On 

Figure 6 are shown the RMSD of native proteins (4XLZ, 1M17, 4GL7, and GUE) and their 

twelve complexes (2e-4XLZ, 2i-4XLZ, 2j-4XLZ, 2h-1M17, 2i-1M17, 3c-1M17, 2e-4GL7, 

2j-4GL7, 3i-4GL7, 3c-6GUE, 2j-6GUE, 2e-6GUE), exhibiting the best docking score varying 

from 0.15 to 1.6 nm, and reaching stability after the first 30 ns simulation. 

     

      
 

Figure 6: RMSD of the four proteins alone and their complexes over the 200 ns of simulation. 

 

It is noteworthy that the RMSD values for the free proteins are significantly higher than those 

of their complexes (protein+ligand) as shown on Figure 6, suggesting that the latter are more 

stable. Moreover, the RMSD for the protein 1M17 is significantly high (16 Å), however, such 

a threshold value is not unexpected, regarding previous related in silico studies on the native 

protein 1M17 [57,58,60]. Indeed, dynamics simulation at the same force fields but with a 



time scale of 0-100 ns, have led to close or beyond 16 Å values [60]. Moreover, the inhibition 

activity is related to many factors including the stability of complexes.  

Notably, the RMSD analysis of the complexes 2i-1M17 and 2h-1M17 relative to the 1M17 

protein, shows that such systems are best stabilized around 1.05 nm, in opposite to the 3h-

1M17 congener, which shows some variability in the initial time up to 200 ns, and then 

stabilize with average values of 1.40 nm.  

For the 4XLZ protein, the three high scores interacting 2e, 2i, and 2j ligands, the RMSD 

values are mainly below 0.4 nm, which indicate satisfactory stability of their complexes 

during the simulation. Concerning the two 4GL7 and 6GUE targets, their interactions with 

scoring ligands i.e., 2e/2j/3i and 2e/2j/3c, respectively, show that for the best docking score 

2j-4GL7 complex, it quickly gets stabilized around 0.34 nm, while for the second target 

(6GUE), the two 2j and 2e complexes, get systematically stabilized below 0.3 nm, in opposite 

to the less stable 3c congener (~0.65 nm) [52]. 

One can note that high fluctuation of the RMSD values e.g., for the 1M17 complexes, is not 

unexpected, regarding MD simulation and docking techniques which are often considered 

satisfactory if the RMSD deviation range must not exceed 2Å [50]. However, it is noteworthy 

that such cutoffs of 2Å can be used to select representative structures in molecular dynamics 

simulations. Indeed, the interpretation of the RMSD/RMSF/Rg mean values is context-

dependent and should be used alongside other analyses and experimental data to understand a 

molecular system [53-60]. 

For example, in simulations of well-folded globular proteins, an RMSD of 1-2 Å (0.1-0.2 nm) 

is often considered of a good indicator. For simulations of intrinsically disordered or partially 

unfolded proteins, higher RMSDs can be observed, typically of 2-5 Å (0.2-0.5 nm) or more 

[55, 58, 59]. These dynamics simulations data show that all complexes, exhibiting best 

docking score, have significant affinity for residues present in the active site, suggesting their 

high stability under physiological conditions. 

The average deviation of the atom in the simulation from a reference position was shown by 

the RMSF analysis as depicted on Figure 7. Moreover, the RMSF values represent the 

thermodynamic stability and rate of mobility of all residues. Notably, the RMSF of the 

complexes is roughly the same, with low values (less than 2.5 nm) indicating that the ligands 



do not undergo significant conformational changes over time, despite the occurrence of 

different amino acids in the four systems as stated in previous work [60]. However, the 

flexible residues in the ligand-binding areas slightly changed upon recognition of ligands to 

accommodate them and maintain equilibrium. 

For the four 1M17, 4LXZ, 4GL7, and 6GUE proteins, the predicted average RMSF values for 

their 2h/2i/3h, 2j/2e/2i, 2e/2j/3i, and 2e/2j/3c complexes, are 0.25, 0.18, 0.15, and 0.12 nm, 

respectively, and show that active site residues were not considerably perturbed upon binding 

of the ligands [57, 61].   

        

    

Figure 7: RMSF of the proteins 1M17, 1LXZ, 4GL7, and 6GUE with ligands 

The RMSD and RMSF scores obtained indicate the greater stability of the best docking score 

systems compared to the four non-complexed (free) proteins.   

