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Abstract
The current state of research indicates a necessity of further examination in both nu-

merical and experimental studies related to optimizing shapes of building enclosures for the
enhancement of their energy efficiency. The demand for research primarily arises due to
the numerical complexities associated with optimizing shapes for this specific purpose. Con-
sequently, the primary objective of this article is to address and bridge these gaps in the
field. To achieve this, a two-dimensional steady-state heat diffusion model is assumed to
represent the physical processes occurring within building facades of varying shapes. A third
type boundary condition is applied to the exterior boundary, encompassing convective and
incident short-wave solar radiation effects. The calculation of short-wave radiation accounts
for factors such as sunlight exposure and shading, influenced by the surrounding urban envi-
ronment. The internal boundary interfaces with the indoor ambient air, and thus, a Robin
boundary condition is adopted. To tackle the computational demands while ensuring accu-
racy, the boundary element method (BEM) is employed by discretizing the domain boundary
into discrete elements. Then, two heat transfer design objectives are define according to the
period of investigations: ones related to enhancing heat transfer and ones focused on ther-
mal insulation problem. Last, a real-world case study is conducted, considering a house wall
under varying climate conditions throughout the year. Optimal shapes for the external wall
boundary are determined with the constraint that the optimized facade utilizes the same
amount of material as the reference flat one. The results demonstrate a substantial increase
in energy efficiency compared to the reference flat wall case.

Key words: steady-state heat transfer, boundary element method, shape optimization,
short wave radiation.

1 Introduction
Buildings account for a 30% portion of global energy consumption and 26% greenhouse gas

emissions according to statistic data provided by International Energy Agency (IEA), Paris,
France in 2022 [1]. For the past 50 years, several models have been developed to represent
the physical phenomena occurring building facade with the objective of designing high energy
efficient enclosures [2–4]. A recent review has been proposed in [5]. Despite all the simulation
programs developed, the building enclosures are often designed following two principles: (i) the
enclosures are plane barriers created against the climatic varying outside conditions. It omits the
fact that incident radiation and convective heat flux are not spread uniformly on the enclosure.
The variation of the short wave radiation with the urban environment is generally disregarded
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for the facade design [6, 7]. Ana Paula de Almeida Rocha et al. and Mohammad Mirsadeghi et
al. made some attempts for accurate shading assessment or convective heat transfer coefficient,
as reported in [8] and [9], respectively. However, as Nicolas Lauzet et al. mentioned in [10], the
actual building simulation tools cannot handle spatially variable boundary conditions. (ii) As a
consequence, the enclosures are conceived using 1D model by association of multiple plane layers.
Considering those two drawbacks, can the energy efficiency be improved by shape optimization
of the building facade? Thus the main goal of this article is to investigate the possibility to
optimize building shape.

Regarding state of the art on building facade shape improvement, there are many investiga-
tions and research findings. For instance in the work [11] Mohammad Jafari and Alice Alipour
focus on shape optimization of high-rise buildings to minimize wind-induced loads. It em-
ploys computational tools and simulations to optimize building shapes for reduced wind effects.
A multi-objective optimization approach is presented in [12] for sustainable high-rise building
shapes, considering factors like energy efficiency, day lighting, and material use. One of the first
challenges in shape optimization relies in the parametrization of the shape. Such parametrization
can be broadly categorized into two types: continuous and discrete [13]. Continuous parame-
terization involves representing shapes using mathematical equations or functions. Continuous
approach offers smooth transitions between shapes, precise representations, and easy application
of mathematical operations, but it requires significant computational resources. For instance in
the work of Yunfeng Luo et al. [14] level-set sinus function is used for the adjoint-based optimiza-
tion of thermohygrometric performance for pin-fin array geometry in 3D transient fluid. Authors
maximize the ratio of heat transfer and pumping factor. Jeong-Tak Jin and Jae-Weon Jeong
showed another example of continuous parameterized shapes in [15], where geometric modeling
of a free-form building surface was performed using continuous design models in Rhinoceros
program. Then, the thermal load of a building is estimated using TRNSYS software to op-
timize the heat gain variation. The heat balance method is used by TRNSYS as a base for
all calculations. In contrast, second approach - discrete parameterization employs a finite set
of parameters, which describe various characteristics of the shape, such as size, curvature and
other geometric properties. Thus, it makes discrete parameterization suitable for representing
complex shapes from real world or when mathematical equations are not applicable. However,
it explores only a reduced part of the parameter domain and may miss some optimal shape in
the process. This method is broadly used for solving multiple engineering shape optimization
problems than continuous approach. In [16] corner recession discrete plan shapes are used to
reduce wind loads on buildings using Computational Fluid Dynamics tools. Similar investiga-
tions are made by Shuai Zhang et al. in [17], where discrete insulation corner wall envelopes are
employed to minimize energy consumption in buildings by examining the transient fluid flow
in 2D regime. There are plenty other works with different selections of discrete parameterized
shapes: discrete response surfaces for aeroelastic performance optimization [18], two-dimensional
cylinders multi-objective optimization approach for sustainable high-rise building shapes with
different corner recessions for aerodynamic optimization [19] or even series of sample building
shapes with twisting modifications [16].

A second challenge in shape optimization is the modelling of physical phenomena in the build-
ing enclosures. To our best knowledge, most of the work neglect or simplify the heat transfer
through solid walls in the optimization process [20]. On the one hand the review articles about
shape optimization techniques [21, 22] illustrate that the majority of studies predominantly focus
on fluid flow dynamics around building enclosures. On the other hand [23–26] demonstrate that
there are plenty of examples of studies on facade building shape optimization which are focused
on energy efficiency. But common drawback is when authors consider isothermal condition on
the solid surfaces (see for instance [16–19, 27]). Thus, it misses the crucial aspect of the energy
balance played by solid facade between the inside and outside environment. When considering
the heat balance, the studies generally simplify the equation considering a lumped approach
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based on transfer function method [28, 29]. In such approach, the assumption of steady-state
conditions is made, which may lack of accuracy for precise assessment of the energy efficiency.
Moreover, another noticeable gap in the existing work relates to the limited attention given to
the impact of solar radiation on the shape and design of buildings. While Mayssa Dabaghi et
al., Longwei Zhanghave et al. and Rabee M. Reffat et al. made significant strides in optimiz-
ing building shape structures [30–32], a comprehensive understanding of how solar radiation
influences surface morphology remains largely unexplored. This represents a critical area where
further investigation and research are warranted to unlock innovative design possibilities that
can harness solar energy more efficiently and enhance the sustainability of architectural solutions
[33, 34].

