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Abstract

We apply the scale-relativity theory of turbulence to the turbulent boundary
layer problem. On the basis of Kolmogorov’s scaling, the time derivative of the
Navier-Stokes equations can be integrated under the form of a macroscopic Schrödinger
equation acting in velocity-space. In this equation, the potential coming from pres-
sure gradients takes the form of a quantum harmonic oscillator (QHO) in an uni-
versal way. From the properties of QHOs we can then derive the possible values
of the ratio of turbulent intensities in the shear flow R = σu/σv = 1.35 ± 0.05.
We show that the Karman constant is theoretically predicted to be κ = 1/R3, in
good agreement with its typical value κ ≈ 0.4 and its observed possible variations.
Then we find a generic solution of our equations for the normal Reynolds stress
pure profile, which closely fits the data from laboratory and numerical experiments.
Its amplitude µB is solution of an implicit equation that we solve numerically and
analytically through power series, yielding to lowest order µB−1.35 ≈ −2(R−1.35),
plus smaller contributions from other parameters. Consequently the correlation co-
efficient of velocities is given by ρ ≈ 1/R µ2

B ≈ 1/R3 ≈ 0.4 and is therefore equal to
the Karman constant to lowest order, in agreement with its universally measured
value ≈ 0.4 for all shear flows. We also find a general similarity between turbulent
round jets and boudary layers in their outer region. These results therefore apply
to a wide set of turbulent flows, including jets, plane boundary layers, and to some
extent channels and pipes.

1 Introduction

In the study of turbulence, the plane boundary layer plays a proeminent role since the
solution of the mean flow based on the asymptotic matching of the inner and outer layers
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yields the very important result of the ‘log-law of the wall’ [1, 2]. With the Kolmogorov
scaling [K41] [3], this logarithmic velocity profile in the inertial sublayer is indeed one of
the major landmarks in turbulence theory. With analytical tools of a rather general nature
a very specific result has been obtained, even though the equations of motion cannot be
solved in general [4, 5]. This approach became ‘classical’ and was universally applied to
all wall-bounded flows. The same logarithmic law and its parameters, in particular the
Karman constant κ ≈ 0.4 on which it depends, were considered valid for boundary layers,
channels and pipes. Laboratory and numerical experiments suggest that the Karman
constant is universal, although with small possible variations of the order of ∼ 5% [6, 7]
which has led to question its strict universality [8].

Since, the log-law profile equation and its intrinsic Karman constant are widely used
in fluid mechanics. But despite numerous theoretical and empirical attempts to establish
formal bases for these concepts, no consensus has been reached [9]. The log law has been
theoretically justified through many different arguments and has been advocated for a
wide range of wall bounded shear flows (see references in [6, 9]). The value of the Karman
constant has been measured through numerous experiments and Direct Numerical Sim-
ulations of Navier-Stokes equations [DNS] [6]. Many attempts of theoretical derivations
have been made (see review in [9]), but always from merely postulated models instead of
the fluid mechanics equations. As a result these theoretical derivations do not concur and
the origin of its value remains elusive.

This difficulty can be traced back to a more fundamental and universal problem en-
countered up to now by all theories of turbulence, namely, the closure problem. When a
fluid becomes turbulent, its properties become described not only by the mean velocities
but also by their fluctuations described by the Reynolds stresses. As a consequence, the
number of equations is smaller than the number of unknowns and the present theory
remains incomplete.

In a recent work [10], we have suggested a solution to this closure problem and applied
it to turbulent jets by using the scale-relativity approach to turbulence [16, 17, 18]. This
has allowed us to obtain theoretical understanding and predictions for the Reynolds stress
profiles and for several universal dimensionless quantities such as the jet opening angle
αJ ≈ 0.2, the ratio R ≈ 1.35 of turbulent intensity amplitudes along the radial direction
over the axial one, the mean ratio X ≈ 1/4 of turbulent intensities over the mean velocity
on the jet centerline, and the correlation coefficient of velocities which we have found to
be given by ρ = 1/R3 ≈ 0.4 [10].

In the present paper we apply the same approach to the turbulent plane boundary layer
problem (far from the wall, i.e. in the zone where viscosity becomes negligible), so that
it will be relevant to fully developed channel flow, fully developed pipe flow and the flow
in a flat-plate boundary layer. These simple flows are of practical importance and played
a prominent role in the historical development of the study of turbulent flows [5]. Their
description is part of the basic textbook knowledge about turbulence [4, 5, 19, 20], and
yet many features characterizing them remain empirical, in particular purely numerical
constants such as the Karman constant.

Tennekes and Lumley [4] remark that boundary layer flows are more complicated than
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flows in free shear layers (such as in our previous study of the free round jet) because
the presence of a solid wall imposes constraints that are absent in wakes and jets. Shear
flows are very important to understand turbulence, which is often described as just an
instability generated by shear.

The dimensionless character of seemingly universal physical constants appearing in
turbulence, such as the Karman constant for boundary layers, makes the understanding
of their value one of the most fascinating problems in physics. Moreover, this question is
clearly related to a more general problem in the theory of turbulence, namely, the closure
problem: when jumping to a turbulent behavior, a fluid is described not only by its mean
velocities which are solutions of the continuity and Navier-Stokes equations, but also by
the velocity fluctuations. In today’s theory there are no known first principle equations for
the covariances of these fluctuations (Reynolds stress), which yet appear in the Reynolds-
averaged Navier-Stokes (RANS) equations, so that the number of unknowns is larger than
the number of equations. The closure is therefore obtained using hypothetical models.

The scale-relativity approach to turbulence [16, 17, 18, 10, 21] is of a different nature.
In its framework, the closing equations do not come from an assumed model. They
just derive from a reformulation and an integration of the time derivative of the Navier-
Stokes equations themselves, written in v-space and accounting for the non-differentiable
and fractal nature of velocities in the turbulent regime at inertial scales (according to
Kolmogorov K41 scaling). The main result of this approach is that these v-space NS-
derivated equations can be re-integrated under the form of a macroscopic Schrödinger
equation [22, 23, 18]. In this equation, the microscopic Planck constant ~ is replaced by a
new macroscopic constant ~v resulting from the self-organization of the turbulent medium,
that is proportional to the rate of dissipated energy ε. The square of the modulus of the
wave function which is solution of this equation, P = |ψ|2, yields the probability density
distribution (PDF) of turbulent velocity fluctuations, from which the Reynolds stresses
can be calculated, thus solving the closure problem.

Moreover, the potential entering this v-Schrödinger equation is, in an universal way,
that of an harmonic oscillator [21, 10], so that we can theoretically predict that the
local velocity PDF are that of quantized harmonic oscillators (QHO), possibly damped
(QDHO). This theoretical expectation has been well verified by an analysis of experimental
data [18].

In this paper, we first recall in Sec. 2 the governing equations for the shear flow, which
include in our approach both the Reynolds averaged Navier-Stokes (RANS) equations
in the boundary layer approximation and the v-space macroscopic Schrödinger equation
derived from the Nvier-Stokes equations in the turbulent regime. In Sec. 3 we recall some
well-known basic theoretical results concerning the turbulent boundary layer, such as the
log-law of the wall involving the Karman constant and the derivation of the Reynolds shear
stress profile from the RANS equations. In Sec. 4 we recall our theoretical prediction for
the possible values of the turbulent intensity ratio R = σu/σv = 1.35 ± 0.03 far from the
wall, which is similar to its derivation for the round jet [10] from the general properties
of QHOs. Then we give in Sec. 5 a general physics argument leading to the conclusion
that the Karman constant is given by κ = R−3, which agrees with its values measured
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in laboratory and numerical experiments. The pure (normalized) profile of the normal
Reynolds stress σ2

v is derived in Sec. 6 from the normal component of the v-Schrödinger
equation in a QHO potential. In Sec. 7, an implicit equation is found for its amplitude
µ2

B from the uv component of the v-Schrödinger equation. We solve this equation both
numerically and analytically through power series, thus obtaining an expression of µB

in function of R, with smaller dependence on other parameters. Then we show in Sec. 8
that, applying relevant scaling factors, the turbulent round jet and the turbulent boundary
layer become similar in the region z >≈ 0.2, where z = y/δ in the boundary layer and
z = r/αx in the jet, being described by the same equations. In Sec. 9, we finally suggest
a solution for the puzzle of the value of the coefficient of correlation of velocities, which
is found in observations, experiments and direct numerical simulations to be universally
equal to ρ ≈ 0.4 for all shear flows. These results are discussed in Sec. 10 while Sec. 11 is
dedicated to the conclusion.

2 Governing equations for the turbulent boundary

layer

2.1 RANS equations

We shall study in the present paper the turbulent boundary layer that appears upon a
flat plate subjected to a plane flow parallel to the wall. Such a flow is a particular case
of a more general ensemble including channels and pipes.

We consider here only the two Cartesian coordinates x along the wall in the direction
of the incident flow and y normal to the wall. We use the Reynolds decomposition of
velocities Ut = U + u, Vt = V + v, where U(x, y) and V (x, y) are their average values and
u, v their turbulent fluctuations. The fluid mechanics equations for the boundary layer
consist of the continuity equation for the mean velocities,

∂xU + ∂yV = 0, (1)

and of the Reynolds averaged Navier-Stokes (RANS) equations:

xRANS : U ∂xU + V ∂yU + ∂x(p̄+ σ2
u) + ∂yσuv − ν∆U = 0, (2)

yRANS : U ∂xV + V ∂yV + ∂y(p̄+ σ2
v) + ∂xσuv − ν∆V = 0, (3)

where p̄ is the average pressure, σ2
u = 〈u2〉, σ2

v = 〈v2〉 and σuv = 〈u v〉 the Reynolds stresses
and where we have taken ̺ = 1 for simplification owing to the assumed incompressibility
of the fluid.

