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Abstract

Contact matrices are a commonly adopted data representation, used to develop compart-

mental models for epidemic spreading, accounting for the contact heterogeneities across

age groups. Their estimation, however, is generally time and effort consuming and model-

driven strategies to quantify the contacts are often needed. In this article we focus on house-

hold contact matrices, describing the contacts among the members of a family and develop

a parametric model to describe them. This model combines demographic and easily quanti-

fiable survey-based data and is tested on high resolution proximity data collected in two

sites in South Africa. Given its simplicity and interpretability, we expect our method to be

easily applied to other contexts as well and we identify relevant questions that need to be

addressed during the data collection procedure.

1 Introduction

Infectious diseases such as COVID-19 and influenza are transmitted through close proximity

contacts [1] and the modeling thereof is a problem of great interest for public health. The

design of effective non-pharmaceutical interventions to mitigate the epidemic spreading

often relies on models capable to predict the future or to reconstruct the past of the epidem-

ic’s state, see for instance [2–6]. Households represent the minimal unit of disease transmis-

sion and play a fundamental role in determining the evolution of a viral spread [7].

Empirical evidences suggest that, especially at the household level, the commonly adopted

homogeneous mixing hypothesis is insufficient to faithfully explain contagion [8–10]. On

the contrary, it is necessary to account for age-dependent contact matrices that represent the

diversities—across different age classes—in the frequency of contacts as well as in the trans-

mission parameters [11–15].
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Contact matrices are generally estimated through surveys in which the participants have to

self-report their contacts in terms of number, duration and (presumed) age of the interacting

individual [15–18]. Known limitations of this technique include under-reporting of contacts

and overestimation of their durations [19, 20]. Determining household contact matrices
(HCM) is resource-intensive, hardly scalable and technically challenging, especially in low-

resource sub-Saharan African countries with high infectious diseases burden and where the

data collection is still very limited [21–25]. Consequently, a growing attention is devoted to

theoretically model HCM. Some of the most popular models to estimate contact matrices rely

on the demographic properties of the population under study [17, 26], eventually taking the

setting (e.g. school, work, home) in which the interactions take place into account. These mod-

els assume that the number of contacts between age groups approximately scales as the product

of the two population sizes involved, i.e. the number of all possible pairs. In [16] the authors

further considered how to make estimates of contact matrices available in countries where the

mixing patterns were not directly estimated. More recently [27], introduced generalized con-

tact matrices in which socio-economic factors are included as well. The authors propose a sim-

ple model inducing assortative mixing that is pervasively observed in real-world data.

Here we consider HCM obtained from proximity sensors, encoding the sequence of con-

tacts among a group of selected participants with high resolution in space and time. The prox-

imity sensors are developed by the SocioPatterns collaboration (sociopatterns.org, [28])

and allow us to study and model human dynamics [21, 29–33] and directly estimate HCM by

aggregating individuals’ contacts across time. We analyze the data collected during the

PHIRST study [34, 35], a 3-year long experiment conducted in South Africa, designed to pro-

vide reliable data-driven guidance to limit viral transmission [34, 36–42]. We show that,

although demographic properties are determinant in shaping the HCM, they are insufficient

to accurately capture the contacts structure and further age-dependent parameters must be

introduced to model the higher sociability typically observed among young people [43]. Our

parametric model can be calibrated with surveys but, unlike the direct estimation of the full

contact matrix, they introduce several advantages. Firstly one only needs to report one’s age

and not the age of the other interacting individuals, making the estimation process more reli-

able by design. Secondly, the number of parameters to be estimated scales linearly with the

number of age bins (and not quadratically) and the binning itself can be chosen a posteriori.

Our method can thus be seen as a reliable compromise between a parameter-free demographic

model and a direct estimation of the contact matrix from surveys. Testing our results on the

high-resolution measurements, we show that one can approximate the HCM with a cosine

similarity equal to 0.96 and 0.98 in the two sites.

2 Data descriptive statistics

We now provide an overview of the data collection strategy, as well as some basic descriptive

statistics.

2.1 Data collection

The PHIRST study was a prospective household cohort study described previously in [34, 38].

We enrolled a cohort of households at two sites in South Africa (urban: Klerksdorp, North

West and rural: Agincourt, Mpumalanga) and followed households up for 8 to 10 months.