This analysis of the state of the art reveals two challenges to be tackled: building shape
optimization needs to consider the (i) influence of the solid facade shape design on the energy
balance between inside and outside environment, (ii) the influence of the spatial variation of
the incident solar short wave radiation on the building facade. In order to bridge the existing
gaps in the field of building shape optimization, this research considers investigation of heat
transfer mechanisms through building walls. The approach chosen in this article takes into
consideration the impact of incident short wave radiation, accounting for variations in solar
exposure on the wall surface due to urban environment such as neighboring buildings [35].
Furthermore, a continuous description of the building wall shape is incorporated. It enables
consistent interpolation, compatibility with optimization algorithms, and accurate modeling in
simulations. To facilitate the computational efficiency of our analysis while ensuring robust and
dependable outcomes, the boundary element method (BEM) has been employed. This method
serves as a powerful tool for solving the steady-state heat equation, reducing computational
overhead without compromising the accuracy of our results [36].

The article organized as follows. Section 2 presents the governing equations with appropriate
boundary conditions. It follows with description of solar radiation modeling using analytical
projection method. Then the dimensionless formulation of the governing equations is presented
with application of the boundary element method. Section 3 describes the design optimization
problem. Then, Section 4 aims at verifying the short wave radiation modeling using the pixel
counting technique as a reference solution. It follows with BEM verification with analytical
solutions. Finally, in Section 5 a real case study for shape facade improvement during winter
and summer periods.

2 Methodology

2.1 Physical domain

The physical domain under investigations is illustrated in Figure 1. The domain is denoted
by Ω with space coordinates x =

(
x , y

)
. The height of the facade is H

[
m
]
. The boundary

of the domain is Γ = ∪4
i=1 Γi. The bottom, right and top boundaries are denoted as Γ2 , Γ3

and Γ4 , respectively. The left boundary is Γ1 and is defined by:

Γ 1( p ) = { x ∈ R2 | x = γ ( p , y) , y ∈ [ 0 , H] , p ∈ Ω p} , (1)

where γ( p , y) is a parametrized mapping function, which shapes the form of the boundary Γ 1
depending on the N p parameters:

p =
(

p 1 , . . . , p N p

)
∈ Ω p .

Note that in the case γ ( p , y) = 0 , we have a plane boundary Γ 1 and the facade is a classical
rectangular one. In such case, the length of the wall is denoted L

[
m
]
.
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outside

inside

short-wave radiation

Figure 1. Illustration of the physical domain.

2.2 Governing equations

The two-dimensional steady-state heat diffusion transfer is assumed to represent the physical
phenomena in the building facade:

∆ T = 0 , ∀x ∈ Ω ,

where T
[
K
]

is the temperature inside the facade. The left boundary is in contact with the
outside environment of the building. Combining Newton’s law of heat transfer with Fourier’s
first law of conduction and adding the incident short-wave solar radiation leads us to a third-type
boundary condition also known as Robin boundary condition:

k ∇ T · n⃗ = − h ∞
L ( y )

(
T − T ∞

L

)
+ q ∞

L ( x ) , ∀x ∈ Γ1 ,

where k
[
W . m −1 . K −1 ] is the thermal conductivity of the wall, h ∞

L

[
W . m −2 . K −1 ] is the

surface heat transfer coefficient between the solid material and the surrounding fluid (air) with
the temperature T ∞

L

[
K
]
. The incident flux q ∞

L

[
W . m −2 ] varies with the height of the facade

due to the surrounding effects of the urban area and due to the shape of the boundary that may
induce local shadings [37]. The surface heat transfer coefficient h ∞

L depends on height y
[
m
]

and the according wind velocity v ∞
[
m . s −1 ] [38]:

h ∞
L ( y ) = h 0 + h 1

v ∞
v 0

( y

y 0

)λ
,

where h 0 , h 1
[
W . m −2 . K −1 ] and λ

[
−
]

are given surface coefficients and the velocity variation
coefficient respectively. v 0

[
m . s −1 ] and y 0

[
m
]

are reference quantities.
The right boundary is in contact with the ambient air inside of the building so a Robin

boundary condition is assumed:

k ∇ T · n⃗ = − h ∞
R

(
T − T ∞

R

)
, ∀x ∈ Γ3 ,

where T ∞
R

[
K
]

is the known inside ambient temperature and h ∞
R

[
W . m −2 . K −1 ] is the surface

heat transfer coefficient inside the building. Last, the top and bottom boundaries of the facade
are assumed as adiabatic:

k ∇ T · n⃗ = 0 , ∀x ∈ Γ2 ∪ Γ4 .
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2.3 Modelling the short wave radiation in the urban environment

The modelling of the radiation received by the boundary Γ 1 is presented. For the detailed
mathematical definition, a small element dΓ 1 ⊂ Γ 1 of coordinates x = ( x , y , z ) is consid-
ered, as illustrated in Figure 2. The incident short-wave radiation on a tilted surface can be
decomposed as follows [39]:

q ∞
L ( x ) = a ( q dr ( x ) + q df ( x ) + q rf ( x ) ), (2)

where direct q dr [W . m −2 ], diffusive q df [W . m −2 ] and reflective q rf [W . m −2 ] fluxes are com-
ponents of the incident short-wave radiation. a is the absorptivity of the wall.

It is assumed that the environment is modelled as a urban canyon with a front building facing
the studied facade as illustrated in Figure 2. As consequence, shadow effects due to the urban
environment may affect the direct radiation beam. Furthermore, the varying shape of the facade
can induce shadow effects on itself. These effects are considered in the modelling by introducing
indicator functions that equals 1 if one has a sunlit boundary. Thus, the direct flux q dr on a
titled surface is computed by:

q dr ( x ) = I b χ h ( x ) χ e ( x ) , (3)

where I b

[
W . m −2 ] is direct solar density radiation on a titled surface and given by:

I b = I 0
b cos ( θ z ) r b ,

where I 0
b

[
W . m −2 ] is direct normal incidence solar density radiation, θ z

[
−
]

is the zenith
angle, as illustrated in Figure 3, and r b

[
−
]

is the beam radiation tilt factor as defined in [40]:

r b = cos ( θ t )
cos ( θ z ) ,

where θ t
[
−
]

is the solar incidence angle, which is the angle between the sun’s rays and the
normal on a surface, which can be seen on Figure 3. By denoting n = ( n x , n y , n z ) the
outward vector normal to the element dΓ 1, tilt angle can be found as following:

cos ( θ t ) = s · n ,

where s = ( s x , s y , s z ) is the unitary vector defining the solar angle as:

s x = cos ( A l ) cos ( A z − A n ) ,

s y = cos
( π

2 − A l

)
,

s z = cos ( A l ) cos
( π

2 + A z − A n

)
,

where A l

[
−
]

is the solar altitude angle, A z
[
−
]

is the azimuth angle and A n
[
−
]

is the
Northern hemisphere angle.