In the so-called ‘boundary layer approximation’, the terms ν ∂x∂xU , U ∂xV , V ∂yV and
ν∆V are neglected. Moreover, in the turbulent case one may neglect the axial derivative
of the Reynolds stresses on the grounds that they are small compared with the lateral
gradients [5]. One obtains:

U ∂xU + V ∂yU = ν ∂2U/∂y2 − ∂yσuv − ∂x(p0 + σ2
u − σ2

v) = 0, (4)
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p̄ = p0(x) − σ2
v . (5)

These equations apply to all plane two-dimensional shear flows bounded by quiescent fluid
or a uniform stream, such as plane jets, plane mixing layers, plane wakes and boundary
layers [5]. Only the boundary conditions differs between these flows, which are all char-
acterized by a characteristic flow width δ = δ(x). Except near walls, the viscous term is
negligible.

As usual in turbulence, this system of equations is not closed since there are three
equations for six unknown, U , V , p̄, σuv, σu and σv. The scale-relativity approach to
turbulence [16, 17, 18, 21, 10] allows to solve this closure problem by deriving a new
expression of the Navier-Stokes equations under turbulent conditions.

2.2 Schrödinger equation in velocity space

The fundamental equation of dynamics can be integrated in the scale-relativity paradigm
under the form of a Schrödinger equation, in which the constant is no longer the mi-
croscopic Planck constant ~ but a new macroscopic constant which emerges from self-
organization of the system under consideration. Apart from this change of constant, the
theory shares the same mathematical structure as standard quantum mechanics, in par-
ticular the existence of a wave function which is solution of the Schrödinger equation and
whose modulus squared yields the probability density of states.

The conditions which underlie such a transformation are non-differentiability and
fractality, which involve an explicit scale dependence of the various variables. We have
shown [18] that these conditions (infinite number of virtual trajectories, fractal dimen-
sion 2 of each trajectory and two-valuedness of the derivatives as consequence of non-
differentiability) are satisfied in velocity space for a turbulent fluid, the fractal dimension
2 being a manifestation of the K41 scaling δv2 ∼ δt.

This method has been recently applied to the turbulent round jet [10] and has allowed
us to solve the closure problem in this case. The question raised in the present paper
is whether we can obtain a similar result in other type of shear flows, such as flat plate
boundary layers, channels and pipes.

Let us summarize our method (see [18, 10] for more details). The time derivative of
the NS equations writes in Newtonian form da/dt = −∇ṗ. In order to account for the
various geometric effects of non-differentiability and fractality, one replaces d/dt by a new
total derivative operator:

d̂

dt
=

∂

∂t
+ A.∇v − iDv∆v. (6)

where the acceleration A is now complex as a manifestation of a fundamental two-
valuedness of derivatives implied by non-differentiability. One obtains a new form of
the equation of dynamics in v-space:

d̂

dt
A =

(
∂

∂t
+ A.∇v − iDv∆v

)
A = Ḟ , (7)
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where F contains the pressure gradient term and possibly any applied external force.
Introducing a wave function ψv = eiSv/~v , where S is the complex action and ~v the new
Planck-like constant in v-space, which is proportional to the rate ε of transfered energy
dissipated at viscous scales. One can prove [22, 24, 23, 18] that this equation can be
integrated under the form of a macroscopic Schrödinger equation in v-space:

D2
v ∆ψv + iDv

∂

∂t
ψv −

1

2
φv ψv = 0, (8)

(with Dv = ~v/2), which yields the PDF of velocities as Pv = |ψv|2. In this Schrödinger
equation, the potential energy takes the universal form of an harmonic oscillator v-
potential [21, 10] which writes when the mean pressure is time-independent:

φv(u, v) =
1

2

(
∂2p̄

∂x2
u2 + 2

∂2p̄

∂x ∂y
u v +

∂2p̄

∂y2
v2

)
, (9)

3 Theoretical elements

We shall recall in this section some well-known basic theoretical results concerning the
turbulent boundary layer which will be necessary for our theoretical prediction of the
Reynolds stress profiles and of the coefficient of correlation of velocities.

3.1 Thickness of the turbulent boundary layer

It has been shown by Landau [19] that, c(x) being the solution of the equation

c ln(cRx)
2 = 2κ2, (10)

the thickness of the flat plate turbulent boundary layer [FPTBL] is given by:

δ(x) = a0 x
√
c(x). (11)

The parameter a0 is an empirical numerical constant which is not theoretically predicted
up to now, for which Landau gives the approximate value a0 ≈ 0.3. In this expression Rx =
U x/ν is the x Reynolds number. For κ = 0.4, one finds that a very good approximation
for the solution of this equation is:

c(x) = 0.191R−2/7
x . (12)

This leads to a FPTBL thickness:

δ(x) = δ0 xR
−1/7
x , (13)

where δ0 =
√

0.191 a0 = 0.437 a0. This result demonstrates theoretically the R
−1/7
x be-

havior of the BL thickness, with an exponent slightly different from the original Prandtl
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value −1/5 [25, p. 638]. The numerical constant in this relation is δ0 = 0.16, which would
yield a0 = 0.37, of the order of magnitude of the Landau value.

The wall-friction velocity v⋆ =
√
σ/̺ is given by v⋆ = U

√
c/2 [19], i.e.:

v⋆ = 0.309U R−1/7
x , (14)

where σ is the frictional force acting on the unit area of the wall and ̺ is the fluid
density. Actually the effect of the x−1/7 variation is negligible, and we shall take in
what follows δ(x) = αB x, with αB = 0.16R

−1/7
x = (0.06, 0.05, 0.04, 0.03, 0.02) for

Rx = (1000, 3000, 15000, 100000, 2 × 106). This can be compared to the turbulent jet,
whose half-width is αx, with α ≈ 0.2.

3.2 Log-law of the wall and Karman constant

The turbulent boundary layer is known to be a two-scale process. This is usually described
by using two different normalisations for the distance y along the direction normal to the
wall. Far from the wall the flow does no longer depend on the viscosity, so that y is refered
to the boundary layer thickness δ(x), using the dimensionless variable η = y/δ. Near the
wall the viscosity matters and one defines y+ = y v⋆/ν, where ν is the molecular viscosity
coefficient. Four regions can then be characterized:

(1) y+ = (0 − 5), η ≈ (0 − 0.0005); viscous sublayer; U = v⋆ y
+.

(2) y+ = (5 − 30), η ≈ (0.0005 − 0.003); buffer layer.
(3) y+ = (30 − 1000), η ≈ (0.003 − 0.1); log-law layer; U = v⋆(κ

−1 ln y+ + B), where
κ ≈ 0.4 and B ≈ 5.
(4) y+ = (1000 − 10000), η ≈ (0.1 − 1); outer layer; Coles’ wake function correction.

The limit of the viscous sublayer is y+ = 2/κ = 5. The point where the linear law and
the log-law match is given by y+ = B+6 ≈ 11, yielding the estimate y+ = 30 for the end
of the buffer layer.

The log-law profile has be theoretically derived from physics principals [1, 2, 19]. It is
a priori valid up to η ≈ 0.1, but remains an excellent approximation in most cases in an
overlap layer up to η ≈ 0.3. The empirical parameter κ is Karman constant, for which
we suggest here a theoretical prediction yielding κ = (σv/σu)

3 ≈ 0.4, in agreement with
its experimentally measured values.

Finally, near the edge of the turbulent region, the log law must be corrected in the
case of plane boundary layers. The correction takes the form of Coles’ wake law [26],
2(Π/κ) sin2(π

2
y
δ
), with a coefficient Π which vanishes for channels and pipes.

3.3 Reynolds shear stress: theoretical profile

It is well known that the Reynolds shear stress σuv in the boundary layer is almost constant
for small η values and given by σuv = v2

⋆ [4]. For larger values of η, a rough approximation
of its profile is given by σuv = v2

⋆ (1− η). A better solution is obtained by integrating the
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RANS and continuity equations in the wall normal direction with the assumption that
V = 0 at the wall [27]:

σuv = v2
⋆ + y ∂x(p0(x) − σ2

v) − U

∫
∂xUdy + 2

∫
U∂xUdy. (15)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Η = y � ∆

Σ
uv

Figure 1: Comparison between the theoretical prediction from RANS and continuity equations
of the Reynolds shear stress in the FPTBL (Eq. 17, red dashed curve) and some of its exper-
imental measurements. Green points and curve: Volino and Schultz [27]; Blue: Brennen [12];
Magenta: Erm and Joubert [28]; Brown: Brzek et al. [29]. The gray dashed line is the standard
approximative solution σuv = 1 − η (normalized to v⋆ = 1).