Recruitment occurred from 14 November 2017 through 13 December 2017. Wearable proxim-

ity sensors were deployed for 10 to 14 days to all consenting household members to measure

high-resolution household contact patterns during three periods of the year. Sensors were

worn in PVC pouches on the chest or on a lanyard. Participants were requested to wear the
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sensor on in the morning, keep it on the entire day (even when leaving the home), take it off at

night and store it separately from other household member’s sensors. Not all participants felt

comfortable wearing sensors outside of the home and instead took sensors off when not at

home. Participants were requested to complete a diary to indicate the times the sensor was put

on and taken off during the day. Twice a week, the staff visited each household and reminded

participants to wear the sensors, monitored if all sensors were still working, and replaced bat-

teries where sensors had stopped working. After at least a ten-day deployment, sensors were

collected at the next routine household visit of study staff to the household and taken back to

the study office where batteries were removed and data was downloaded from the sensors.

After the data cleaning procedure, detailed in Section S2 in S1 Appendix, our dataset is com-

posed of 307 individuals subdivided into 60 households. For consistency, we choose to con-

sider only households for which the data quality was sufficiently high in all three deployments.

The exclusion can be due to the displacement of some individuals or to technical problems

with specific sensors. As discussed in the supplementary material, the cleaned dataset is repre-

sentative of the original both in terms of size and age distributions. Fig 1 summarizes the data

collection schedule.

2.2 Contact matrices

In this section we describe the properties of the contact matrices as measured by the proximity

sensors, after having provided some formal definitions.

Definitions. Contact matrices incorporate the contacts subdivided by age groups. They

are square and symmetric, of size nage, the number of age bins considered. Here the age groups

Fig 1. Data collection schedule for the 60 selected households. Each row corresponds to a household with the rural site on the left and the urban

site on the right. Time is displayed on the x axis and dates are reported in the day/month format. Vertical gray lines correspond to the beginning

and end of each deployment. A black dot indicates that at least one contact was measured, while a white one that no contact was recorded on that

day.

https://doi.org/10.1371/journal.pone.0296810.g001
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are divided into [0–4, 5–9, 10–19, 20–29, 30–39, 40–49, 50+] years: the finer grain of younger

ages is because of the large proportion of population in those age brackets, shown in S1 Fig.

Each HCM refers to a single household and a specific deployment. We thus consider a total of

180 HCM. With the notation C, S we refer to the contact matrices storing the counts/time of

interaction between pairs of age groups respectively, or, more precisely

Cab ¼ number of contacts per day between a and b;

Sab ¼ total time in contact per day between a and b:

These matrices should be compared with their expectation, i.e. with the contact matrix

obtained assuming a given household line-up and that people interact at random. This is given

by [26]:

Tab ¼
FaFb � dab
r � 1

; ð1Þ

where Fa is the number of people in the age group a in a given HCM; ρ = ∑aFa is the total

number of people and δab is the Kroeneker delta (equal to 1 is a = b and equal to 0 otherwise).

For a set X of HCM, we define CðXÞ; SðXÞ;TðXÞ as the average of the respective matrix over all X
and RðXÞC as

RðXÞC

� �

ab
¼

gðXÞ
CðXÞab

TðXÞab

if TðXÞab 6¼ 0

1 else

8
><

>:

where gðXÞ is a constant to impose that the average of RðXÞC equals one. In an analogous way, we

define RðXÞS replacing C with S. In words, the entries of RðXÞ exceed one for the pairs that inter-

act more than expected and are below one otherwise. If a pair cannot have interactions, we

conventionally set RðXÞ ¼ 1. To simplify the notation, in the remainder we drop the index X .

Properties of the measured matrices. Given that we considered the same set of house-

holds across the three deployments, changes in the HCM structure can mainly be amenable to

a seasonality effect. Table 1 precisely shows the cosine similarity between RC (left) and RS

(right) for X 1;X 2;X 3 being the set of all households in the three deployments. The table

reports high similarity values for RC, suggesting that the structure of the contact matrix does

not vary a lot across the three deployments. Smaller values are instead obtained by RS implying

that the seasonality effect majorly involves the duration (rather than the structure) of the con-

tacts. This observation agrees with the distribution of the individual contact durations,

obtained from approximately 105 proximity measurements shown in Fig 2b which follows a

broad distribution, as expected [44]. This distribution broadens in the third deployment when

south-African winter is approaching. More quantitatively, we computed the 99th percentile for

the three distributions that is approximately 12 minutes in the first deployment, 27 in the sec-

ond and 60 in the last. Fig 2a shows instead the matrix log(RC) across the three deployments,

evidencing that younger age groups tend to interact more, regardless of the age group they are

Table 1. Contact matrix similarity across the deployments. Cosine similarity between the measured contact matrices RC (left) and RS (right) in the three deployments.