Moreover, according to the MD simulation data, the twelve protein-ligand complexes 

remained stable over 200 ns. This is supported by the Rg calculation (Figure 8), which 



remained consistent with the average value being 2.25, 2.04, 2.18, and 2.10 nm, for the four 

different systems i.e., 4GL7, 6GUE, 1M17, and 4LXZ, respectively. In particular, the Rg 

analysis indicates both molecule's stability, structure dimensions, and compactness. In 

general, a stably folded protein tends to maintain a relatively less variation in Rg value, which 

determines its dynamic stability. This small variation occurring in Rg value between 2.1 and 

2.5 nm Figure 8), shows that the compactness of ligand-receptor complexes is relatively 

stable [58].  

Furthermore, these results of Rg values indicate that the high-scoring ligands remained stably 

bound to the proteins without inducing any significant alterations in their structure. 

               

 

Figure 8: Rg of proteins and ligands 

It is noteworthy that in our investigation of complexes’ stability, the evaluation of RMSE 

parameters during dynamics simulation plays a crucial role in providing insights into the 

system's behavior. Indeed, the obtained RMSE parameters using the simulations were in line 



with the literature [52, 56, 59, 60, 63], and are consistent with the high stability of the 

complexes as previously stated [27] 

Principal Component Analysis PCA 

To assess in-depth the flexibility of the ligands within the four targets, scatter plot of 

principal component analysis (PCA), was carried out by 2D projecting the eigenvectors of the 

twelve complexes associated with the proteins: 1M17, 4LXZ, 4GL7, and 6GUE as depicted 

on figure 9. From the 2D projection, a complex with a stable cluster occupying less phase 

space represents a stable complex, and in the opposite, a non-stable cluster is found to occupy 

more scattered space conformation, which represents a less stable complex [55].  

Therefore, both Tyrosine kinase 2h-1M17 figure 9a), Cyclin-dependent kinase 2e-6GUE and 

2j-6GUE figure 9b), the Placental aromatase 2e-4GL7 and 3i-4GL7 figure 9c), as well as the 

Histone deacetylase 2i-4LXZ and 2e-4LXZ complexes (figure 9d), are predicted to occupy 

significantly compactness and less conformational space compared to their analogous, 

indicating more structural stability of their complexes. These findings indicated that selected 

2h, 2e, 2i, and 3i, ligands are proficient inhibitors of targets due to their stable complex 

formation characteristics. 

 
(a) 

 
(b) 



 
(c) 

 
(d) 

Figure 9: Scatter plot of principal component analysis (PCA) by projecting the eigenvectors 

of the stable complexes associated to the proteins: (a) 1M17, (b) 6GUE, (c) 4GL7, and (d) 

4LXZ. 

Subsequently, we generated the free energy surface or landscape (FES) for the selected 

complexes to unravel the differences in their protein folding patterns [26]. As depicted on 

Figure 10, the FES profile shows that all systems ultimately reached energy minima. 

However, the shifts in the positions of these minima indicate subtle changes in the 

conformation of the target proteins, which are attributed to the interaction with ligands. 

 
(a)  

(b) 



 
(c) 

 
(d) 

 

Figure 10: Free energy surface (FES) plot of the most stable complexes:  

(a) 1M17-2h, (b) 4LXZ-2j, (c) 4GL7 -2j, and (d) 6GUE-3c. 

 

One can note that free energy depicted on Figure 10, is computed high, however, as reported 

by previous related work [26,64,65], protein-ligand interactions occur on similar variable 

scale and depend strongly on the complexity of both the protein and ligand. On the opposite, 

more systems involving a sizeable transcriptional regulator (ZitR) complex [66], operate on a 

larger scale, influencing gene expression by binding to specific DNA sequences.  

Solvent accessible surface area (SASA)  

SASA is another parameter to analyze the nature of structural compactness and stability of a 

protein and its complex with the ligand through the course of MD simulation [41]. SASA of 

the twelve complexed proteins (1M17, 4LXZ, 4GL7, and 6GUE) combined with their ligands 

(2e, 2h, 2i, 2j, 3c, 3h, 3i) are shown on Figure 11. 



 
(a) 

 

 (b) 

 
(c) 

 

 
 (d) 

 

Figure 11: Solvent accessible surface area (SASA) of the proteins with ligands 

All systems were found to be exhibiting a moderately constant SASA over the entire 

simulation period showing their stability. Indeed, in the case of the 2h-1M17, 2i-1M17, and 

3h-1M17 complexes (Figure. 11a), the SASA average values are predicted equal to: 170, 

172.4, and 169.8 nm², respectively, remaining remarkably constant throughout the timeline (0 

– 200 ns) of simulation. These results indicate the structural stability of the 1M17 protein and 

its complexes under aqueous conditions, suggesting minimal compacting or expanding 

tendencies.  