The term ∂xp0 = −v2
⋆/δ yields the standard solution σuv = v2

⋆(1 − η) [4]. The terms
involving the Reynolds stresses are found to be small. The main correction therefore
comes from the streamwise velocity U . It is given by the log-law, which remains valid up
to η ≈ 0.3 [19]:

U = v⋆

(
1

κ
ln η +B

)
. (16)

One finally finds:

σuv = v2
⋆

[
1 − η

(
1 +

αB

κ2
(ln η +Bκ− 2)

)]
. (17)

It is noticeable that, with the empirical numerical values κ = 0.4 and B = 5, the constant
(B κ − 2) vanishes. The effect of the Coles’ correction of the Reynolds shear stresss
profile in the outer layer is found to be negligible. This theoretical expectation is in good
agreement with the experimental measurements, as examplified in Fig. 1.
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4 Theoretical prediction of the ratio of Reynolds stresses

Tennekes and Lumley [4] have argued that the energy in the u component differs from
that in the v component because the major production term feeds energy into σ2

u (along
the axial direction), so that the energy must leak into σ2

v (along the radial direction) by
inertial interaction. Since the two effects (axial supply and radial leakage) are determined
by the same turbulence dynamics, they conclude that K = (σ2

u −σ2
v)/(σ

2
u +σ2

v) ≈ cst and
that it should be less than unity. This implies that R = σu/σv > 1 should be close to a
constant.

We have derived in Ref. [10] the theoretically expected possible values of R by only
using a self-evident property of the turbulent jet which appears clearly in this analysis
and in the governing equations, namely, the mere fact that K ≥ 0, i.e. σu ≥ σv. Let us
briefly remind here the argument.

We apply this inequality in the scale-relativity framework, where the derivative of the
Navier-Stokes equations take a (macroscopic) quantum-like Schrödinger form. We have
decomposed the global Gaussian turbulent velocity fluctuations variances σ2

u and σ2
v in

terms of two-dimensional quantized harrmonic oscillators (QHOs), which are known to
be defined by quantum numbers {nu, nv}.

The above inequality, applied on the various excited states of a 2D QHO, simply
becomes nu ≥ nv. As this level of the analysis we take R = cst, in agreement with
Tennekes and Lumley’s argument.

Our first derivation of the range of possible values for R has been obtained in the
framework of the study of the turbulent jet. This has allowed us to consider only the
uncorrelated turbulent velocities on the centerline of the jet. This is no longer possible
in the BL case where the correlation coefficient may be everywhere different from 0 (and
equal to ≈ 0.4: this is another puzzle for which we suggest a solution hereafter). However,
one can show that the velocity correlation has a very small effect on the ratio R in the
BL case. Therefore we can write:

σ2
nu

= (2nu + 1) σ2
uF , σ2

nv
= (2nv + 1) σ2

vF , (18)

where σ2
uF and σ2

vF are the variances of the normal (ground) state for the u and v coor-
dinates (the PDFs of which are Gaussian).

In the scale relativity approach, turbulence and its main effects such as intermit-
tency come from the emergence of a new acceleration component which writes Aq =
±Dv(∂vPv)/Pv [18]. The probability density Pv of QHO excited states shows zero values
P (vi) = 0 for some values of the velocity vi, which implies the divergence of this acceler-
ation. We have shown that this result explains and accounts in detail for many features
of turbulence (large tails of acceleration PDF, structure functions, etc.) [18].

The ground state, for its part, shows no such zeros. We have therefore interpreted
its manifestation as corresponding to the transition between laminar and turbulent flow,
which occurs around the edge of the turbulent region. This means that, when approaching
the edge of the boundary layer, the turbulent fluctuations become that of the ground state,
σu = σuF and σv = σvF . In this regime we expect isotropy of the fluctuations, so that
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Figure 2: Expected distribution of values for the ratio R = σu/σv when the ground state ratio
RF = 1. It is derived from the decomposition of the turbulent fluctuation velocities into QHOs,
for a maximum quantum number nu = 30. The density of points increases for higher R values
toward ∼ 1.41, but the probability of smaller values toward ∼ 1.3 (represented by the point
size) is larger according to Gibbs distribution. This yields an average 〈R〉 ≈ 1.35.

σuF → σvF and therefore RF = σuF/σvF → 1 and R → 1. Experimental data fairly
support this expectation, since the turbulent intensities are found to become equal when
approaching the boundary layer edge, for η >≈ 0.8, and R to finally fall down to R = 1
at η ≈ 0.9 − 1, as can be seen in Figs. 3 and 16.

The global variances will therefore be σ2
u = 〈σ2

ui〉 and σ2
vu = 〈σ2

vi〉, where the mean is
taken on all the QHOs with fluctuating quantum numbers. We find finally:

R2 =
σ2

u

σ2
v

=
〈2nu + 1〉
〈2nv + 1〉 R

2
F (19)

for the PDF of nu given by the Gibbs distribution and nv = {0, 1, 2, ..., nu}.
When the Reynolds number is large enough, this distribution is almost flat (as a first

approximation) and we can take the direct average.
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Figure 3: Experimental profiles of the ratio of turbulent intensities R = σu/σv across the
turbulent region in the direction normal to the plane. The red curve results from Shafi and
Antonia data [11], the black curve from Brennen [12] and the blue curve from DNS by Spalart
[13, 14]. We have shown as horizontal dashed lines the interval R = (1.3 − 1.4) expected when
the ground state ratio RF → 1 (approaching the BL edge) and as continuous gray line the value
R = 1 expected on the edge.

Let us first consider some selected given value of nu. From statistical physics, one
expects only small quantum numbers to play a leading role. For nu = 2, 〈nv〉 = 1 then
when RF = 1 (toward the BL edge), R =

√
5/3 = 1.29; for nu = 3, R =

√
7/4 = 1.32;

for nu = 4, R =
√

9/5 = 1.34.
More generally, taking all the values of nu between 1 and (nu)max, we find the R values

given in Fig. 2. Identifying the resuting interval (1.29 − 1.41) with ±2 σ, we obtain

Rth = 1.35 ± 0.03. (20)

This theoretical prediction is in satisfactory agreement with the results of laboratory
and numerical experiments in the relevant region (far from the wall), as well for boundary
layers as for channels and pipes (see Figs. 3, 4 and 16).

This result is still reinforced by accounting for the expected Gibbs distribution of the
QHOs, which favor smaller values of the quantum numbers. The probability for a QHO
to be in a given state of quantum number n can be written as [30]:

w(n) = e−
1

2
(2n+1) ~vω

Tv , (21)

where Tv = kBa
2 is the equivalent of temperature in v-space, ~v = ε = σ3

v/L, ω = 2π/T .
We have found from Mordant data that T = NTL, with N ≈ 6, so that ω ≈ 1/TL. We
can now relate all these constants to Rλ =

√
15Lσv/ν, since σv ∼ R2

λ, σ
2
a ∼ R9

λ and
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Figure 4: Comparison between the streamwise turbulent intensity profile σu(η) in a chan-
nel (blue curve) and the scaled normal turbulent intensity R σv(η), for three values of R =
(1.30, 1.35, 1.40) (magenta, brown and green curves), from the DNS data of Kim et al [15]. This
supports our theoretical expectation according to which σu ≈ 1.35 σv in the central region of
the channel, far from the walls (which lie at η = ±1).

TL ∼ R−2
λ . One finally finds:

~vω

Tv
=

√
15 π C0

kBA0NRλ
, (22)

where C0 and A0 are the two Kolmogorov constants (having values ≈ 4 − 6), C0 =
2σ2

v/εTL and A0 = σ2
aτη/ε. Finally, we find that the constant in the Gibbs distribution in

proportional to 1/Rλ. This means, as could be expected, that higher quantum numbers
n contribute more for higher Reynolds numbers. Finally the probability can be written
under the form:

w(n) = exp

[
−Rλ0

Rλ

(
n +

1

2

)]
, (23)

where the constant Rλ0
≈ 100 from an analysis of Mordant’s data.

With this value we find, for fully developed turbulence with reduced Reynolds number
Rλ = 1000 (i.e., Re ≈ 70000) and maximum quantum numbers respectively nmax =
(10, 20, 30), mean values of the R ratio 〈R〉 = (1.31, 1.33, 1.335). For larger values
nmax ≤ 50 the mean value of R stabilizes at 〈R〉 = 1.34.
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5 Possible solution to the Karman constant problem

It has been argued by Landau [19] about the flat plate boundary layer that this type of
flow is characterized by no constant parameter of length which would allow to determine
the scale of the turbulent flow. In consequence, he concludes that the main scale of
turbulence is determined by the distance itself, i.e., the only available natural scale in the
infinite flat plate problem is the height y. Therefore

Lx = y. (24)

This theoretical expectation is supported by Tennekes and Lumley analysis of the link
between Reynolds stress and vortex stretching [4]. They argue that the existence of a
Reynolds stress requires that the velocity fluctuations u and v be correlated. The eddies
are continuously losing energy to smaller eddies, so that they need shear to maintain their
energy: the most powerful eddies thus are those that can absorb energy from the shear
flow more effectively than others. They conclude, in agreement with Townsend [31] and
Bakewell and Lumley [32], that the eddies which are most effective in both maintaining the
u, v correlation and in extracting energy from the mean flow are vortices whose principal
axis is roughly aligned with that of the mean strain rate. These three dimentional vortices
with vorticity ω are stretched by the rate of strain S with ω parallel to S along a direction
making an angle of ≈ 45◦ with the flat plate (see their Fig. 2.5 p. 41).