RC First Second Third RS First Second Third

First 1 0.94 0.89 First 1 0.85 0.87

Second 0.94 1 0.94 Second 0.85 1 0.87

Third 0.89 0.94 1 Third 0.87 0.87 1

https://doi.org/10.1371/journal.pone.0296810.t001
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interacting with. Based on these observations, we attempt to model the matrix C whose behav-

ior is more predictable than S. Given the result of Table 1, the deployments are treated as three

independent, equally reliable measurements of the HCMs.

3 Main result

We introduce two parametric models to approximate the HCM that combine three age-depen-

dent parameters: the number of individuals per age group, the in-house hourly presence and

an intensity of activity factor. All the parameters involved in the model only depend on a single

age class and not on the interactions between pairs of age classes, as it is commonly required in

self-reporting surveys. This allows us to decrease the number of parameters to be estimated

from order of n2
age to nage.

We here propose some example of questions to estimate the in-house hourly presence and

the intensity of activity factor.

• Howmuch time do you typically spend at home in each hour of the day?

• Howmuch of this time do you typically spend in isolation?

• Howmany face-to-face interactions do you have per day?

As we will see in the remainder, these questions permit to calibrate the parameters of our

model, allowing one to obtain a more faithful representation of contact matrices than the one

Fig 2. Properties of the measured data. a: normalized contact matrix across the three deployments. The color code refers to the values of

the logarithm of Rcounts whose entries are proportional to the ratio between the number of contacts and the number of possible interacting

pairs, setting the mean of Rcounts to 1. The two axis correspond to the age groups and the number reported indicates the highest age of each

group. b: contact duration distribution expressed as number of seconds of interaction across the three deployments in logarithmic scale.

https://doi.org/10.1371/journal.pone.0296810.g002
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obtained from purely demographic models. In Practical implications we describe some practi-

cal implications of our results and the relation to the questions listed above.

3.1 A first order model for household interaction

In this section, we define a parametric model to approximate the contact matrix C, as mea-

sured by proximity sensors. All matrices here refer to sets of HCM but we drop the index X to

keep a light notation. Let T be the matrix defined in Eq (1). We define ~CT , an approximation

of C, as

~CT ¼ T � ðuuTÞ; ð2Þ

where u 2 Rnage is a set of parameters that represent the activity of each age group and ‘�’

denotes the entry-wise Hadamard product. The entries of this matrix are ð~CTÞab ¼ Tabuaub

and a large number of interactions are expected when many members are present (large values

of Tab) and when they correspond to highly active age groups, such as [0–4, 5–9], as per Fig 2a.

Model validation. We deploy the following steps to test our model, as detailed and moti-

vated in Section S2 in S1 Appendix. We independently randomly sample 2500 sets X of 8

HCM without replacement out of the 180 available. For each sampled X we compute the vec-

tor u that best approximates C, minimizing a modified Canberra distance [45] between the

measured and the estimated matrix, as described in Section S2 in S1 Appendix. The entries of

this vector contain the activity of each age group for the set X . Fig 3a displays the histogram of

the cosine similarity between the approximation ~CT and the measured matrix C and evidences

a good agreement between the two matrices with a cosine similarity equal to 0.9 or larger for

53% of the data. This similarity is of the same order of the one observed across the three

deployments and reported in Table 1. Fig 3 further shows the same histogram for T being used

as an estimator of C. This purely demographic model is much less accurate and reaches a

cosine similarity greater than 0.9 for only 7% of the data and 50% of the data have a similarity

greater or equal to 0.75.