Similarly, for the 4GL7 protein, the 2e, 2i, and 3i complexes (figure. 10b), and the obtained 

SASA values are 212.43, 211.2, and 209 nm², respectively, exhibiting stable behavior 

throughout the simulation.  In addition, the 2e-6GUE, 2j-6GUE, and 3c-6GUE complexes 

(figure. 10c), the SASA values i.e., 144.3, 141.7, and 138.07 nm², respectively, are predicted 

unchanged throughout the simulation.  Finally, for the last series: 2j-4LXZ, 2e-4LXZ, and 2i-



4LXZ complexes (figure. 11d), the obtained values are 168, 172.8, 178.26, and 110.98 nm², 

respectively.  

The SASA findings confirm the persistent stability of the ligand-receptor complexes within 

aqueous conditions, suggesting minimal alterations in structural compactness.   

3.4. Prediction of new inhibitors 

QSAR and molecular docking analysis  

The structure of a compound determines its physicochemical properties as well as the 

ADMET (absorption, distribution, metabolism, excretion, and toxicity). The constructed 

MLR 2D-QSAR model was used to design twelve new hybrids (N1 – N12) of phenylsulfonyl 

furoxan and phenstatin derivatives based on the best docking score ligands (2e, 2i, 2j, 2h, 3c, 

3h, 3i) associated with the four cell lines (4GL7, 6GUE, 1M17, 4XL7) (Table 5). The 

molecular structures of the twelve new ligands (N1 – N12) are modified according to the 

substitution R (in red) at the same site as shown on figure 12, and figure 13.  

 

Figure 12: Structures of the twelve new N1 – N12 compounds                                        

 



Figure 13: Structures of the twelve new N1 – N12 compounds.                                        

The in silico results obtained from multiple linear regression (MLR) were also used to 

predict the anticancer activity (pIC50) of the twelve newly compounds against the four cell 

lines (A2780, MDA-MB-231, HCT-116, and A549), including their docking scores 

(kcal/mol) with their corresponding protein structures (4LXZ, 4GL7, 6GUE, 1M17).The 

result are gathered in Table 6.  

Table 6: Newly designed (N1 – N12) compounds with predicted pIC50 values for the four 

cell lines (A2780, MDA-MB-231, HCT-116, and A549), and docking score (kcal/mol) with 

their protein structures (PDB codes: 4LXZ, 4GL7, 6GUE, 1M17). 

Ligand 

Predicted pIC50 Docking score (kcal/mol) 

A2780 
MDA-MB-

231 

HCT-

116 
A549 4GL7 6GUE 1M17 4LXZ 

N1 6.24 4.88 4.97 5.55 -148.2 -144.7 -115.9 -145.5 

N2 7.00 5.58 5.20 5.64 -148.1 -132.5 -130.2 -146.6 

N3 6.23 4.82 5.07 5.51 -160.9 -139.5 -130.8 -136.4 

N4 7.02 5.61 5.06 5.69 -143.2 -136.3 -116.2 -145.9 

N5 5.78 4.24 4.71 4.79 -132.4 -120.7 -105.7 -101.5 

N6 5.99 4.92 4.07 4.97 -135.1 -124.1 -123.2 -104.2 

N7 5.65 4.26 4.19 4.84 -128.9 -121.6 -109.1 -104.1 

N8 5.94 4.83 3.94 4.90 -125.5 -128.9 -101.9 -93.7 

N9 5.90 4.52 4.79 5.03 -133.8 -128.5 -109.6 -110.5 

N10 6.72 5.32 4.66 5.23 -138.6 -123.8 -106.7 -108.4 

N11 5.90 4.49 4.87 5.01 -125.9 -122.3 -109.4 -101.9 

N12 6.61 5.23 4.74 5.16 -132.4 -128.6 -107.0 -105.6 

The results of Table 6 show that the predicted pIC50 values and docking score (kcal/mol) of 

the newly twelve designed models (N1 – N12), for the four cell lines i.e., A2780, MDA-MB-

231, HCT-116, A549, are in good agreement with experimental in-vivo bioactivity activity 