Experimental observations of these eddies clearly supports this expected angle of 45◦

(see e.g. [33, 34], and therefore the evidence for the fact that the fundamental length-scale
is Lx = y.

In the scale-relativity approach to turbulence, the fundamental constant ~V in velocity-
space is identical (or at least proportional) to the K41 rate of transferred energy ε. The
unicity of this constant implies the relation:

~V =
σ3

u

Lx
=
σ3

v

Ly
, (25)

which relates the anisotropy of the velocity turbulent fluctuations with the space anisotropy.
Therefore:

Ly

Lx

=
σ3

v

σ3
u

=
1

R3
. (26)

Finally the length-scale along the transverse direction is therefore:

Ly =
y

R3
. (27)

The mean streamwise velocity is solution of the differential equation:

dU

dy
=
v⋆

Ly

=
R3 v⋆

y
, (28)

which is integrated under the form of the well-known log-law of the mean velocity profile:

U =
v⋆

κ
ln
y

y0

, (29)
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in which κ is the Karman constant for which we have therefore obtained a theoretical
prediction:

κ =
1

R3
. (30)

From the previously theoretically estimated range for R = σu/σv = 1.35 ± 0.03 we can
now derive the possible values of the Karman constant:

κ = 0.405 ± 0.025, (31)

in good agreement with its measured values.
Actually, statistical analysis of the available data [6] shows that the differences between

the three canonical flows could be much larger than the uncertainty in the extracted
overlap parameters. This suggests that the von Karman coefficient may not be strictly
universal and exhibits a small dependence on the flow geometry.

The mean value of κ has been found to be 0.37, 0.39 and 0.41 respectively for channels,
flat plate boundary layers and pipes [6]. These values correspond to respectively R =
1.39, 1.37 and 1.35 for RF = 1, which clearly lie in the range expected from the present
v-Schrödinger / QHO approach.

More generally, Nagib and Chauhan [6] find a full range of measured values κ =
0.35 − 0.45. Smart [9] reports the existence of atmospheric measurements showing κ
values as low as 0.35 [35] and as high as 0.46 [36] and of direct numerical simulation of
boundary layer turbulence revealing κ values that can range from 0.384 ± 0.004 [37] to
0.452 [38].

The full range of observed κ values, 0.35 − 0.46 thus exactly corresponds to just the
full range of possible R values (for RF = 1), between Rmax =

√
2 = 1.414 yielding

κ = 2−3/2 = 0.35 to Rmin =
√

5/3 = 1.29 yielding κ = (3/5)3/2 = 0.46.

6 Solution for the Reynolds stress profile in the nor-

mal direction

Neglecting small terms, the RANS equation for the boundary layer yields the general
result [4, 5]:

p = p0(x) − σ2
v . (32)

Therefore the pressure in the potential of the v-Schrödinger equation can be replaced
by the opposite of the Reynolds normal stress. We denote by RF the ratio of turbulent
intensities in the ground state and by Gv the ratio of the velocity fluctuation variance
over that of the ground state:

RF =
σuF

σvF

, Gv =
σ2

v

σ2
vF

. (33)

For QHOs, σ2
v = (2nv + 1)σ2

vF in a given excited state of probability P (nv) such that∑
P (nv) = 1, so that Gv =

∑
P (nv)((2nv + 1), where P (nv) is given by statistical

physics [30].
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We call ρF the coefficient of correlation of velocities in the ground state and Lv the
integral length-scale in the normal direction. Then the kv equation writes [10]:

kv = −∂y∂yσ
2
v = H

R2
F + ρ2

F

R2
F (1 − ρ2

F )2
σ2

v , (34)

where

H =
G2

v

4L2
v

. (35)
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Figure 5: Comparison between our theoretical prediction of the Reynolds stress pure profile
σ2

v/µ
2
B in a flat plate turbulent boundary layer (red dashed curve, ηP = 0.2), with some examples

of its experimental and DNS measurements. Blue points and curve: Brennen [12]; magenta:
Shafi & Antonia [11]; beige: DNS by Spalart [13]; green: Erm and Joubert [28].

One of the main specificities of the turbulent BL with respect to the jet lies in the
nature of the integral length scale Lv. As recalled hereabove, it is proportional to the nor-
mal distance, Lv = κ y, the coefficient of proportionality being just the Karman constant
which we have theoretically predicted hereabove to be κ = 1/R3 ≈ 0.4.

Therefore the kv equation becomes in the FPTBL case:

y2 ∂y∂yσ
2
v(y) +B0 σ

2
v(y) = 0, (36)

where

B0 =
G2

v

4κ2

(1 + ρ2
F/R

2
F )

(1 − ρ2
F )2

. (37)
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Figure 6: Comparison between our theoretical prediction of the Reynolds stress profile σ2
v in a

turbulent boundary layer (red dashed curve, ηP = 0.2), with the result for a channel from DNS
by Kim et al. [15]. The two black curves correspond to the up and down parts of the channel.
The walls lie at η = 0 and the centerplane at η = 1.

This equation is doubly scaling, i.e. invariant under scale factors on both y and σv. It
can then be equivalently written in terms of the dimensionless normal distance η = y/δ.
Under the approximation B0 ≈ cst, the solution of this equation writes:

σ2
v = A

√
η sin(aP ln η), (38)

where aP =
√
B0 − 1/4. This function shows interesting multi-scale properties which

are reminiscent of the two-scale nature of the flat plate boundary layer [5, 4, 19] (see
Appendix A).

It presents a peak at a distance ηP , in terms of which the coefficient aP writes with
a good approximation: aP = −0.78313 + 8.108 ηP − 9.295 η2

P , valid for ηP in the range
(0.17 − 0.25). An improved expression for aP is given in Appendix A.

As can be seen in Fig. 5, this theoretical prediction is in good agreement with the
results of laboratory and numerical experiments for ηP ≈ 0.15 − 0.20 in turbulent plane
boundary layers. In the case of channels and pipes, the edge of the boundary layer η = 1
for y = δ(x) is replaced by the center plane of a channel of width 2h at δ = h and the
centerline of a pipe of radius r at delta = r. As expected, the behavior of the various
functions near η = 1 becomes different from the free case. We show in Fig. 6 that our
theoretical prediction remains nevertheless in good agreement with experiments up to
η ≈ 0.7.

Introducing the turbulent intensity amplitude µB (unknown at this stage) and the
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(known) wall-friction velocity v⋆, the full solution writes

σ2
v = µ2

B v
2
⋆

√
η

ηP

sin(aP ln η)

sin(aP ln ηP )
. (39)

The situation is therefore comparable to the turbulent round jet case [10] where we have
found in the central region of the jet σ2

v = µ2 U2
C cos(

√
3η/α), where η = r/x and UC

is the mean axial velocity on the jet centerline. In both cases we have derived from the
kv equation a generic Reynolds stress profile, while the full solution depends also on a
numerical amplitude factor (µB and µ) and on another numerical factor characterizing
the profile shape (ηP and α). These numerical factors can be theoretically derived from
other equations, as we shall now see.

7 Theoretical prediction of the turbulent intensity

amplitude

We have found hereabove that the kv equation yields a solution for the pure turbulent
intensity profile which agrees with experimental measurements. But, at this level of the
analysis, its amplitude remains unknown. As we shall now see, the amplitude µB can be
obtained from the other equations derived from the QHO v-Schrödinger equation. The
method is the same as used for the turbulent jet [10], but now applied to the boundary
layer.

7.1 Decorrelation of velocities for QHOs

A direct way to obtain a theoretical solution for the values of µB consists of fully solving
the equations for the excited states. This can be done by performing a rotation by an
angle θ to a coordinate system (U , V) where the turbulent velocities become decorrelated.
One find this decorrelation angle to be given by:

tan(2θ) =
2kuv

kv − ku
=

2σuv

σ2
u − σ2

v

. (40)

Setting T = tan(2θ) and A = 1/
√

1 + T 2, one obtains:

C = cos θ =

√
1 + A

2
, S = sin θ =

√
1 − A

2
. (41)

The new coefficients kU and kV in the QHO potential write:

kU = kuC
2 − 2kuvCS + kvS

2, kV = kvC
2 + 2kuvCS + kuS

2. (42)

Since kUV = 0, the two variables are now separated and the expressions of the Reynolds
stresses are easily derived from the standard QHO relations:

σ2
U

=
(2nu + 1) ~V

2
√
kU

, σ2
V

=
(2nv + 1) ~V

2
√
kV

. (43)
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Finally, we obtain the expressions for the three Reynolds stresses in the initial coordinate
system:

σ2
u = C2σ2

U + S2σ2
V , σ2

v = S2σ2
U + C2σ2

V , σuv = CS(σ2
U − σ2

V). (44)

7.2 Equation for the amplitude

This system cannot be directly used because of the problem encountered with the ku

equation. In the absence of a source term (up to now unknown), it corresponds to a
repulsive harmonic oscillator, which seems to contradict the results of laboratory and
numerical experiments.

A solution to this problem consists of using the relation σu = Rσv and the fact that σuv

is known in order to to calculate ku, instead of using its direct expression ku = −∂x∂xσ
2
v .