Fig 3. Test of the model for household interaction. a: histogram of the cosine similarity between C and its estimators. The gray curve corresponds to

the histogram over the 2500 realization of X using T as an estimator of C. The orange curve is obtained with the first order model of Eq (2), while the

blue curve corresponds to the second order model of Section A second order model for household interaction. b, c: correlation between the fluctuations

of the activity δ(u), the group average degree δ(η) and the presence of a major occupation outside the house δ(y). The quantities δa,c are defined in Eq (3).

The Pearson correlation coefficient r is reported in text.

https://doi.org/10.1371/journal.pone.0296810.g003
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Interpretation of the parameters. Besides the goodness of the approximation itself, our

main interest is to assess whether the vector u can be estimated from easily observable quanti-

ties. To do so, for each sampled X we further compute the vector η 2 Rnage . Its element ηa is

the number of daily interactions per individual, averaged over all individuals in a given age

group a. Intuitively, u and η should correlate: a higher activity has to be observed when people

are more active. Note that η aggregates all individual’s contacts and is oblivious of the age

group binning. We divide the sets X according to their activity vector representation u into

k = 4 groups with a hierarchical clustering algorithm. For each x 2 {u, η}, we then write the

value corresponding to age a and class c as

xa;c ¼ �xa þ d
ðxÞ
a;c ; ð3Þ

where �xa is the average over the 4 groups, and d
ðxÞ
a;p are the fluctuations. Fig 3c shows the scatter

plot of the fluctuations of δ(u) and δ(η), evidencing a strong correlation with a highly significant

(p-value less than 10−3) Pearson coefficient of 0.85.

This analysis suggests that the measured contact matrix can be estimated with a high preci-

sion from aggregated (hence more easily collectable) data being the average number of con-

tacts per individual in the same age group. We now introduce a further parameter y that is

even more easily observable than η and has a weaker but still strong correlation with u. Specifi-

cally, the entries of y 2 ½0; 1�nage indicate the fraction of people for each age group having an

occupation outside the house requiring at least three hours a day. This quantity is expected to

be negatively correlated with u, since lower activities should be observed when people spend

more time outside the household. The correlation between the fluctuations of u and y is

reported in Fig 3b, reaching a significant Pearson coefficient of −0.65. We underline that y is a

very aggregated quantity that does not directly involve contacts.

We now discuss a refined model with respect to Eq (2) that keeps simultaneously into

account the activity and the time spent at home. We show that this model produces better esti-

mates of the contact matrices and can be conveniently used to predict the HCM originally

excluded from our study.

3.2 A second order model for household interaction

In Eq (1) we introduced the matrix T that encodes a purely demographic interaction model in

which a higher contact rate is entirely explained by a higher number of interacting individuals.

In practice, however, contacts can happen only when people are in the same physical space. To

model this effect, we propose an extension of T, that we denote with P. Let vi 2 {0, 1}24 be a

binary-value presence vector of i, denoting the presence in the house for each hour of the day.

The definition of P then reads

Pab ¼
1

r � 1

X

i2Va

X

j2Vbnfig

vT
i vj

24
ð4Þ

where Va is the set of all individuals in the age group a. Note that if vi,t = 1 for all i and all t, the

definition of P corresponds to the one of T. The scalar product between vTi vj quantifies the

time in which i and j had simultaneously contacts with members inside the household. If it

equals zero, then there is no chance that i and j got in contact at all. In other words, P predicts

the contact rate assuming people get in proximity at random, but keeping into account that

people are not always and simultaneously inside the house. We generalize the model of Eq (2)

replacing T with P and obtaining ~CP. Practically, the proximity sensors do not provide us with

the information of whether or not an individual is at home in a given moment, but only if it is
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interacting with another household member. For each individual we then construct a binary

indicator on whether or not he/she interacted with someone in a particular hour of the day

during the deployment and use this as a proxy for v.

Model testing. The blue histogram of Fig 3a shows the cosine similarity between the

actual and estimated contact matrices obtained using P. A clear gain in accuracy is achieved,

obtaining a cosine similarity is greater than 0.9 for 75% of the data.

We finally test the goodness of our model for the two sites separately on all (household-
deployment) valid pairs, hence also those that were initially excluded because of quality issues

in some (but not all) deployments. We use as u its average realization over the 2500 samples

and compare the result of the predicted matrix T; ~CT and ~CP with the measured one (Fig 4),

considering the two sites separately. The cosine similarity scores reported in Table 2 provide

and striking evidence of how contact matrices are approximated with high precision using few

age-dependent parameters.