(Table 1) reported for the actual hybrid derivatives [12]. It is noteworthy that among the in 

silico designed compounds, N2, N4, N10, and N12 ligands, exhibit the best-predicted pIC50 

inhibition activity ranging from 4.66 to 7.02 values towards the four A2780, MDA-MB-231, 

HCT-116, A549 protein, and are associated with the 4-bromophenyl Me-derivative group 

(Table 6). Interestingly, their pIC50 values (N2, N4, N10, and N12), are closer to the best 3h 



ligand associated with the Ar = 4-bromophenyl group, which showed the most potent 

activities, ranging from 6.82 to 7.92 against both chemo-sensitive and resistant cancer cell 

lines, in particular towards the A2780 one (Table 1). More interestingly, the predicted 

inhibition activity of in silico-designed ligands (N1 – N12) is significantly higher than the 

observed prototype 1h compound (Table 1). However, such predicted piC50 by the 2D-

QSAR model, as expected to be found slightly lesser than those of in-vivo evaluated 

compounds [12]. 

Furthermore, the docking score shows that the binding energy values (kcal/mol) for predicted 

inhibitors (N1 – N12) are all negatively low, demonstrating a favorable conformation 

between ligands and the four proteins (4GL7, 6GUE, 1M17, 4LXZ). Notably, these new 

compounds (N1 – N12) have a significant affinity with the four enzyme-receptors producing 

H-bond interactions at the target point of amino acid residues. The binding energy ranging 

from 93 to 160 kcal/mol, reveals that four out of the twelve compounds, namely N1, N2, 

N3, and N4, show the best binding scores with the protein (4GL7, 6GUE, 1M17, 4LXZ) 

proteins.  

Figure 14 shows the potent 2-D interactions between the best predicted docking scores (Table 

6) between the (N1, N2, N3, and N4) ligands, and active site residues within the four N1-

6GUE, N2-1M17, N3-4GL7, and N4-4LXZ complexes. The remaining 2-D interactions 

between the best predicted ligands N2, N3, and N4 with the 6GUE, 1M17, and 4LXZ 

proteins, are gathered on Figure S1 (See supplementary information). 

It is noteworthy that the best-scoring N1, N2, N3, and N4 ligands, are predicted to function as 

competitive inhibitors of the considered enzymes, fitting into the substrate binding site and 

inactivating the enzyme’s catalytic activity. 

 



 

  N1-6GUE 

 

N2-1M17 

 

N3-4GL7 

 

N4-4LXZ 

 

Figure 14: 2-D interactions between the active site residues of the four targets and selected 

ligands (N1-6GUE, N2-1M17, N3-4GL7, and N4-4LXZ) 

 

Furthermore, figure 14 shows that the highest affinity of the designed N1, N2, N3, and N4 

inhibitors towards the four (4GL7, 6GUE, 1M17, 4LXZ) targets, is due to the presence of van 

der Waals forces (e.g., Trp224, Thr310, Leu152, Leu477, Arg145, Arg115, and His183), 

which create a strong cohesive environment, thereby stabilizing the complexes formed. 

Furthermore, the molecular docking simulations with the four proteins show two strong H-

bond interactions with Met374 and Arg115 amino acids. 



In addition, steric interactions with LEU372-276-477, Phe134, Val370, Leu151, Ala306-443, 

Met303-446 and Thr310 residues, were seen and are almost identical to those found in the 

best docking scores for in-vitro compounds (table 5). 

Regarding the docking scores and PCA findings (figure 14), the selected N1, N2, N3, 

and N4 ligands are predicted to be multitargeting inhibitors activity for Tyrosine kinase 

(1M17), Placental aromatase (4GL7), and Cyclin-dependent kinase (6GUE) targets, as 

obtained for the most stables 2e-4GL7 and 3i-4GL7 vs.  2e-6GUE and 2j-6GUE complexes, 

respectively (figure 9).  

Indeed, in the case of multitargeting cancer therapy, inhibition activity for the aromatase 

enzyme has been found to be a viable targeted therapy for breast cancer [67]. Moreover, 

breast cancer tissues exhibit recurrent aromatase expression and generate elevated quantities 

of oestrogens in comparison to non-cancerous cells. It is noteworthy that enzyme, which 

belongs to the cytochrome P450 family, serves the purpose of catalyzing the final step of 

estrogen production [67].  