One obtains:

ku = kv − kuv
σ2

v

σuv

(R2 − 1). (45)

Applying this method to the pure normalized profiles (denoted by the subscript o),
this yields the following new expressions:

kuo = kvo − kuvo (R2 − 1)µ2 σ
2
vo

σuvo
, T =

2σuvo

µ2(R2 − 1) σ2
vo

, (46)

kUo = kvo − kuvo C

(
µ2(R2 − 1) σ2

vo

σuvo
C + 2S

)
, (47)

kVo = kvo − kuvo S

(
µ2(R2 − 1) σ2

vo

σuvo

S + 2C

)
. (48)

As previously seen, the generalized macroscopic Planck constant writes

~V =
σ3

v

Lv0

, (49)

where the length-scale must be proportional to y, namely Lv0 = κ0 y. It depends almost
linearly on the axial distance since y = δ η = αB x η. We have shown in Sec. 3.1 that
αB = δ0R

−1/7
x , then it depends slightly on x as x−1/7. We find that this dependence can be

neglected, so that we only describe the Reynolds number dependence considering various
values of αB in the range (0.03 − 0.06) corresponding to Rx = (105 − 103).

We finally obtain an implicit equation for the turbulent intensity amplitude µB,

Q = 2κ0 αB η x
σuvo

µ2
B σ

3
vo

√
1 +

1

T 2

[(
nu +

1

2

)
1√
kUo

−
(
nv +

1

2

)
1√
kVo

]−1

= 1. (50)

This equation can be theoretically solved on the basis of our previously acquired knowledge
of the pure profile σ2

vo(η) and of the Reynolds shear stress σuvo. It therefore depends on
the quantum numbers nu and nv, on the parameters ηP , R, αB, and µB, and on the scaled
radial distance η = r/x. It is solved by the values of ηP , R, αB, and µB which ensure a
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constant radial profile Q(η) =cst, provided they exist, and is expected to yield a relation
µB = µB(ηP , R, αB). The value of κ0 can be subsequently derived from the equation
Q = 1.

As recalled hereabove, statistical physics implies that the states with the smallest
quantum numbers are the most probable. However, we have also seen that, in our frame-
work, the ground state nu = nv = 0 cannot correspond to a fully turbulent state. This is
due to the fact that it is devoid of velocity values for which Pv(vi) = |ψv|2(vi) = 0, while
we have identified the zeros of the velocity PDF and the supplementary acceleration com-
ponent they involve as the source of the main turbulent characteristics [17, 18]. Therefore
the ground state is considered to apply only in the turbulent-laminar transition, at the
interface between the two regimes.

As a consequence, the most probable state is given by the quantum numbers nu = 2,
nv = 1, the other states contributing only in a minor way. We have therefore specifically
applied the above equation Q =cst to this case.

Regarding the Reynolds normal stress pure profile, we have used our theoretical solu-
tion normalized to 1 at maximum,

σ2
vo =

√
η

ηP

sin(aP ln η)

sin(aP ln ηP )
, (51)

where we recall that aP = −0.78313 + 8.108 ηP − 9.295 η2
P .

As concerns the Reynolds shear stress, we have used the solution of the RANS and
continuity equations Eq. 17 which writes with a good approximation:

σuv = v2
⋆

(
1 − η − αB

κ2
η ln η

)
. (52)

We have also considered the usual approximative solution [4] σuvo = 1−η and a polynomial
fit of the Reynolds shear stress measurement by Erm and Joubert (EJ, [28]), which writes
σuv = 0.9838 + 0.478η − 2.294η2 + 0.872η4. As we shall see, they yield solutions which
frame the more exact solution and are compatible with it.

7.3 Numerical solution by optimization and fit

We have calculated Q(R, µB, αB, ηP , κ) for a large range of parameter values, R = (1.2−
1.6), µB = (0.8 − 1.6), αB = (0.03 − 0.06), ηP = (0 − 0.4) and κ = (0.37 − 0.43).

Examples of Q profiles obtained are given in Fig. 7, which demonstrates the existence
of very precise solutions for the equation Q = 1. The residual standard deviation σQ with
respect to a flat profile Q(η) = 1 has been calculated for each set of parameters in the
range η = 0.3 − 0.75. The smallest values of this dispersion reach σQ < 0.0002.

In a run taking κ = 0.4, a fit of the parameter subset such that σQ < 0.002 yields
with a high statistical significance (Student’s t > 80 for the R coefficients, and > 35 for
the others):

µB = 9.692 − 10.70R+ 3.14R2 + 1.64αB + 4.73ηP − 18.54η2
P . (53)
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Figure 7: Examples of Q profiles demonstrating that there exists values of the parameters
(R, αB, ηP , µB) for which Q ≈ 1 in a large interval η ≈ (0.2−0.8). The standard deviations for
these solutions on the range (0.3 − 0.75) is σQ < 0.0003. The inset is a zoom by a factor ≈ 300
showing the detailed profiles of these solutions.

The dependence of µB on αB and ηP is weak, yielding only small corrections to the mere
function of R (see Fig. 22) which can be written under the form:

µB(R) = R0 − 2.26 (R−R0) + 3.11 (R− R0)
2, (54)

where R0 = 1.344 is the value for which µB = R. This value is just the central value
predicted from the QHO Schrödinger equation (Ref. [10] and previous Sec. 4). This result
is illustrated in Fig. 8, where we have plotted the values of µB in function of R for the
various parameters that satisfy σQ < 0.002. In this figure, the values of µB have been
corrected for the small αB and ηP dependence according to the above fit Eq. 53.

From the predicted values ofR = 1.34±0.04 we therefore derive a theoretical prediction
for the range of possible µB values, µB = 1.36± 0.09, leading to the final conclusion that
µB ≈ R ≈ 1.35.

We give in Appendix B the results of our numerical calculations and their fit for
different choices of the function σuv(η). The agreement between the slopes of the linear
term in all cases is remarkable. Only the value for which µB = R changes slightly from
1.33 to 1.35 then 1.38, which remains in the theoretically predicted range of R = σu/σv.

Finally, the value obtained for the constant κ0 is compatible with κ0 = 1, although
with a large dispersion (we find κ0 = 1.04 with a standard error σκ0

= 0.30). This
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Figure 8: Values of (R,µB) solving the equation Q =cst (Eq. 50), where µB is corrected for the
small dependence on αB and ηP . The σv profile input in this equation is our theoretical solution
of the kv equation Eq. 38, while the σuv profile is the solution of the RANS and continuity
equations Eq. 52. The red continuous curves is the resulting fit yielding the searched relation
µB = µB(R) which is the solution of the equation Q = 1. It is indistinguishable in the relevant
range R ≈ (1.29 − 1.41) from the Series analytic solution given in Eq. 55.

means that the length-scale entering into the definition of the v-Planck constant is just
Lv0 = κ0 y ≈ y.

7.4 Analytical solution by power series expansion

We have obtained an approximate analytical solution for the function µB(R,αB, ηP , κ) by
performing a power series expansion of Q in function of η and of the various parameters.
We set n = η − η0, r = R − R0, m = µB − µB0, a = αB − αB0, p = ηP − ηP0 and k =
κ− κ0. The resulting expression of Q = A+B n+O[n2] around (R0, µB0, αB0, ηP0, κ0) =
(1.35, 1.35, 0.045, 0.16, 0.40) to first order in n and to second order in the other parameters
is given in Appendix C, Eq. 80.

Then we express the theoretically predicted constancy of Q by requiring the cancel-
lation of the linear term, B = 0. This results in the following second order power series
expression for m = µB − 1.35:

m = (−0.0336 + 1.596a− 0.694p− 0.357k − 13.04ak + 1.29k2 − 14.90ap+ 1.83kp)

+ (−2.161 − 5.079a+ 1.297p+ 0.421k + 62.82ak − 6.75k2 + 48.91ap− 9.85kp) r

+ (4.317 − 39.45a− 2.18p− 6.36k − 177.3ak + 39.7k2 − 249.5ap+ 44.8kp) r2. (55)

21



This function is plotted in Fig. 9 for various values of the parameters. It is in good
agreement with the fit of the optimized numerical results, as it can be seen in Figs. 8 and
23.
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Figure 9: Plot of the analytical function m(r), where R = R0 + r and µB = µB0 + m
with R0 = µB0 = 1.35, derived from the equation Q = cst, for various values of the pa-
rameters, as given in Eq. 55. The different curves correspond to a = (−0.02, 0, 0.02), i.e.
αB = (0.025, 0.045, 0.065) (blue curves), p = (−0.04, 0, 0.04), i.e. ηP = (0.12, 0.16, 0.20) (red
curves) and k = (−0.03, 0, 0.03), i.e. κ = (0.37, 0.40, 0.43) (black curves). The central values
have been slighly displaced for clarity of the plot. The green line shows the values for which
µB = R.

7.5 PDFs of parameters

The equation Q = 1 provides us with a relation µB = µB(R, ηP , αB, κ), but also with
PDFs for some of the parameters, and therefore with possible theoretical predictions of
their values. Indeed, as we shall see, while we have calculated Q for a uniform distribution
of the parameters in large intervals, the values of these parameters which yield Q =cst
with a small standard deviation σQ → 0 are no longer uniformly distributed. They show
either limits not explained by the limits of the initial range, or in some cases well defined
and narrow peaks of probability, allowing a theoretical prediction of the most probable
values of the parameters and of the standard deviation around theses probability peaks.