3.3 Practical implications

Let us briefly discuss some implications of our results and suggest how these could be trans-

lated into practical recommendations for data collection. Survey based estimations are, to-

date, the most common and reliable way to estimate contact matrices. This method, however,

has some notable limitations—that we discussed in Introduction—and would benefit from the

design of simpler questionnaires. We highlight that one can accurately estimate HCM from

Fig 4. Measured vs estimated normalized contact matrices in the two sites. The first row, in blue, corresponds to Agincourt, the rural site, while the

second, in purple, to Klerksdorp, the urban site. The first column shows the matrix C aggregated over the three deployments, as measured by the

proximity sensors. The second column is the corresponding random encounter matrix T. The third and the fourth are the estimates obtained by our

first and second order models, respectively. All matrices are normalized by the empirical average of their entries.

https://doi.org/10.1371/journal.pone.0296810.g004

Table 2. Goodness of the contact matrix estimation for different methods. The score is reported in terms of cosine

similarity and the naming is consistent with Fig 4 which this table refers to.

T ~CT
~CP

Agincourt 0.83 0.95 0.96

Klerksdorp 0.89 0.95 0.98

https://doi.org/10.1371/journal.pone.0296810.t002
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self-reported quantities that are, by design, more easily and reliably estimated. Our model

combines the probability that two individuals meet with an age-dependent activity driven

model [46].

We suggested some examples of questions that can be formulated to calibrate our model.

For instance, the question “How much time do you typically spend at home in each hour of the
day?”, can be used to quantify the vectors v of Eq (4), needed to obtain P. The similarity of

these vectors gives already a good estimation of the probability of interaction of the household

members. Even if our experiment focused only on the household contacts, we envision that

this approach can be directly extended to other settings, designing context-related contact

matrices as done in [26]. Moreover, one can think of providing a finer estimation of v consid-

ering a multi-day average, so that vt 2 [0, 1] is a probability to be at home (or, more generally,

in a given place) at time t. The question “How much of this time do you typically spend in isola-
tion?” then can allow one to re-weight the entries vt to account for an actual probability of

encounter. The last question “How many face-to-face interactions you have per day?” is an

example of how one can quantify an individuals’ activity rate. Given these estimates, the age

parameters are obtained simply aggregating them according to the relevant age-group to

obtain the activity vector u.

4 Conclusion

Our result brings an empirical evidence that most of the structure of contact matrices mea-

sured with high-resolution proximity sensors can be reliably captured with a simple statistical

model combining behavioral parameters with demographic ones. While it comes as no sur-

prise that a generalization of the matrix T would lead to better estimates, the most important

aspects of our results are listed as follows:

• Simple, environment-independent models can accurately estimate HCM. The high quality

and size of the PHIRST dataset gave us great insights into the problem of HCM estimation.

Backed by these empirical data, not only can we say that the proposed parametric model gen-

erally improves the estimation accuracy, but we can numerically quantify it, observing very

high level of agreement with the HCM obtained with the costly high resolution measurements

• Our proposed models are highly interpretable. We expect its parameters to be easily esti-

mated with surveys, addressing questions such as those listed in the Introduction. We expect

this to be one of the significant outcomes of our research as we identified some practical

questions to calibrate our model, bypassing proximity sensors.

• All parameters are aggregated by age group and involve the behavior of single individuals

and do not depend on the age class of other members. This aspect naturally reduces the

number of parameters of the model, making the estimation process simpler and addresses

the important requirement for surveys that the questions asked should have a simple answer.

The questions suggested in the Introduction constitute an example of possible ways to esti-

mate the activity parameters and are limited to the quantities that turned out to provide a sig-

nificant explanation of HCM in our experiment setting. Other metadata (such as the number

of rooms in the house, the wealth status or the distinction between the rural and the urban

site) could potentially be informative to explain the HCM structure, even if they were not in

our analysis.