Eq. (3) involves χ h and χ e the indicator functions due to front building shading and due to
self boundary shading, respectively. Then, the indicator function for front building shading is
defined as:

χ h ( x ) =

1 , if y > h ( x ),

0 , if y ≤ h ( x ).
(4)

where h
[
m
]

is the height of the projected shadow induced by the front buildings shadow on
the boundary Γ 1. It is computed according to:

h ( x ) = D y − D x + x

tan ( θ ′
z) ,
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where D x
[
m
]

and D y
[
m
]

are the front building distance and height, respectively. Here
θ

′
z

[
−
]

is the zenith angle projection on Oxy plane in Figure 2, which can be found as:

θ
′
z = arccos

(
s y√

(s x) 2 + (s y) 2

)
.

The indicator function (4) equals 1 if the element dΓ 1 i is higher than the shadow induced by
the front buildings. Thus, the element is receiving the incident solar radiation.
The second indicator function involved in Eq. (3) arises from the shadow induced by the shape
itself. For this, we consider a second element dΓ 1 j ⊂ Γ 1 of coordinates x j = ( x j , y j , z j ),
that can induce shadow to the element dΓ 1 i , as illustrated in Figure 2. It is defined by:

χ e j ( x , x j ) =

1 , if ω ( x , x j ) ̸= 0 ,

0 , if ω ( x , x j ) = 0 ,

where ω
[
−
]

is the angle between the unitary vector defining solar angle and the ray created
by the two elements:

ω( x , x j ) = s · g j ,

where g j = ( x − x j , y − y j , z − z j ) is the vector defining ray from one boundary element
to another.

 

front buildings

solar beam

shadow height

Figure 2. Illustration of the urban scene and the computation of the shadow effects.

The indicator function of the whole shape is given by:

χ e( x ) = min χ e j , ∀x j ∈ dΓ j ⊂ Γ 1 ∪ Γ 4 \ dΓ . (5)

Thus, if any small element dΓ j of the whole boundary induces a shadow on the element
dΓ , then the indicator function returns 0 and the direct solar radiation does not impact such
element.

Then, the diffusive flux q df in Eq. (2) is also affected by the shape of the boundary Γ 1 . Here
the Liu–Jordan model [41] is used for the computations on a tilted surface:

q df ( x ) = I 0
d

1
2
(

1 + cos ( β ( x ) )
)

,
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where I 0
d

[
W . m −2 ] is the diffuse radiation on a horizontal plane and β

[
−
]

is the surface tilt
angle from the horizontal plane, as illustrated in Figure 3. The angle β is computed by:

cos ( β ( x ) ) = n · e y , (6)

with e y = (0 , 1 , 0 ). Last, the reflective flux q rf in Eq. (2) depends on the intensity of diffuse
radiation reflected by the ground and other surfaces surrounding the facade. It is also computed
using the Liu–Jordan model [41] according to the orientation of the boundary Γ 1 :

q rf ( x ) =
(

I 0
b sin

(
Al

)
+ I 0

d

)
ρ

1
2
(

1 − cos ( β ( x ) )
)

, (7)

where ρ
[
−
]

is albedo of the surrounding environment.

Figure 3. Solar angles diagram.

2.4 Dimensionless formulation

The space, time and temperature quantities are transformed into a dimensionless represen-
tation according to:

x ⋆ =
(

x ⋆ , y ⋆ ) , x ⋆ = x

H
, y ⋆ = y

H
, u = T

T∞
.

With this transformations, the dimensionless problem is set on the new domain Ω ⋆ and the left
boundary Γ1 is now redefined as:

Γ⋆
1( p⋆ ) = { x ⋆ | x ⋆ = γ⋆ ( p⋆ , y⋆) , y⋆ ∈ [ 0 , 1] , p⋆ ∈ Ω⋆

p} .

Then, the governing equations is:

∆ ⋆ u = 0 , (8)

with the boundary conditions:

∇ ⋆ u · n⃗ = − BiL(x⋆) · ( u − u ∞
L ) + ρ(x ⋆) , x ⋆ ∈ Γ 1 ,

∇ ⋆ u · n⃗ = 0 , x ⋆ ∈ Γ2 ∪ Γ 4 ,

∇ ⋆ u · n⃗ = − BiR ( u − u ∞
R ) , x ⋆ ∈ Γ3 ,
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where ρ(x⋆) is the dimensionless incident flux, BiL and BiR are Biot numbers, which are equal
to:

ρ(x⋆) = q ∞
L ( x ⋆ ) H

k T∞
, BiL( x⋆ ) = h ∞

L ( x⋆ ) H

k
, BiR = h ∞

R H

k
.

The methodology is described for dimensionless variables, thus for the sake of clarity the symbol
⋆ will be later omitted in this section.

2.5 Numerical method to solve the direct problem

2.5.1 Boundary Integral equation

To derive the boundary integral equation of Eq. (8), we use Green’s second identity for two
regular functions:∫

Ω − Ωϵ

(
u ∇2 Φ − Φ ∇2 u

)
dV =

∫
Γ

(
u q ∗ − Φ q

)
dΓ +

∫
Γϵ

(
u q ∗ − Φ q

)
dΓϵ, (9)

where u is solution of our dimensionless problem defined for the bounded two-dimensional region
Ω with its closed boundary curve Γ . Φ is the fundamental solution of Laplace’s equation for
the bounded two-dimensional region Ω ϵ with its closed boundary curve Γ ϵ . q and q∗ are normal
derivatives for u and Φ:

q = ∇ u · n⃗,

q ∗ = ∇ Φ · n⃗.

Last, Φ is defined by :

Φ = − ln ( r )
2 π

,

where r is the distance from a source point to a boundary point, which is defined as:

r =
[

( x − xξ)2 + ( y − yξ)2
]1/2

,

here x ξ = ( xξ , yξ ) is a source point coordinates and x = (x, y) is a boundary point
coordinates, which is shown in Figure 4(a).