Similarly, the inhibition of uncontrolled mitogen-activated protein kinase (MAPK) signaling 

pathway as well as PI3K-AKT (mTOR) downstream pathway, is related to different type of 

cancer therapy [68]. The inhibition of the  protein ERK from the MAPK signaling pathway 

regulates the subcellular localization of CDK2 responsible of the human colorectal cancer 

[69]. Moreover, the epithelial growth factor receptor (EGRF) is associated with the aetiology 

of numerous human malignancies, such as lung’s adenocarcinoma. Therefore, according to 

our result, the N3 molecule could exhibit potent EGFR inhibition activity for such type of 

cancer therapy [70]. One can note that EGFR inhibition in breast cancer, leads directly to the 

inhibition of ERK activity and reduces CDK2 activity [71]. In a similar way the targeted 

inhibition or reduction of CDK2/Cyclin A, and considering the Tyrosine kinase inhibitors 

(TKIs) as a targeted cancer therapy, the good docking score of N2-1M17 complex, would 

stops the cellular proliferative mechanism. 

Therefore, except N4, the N1, N2 and N3 new designed ligands, could play an important role 

in the inhibition multitargeting (ovarian, breast, colorectal, and lung) cancer therapy. 

 

3.5 Prediction of ADMET properties 

The ADMET parameters (Absorption, Distribution, Metabolism, Excretion, and Toxicity) of 

the twelve new compounds were studied by the ADMET Predictor™ at specified dosage 



level (10 mg/l), to predict several parameters, including metabolism, transporters, toxicity, 

and pharmacokinetic profiles for their possible genotoxicity based on the usual toxicology 

database. The ADMET results for new model compounds (N1 – N12) compared to the 

synthesized best in-vitro 3h inhibition activity score ligand, are reported in table 7. 

For targeting molecules oral administration, solubility is one foremost property that 

influences absorption to deliver an adequate quantity of active ingredients in a small volume. 

Moreover, many important physicochemical descriptors may correlate with pharmacokinetic 

(PK) or ADMET properties, such as water solubility (S) and lipophilicity or partition 

coefficient (Log P) which play major role in whether a drug can progress to be a successful 

drug candidate. Water solubility is given in log S (mol/L or mg/ml), and is referred to the 

following range: (insoluble ≤ 10 < poorly soluble ≤ 6 < moderately soluble ≤ 4 < soluble ≤ 2 

< very soluble < 0 < very soluble) [26].  

The ADMET results of the log P and log S values (Table 7) of almost designed (N1 – N12) 

compounds, indicate that they have a reasonable absorbency and are moderately water 

soluble, regarding the acceptable score of lipophilicity (0.7 < LogP < 5), and solubility (0 < 

Log S < 6) as well as good polar surface areas (PSA ≤ 140) at specified dosage levels [26]. 

These results of the predicted bioavailability (Table 7) revealed the same scores for all newly 

designed twelve anticancer molecule candidates. It is noteworthy that for the intravenous 

route of administration, the bioavailability profile of the drug is nearly 100%. 

Notably, compounds 6, 8, 10, and 12 have moderate water solubility (Log S = -3.0 mg/mL), 

and thus could facilitate good oral adsorption, relative to the less good scores for the other 

molecules. However, some ADMET and absorption risks are predicted by the ADMET_risk 

and absn_risk factors with a score in the range of 0-22 and 0-8, respectively, indicating the 

number of potential oral absorption problems, exceeding 7 (10%) and 4 (9%), respectively, a 

compound is likely to have.  

  



Table 7: Pharmacokinetics prediction for the proposed (N1  N12) compounds by ADMET Predictor™ cloud web server, and the best in vivo 

reference 3h molecule. 

 

Molecule  15j1Cl 15j1Me 15j2Cl 15j2Me 16c1Cl 16c1Me 16c2Cl 16c2Me 16h1Cl 16h1Me 16h2Cl 16h2Me 

ID 3h N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 

MWt 620.461 660.913 640.495 660.913 640.495 593.995 573.577 593.995 573.577 654.906 634.488 654.906 634.488 

LogP 2.080 3.184 3.184 3.184 3.184 2.080 2.080 2.080 2.080 2.276 2.276 2.276 2.276 

Log S -3.000 -5.514 -5.195 -5.684 -5.203 -5.311 -3.000 -5.349 -3.001 -5.500 -3.000 -5.567 -3.002 

S+CL_Metab 
Yes 

(45%) 

Yes 

(57%) 

Yes 

(55%) 

Yes 

(57%) 

Yes 

(55%) 

Yes 

(49%) 

Yes 

(45%) 

Yes 

(46%) 

No 

(44%) 

Yes 

(55%) 