The main limitations of our methodology are related to the quality and nature of the avail-

able data. The first concern is related to the time-dependent data collection component which

we essentially neglected here. When dealing with contact matrices, it is customary to
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distinguish between weekdays and weekends. In our measurements, the first and third waves

of measurements in households were made asynchronously. After the cleaning procedure, it

emerged that, as a consequence of the adoption of this choice for the scheduling of data collec-

tion in the field, weekdays and weekends are not evenly distributed among households and

changes in the measured HCM are potentially associated with this effect. To cope with this

problem, when dealing with asynchronous measurements it would be preferable to consider

the same days of the week for all households. A closely related concern is that we have consid-

ered all three deployments as equal, even though they correspond to rather different periods in

the year. The data sparsity and quality did not allow us to detect any significant change in the

seasonality of the contact patterns, except for the duration of contact distribution shown in Fig

2b. It is nonetheless a very reasonable assumption that the contact behavior changes during

the year. Our suggestion to investigate individuals’ behavioral habits can easily overcome this

problem, designing time-dependent expected matrices that could adapt even to diverse scenar-

ios such as, during a quarantine.

In conclusion, our study proposes a parametric model to estimate contact matrices with

high accuracy. It improves over the purely demographic models in terms of accuracy and over

the purely survey-based approaches in terms of simplicity of the data collection. Given its sim-

plicity and interpretability, we envision that our framework can be adopted to estimate contact

matrices beyond the household setting. As a practical application, our results can impact the

strategy to design the surveys currently adopted to quantify social contacts to mitigate the

Covid19 and similar epidemics [47, 48].

Supporting information

S1 Fig. Raw data characteristics. a: data quality. On the x-axis we plot households, while on

the y-axis the deployments. For each (household-deployment) we assign a color code: black

indicates that the household did not participate; red that all household’s sensors had data qual-

ity issues and did not provide valid measurements; blue that there are less than two days of

measurement; yellow that a non circadian activity is observed; green none of the above. b and

d: age distribution in Agincourt and Klerksdorp, respectively. The green bars are referred to

the whole data-set, while the purple one only refers to the 60 households with valid measure-

ments in all three deployments (see a). Blue dots are obtained by multiplying the height of the

green bars for the fraction of the included households, that is the expected bar height, given

the cleaned dataset size. c and e: household size distribution. Legends and colors follow the

description of b and d.

(TIFF)

S1 Appendix. Supplementary details on the data collection and cleaning processes.

(PDF)

S1 File. Inclusivity in global research.

(DOCX)

Author Contributions

Conceptualization: Lorenzo Dall’Amico, Cheryl Cohen, Stefano Tempia, Ciro Cattuto.

Data curation: Jackie Kleynhans, Laetitia Gauvin, Michele Tizzoni, Laura Ozella, Mvuyo

Makhasi, Nicole Wolter, Brigitte Language, Ryan G. Wagner, Ciro Cattuto.

Formal analysis: Lorenzo Dall’Amico, Laetitia Gauvin, Michele Tizzoni.

PLOS ONE Estimating household contact matrices

PLOS ONE | https://doi.org/10.1371/journal.pone.0296810 March 14, 2024 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296810.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296810.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296810.s003
https://doi.org/10.1371/journal.pone.0296810


Funding acquisition: Cheryl Cohen, Ciro Cattuto.

Investigation: Lorenzo Dall’Amico.

Methodology: Lorenzo Dall’Amico.

Project administration: Cheryl Cohen, Stefano Tempia, Ciro Cattuto.

Software: Lorenzo Dall’Amico, Laetitia Gauvin, Michele Tizzoni.

Supervision: Ciro Cattuto.

Validation: Laetitia Gauvin, Michele Tizzoni.

Visualization: Lorenzo Dall’Amico.

Writing – original draft: Lorenzo Dall’Amico, Jackie Kleynhans.

Writing – review & editing: Jackie Kleynhans, Laetitia Gauvin, Michele Tizzoni, Laura Ozella,

Mvuyo Makhasi, Nicole Wolter, Brigitte Language, Ryan G. Wagner, Cheryl Cohen, Ste-

fano Tempia, Ciro Cattuto.

References
1. Wallinga J, Edmunds WJ, Kretzschmar M. Perspective: human contact patterns and the spread of air-

borne infectious diseases. TRENDS in Microbiology. 1999; 7(9):372–377. https://doi.org/10.1016/

S0966-842X(99)01546-2 PMID: 10470046

2. Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford university press;

1992.