(a) (b)

Figure 4. Illustration of the approximation of the whole boundary Γ (a) and of one boundary
element Γ j (b).

u and Φ satisfy Laplace’s equation in the new region Ω − Ωϵ, thus the domain integral is
equal to zero. The original region is recovered on taking the limit when ϵ → 0. The limit of the
second integral on the right-hand side over Γϵ in Eq. (9) produces the result:

lim
ϵ → 0

∫
Γϵ

(
u (x) q ∗(x ξ, x) − Φ(x ξ, x) q (x)

)
dΓϵ = u(x ξ) ,
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and the following integral equation is obtained from Eq. (9):

u(x ξ) =
∫

Γ

(
Φ(x ξ, x) q (x) − u (x) q ∗(x ξ, x)

)
dΓ, (10)

this equation is known as Green’s third identity.
To obtain a boundary integral equation relating only boundary values, the limit is taken when

the point x ξ tends to a point x on the boundary Γ. However, if x ξ belongs to the boundary Γ.
The limits produce what is called a free term. Taking into account these terms the boundary
integral equation Eq. (10) can be generalized in the form:

c(x ξ) u(x ξ) =
∫

Γ

(
Φ(x ξ, x) q (x) − u (x) q ∗(x ξ, x)

)
dΓ, (11)

for any point x ξ on the boundary Γ. The free coefficient c(x ξ) is given by:

c(x ξ) = α

2 π
, 0 ≤ c(x ξ) ≤ 1,

where α is an internal angle at source point x ξ .

2.5.2 Discrete Boundary Integral equation

The Boundary integral equation (BIE) Eq. (11) can only be solved analytically for some
very simple problems. For this, a standard Green’s function method is normally used [42].
Rather than attempting analytical solutions to the BIE for particular geometries and boundary
conditions, we seek a suitable reduction of the equation to an algebraic form that can be solved
by a numerical approach.

The Boundary element method (BEM) is a numerical method of solution of the BIE, based
on a discretization procedure [43]. Application requires two types of approximation: the first
geometrical, involving a subdivision of the boundary Γ into Ne small segments or elements Γj ,
schematically shown in Figure 4(b), such that:

Ne∑
j=1

Γj ≈ Γ,

Taking this into account, Eq. (11) can be written in the form:

c(x ξ) u(x ξ) =
Ne∑
j=1

∫
Γj

(
Φ(x ξ, x) q (x) − u (x) q ∗(x ξ, x)

)
dΓ, (12)

The second approximation required by the BEM is functional. We approximate the variation
of u and q within each element by writing them in terms of their values at some fixed points in
the element (nodal points or nodes), using interpolation functions.

The simplest possible approximation is a piecewise constant one, which assumes that u and
q are constant within each element and equal to their value at the midpoint. Using this approx-
imation into Eq. (12), we obtain:

c(x i) u(x i) =
Ne∑
j=1

q (xj)
∫

Γj

Φ(x i, x) dΓ − u (xj)
∫

Γj

q ∗(x i, x) dΓ, (13)

here i - nodal point, j - number of the element, note that q (xj) = ∇ u(xj) n⃗j and q ∗(x i, x) =
∇ Φ(x i, x) n⃗i. Note that for the piecewise constant elements boundary is smooth which means
the free term c(x i) is equal to 1

2 .
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Calling integrals

Gi j =
∫

Γj

Φ(x i, x) dΓ (14)

and

Hi j =
∫

Γj

q ∗(x i, x) dΓ + c(x i) δi j , (15)

where δi j is the Kronecker delta:

δi j =

1, if i = j,

0, if i ̸= j.

(16)

2.5.3 Numerical integration

Integration in Eq. (14) and (15) is carried out using composite Simpson’s rule. Quadratic
boundary elements are used to represent curved geometry. They provide increased accuracy
because of their better representation of the variation of the functions along the boundary. The
variation of coordinates x within each quadratic element is defined by their values at three
global nodal points x−, xo, x+ using suitable interpolation functions, which are function of the
homogeneous coordinate η :

x ( η ) = N1 x− + N2 xo + N3 x+ ,

with

N1 = 1
2 η ( η − 1) , N2 = ( 1 − η2 ) , N3 = 1

2 η ( η + 1 ) ,

η is the dimensionless coordinate varying −1 ≤ η ≤ 1. The difference with the numerical
implementation of quadratic elements is that the Jacobian and normal vector are no longer
constant within each element. In order to implement them, there is a need to transform from
Cartesian to curvilinear coordinates [44]. The transformation from dΓ to dη is now given by:

dΓ = | J | dη,

with the Jacobian computed in the form:

| J | =
√

J 2
x + J 2

y = dΓ
dη

,

in which

J x = dx

dη
, J y = dy

dη
.

Hence one can write for Eq. (14):

Gi j =
∫ 1

−1
Φ
(

x ( η i ) , x ( η )
)

| J | dη .

Similarly, other integrals can be computed. The components of the unit normal vectors at any
point are given by:

n x = J y

| J |
, n y = − J x

| J |
.
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2.5.4 Computation of temperatures and fluxes

After computation of integrals Eq. (13) can be rewritten in the form:

Ne∑
j=1

Hi j uj =
Ne∑
j=1

Gi j qj , (17)

for any nodal point i. If the above equations are now applied, this generates a system of equations
which can be written in matrix form as:

H u = G q . (18)

If the boundary conditions of the problem are a combination of prescribed temperature and
prescribed fluxes, the system of Eq. (18), the matrices can be reordered and solved in the form:

A x = b , (19)

in which all unknowns have been collected into the vector x, and the vector b is the ’load’
vector, which contains all known boundary conditions. However, if the boundary condition at
all surfaces are of the convective type q = − Bi ( u − u ∞ ) , q needs to be applied at all
boundary nodes:

q = D u + E , (20)

where the diagonal matrix D and the vector E contain the values of (−Bi) and (Bi u ∞),
respectively, at each boundary node. Substituting Eq. (20) into Eq. (18) yields the system of
equations:

(H − G D) u = G E , (21)

which can be solved for the boundary values of temperature. Heat fluxes along the boundary
may then be evaluated pointwise by using the boundary condition Eq. (20).

3 Design optimization problem
The objective of this work is to improve energy efficiency of a building wall by finding the

optimal shape of the left boundary Γ 1 which is in contact with outside environment. In general,
heat transfer design objectives can be classified into two categories: (i) heat transfer augmen-
tation problems and (ii) thermal insulation problems. Thus, the optimization problem aims at
finding parameters of the left boundary that minimizes the entropy generation rate on the right
wall:

p ◦ = arg min
p ∈ Ω p

J ( p ) . (22)

The objective function J
[
W . m −2 ] is the total inward heat flux on the right boundary, corre-

sponding to the inside of the building:

J ( p ) = σ

∫ H

0
−k ∇ T ( γ ( p , y) ) n⃗ dy , (23)

where σ is the parameter which takes values −1 and 1. In other words the first case requires the
highest thermal conductance for the heat transfer augmentation. Consequently, in the second
case the thermal conductance is the lowest for the thermal insulation problems.