Yes 

(45%) 

Yes 

(55%) 

Yes 

(45%) 

PSA (Å
2
) 138.27 129.04 129.04 129.04 129.04 138.27 138.27 138.27 138.27 138.27 138.27 138.27 138.27 

Rule of 5 2 1 1 1 1 2 2 2 2 2 2 2 2 

HBA 10 9 9 9 9 11 10 10 9 9 9 9 10 

HBD 0 0 0 0 0 0 0 0 0 0 0 0 0 

N_Rot 10 8 8 8 8 11 11 11 11 11 11 11 11 

GI absorption Low Low Low Low Low Low Low Low Low Low Low Low Low 

BBB_Filter 

Low 

(79%) 

-1.309 

Low 

(90%) 

Low 

(90%) 

Low 

(90%) 

Low 

(90%) 

Low 

(90%) 

Low 

(74%) 

Low 

(90%) 

Low 

(74%) 

Low 

(90%) 

Low 

(84%) 

Low 

(90%) 

Low 

(79%) 

ADMET_Risk 6.649 6.652 6.685 6.839 6.685 5.822 6.089 5.869 6.063 7.116 6.831 7.411 6.765 

Absn_Risk 5,248 2.280 2.729 2.366 2.711 4.758 5.089 4.84 5.063 4.961 5.305 5.064 5.273 

Pgp_Substr 
Yes 

(97%) 

Yes 

(84%) 

Yes 

(88%) 

Yes 

(84%) 

Yes 

(86%) 

Yes 

(93%) 

Yes 

(97%) 

Yes 

(95%) 

Yes 

(97%) 

Yes 

(97%) 

Yes 

(99%) 

Yes 

(97%) 

Yes 

(99%) 

Pgp_Inh 
Yes 

(57%) 

Yes 

(68%) 

Yes 

(66%) 

Yes 

(68%) 

Yes 

(66%) 

Yes 

(55%) 

Yes 

(52%) 

Yes 

(57%) 

Yes 

(52%) 

Yes 

(58%) 

Yes 

(58%) 

Yes 

(58%) 

Yes 

(58%) 



BCRP_Substr 
No 

(62%) 

No 

(47%) 

No 

(47%) 

No 

(60%) 

No 

(60%) 

Yes 

(95%) 

Yes 

(84%) 

Yes 

(95%) 

Yes 

(84%) 

No 

(58%) 

No 

(67%) 

No 

(58%) 

No 

(67%) 

OATP1B1_Substr 
Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

Yes 

(99%) 

OATP1B1_Inh 
Yes 

(72%) 

Yes 

(84%) 

Yes 

(84%) 

Yes 

(84%) 

Yes 

(84%) 

Yes 

(79%) 

Yes 

(72%) 

Yes 

(79%) 

Yes 

(72%) 

Yes 

(84%) 

Yes 

(76%) 

Yes 

(84%) 

Yes 

(72%) 

CYP1A2_Inh 
Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

Yes 

(95%) 

CYP1A2_Substr 
No 

(85%) 

No 

(70%) 

No 

(70%) 

No 

(63%) 

No 

(72%) 

No 

(61%) 

No 

(65%) 

No 

(61%) 

No 

(59%) 

No 

(78%) 

No 

(85%) 

No 

(78%) 

No 

(81%) 

CYP2A6_Substr 
No 

(98%) 
No 

No 

(98%) 

No 

(92%) 

No 

(92%) 

No 

(92%) 

No 

(98%) 

No 

(92%) 

No 

(98%) 

No 

(92%) 

No 

(98%) 

No 

(92%) 

No 

(92%) 

CYP2C8_Substr 
Yes 

(52%) 

Yes 

(60%) 

Yes 

(60%) 

Yes 

(60%) 

Yes 

(60%) 

No 

(49%) 

No 

(49%) 

Yes 

(49%) 

No 

(46%) 

Yes 

(56%) 

Yes 

(54%) 

Yes 

(56%) 

Yes 

(54%) 

CYP2C9_Inh 
No 

(81%) 

No 

(80%) 

No 

(78%) 

No 

(80%) 

No 

(78%) 

No 

(80%) 

No 

(78%) 

No 

(80%) 

No 

(78%) 

No 

(81%) 

No 

(81%) 

No 

(81%) 

No 

(81%) 

CYP2D6_Inh 
No 

(80%) 

No 

(70%) 

No 

(65%) 

No 

(70%) 

No 

(65%) 

No 

(70%) 

No 

(67%) 