3. Meyers L. Contact network epidemiology: Bond percolation applied to infectious disease prediction and

control. Bulletin of the American Mathematical Society. 2007; 44(1):63–86. https://doi.org/10.1090/

S0273-0979-06-01148-7

4. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of corona-

virus disease 2019: a model-based analysis. The Lancet infectious diseases. 2020; 20(6):669–677.

https://doi.org/10.1016/S1473-3099(20)30243-7 PMID: 32240634

5. Walker PG, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, et al. The impact of COVID-19

and strategies for mitigation and suppression in low-and middle-income countries. Science. 2020; 369

(6502):413–422. https://doi.org/10.1126/science.abc0035 PMID: 32532802

6. Sun K, Wang W, Gao L, Wang Y, Luo K, Ren L, et al. Transmission heterogeneities, kinetics, and con-

trollability of SARS-CoV-2. Science. 2021; 371(6526):eabe2424. https://doi.org/10.1126/science.

abe2424 PMID: 33234698

7. House T, Keeling M. Household structure and infectious disease transmission. Epidemiology & Infec-

tion. 2009; 137(5):654–661. https://doi.org/10.1017/S0950268808001416 PMID: 18840319

8. Goeyvaerts N, Santermans E, Potter G, Torneri A, Van Kerckhove K, Willem L, et al. Household members

do not contact each other at random: implications for infectious disease modelling. Proceedings of the

Royal Society B. 2018; 285(1893):20182201. https://doi.org/10.1098/rspb.2018.2201 PMID: 30963910

9. McCarthy Z, Xiao Y, Scarabel F, Tang B, Bragazzi NL, Nah K, et al. Quantifying the shift in social con-

tact patterns in response to non-pharmaceutical interventions. Journal of Mathematics in Industry.

2020; 10(1):1–25. https://doi.org/10.1186/s13362-020-00096-y PMID: 33282625

10. Cencetti G, Santin G, Longa A, Pigani E, Barrat A, Cattuto C, et al. Digital proximity tracing on empirical

contact networks for pandemic control. Nature communications. 2021; 12(1):1–12. https://doi.org/10.

1038/s41467-021-21809-w PMID: 33712583

11. Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmis-

sion parameters for respiratory-spread infectious agents. American journal of epidemiology. 2006; 164

(10):936–944. https://doi.org/10.1093/aje/kwj317 PMID: 16968863

12. Hilton J, Keeling MJ. Incorporating household structure and demography into models of endemic dis-

ease. Journal of the Royal Society Interface. 2019; 16(157):20190317. https://doi.org/10.1098/rsif.

2019.0317 PMID: 31387486

13. Li W, Zhang B, Lu J, Liu S, Chang Z, Peng C, et al. Characteristics of household transmission of

COVID-19. Clinical Infectious Diseases. 2020; 71(8):1943–1946. https://doi.org/10.1093/cid/ciaa450

PMID: 32301964

PLOS ONE Estimating household contact matrices

PLOS ONE | https://doi.org/10.1371/journal.pone.0296810 March 14, 2024 11 / 13

https://doi.org/10.1016/S0966-842X(99)01546-2
https://doi.org/10.1016/S0966-842X(99)01546-2
http://www.ncbi.nlm.nih.gov/pubmed/10470046
https://doi.org/10.1090/S0273-0979-06-01148-7
https://doi.org/10.1090/S0273-0979-06-01148-7
https://doi.org/10.1016/S1473-3099(20)30243-7
http://www.ncbi.nlm.nih.gov/pubmed/32240634
https://doi.org/10.1126/science.abc0035
http://www.ncbi.nlm.nih.gov/pubmed/32532802
https://doi.org/10.1126/science.abe2424
https://doi.org/10.1126/science.abe2424
http://www.ncbi.nlm.nih.gov/pubmed/33234698
https://doi.org/10.1017/S0950268808001416
http://www.ncbi.nlm.nih.gov/pubmed/18840319
https://doi.org/10.1098/rspb.2018.2201
http://www.ncbi.nlm.nih.gov/pubmed/30963910
https://doi.org/10.1186/s13362-020-00096-y
http://www.ncbi.nlm.nih.gov/pubmed/33282625
https://doi.org/10.1038/s41467-021-21809-w
https://doi.org/10.1038/s41467-021-21809-w
http://www.ncbi.nlm.nih.gov/pubmed/33712583
https://doi.org/10.1093/aje/kwj317
http://www.ncbi.nlm.nih.gov/pubmed/16968863
https://doi.org/10.1098/rsif.2019.0317
https://doi.org/10.1098/rsif.2019.0317
http://www.ncbi.nlm.nih.gov/pubmed/31387486
https://doi.org/10.1093/cid/ciaa450
http://www.ncbi.nlm.nih.gov/pubmed/32301964
https://doi.org/10.1371/journal.pone.0296810