Note that the objective function needs to be optimized under several constraints. First, the
physical area of the wall S ( p ) should not exceed the reference case area S∞. The reference
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case is defined as the flat standard wall (γ = 0 in Eq. (1)). Thus, the cost function Eq. (23)
needs to be optimized under the following constraint:

S ( p ) ≤ S∞,

which leads to given the representation in Figure 1∫
Γ3

L dΓ −
∫

Γ1
γ ( p , y) dΓ ≤

∫
Γ3

L dΓ,

which can be rewritten as ∫
Γ1

γ ( p , y) dΓ ≥ 0. (24)

The second constraint that must be satisfied by the parametrized mapping is that the maximum
width of the wall cannot be higher than L . In other words, the left and right boundaries cannot
overlap:

γ ( p , y) ≤ L − δ, (25)

where δ is a given spatial tolerance.
The extremums of cost function Eq. (23) are found with brute-force search [45]. The objective

function is evaluated at a finite number of parameters within a specified constrained domain.
In this article each parameter in the domain is uniformly discretized for ten values.

4 Verification of the numerical model

4.1 Shortwave radiation model

First, a reference solution is considered to verify proposed shortwave radiation model. The
reference solution is obtained using pixel counting technique [46]. The method for the reference is
chosen due to a number of advantages over the methods used by most building energy simulation
software today [47, 48]. The pixel counting method handles complex shape models with large
numbers of surfaces and curved geometries, which can take into account shading by surrounding
buildings and self-shading structures. In this work the pixel counting technique cannot be
utilized since its’ coupling with the direct model and the optimization strategy faces some
technical issues.

Verification case study considers building facade wall in contact with incidence short-wave
radiation on December 21 from 9 h. to 17 h. in Marseille city, France. The height of the wall is
H = 3 m. For the mapping function γ in Eq. (1), a sine function is considered:

γ ( p , y) = 0.2 sin ( π y ) ,

which is shown on Figure 5(a). The urban environment assumes a front building of D y = 3 m
height and placed at D x = 4.76 m of the boundary Γ 1 . The absorptivity of the right boundary
and the albedo of the surrounding environment are set to a = 0.5 and ρ = 0.2 . The Northern
hemisphere angle is A n = 2 π. Zenith angle θ z , direct normal incidence solar density radiation
I 0

b , diffuse radiation on a horizontal plane I 0
d , solar altitude A l and azimuth A z angles values

are given in Table 1 with respect to time.
In order to illustrate the relative mean square error between proposed model and pixel count-

ing technique following formula is used:

ε 2 , r ◦ f =
∣∣ ∣∣ f − f̂

∣∣ ∣∣
2∣∣ ∣∣ f̂ ∣∣ ∣∣ 2 · 100% ,
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Table 1. Input parameters for validation of SWR.

t
[

h
]

θ z

[
−
]

I 0
b

[
W . m −2 ] I 0

d

[
W . m −2 ] A l

[
−
]

A z

[
−
]

9 83.22 0.0 16.0 6.66 131.46

10 75.91 91.0 72.0 14.03 143.27

11 70.45 139.0 138.0 19.50 156.46

12 67.39 186.0 176.0 22.57 170.82

13 67.06 253.0 172.0 22.90 185.74

14 69.51 386.0 138.0 20.44 200.30

15 74.46 417.0 104.0 15.49 213.79

16 81.39 304.0 73.0 8.50 225.92

17 89.51 10.0 27.0 0.01 236.77

where f represents solution obtained by proposed model and f̂ is the reference solution. Cal-
culated results are satisfactory and consistent with the pixel counting estimations. Figure 5(b)
shows error at each hour for the wall shape at Figure 5(a). Note that, it scales with 10−1, which
means error doesn’t exceed 1 %. In addition, for the different incident short-wave radiation com-
ponents, Figure 6 illustrates the comparison of both model at t =

{
9 , 12 , 15

}
h, respectively.

It shows a good agreement between both approaches.
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Figure 5. Shape of the wall for SWR comparison (a) and ε2 error of q dr direct, q df diffusive
and q rf reflective fluxes with reference results during one day (b).

4.2 BEM numerical model

Analytical solution û for Eq. (8) is used as a reference for verification of numerical solutions:

û (x) = x 2 − y 2. (26)

The boundary conditions will be in the following sections. The verification will be carried for
two cases: rectangular and non-rectangular domains. The latter is defined by a third order
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Figure 6. Comparison of q dr direct, q df diffusive and q dr reflective fluxes with reference results
at 9h, 12h and 15h.

polynomial function. The purpose is to verify the BEM model for a case relatively close to ones
that will be investigated for thermal design.

4.2.1 Rectangular domain

Firstly, the BEM is verified on a rectangular domain with the L = 0.75 and H = 1.
Thus, it corresponds to a flat facade with mapping function γ( P , y) = 0. Since the objective
of this work lies on computation of fluxes on boundaries, the following boundary conditions are
considered for the problem Eq. 8:

u = − y 2 , ∀ x ∈ Γ 1 ,

u = x 2 , ∀ x ∈ Γ 2 ,

u = L 2 − y 2 , ∀ x ∈ Γ 3 ,

u = x 2 − H 2 , ∀ x ∈ Γ 4 .

To compute analytical solution q̂ (x) for fluxes on boundaries, one has to take normal deriva-
tives of û. The analytical solution is compared with the BEM as well as the finite-difference
method (FDM). The latter is implemented using Gauss-Seidel’s method. For the numerical
solution output u, the error ε 2 is computed according to:

ε 2 ◦ u =
∣∣ ∣∣u − û

∣∣ ∣∣
2 ,

where û is reference solution. The fluxes q are computed for all boundary points. Different
values of the spatial step ∆h are chosen according to the total number of boundary elements
Ne.

Figure 7(a) presents the error according the spatial step of each method. It highlights that
BEM results has a significant lower error compared to FDM results for all spatial step. BEM
approach has an error behaviour between O( ∆h ) and O( ∆h 2 ) in contrast with FDM approach,
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which has first order behaviour. Figure 7(b) gives the computational time ratio according to the
error. Here, the ratio is computed so that the maximal value is one for the method that requires
the most computational resources. The Figure shows that with the decreasing number of spatial
step computational time is similar for both methods, however the BEM approach shows better
accuracy.
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Figure 7. Influence of spatial step ∆h on ε2 error for dimensionless q (a) and on the ratio
t CPU time and ε2 (b) ( max t CP U = 157.42 s ).

4.2.2 non-rectangular domain

Secondly, the BEM approach is verified on a non-rectangular domain with the same spacial
parameters L and H as in rectangular case. A third order polynomial function is considered for
the mapping function γ as shown in Figure 8(a):

γ ( p , y) = p 0 y ( y − p1 ) ( y − 1 ).