7.5.1 PDF of αB

We have performed a specific numerical run for studying the effect of the parameter
αB = δ0R

−1/7
x which defines the BL thickness δ(x) = αB x. We haven taken αB values
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Figure 10: Left figure: PDF of the boundary layer thickness parameter αB = 0.16R
−1/7
x (with

δ(x) = αB x) obtained from the constraint Q(αB , µB , R, ηP , κ; η) = cst by selecting values of the
parameters such that the dispersion around Q = 1 is σQ < 0.003. Right figure: direct PDF of
the Reynolds number Rx under the same conditions, showing a clear transition around Rx = 1
for δ0 = 0.16.

in the range 0.002 − 0.24 (98290 values of the parameters). The resulting PDF depends
of the limit chosen for σQ. When σQ < 0.01, one finds a PDF increasing toward small
αB values (large Reynolds numbers) with a peak at αB = 0.006 (Rx ≈ 1010) and a slower
decrease for αB > 0.03 (Rx < 105). When we take the values of parameters such that
σQ < 0.003, one finds a probability peak at αB = 0.07 (Rx ≈ 300), which is of the order
of magnitude of the smallest critical Reynolds number for this kind of flows (see Fig. 10).

Finally one can ask whether a theoretical prediction is possible for the constant δ0. We
have therefore directly plotted the PDF of Rx for δ0 = 0.16, as shown in Fig. 10. We find,
as could be expected, a flat distribution for large enough Reynolds numbers, but also a
very clear transition around Rx = 1, which can be interpreted as a theoretical prediction
of our chosen value for δ0.

7.5.2 PDF of the ratio R of turbulent intensities

The PDF of R is shown in Fig. 11 (left). One finds 1.3 < R < 1.48 directly from Q =cst
without using neither the value R =

√
5/3 ≈ 1.29 for nu = 2 and nv = 1, nor the mean

result from QHOs, 〈R〉 ≈ 1.35. The PDF of µB is rather flat since it just reflects that of
R and its relation in function of R, µB ≈ 1.35 − 2.25 (R− 1.35).

7.5.3 PDF of ηP

In addition, we also find a theoretical prediction for the possible values of ηP , which is
such that ηP < 0.24 with a PDF showing a peak at ηP ≈ 0.175 for σQ < 0.007.

An example of the PDF of ηP is shown in Fig. 11 (right). It shows a well defined peak
of probability. However, contrarily to what happens for the other parameters, this peak
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Figure 11: Left figure: PDF of the values of the ratio R = σu/σv with satisfy the equation
Q(R, η) = 1 with a standard deviation σQ < 0.002 The initial values were uniformly distributed
between 1.2 and 1.6. Right figure: PDF of the values of ηP , which is the position of the maximum
of σ2

v in our theoretical solution Eq. 51. This PDF is obtained from σQ < 0.007 from initial
values of ηP uniformly distributed between 0 and 0.4.

depends on the chosen limit σQL and varies from ηP = 0.12 (σQ < 0.002, 490 values) to
ηP = 0.2 (σQ < 0.01, 6432 values). These values agree with the range observed for ηP in
boundary layers laboratory and numerical experiments.

7.5.4 PDF and new theoretical prediction of the Karman constant

We show in Fig. 12 an example of the Q(η) profiles obtained by varying κ for fixed values
of the other parameters. The obtained behavior suggests that a new theoretical prediction
for κ is possible from the mere equation Q = 1, without ressorting to the general argument
used in Sec. 5. Actually, the new result obtained here (as we shall see, a probability peak
at κ = 0.4) provides us with a full justification of this argument.

In order to derive a new possible theoretical prediction for the Karman constant κ, we
have performed another run with an enlarged interval for the initial values 0.1 < κ < 0.5
(with 116480 differents combinations of the parameters). For this run, the µB(R) function
obtained for σQ < 0.001 writes:

µB = R0 − 2.09 (R− R0) + 3.83(R− R0)
2, (56)

with R0 = 1.353. It is in good agreement with the previous determinations of this function.
The resulting PDF of κ is given in Fig. 13. It shows a well marked probability peak

at κ = 0.40 with width ±0.02, which is just the range of its experimentally observed
values. This is a remarkable result which supports our direct derivation of its value from
the turbulent intensity ratio κ = 1/R3 ≈ 0.4. The effect of the Karman constant in
the function Q(κ; η) = 1 comes from its intervention (as 1/κ2) in the solution of RANS
equations Eq. 52 for σuv. It is itself a manifestation of the mean velocity contribution in
the RANS equation, and therefore of the ‘log-law of the wall’ for the streamwise mean
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Figure 12: Profiles of the function Q(η) along the direction normal to the wall obtained by
varying the Karman constant κ for fixed values of the other parameters. The theoretical ex-
pectation is a flat profile Q = 1. The profiles are plotted for κ = (0.37, 0.38, 0.39, 0.40, 0.41)
from bottom to top, showing a flat profile for κ = 0.40 in the range η ≈ (0.4 − 0.8). The other
parameters are in this case αB = 0.045, µB = R = 1.345, ηP = 0.15.

velocity U . In other words, it is the very Karman constant κ of the log-law for which we
have found here a theoretical prediction, not only a secondary effect of its value.

This result supports a theoretical numerical value 0.4± 0.03 of the Karman constant,
but not yet the full and more general relation κ = 1/R3. We have therefore constructed
the PDF of the variable g = κR3 from the same set of initial values. The result is given
in Fig. 14 for σQ < 0.001 and shows a well-defined probability peak around g = 1, i.e.
κ = 1/R3. When the chosen limit σQL increases, one finds mean values slightly smaller
than 1, probably as a result of the bias introduced by keeping values of Q 6=cst. However,
the predicted PDF is, strictly, the limit when σQ → 0 of the σQ dependent PDFs. For
σQ < 0.0005, we find κR3 = 0.994±0.039 (error on the mean) with a dispersion σg = 0.146.

We conclude that the macroscopic QHO v-Schrödinger equation derived in the scale-
relativity theory not only predicts the typical value κ = 0.4 and its possible fluctuations
±0.03, but also the full relation κ = 1/R3 (that we previously derived from a general
physics argument).

7.6 Channels and pipes

Channels and pipes deserve a special treatment, since in their case the equation Q = 1
takes a different form. Indeed, the thickness of the turbulent region is no longer dependent
on x but must now be considered constant and equal to the half-distance between the
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Figure 13: PDF of the values of the Karman constant κ with satisfy the equation Q(κ; η) = 1
with a standard deviation σQ < 0.008. The initial values of κ were uniformly distributed between
0.1 and 0.5.

plates for channels and to the radius for cylindrical pipes. Therefore η = y/δ no longer
depends on x, so that the second pressure equation vanishes, kuv = 0. In this case one
finds a simplified expression:

Qo = 2 δ η
√
kvo (nu − nv)

√
1 +

1

T 2

σuvo

µ2
B σ

3
vo

, (57)

while 2δ η
√
kvo =

√
1 + 4a2

P σvo and σuvo = ρRµ2
B σ

2
vo. Consequently, setting δn =

nu − nv, one finds an explicit solution for µB given by:

µ2
B =

(1 + 4a2
P )1/2

[(Qo/δn)2 − (a2
P + 1/4)(1 −R2)2]1/2

σuvo

σ2
vo

, (58)

and for the correlation coefficient of velocities:

ρ =
[(Qo/δn)2 − (a2

P + 1/4)(1 − R2)2]1/2

R (1 + 4a2
P )1/2

. (59)

This expression for ρ is independant of the scaled distance η = y/δ to the wall so that
we theoretically predict that the velocity correlation coefficient should be constant in the
range relevant to our solutions for the Reynolds stresses (0.2 < η < 0/7).

Another difference for channels and pipes compared with plane boundary layers is the
expression for the σuv profile. Lee and Moser [37] write it under the form 1 − y+/Reτ −
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Figure 14: PDF of the variable g = κR3 with satisfy the equation Q(κ; η) = 1 with a standard
deviation σQ < 0.001. The initial values of κ were uniformly distributed between 0.1 and 0.5
and those of R between 1.25 and 1.43. The mean value is g = 0.982± 0.014 (error on the mean)
with a standard deviation σg = 0.157, thus strongly supporting the relation κ = 1/R3 to within
≈ 1σ.

1/κy+, which becomes in terms of large scale variables,

σuvo = 1 − η − 1

κReτ η
. (60)

However, we encounter a new problem here, since we expect Q = κ0Qo = 1 while
the exact value of κ0, which we have found to be close to 1 for boundary layers, is
unknown. Contrarily to the boundary layer case, we cannot use here the constraint Q =
cst. Using κ0 = 1, we recover the same kind of results as in the BL case, but our
theoretical expectation for µB becomes less precise in the channel and pipe cases. We
intend to perform a specific study of these flows in a forthcoming work [Nottale and
Lehner, in preparation].