14. Edmunds WJ, O’callaghan C, Nokes D. Who mixes with whom? A method to determine the contact pat-

terns of adults that may lead to the spread of airborne infections. Proceedings of the Royal Society of Lon-

don Series B: Biological Sciences. 1997; 264(1384):949–957. https://doi.org/10.1098/rspb.1997.0131

15. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing pat-

terns relevant to the spread of infectious diseases. PLoS medicine. 2008; 5(3):e74. https://doi.org/10.

1371/journal.pmed.0050074 PMID: 18366252

16. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and

demographic data. PLoS computational biology. 2017; 13(9):e1005697. https://doi.org/10.1371/journal.

pcbi.1005697 PMID: 28898249

17. Mistry D, Litvinova M, Pastore y Piontti A, Chinazzi M, Fumanelli L, Gomes MF, et al. Inferring high-res-

olution human mixing patterns for disease modeling. Nature communications. 2021; 12(1):1–12. https://

doi.org/10.1038/s41467-020-20544-y PMID: 33436609

18. Potter GE, Handcock MS, Longini IM Jr, Halloran ME. Estimating within-household contact networks

from egocentric data. The annals of applied statistics. 2011; 5(3):1816. https://doi.org/10.1214/11-

aoas474 PMID: 22427793

19. Smieszek T, Burri EU, Scherzinger R, Scholz RW. Collecting close-contact social mixing data with con-

tact diaries: reporting errors and biases. Epidemiology & infection. 2012; 140(4):744–752. https://doi.

org/10.1017/S0950268811001130 PMID: 21733249

20. Mastrandrea R, Barrat A. How to estimate epidemic risk from incomplete contact diaries data? PLoS

computational biology. 2016; 12(6):e1005002. https://doi.org/10.1371/journal.pcbi.1005002 PMID:

27341027

21. Johnstone-Robertson SP, Mark D, Morrow C, Middelkoop K, Chiswell M, Aquino LD, et al. Social mixing

patterns within a South African township community: implications for respiratory disease transmission

and control. American journal of epidemiology. 2011; 174(11):1246–1255. https://doi.org/10.1093/aje/

kwr251 PMID: 22071585

22. Kiti MC, Kinyanjui TM, Koech DC, Munywoki PK, Medley GF, Nokes DJ. Quantifying age-related rates

of social contact using diaries in a rural coastal population of Kenya. PloS one. 2014; 9(8):e104786.

https://doi.org/10.1371/journal.pone.0104786 PMID: 25127257

23. de Waroux OlP, Cohuet S, Ndazima D, Kucharski A, Juan-Giner A, Flasche S, et al. Characteristics of

human encounters and social mixing patterns relevant to infectious diseases spread by close contact: a

survey in Southwest Uganda. BMC infectious diseases. 2018; 18(1):1–12.

24. Thindwa D, Jambo KC, Ojal J, MacPherson P, Phiri MD, Pinsent A, et al. Social mixing patterns relevant

to infectious diseases spread by close contact in urban Blantyre, Malawi. Epidemics. 2022; p. 100590.

https://doi.org/10.1016/j.epidem.2022.100590 PMID: 35691100

25. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and

national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the

Global Burden of Disease Study 2016. The lancet. 2017; 390(10100):1151–1210. https://doi.org/10.

1016/S0140-6736(17)32152-9

26. Fumanelli L, Ajelli M, Manfredi P, Vespignani A, Merler S. Inferring the structure of social contacts from

demographic data in the analysis of infectious diseases spread. 2012;.

27. Manna A, Dall’Amico L, Tizzoni M, Karsai M, Perra N. Generalized contact matrices for epidemic model-

ing; 2023.

28. Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A. Dynamics of person-to-per-

son interactions from distributed RFID sensor networks. PloS one. 2010; 5(7):e11596. https://doi.org/

10.1371/journal.pone.0011596 PMID: 20657651
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