Mapping function’s parameters are set to p 0 = 3 and p 1 = 0.5. Boundary conditions are
considered same as in previous case except for Γ 1 due to the varying shape:

u = x 2 − y 2 , ∀ x ∈ Γ 1 ,

As in case of rectangular shape, same analyse is conducted. However, the BEM is compared
only with analytical solution from Eq. 26. Figure 8(b) shows error variation according to the
spatial step ∆h. Similarly to previous rectangular case, the BEM error increase according to
slope between first and second orders.

5 Case study: improving the thermal efficiency of a building
facade

Since the shortwave radiation model and the BEM numerical method have both been verified,
a real case study is now investigated for improving the thermal design of a building facade. First,
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Figure 8. Influence of spatial step ∆h on ε2 error for dimensionless q (b) in case of nonlinear
wall shape (a).

description of case study is given to show physical properties of house wall under consideration.
Second, the influence of the sunlit is analysed after preliminary numerical experiments. Third,
two solstice days are chosen for numerical investigations according to heat transfer objectives.
Fourth, after achieving improved wall shapes for both cases similar investigations are made for
whole year period.

5.1 Description

Case study considers a house wall under different climate conditions over the year. Sky
is considered clear, with no clouds. The wall is composed of a cement mortar with thermal
conductivity k = 1 W . m −1 . K −1 [49]. The height and width of the wall are H = 3 m
and L = 0.3 m. The absorptivity of the right boundary is set to a = 0.5 . The incident
radiation flux are computed using analytical projections of the solar angle, considering shadow
induced by front building and by the own shape of the boundary Γ 1 . For the boundary Γ 1 ,
initial coefficients are taken as h 0 = 5.82

[
W . m −2 . K −1 ] , h 1 = 3.96

[
W . m −2 . K −1 ] , λ =

0.32 , v 0 = 1
[
m . s −1 ] , y 0 = 65.33

[
m
]
.

5.2 Preliminary results: influence of the sunlit

According to our numerical experiments, facade shape can be improved from reference (flat
wall) case only for cases when wall has sunlit regions on its’ surface. In other words, optimization
depends on position of neighbour building (distance D x and height D y) and the day of the year,
which is zenith angle projection (θ ′

z) of the sun. From this preliminary analysis, optimization for
two cases of (i) heat transfer augmentation and (ii) thermal insulation problems (See Section 3)
is proposed for Nice city, France.

In case of the heat transfer augmentation problem wall surface has to be fully or partially
under sunlit, which domain is depicted with grey color on Figure 9(a). For instance in Figure 9(a)
red "star" marker represent December 21st at noon with θ

′
z = 68.88 ◦ and Dx

Dy
= 0.8. Since

red "star" is in the grey area, one can improve facade design. Contrarily black "plus" marker
represent February 1st with θ

′
z = 62.10 ◦ and Dx

Dy
= 0.3, one can not improve the thermal

facade design.
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In case of the thermal insulation problems facade has to be partially under sunlit, which
domain is illustrated with grey color on Figure 9(b). First, red "star" marker represent June
21st at noon with θ

′
z = 18.69 ◦ and Dx

Dy
= 0.27. Since red "star" is in the grey area, one can

have shape optimization. Additionally one could already deduced Figure 9 shows us variation
of the θ

′
z in Nice according to seasons of the year, which is shown by different color regions.
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Figure 9. Shape optimization domains (grey color) for heat transfer augmentation (a) and
thermal insulation (b) design objectives with respect to the ratio Dx

Dy
on zenith angle projection

θ
′
z.

5.3 Results for solstice days

The number of boundary elements is set to Ne = 256. The spatial tolerance is set to
δ = 0.25 L. As mentioned before the urban environment assumes a front building placed on
different positions with the height D y

[
m
]

and distance D x
[
m
]

of the boundary Γ 1 . For the
mapping function γ Eq. (1), a third order polynomial is considered:

γ ( p , y ) = p0 y
( y

H
− p1

) ( y

H
− 1

)
− H p 0

12 ( 2 p1 − 1 ) .

With such equation, parameter p 0 states the convexity of the shape and p 1 the roots of the
equation, i.e. it regulates the total area of the facade. As described in Section 3, area and
boundary constraints (Eq. (24) and Eq. (25)) have to be satisfied. Application of constraints
for mapping function is demonstrated in Appendix A. As a result, we have:

p 1 ∈ [ 0 , 1 ] , p̂ −
0 ( p 1 ) ≤ p 0 ≤ p̂ +

0 ( p 1 ) ,

with expression of p̂ − and p̂ + given by Eq. (32) in Appendix A. The parameters domain is
illustrated in Figure 10(a). Note that it is a connected space. After preliminary analysis using
exhaustive search method the objective function distribution is shown in Fig. 10(b) for December
21 st at noon.

The shape optimization is carried out for two dates (December 21st and June 21st). December
21st is chosen for heat transfer augmentation problem, since it aims to increase the rate of heat
transfer in winter period. Contrary, June 21st is considered for thermal insulation problem, since
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Figure 10. Domain of p variation (a) and the distribution of the objective function value in the
domain resulting from the exhaustive search (b) on December 21 st at noon.

it aims to reduce heat transfer in summer period. According to irradiation weather data filed
taken from Meteonorm [50], climatic data are provided in Table 2.

Table 2. Input parameters for case study.

Day T R[
K
] T L[

K
] v ∞[

m . s −1 ] θ z
I 0

b[
W . m −2 ] I 0

d[
W . m −2 ] A l A z

December 21st 292.15 285.06 4.0 70.30 726.64 95.73 19.70 202.07

June 21st 297.15 296.86 4.0 27.05 640.38 237.21 62.95 228.51

First analysis focuses on the heat transfer augmentation problem on December 21st. The
reference p ref and optimized p ◦ parameters are given in Table 3. The neighbor building height

Table 3. Optimization results.

Cost function value Optimized shape parameter Neighbour building

Day J ( p ref ) J ( p ◦ ) p ◦
0 p ◦

1 D x / D y

heat transfer augmentation problems

December 21st 3.17 26.39 −1.11 0.89 0.8

thermal insulation problems

June 21st 69.26 60.61 −0.70 0.0 0.27

and distance are given by proportion Dx
Dy

. The reference flat wall and the optimized one are
illustrated in Figure 11 with the corresponding short wave radiation distribution. The heat
transfer is increased by 800%. Figure 11(d) reveals that it is achieved due to concavity on the top
of the wall and convexity on the bottom, which lead to higher influence of short wave radiation.
In addition to that, Table 4 shows optimization results for December 21st at noon for the different
heat conductivity k and height H values of the facade. When thermal conductivity varies,
with height remaining constant, the optimized shape parameters p ◦

0 and p ◦
1 remain the same.