8 Similarity between the turbulent jet and the tur-

bulent boundary layer

Another way to obtain more directly the amplitude of the Reynolds stress along the
direction normal to the wall comes from the existence of a deep analogy between the
turbulent jet and the boundary layer. Using this universality we can directly use the
result already obtained for the jet [10] and apply it after scaling to the FPBL.
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8.1 Universality of Reynolds stress profiles

Let us compare the theoretical solutions for the Reynolds shear stress, derived from the
RANS and continuity equations, and for the radial / normal Reynolds stress, derived from
the QHO v-Schrödinger equation, in the two cases of turbulent round jet and turbulent
flat plate boundary layer (which can be generalized to channels and pipes).
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Figure 15: Comparison between the theoretically predicted Reynolds stresses in the free turbu-
lent jet (black curves) and in the flat plate turbulent boundary layer (red curves). The Reynolds
shear stresses σuv are solutions of the continuity and RANS equations, [10] for the jet and Eq. 52
for the boundary layer. The red dashed curve is a polynomial fit of [EJ] data. The Reynolds
stresses σ2

v are solutions of the QHO v-Schrödinger equation: stretched cosine solution Eq. 61
for the jet and Eq. 51 for the boundary layer. The blue dashed curve is the cosine solution
without the stretching term, which is valid in the jet central region. A double scaling is applied
in order to manifest the similarity of the solutions (see text).

We have obtained in Ref. [10] precise solutions for the mean velocities U and V and for
the Reynolds shear stress σuv = η U2 −U V in the turbulent round jet, by matching inner
solutions to the Landau exact laminar outer solution [19]. The radial Reynolds stress has
been theoretically derived as solution of the kv equation:

σ2
Jv = µ2 U2

C cos

( √
3 z

1 + a4 z4

)

, (61)

where UC is the mean centerline velocity and z = r/δ = r/(αx) is the normalized radial
distance and where the amplitude µ = (0.20 ± 0.015) and the coefficient a4 = 0.18 have
also been theoretically derived from the QHO v-Schrödinger equation.

In the present paper, we have obtained solutions for the same quantities in the turbu-
lent boundary layer. These solutions are expressed in terms of the wall-friction velocity
v⋆ =

√
σ/̺ as σ2

v = µ2
B v

2
⋆ σ

2
vo and σuv = v2

⋆ σuvo. The boundary conditions are very differ-
ent between the jet and the boundary layer as regards mean velocities, whose variations
are reversed, and as regards the central region, since the flow behavior in the BL when
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y → 0 becomes strongly dependent on the viscosity. However both systems come un-
der the boundary layer approximation of the RANS equations and, in the scale-relativity
approach to turbulence developed here, are described by the same v-Schrödinger equation.

We therefore expect the two flows to be similar as concerns the turbulent fluctuations
in the median and edge regions once proper scaling is applied.

Firstly the distance to be used is naturally the distance ratio to the edge z = η =
y/δ = y/(αB x) for the BL and its equivalent in the jet, z = r/δ = r/(αx). The analogy
is made with the turbulent round jet since its scaling in function of the radial distance is
∼ x as the turbulent BL while the plane jet would be ∼ √

x, like the laminar BL.
Secondly we expect from our analysis that a velocity vJ⋆ could be defined for the

turbulent jet in analogy with the BL velocity v⋆. Such a characteristic velocity should be
such that σ2

v = µ2
0 v

2
J⋆σ

2
vo and σuv = v2

J⋆σuvo for the jet.
We show in Fig. 15 a comparison of the theoretically predicted profiles after such a

double scaling, for vJ⋆ = 0.145UC . An excellent agreement is indeed obtained between
the σ2

v profiles in the range z ≈ (0.2− 0.9), i.e. in about the outer 3/4th of the turbulent
region. Since p = −σ2

v in both cases, this means that the potential in the v-Schrödinger
equation is the same in this range. This result definitively proves the identity of the
turbulent fluctuation equations in the median region of the turbulent domain. Laboratory
and numerical experiments fairly support this result, as can be seen in the examples of
Fig. 16.

8.2 Consequence: prediction of BL turbulent intensity ampli-

tude from jet amplitude

This remarkable similarity between the jet and the boundary layer turbulent fluctuations
allows one to directly derive the amplitude of the BL turbulent intensity µB along the
direction normal to the plate from the jet radial amplitude µJ . It reads:

µB = µJ
σJ

vo

σB
vo

√
σB

uv

σJ
uv

, (62)

where the index J stand for the jet and B for the boundary layer.
Using our solutions for the jet [10] and for the boundary layer (present paper), we

find a theoretical prediction for the ratio µB/µJ which is shown in Fig. 17 for various
values of the parameters. As expected, it is almost constant in function of the variable
z = r/αx (round jet) and z = y/αBx (BL) in the relevant range z = (0.3 − 0.8). Its
value, µB/µJ ≈ 6− 7 yields a theoretical explanation for the observed ratio (0.14− 0.15)
between vJ⋆ and UC (see Fig. 16).

From the theoretically predicted range µJ = 0.20 ± 0.015 [10], one obtains µB =
1.35 ± 0.15, in good agreement with its direct determination.
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Figure 16: Comparison between the Reynolds stresses in the free turbulent jet and in the
flat plate turbulent boundary layer. The blue, magenta and brown continuous lines are mea-

surements of respectively σ
1/2
uv , σv and σu in the free jet by Panchapakesan and Lumley [PL]

[39], Hussein et al. [HCG] [40] and their mean. They have been normalized by a velocity
vJ⋆ = 0.14UC , where UC = U0a0/x is the mean centerline velocity, and plotted in function of
the scaled variable z = r/αx. The irregular blue, magenta and brown lines with points are mea-
surements of the same quantities in a flat plate boundary layer by Shafi and Antonia [11], plotted
in function of z = y/δ. The black dashed curves show v0(z)/vJ⋆, R v0(z)/vJ⋆ and R2 v0(z)/vJ⋆

from v0(z) = σ
1/2
uv given by the mean of PL and HCG measurements, with R = σu/σv = 1.35.

9 Theoretical prediction of the velocity correlation

coefficient

One of the main mysteries of turbulence is the universality of the correlation coefficient
of velocities which is known to be ρ ≈ 0.4 for all shear flows [4, 5]. We have given
a theoretical explanation for this value in the turbulent round jet case, where we have
found ρ = 1/R3 [10]. We are now in position to generalize this result to many other flows,
such as plane boundary layers, channels and pipes.

The first and shortest way to obtain the result ρ = 1/R3 ≈ 0.4 consists of using the
similarity found hereabove between the turbulent round jet and the plane boundary layer,
which implies that the jet result is also valid for boundary layers. The new information
brought here is the identity between the Karman constant and the velocity correlation
cooefficient, both being given by R−3 to lowest order, in agreement with their common
experimentally measured numerical value ≈ 0.4.

There is another direct way toward this result: the general form given to the Reynolds
stresses using the characteristic velocity v⋆, which we have shown to be valid both for the
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Figure 17: Theoretical expectation of the ratio µB/µJ between the Boundary Layer and
the round Jet turbulent intensity amplitudes, as given by Eq. 62. The variable z denotes
the normalized distance along the radial direction z = r/(αx) for the round jet and along
the direction normal to the wall z = y/(αBx) for the boundary layer, where x is the axial
direction along the streamwise velocity. The different curves correspond to different values
of the parameters: κ = (0.37, 0.4, 0.43) (blue curves); ηP = (0.15, 0.175, 0.20) (red curves);
αB = (0.025, 0.045, 0.065) (black curves); α = (0.195, 0.205, 0.215) (green curves).

turbulent jet and boundary layers (see Fig. 16), allows us to now solve the problem in a
fast way.

Indeed, the coefficient of correlation of velocities is given by:

ρ =
σuv

σu σv

=
σuv

R σ2
v

=
1

R µ2
B

σuvo

σ2
vo

. (63)

With the normalized Reynolds stresses σuvo ∼ 1 and σ2
vo ∼ 1 around z ≈ 0.2 (by con-

struction), we get ρ ≈ 1/(Rµ2
B), i.e., to lowest order, knowing that R ≈ µB ≈ R0 = 1.35,

ρ ≈ 1

R3
0

≈ 0.4, (64)

which is the well-known universal experimental value of the correlation coefficient for all
shear flows [4]. This value is therefore now theoretically established for round jets, plane
boundary layers, channels and pipes ([10] and present paper).

In a more elaborated way, using our explicit expressions for the Reynolds stresses, the
coefficient of correlation of velocities writes for the flat plate turbulent boundary layer:

ρ =
σuv

R σ2
v

=

√
ηP sin(aP ln ηP )

(
1 − η − αB

κ2 η ln η
)

R µ2
B

√
η sin(aP ln η)

. (65)
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Figure 18: Predicted profile of the correlation coefficient of the (u, v) velocities, for various
values of the parameters. We find that it is practically constant on the relevant range η ≈
(0.2 − 0.8) where the approximation R = cst holds. The values of the parameters are: κ = 0.4,
R = (1.34, 1.37, 1.4), black curves; αB = (0.01, 0.045, 0.07), red curves; ηP = (0.12, 0.16, 0.20),
blue curves. The variation with κ is very weak, as expected from the direct reformulation of the
equation 1/Q = cst (Eq. 68), which no longer depend on it. We compare this almost constant
theoretical profile to values derived from experimental data: Sillero et al [41], red points; Shafi
and Antonia [11], blue points; Gungor et al. [42], green points.

Using the analytical expression we have found for µB, we obtain quasi constant profiles
ρ ≈ 0.4 for the coefficient of correlation in the relevant interval η ≈ (0.2 − 1), as shown
in Fig. 18, with variations <≈ ±0.03 depending on the values of the parameters.