No 

(70%) 

No 

(65%) 

No 

(80%) 

No 

(76%) 

No 

(80%) 

No 

(76%) 

CYP3A4_Inh 
Yes 

(49%) 

Yes 

(49%) 

Yes 

(51%) 

Yes 

(51%) 

Yes 

(51%) 

Yes 

(44%) 

Yes 

(46%) 

Yes 

(44%) 

Yes 

(46%) 

Yes 

(49%) 

Yes 

(49%) 

Yes 

(49%) 

Yes 

(49%) 

CYP3A4 

Substr 

Yes 

(98%) 

Yes 

(98%) 

Yes 

(98%) 

Yes 

(98%) 

Yes 

(98%) 

Yes 

(98%) 

Yes 

(92%) 

Yes 

(98%) 

Yes 

(92%) 

Yes 

(98%) 

Yes 

(98%) 

Yes 

(98%) 

Yes 

(98%) 

CYP_Risk 0,171 1 1 1 1 0.054 0 0.029 0 0.642 0.317 0.662 0.25 

TOX_Risk 
1 

(MUT) 
2.372 1.956 2.473 1.981 1 1 1 1 1 1 1.149 1 

 



Moreover, among physicochemical properties in Lipinski’s rule [45], molecular weight 

(MW) slightly violated the threshold of 500, with a maximum number of H-bond acceptors 

of N10 HBA, except for the compound N5, and no H-bond donors (HBD) predicted. In 

addition, the number of rotatable bonds (n-Rot ≤ 10) is predicted slightly unfavorable for 

designed compounds N5 – N12.  

Although two useful guideline rules of Lipinski's rule for drug-likeness are somewhat 

violated (MW and NO valence) for orally bioavailable designed compounds, the ‘rule-of-

five’ has to some extent been overemphasized for designed compounds and even for 

synthesized moieties [72]. Furthermore, the in silico results for the designed compounds, 

correlate fairly well with that of the best in-vitro 3h one (Table 7). 

P-glycoprotein (P-gp) is responsible for efflux across biological membranes of a wide range 

of therapeutic drugs. One major role of P-gp is to protect the central nervous system (CNS) 

and cells from the harmful effects of drugs by transporting toxins and xenobiotics out of 

cells. It should be noted that all new compounds (N1 – N12) have a high probability 

(accuracy ca. 90%) of being a substrate of P-gp. Interestingly, the Pgp_Inh factor predicts 

whether or not the compound is a P-glycoprotein inhibitor (accuracy ca. 55%).  

Moreover, the permeation of the blood-brain barrier (BBB) is a very important property in 

the pharmaceutical field because it determines whether or not a compound can cross the 

BBB and thus exert its therapeutic effect on the brain [73]. The standard value for the 

permeability of the BBB is good if its value is higher than 0.3 and bad if it is lower than −1 

[74]. From the report on the BBB (table 7), it is clear that all the selected compounds have a 

moderate BBB permeability.  

Also, according to the ADMET results and based on the drug similarity studies [75], the 

new model molecules (N1–N12) show acceptable human gastrointestinal (GI) absorption, 

metabolism properties, low total clearance, and small toxic properties, suggesting that these 

compounds are expected to exhibit good oral bioavailability, and behave as anti-cancer 

inhibitor drug candidates.  

Notably, the clearance parameter (S+CL_Metab) corroborated the critical role of 

metabolism for the studied molecules. Indeed, their S+CL_Metab factor which predicts 

whether or not the clearance mechanism is metabolism, is predicted favorable with a range 

of 44 - 57% of accuracy. 



It is noteworthy that Cytochrome P450 enzymes (CYPs) are a class of membrane-bound 

enzymes that contain heme. These enzymes are primarily found in the smooth endoplasmic 

reticulum and mitochondria of hepatocytes, as well as in the intestines. A total of 57 

cytochrome P450 (CYP) isoforms have been identified in mammals, which play a crucial 

role in the oxidative metabolism of both xenobiotics and endogenous compounds [76]. 

Among these isoforms, five specific ones, namely CYPs 3A4, 2D6, 2C19, 2C9, and 1A2, 

are responsible for metabolizing over 80% of drugs commonly used in clinical practice [76]. 

Furthermore, the cytochrome P450 isoenzymes are important for drug metabolism in the 

liver [76].  