Contrariwise, when height changes and thermal conductivity is constant, the optimized shape
of the wall is modified. It confirms our preliminary analyse indicating that the optimization
procedure depends mainly on the sunlit on the facade, driven by geometrical parameters such
as height, front building distance and height.

Second analysis deals with thermal insulation problem on June 21st. Results are presented
in Table 3. The optimized shape is depicted in Figure 12 with the corresponding short wave
radiation distribution. Obtained results show benefits for energy efficiency. The heat transfer is
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Figure 11. Comparison of the reference (a) and optimized (c) wall shapes with corresponding
short wave radiation distributions (c), (d) on December 21 st at noon for the heat transfer
augmentation problem. The orange line (a,c) corresponds to the sunlit area.

Table 4. Optimized shape parameters according to height and heat conductivity values.

H
[

m
]

3 3 3 4 5

k
[

W . m −1 . K −1 ] 0.1 0.5 1 1 1

H/k
[

W . K −1 ] 30 6 3 4 5

max BiL( x⋆ ) 351.67 70.33 35.16 49.17 63.85

BiR 300 60 30.0 40 50

max ρ(x⋆) 1581.73 316.35 158.17 214.37 267.12

p ◦
0 -1.11 -1.11 -1.11 -0.98 -0.87

p ◦
1 0.89 0.89 0.89 0.77 0.66

decreased by 12%. Figure 12(c) illustrates that in case of thermal insulation problem optimized
shape shows different pattern than in heat transfer augmentation case. The concavity in the
middle of the wall creates local shading from the top angle. Thus, it leads to lower short wave
radiation influence on the wall.

Another important point regarding the improved wall shapes is that in both cases of heat
transfer augmentation and thermal insulation the total area of the wall is the same as in the
reference flat case. Thus, from engineering point of view there is no need for additional materials
compared to the reference flat wall.

5.4 Results for the whole year

Last, the investigations are performed for the whole domain of zenith angle projection θ
′
z vari-

ation in one year (in Nice city) and for different possible values of front building distance/height
ratio Dx

Dy
. Figure 13 illustrates optimized p 0 and p 1 parameters variation for the heat transfer

augmentation problems. Similarly, the results for the thermal insulation problems are shown in
Figure 14. Note that the parameters estimation was done only inside of the domain where there
is a sunlit on the facade and a possibility of significant improvement of the energy efficiency
(more that 5 %), as remarked in Section 5.2. As it can be seen from figures there is a lack
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Figure 12. Comparison of the reference (a) and optimized (c) wall shapes with corresponding
short wave radiation distributions (b), (d) on June 21 st at noon for the thermal insulation
problems. The orange line (a,c) corresponds to the sunlit area.
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Figure 13. p ◦
0 (a) and p ◦

1 (b) parameters distribution surface for heat transfer augmentation
problems.

of continuity among the optimized parameters, it could be resulted from weak extremum of
cost function values. Thus, it will be difficult to deduce parameters pattern on different time
periods. As result these diagrams can be used for engineering purposes to construct wall with
regard to climate conditions. For instance, engineer interested in decreasing of heat transfer
in summer solstice period (June 21 th) with neighbour building’s height D y = 10.5

[
m
]

and
distance D x = 3

[
m
]
. Therefore, from diagram June 21 th corresponds to θ

′
z = 18.69 ◦ with a

ratio of D x / D y = 0.35, we obtain p0 = −1.15 and p1 = 0.
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Figure 14. p ◦
0 (a) and p ◦

1 (b) parameters distribution surface for thermal insulation problems.

5.5 Further discussion

Since steady-state heat equation is considered at discrete dates throughout the year, it is
difficult to choose one shape over another for annual performance. First, lets compare results
for December 21st and June 21st at noon in the Table 3. The relative difference ∆J between
optimized and reference cost functions values is chosen as a ratio of benefit. Where ∆J is defined
as:

∆J =
∣∣ J ( p ◦ ) − J ( p ref )

J ( p ref )
∣∣ · 100%.

Optimization on December 21st illustrates that benefit ∆J = 732% relative to reference case.
Contrary on June 21st ratio of benefit ∆J = 12% from reference case. Results show higher
increase of relative benefit on December 21st than on June 21st.
Second, lets see results of ∆J for whole year. Figure 15 illustrates distribution of ∆J through-
out the year. The average value of ∆J for the heat transfer augmentation case is equal 49%.
Contrary the average value of ∆J for the thermal insulation is equal 33%. Thus one could
assume that it would be favourable to choose optimized shape from heat transfer augmentation
case. Since our approach provides an optimized shape for each time instant of the year, one
could imagine a mobile facade shape, which adapts each differential area to the changing climate
conditions. The mobile facade could smoothly change its shape during the date. For instance
Figure 16 illustrates different optimal shapes on December 21st from 9h to 18h and correspond-
ing short wave radiation distribution on Γ1. If engineer interested in choosing optimal shape
for one year, there is a need to consider the transient heat transfer. The transient phenomena
are important and authors future research line aims at considering the dynamic phenomena.
However, it faces two main issues that are still unsolved.
A first difficulty arises in the definition of the objective (or cost) function. Several indicators
have been proposed in the literature as reviewed in [51]. Such proposals are based on tempera-
ture difference between inside and outside conditions or on the time integrated heat flux on the
inside surface. However, the sense of the thermal flux is completely disregarded but still crucial
in transient state. For instance, during a winter day with important incident radiation, an in-
crease of heat transfer is required to provide free heating source to the inside energy balance and
occupant thermal comfort. While during the night, the heat transfer through the outside should
be minimised. A cost function based on the time integrated heat flux provides an indication of
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Figure 15. ∆ J distribution surface for heat transfer augmentation (a) and thermal insulation
problems (b).

the amount of energy leaked through the wall but does not state if this leak is averagely good
or bad for the considered period. The phase offset between the outside temperature and the
instantaneous heat flux transmitted to the inside zone, is not well integrated in those proposed
indicators. In brief, there is no indicator defined for transient and alternative situations of
cooling and heating demands. It requires a careful research on this topic before carrying shape
optimization in transient state.
Secondly, computational tools combined with building simulation programs have been used in
the literature to optimize the energy efficiency of the architectural solutions. However, as noted
in Fig.3 of the review from [52], most of the simulations carry parametric designs because com-
putational designs approaches are not adapted to study advanced facade models (through shape
and topology optimization of enclosures). Some works have been done considering dynamic
enclosures, i.e. with time varying shape [53, 54] or material properties [55]. However, the con-
clusion of the authors is similar: the actual building simulation tools are limited to design such
building envelopes. For instance, in [54], the authors investigate the design of a dynamic external
shade based on 2D origami. To carry their investigation, authors cannot model such elements
in current building simulations tools so they modify the external schedule solar transmittance
on the building enclosure. In [53], a simple steady state heat transfer model. Another review
of optimized architectural computational designs is realized in [56]. Most of the methods using
optimization focus on non-geometrical parameters such as aggregated thermal parameters of
steady state models (as the wall U-value). When dealing with geometric parameters, the size of
each layer or the orientation are the design parameters. Out of the 50 references cited in [56],
only five carry shape optimization of the whole building enclosure and three for one face of the
enclosure (facade or roof). However, in all those approaches, lumped most of them steady state
thermal model are considered. Thus, the last drawback is mainly due the modeling of complex
transient physical phenomena and its associated computational burden. It requires an efficient
numerical strategy to compute fast and accurately the transient two-dimension heat transfer for
any shape enclosure.
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Figure 16. Illustration of the different shapes on December 21st from 9h to 18h.

6 Conclusion
This article investigates wall shape improvement for energy efficiency involving nonuniform

incident radiation, which depends on the wall surface shape and orientation. Addition to that
the incident short-wave radiation flux is varying according to the height of the facade, due to
shadow induce by the urban environment and by the own shape of the wall.

First, the short wave radiation model is defined to predict the magnitude of diffusive, direct
and reflective flux according to the height of the facade. Then, the model is verified using
a reference solution obtained by pixel counting technique. Calculated results shows a very
high consistency with the pixel counting estimations. Second, since the wall shape is in fact a
complex geometry domain (not flat), the Boundary Element Method is used for predicting the
physical phenomena of steady heat transfer in the two-dimensional wall. Then, the BEM model
is verified with analytical solution and compared with the finite difference method. Numerical
results highlight that the Boundary Element approach is slightly faster and more accurate than
standard finite-difference method, since it only requires discretization of the boundary rather
than the entire domain.

Then, a real case study is considered for improvement of the energy efficiency of a building
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wall. Case study considers a house wall in the south east of France, where the radiation has a
high magnitude. Two heat transfer design objectives are defined: (i) heat transfer augmentation
and (ii) thermal insulation. To achieve heat transfer design objectives the wall surface must be
sufficiently covered by shadow and sunlit. Thus the domain of improvement values of zenith
angle projection and neighbor building distance/height ratio is calculated. Where non shaded
area is considered remaining flat wall case scenario. Estimated results meet both goals of heat
transfer design objectives without addition of materials. They show that energy efficiency can
be improved by 8 times in winter and 12% in summer respectively.

At last, the shape of wall is analysed throughout one year with different height and distance
of neighbour buildings. As a result, a diagram of the shape parameters is provided according
to day (zenith angle) and position (Dx and Dy) of the neighbour facade. Such tool can be used
for engineers to improve the energy efficiency of building facade in the defined area.

Future works should focus on extending the methodology for transient heat and mass transfer
taking into account their impact through latent effects. In terms of shape optimization of
building enclosures there is a need of investigation of different approaches for wall domain
parametrization. Also it will be benefitial to consider numerical modeling in 3D, since it is
necessary in many situations because it provides a more accurate representation of real-world
phenomena and allows for a more comprehensive analysis compared to 2D modeling. When
studying boundary effects, especially in systems with complex boundaries, 3D modeling provides
a more accurate representation. For instance, heat transfer in a room with irregularly shaped
walls would be better modeled in 3D to capture the effects of all wall surfaces.
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A Constraints application to the cubic parametrization
Lets consider following third order polynomial:

γ ( p , y) = p 0 y ( y

H
− p1 ) ( y

H
− 1 ) + S corr ( p ) ,

where first term determines the left wall’s shape, which is cubic function. A second term is a
area corrector S corr, which is added to satisfy the first constraint Eq. 24.

The cubic function has two parameters p = ( p 0 , p 1 ), which shapes wall’s geometry. It
holds zeros at y = { 0 , H }. First parameter p 0 describes convexity and concavity of the wall.
The function holds third zero proportional to p 1 ∈ [ 0 , 1 ] .

Area constraint

The first constraint Eq. 24 is satisfied when:∫
Γ1

p 0 y ( y

H
− p1 ) ( y

H
− 1 ) dΓ +

∫
Γ1

S corr ( p ) dΓ ≥ 0.

which means:

H S corr ( p ) ≥ −
∫

Γ1
p 0 y ( y

H
− p1 ) ( y

H
− 1 ) dΓ .

After computation of integrals:

S corr ( p ) ≤ H p 0
12 ( 2 p1 − 1 ) .

Boundary constraint

The second constraint Eq. 25 is satisfied when:

p 0 y ( y

H
− p1 ) ( y

H
− 1 ) − H p 0

12 ( 2 p1 − 1 ) ≤ L − δ,

or

p 0 ≤ L − δ(
y ( y

H − p1 ) ( y
H − 1 ) − H

12 ( 2 p1 − 1 )
) . (27)

Lets denote denominator as:

p̂ 0 ( y , p 1) =
(

y ( y

H
− p1 ) ( y

H
− 1 ) − H

12 ( 2 p1 − 1 )
)

.

Inequality Eq. 27 needs to be considered for two cases, when p 0 ≥ 0 and p 0 ≤ 0.

First case for p 0 ≥ 0:

For this case Eq. 27 is satisfied when:

p 0 ≤ L − δ

min
y ∈ [ 0 , H ]

p̂ 0 ( y , p 1) . (28)

To find extremum values of the denominator, one needs to consider zeros of its derivative.
Thus:

arg min
y ∈ [ 0 , H ]

p̂ 0 ( y , p 1) = ŷ + ( p 1) = H

3 (1 + p 1 −
√

p 2
1 − p 1 + 1).

Eq. 28 can be rewritten as:

p 0 ≤ p̂ +
0 ( p 1 ) where p̂ +

0 ( p 1 ) = L − δ

p̂ 0 ( ŷ + ( p 1 ) , p 1) . (29)
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Second case for p 0 ≤ 0:

For this case Eq. 27 is satisfied when:

p 0 ≤ L − δ

max
y ∈ [ 0 , H ]

p̂ 0 ( y , p 1) . (30)

Following same procedure as in the first case to find the extremum values:

arg max
y ∈ [ 0 , H ]

p̂ 0 ( y , p 1) = ŷ − ( p 1) = H

3 (1 + p 1 +
√

p 2
1 − p 1 + 1).

Eq. 30 can be rewritten as:

p 0 ≥ p̂ −
0 ( p 1 ) where p̂ −

0 ( p 1 ) = L − δ

p̂ 0 ( ŷ − ( p 1 ) , p 1) . (31)

Generalizing the equations 29 and 31:

p̂ −
0 ( p 1 ) ≤ p 0 ≤ p̂ +

0 ( p 1 ). (32)
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