Indeed, almost of newly designed compounds, were predicted to be substrates and inhibitors 

for several metabolizing enzymes of cytochrome P450 (CYP) i.e., CYP2C8, CYP3A4, for 

the breast cancer resistance protein (BCRP), and for the OATP1B1, OATP1B1 

transponders, but fail to inhibit the human cytochromes: CYP2A6, CYP2C9, CYP2D6. 

Notably, in the family of CYP enzymes, CYP3A4 is an isoform of cytochrome P450, which 

is an enzyme responsible for the crucial detoxification of the human body and responsible 

for the modification of the pharmacokinetics of drugs. Moreover, CYP3A4 was the most 

important enzyme on account of metabolizing 50% of all drugs by itself [47]. 

Furthermore, it was predicted that overall newly designed compounds would likely exhibit 

inhibitory effects towards the CYP1A2 and CYP3A4 enzymes. Indeed, the analysis of the 

eight widely recognized CYP1A2 inhibitors with high affinity, shows that newly designed 

ligands (N1 – N12), possess common structural characteristics such as the presence of 

multiple aromatic moieties, heterocycles, secondary amines, and halogens. Moreover, high-

affinity inhibitors of the CYP3A4 enzyme, that are commonly prescribed, exhibit a 

substantial molecular weight and possess a significant surface area, a considerable number 

of rotatable bonds, and hydrogen bond acceptors [76]. 

Interestingly, some studies show that most of the molecules fail in clinical trials due to their 

toxicity or poor pharmacokinetics [76]. Indeed, ADMET evaluation of CYP risks connected 

with P450 oxidation is predicted low (not exceeding 2.0), as a score in the 0-6 range 

indicating the number of potential problems a compound might have due to metabolism by 

one or more of major cytochrome P450s. In addition, the ADMET risk connected with 

toxicity is given by the TOX_Risk parameter and is also predicted low (not exceeding 2.0), 

as a score in the 0-6 range indicates the number of potential toxicity problems a compound 



might have. Furthermore, the toxicity prediction, show that, in reference to the best in vitro 

score 3h compound, the overall designed ligands (N1 – N12), which some of them are 

found to have mutagenicity (MUT), they exhibit low toxicity side (Table 7). 

 

5. Conclusion 

In this study, thirty-one hybrids of phenylsulfonyl furoxan and phenstatin derivatives (1a-j, 

2a-j, 3a-j, 4 and 5), were computationally analyzed for the first time using DFT 

calculations, and in silico approaches combining 2D-QSAR models, molecular docking and 

dynamics simulations, with support of ADMET properties for drug-likeness. Our study aims 

to develop in silico models able to design new multitargeting molecules that may be used as 

anti-cancer inhibitors for multiple cell lines. Indeed, based on the experimental pIC50 

inhibition activity, the 2D-QSAR predictive model, combining the MLR technique and 

cross-validated by internal and external approaches, i.e., Y-randomization test and 

applicability domain. This approach was used satisfactorily to in silico evaluate the 

anticancer activity of considered hybrid compounds against the four different human tumor 

cell lines, namely ovarian cancer (A2780), breast cancer (MDA-MB 231), lung 

adenocarcinoma (A549), and colorectal cancer (HCT-116). Subsequently, the molecular 

docking analysis showed that the 2j-4GL7, 3c-6GUE, 3h-1M17, and 2j-LX4 protein 

complexes, exhibit the best binding energy of 174.681, 146.157, 126.561, and 140.314 

kcal/mol, respectively. The R² values ranging from 0.74 to 0.85, reflects the good 

correlation between the predicted and observed (pIC50) activities. The dynamics 

simulations undertaken over a timeline of 200 ns, reveal satisfactorily RMSD, RMSF, Rg, 

SASA, PCA and FES values supporting their stability under physiological conditions. The 

developed predictive in silico-based model was used to design twelve novel hybrids (N1 – 

N12), and their potent anticancer activity was assessed. The molecular docking and 

dynamics simulations results for the best bonding affinity scoring (N1, N2, N3, and N4) 

ligands, correlate well with those obtained for the best selected experimental compounds 

(2j, 3c, 3h, and 2j), which suggests their ability to inhibit the considered multitargeting 

proteins. Moreover, the ADMET prediction of the pharmacokinetic properties shows 

relatively reasonable oral bioavailability and low toxicity, but poor BBB permeability with 

respect to the reference ligand (3h).  

These in silico findings could guide further research in the development and rational design 

of multitargeting anti-cancer drugs, in combination with in vitro and in vivo analysis, 



providing promising pathways for the design of novel compounds with improved anticancer 

activity and reduced toxicity. 
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