In another way to get this result, the equationQ = cst can also be directly reformulated
in terms of the correlation coefficient ρ. The resulting equation no longer depends on
σuv and therefore on the Karman constant κ. The decorrelation angle θ is given by
T = tan(2θ), which takes now a new form in terms of R and ρ:

T =
2R

R2 − 1
ρ, (66)

and also

kUo = kvo − kuvo
1

T

(
1 +

1 − T 2

√
1 + T 2

)
, kVo = kvo − kuvo

1

T

(
1 − 1 − T 2

√
1 + T 2

)
. (67)

We set as before WUo = 1/
√
kUo and WVo = 1/

√
kVo. Then we obtain a new form for the

equation S = 1/Q = 1:

So =
σvo

αB x η(R2 − 1)
√

1 + T 2
((nu + 1/2)WUo − (nv + 1/2)WVo) , (68)
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with So = 2κ0S.
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Figure 19: Profile S(η) from Eq. 68 obtained for T = (1.18, 1.185, 1.19, 1.195, 1.20), where
T = 2Rρ/(R2 − 1) and nu = 2, nv = 1, ηP = 0.20 and αB = 0.045. It remains almost constant
as theoretically expected, here on the range η = (0, 0.8). The inset is an enlarged view showing
that the small differences with S = 1/Q = 1 are of order a few 10−3.

We find that S = cst for a limited range of values of the parameter T ≈ (1.18− 1.20),
as can be seen in Fig. 19. From this range we find ρ = (0.36 − 0.41) for R = (1.35 −
1.40), which is compatible with the interval of values obtained from directly inserting the
function µB(r, a, p, k) in the ρ expression Eq. 65.

10 Discussion

Despite the obtention of many new results from the scale-relativity theory of turbulence,
such as theoretical predictions of the Karman constant value and of its variations, of
the normal Reynolds stress profile and of its amplitude, or of the velocity correlation
coefficient, there remains some problems and open questions which require further work.

A first problem is that, as in the turbulent jet case, the ku equation cannot be used in
the boundary layer study since it yields a repulsive harmonic oscillator solution for the u
velocity fluctuations on most of the normal profile. We have circumvented this problem
by setting σu = R σv following Tennekes and Lumley argument [4] and using only the
kv and kuv equations. However, this problem seems to point to the fact that the axial
component of the velocity-space Schrödinger equation, i.e. along the streamwise flow, is
incorrect or incomplete. A more thorough analysis of this problem will be needed.
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Another possible drawback concerns the kv equation, which depends on a parameter
B0 which we have assumed to be constant. Under this hypothesis, this parameter is
replaced by the equivalent parameter aP which can be finally expressed in terms of ηP ,
the position of the maximum of σv(η). This constancy hypothesis is strongly supported by
the excellent agreement obtained between our theoretical profile solution of the kv equation
and the experimental and numerical data. However, both the consistency of the values of
B0 corresponding to its various constituents and its constancy may be questionned and
should be studied in more detail.

Using Landau’s remark that there is no fixed available scale in the boundary layer
problem, so that only y can be used, has led us to suggest that the natural length-scale
in the axial direction is Lx = y, so that Ly = R−3Lx from the unity of the macroscopic
Planck constant, implying a Karman constant κ = R−3 ≈ 0.4. One could argue against
this reasoning that Lx should be defined up to another unknown numerical constant, i.e.
Lx = k y. However we have also obtained the same result from the PDF of the variable
g = κR3, which shows a well-defined probability peak at g = 1. Since this PDF is derived
from the constraint Q = cst, i.e., directly from the v-Schrödinger equation (which is itself
a re-formulation of the Navier-Stokes equations in the turbulent K41 regime), we consider
that this result comes in support of our general physics argument à la Landau.

Further studies are needed to tackle some questions which have not been addressed
in the present work, such as that of the lateral Reynolds stress profile σ2

w(η), or that
of the origin of the possible values of Coles’ wake law parameter, which is known only
empirically.

Another incompleteness concerns the values of the QHO quantum numbers in the
Q = 1 equation, which we have taken to be nu = 2 and nv = 1 as representing the most
probable excited state. A full solution would involve performing the same analysis for all
states and combining them according to their probability densities predicted by statistical
physics.

We intend to tackle these open questions in a forthcoming study. We shall also analyse
in more detail the theoretically predicted dependence of various quantities like κ and ρ
in function of other parameters such as αB (and therefore the Reynolds number). This
dependence, which we have found to be small, may offer an explanation of the experimen-
tally observed behavior of these quantities, which show both a global universality (e.g.
κ ≈ 0.4) and small variations possibly depending on flow conditions (e.g. κ = 0.37, 0.39
and 0.41 respectively for channels, boundary layers and pipes [6]). Our theoretical pre-
dictions offer the ability to test for these variations by searching for correlations with the
relevant parameters in experimental and numerical data.

11 Conclusion

We have applied in the present work the scale-relativity approach to the plane turbulent
boundary layer problem, which concerns also to some extent channel and pipes. We have
concentrated our analysis on the outer region far from the wall η = y/δ >≈ 0.1 which
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allows to neglect the effect of viscosity. Moreover, the intermediate region 0.1 < η <
0.3 has the advantage to be still well described by the ‘law of the wall’ as regards the
mean velocity in boundary layers (and even farther for channels and pipes). This allows
matching of inner and outer solutions.

In the scale-relativity theory, we have shown that the effect of a non-differentiable
and fractal space or medium is to transform the fundamental equation of dynamics into a
macroscopic Schrödinger-like equation. Applied to fluid mechanics and in velocity-space
[16], this means that the Navier-Stokes equations, once derivated in time and re-integrated
in velocity, are transformed in terms of a v-Schrödinger equation in which the potential
is a manifestation of the pressure gradient. We have shown that it takes in an universal
way the form of an harmonic oscillator potential [10, 21].

Under the boundary layer approximation, which is valid in many flows such as jets, flat
plate boundary layers, channels and pipes, the pressure is the opposite of the Reynolds
stress, i.e. p = −σ2

v . The potential in the v-Schrödinger equation is therefore given by
the derivatives of the normal Reynolds stress, which ensures solving the closure problem
in these cases.

In this framework, we have been able to theoretically predict quantities which are fun-
damental to turbulence, such as the Karman constant κ, the ratio of turbulent intensities
R = σu/σv, the profile and amplitude µ2

B of the Reynolds stress σ2
v along the direction

normal to the wall and the coefficient of correlation of velocities ρ. These predictions,
according to which µB = R ≈ 1.35 and κ = ρ = R−3 = 0.4 to lowest order, are in fair
agreement with the data from observations and from laboratory and numerical experi-
ments. In particular, the well known puzzle of the universality of the value ρ ≈ 0.4 of the
velocity correlation coefficient in all shear flows [4] has now received a beginning of ex-
planation, being theoretically predicted by the scale-relativity / macroscopic Schrödinger
equation approach for round jets [10], plane boundary layers, channels and pipes.

Appendix A: properties of the Reynolds stress solution

We have found a solution to the v-Schrödinger equation for the Reynolds stress σ2
v , which

writes:
σ2

v = Aµ2
B v

2
⋆

√
η sin(aP ln η). (69)

The normalized coordinate is η = y/δ, where y is the distance normal to the wall and
δ the width of the turbulent zone. Calling ηP the position of the peak of this function,
the normalisation factor is given by A−1 =

√
ηP sin(aP ln ηP ), so that the peak value is

σ2
vP = µ2

B v2
⋆, which defines the amplitude µB. The parameter aP is given in function of

ηP with an excellent approximation by:

aP = 3.172
√
η2

P − η2
P0, (70)

where ηP0 = 0.13529 (see Fig. 20). For ηP < 0.135, the normalized expression remains
valid with an imaginary parameter aP = i a. In this case the reduced Reynolds stress may
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Figure 20: Variation of the parameter aP in the reduced expression of the Reynolds stress
σ2

vr =
√

η sin(aP ln η) in function of the position ηP of its maximum. The blue curve results
from a numerical calculation while the red curve is the analytical approximation Eq. 70.

be also written in terms of real numbers as σ2
vo =

√
η/ηP ×sinh(a ln η)/ sinh(a ln ηP ). Our

solution for the Reynolds stress is plotted in Fig. 21 for various value of the peak position
ηP .

Appendix B: various solutions of the equation Q =cst

We solve numerically the equation Q(R, µB, ηP , αB, κ; η) = 1 by keeping only the values
of the parameters for which the standard deviation σQ with respect to the flat profile
Q(η) = 1 are small (typically σQ < 0.002) in the relevant range η = 0.3 − 0.7.

The expression of Q (Eq. 50) involves the Reynolds shear stress σuv, for which various
theoretical solutions have been proposed [27]. The simplest is σuv = 1 − η [4]. We have
obtained a more elaborated solution which reads:

σuv = v2
⋆

(
1 − η

(
1 − αB

κ2
ln η
))

, (71)

while some experimental data yields slightly higher values (see Fig. 1 and references in
its caption). We have considered these various possibilities in searching for a relation
between the shear stress amplitude µB along the direction normal to the wall and the
turbulent intensity ratio R = σu/σv.

We consider here the results of a run made with κ = 0.4 and the other parameters in
the ranges R = (1.2 − 1.6), µB = (0.8 − 1.6), αB = (0.03 − 0.06) and ηP = (0 − 0.4).
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Figure 21: Solutions of the QHO v-Schrödinger equation for the Reynolds stress profiles σ2
v

(Eq. 69). The fonction is normalized to σv(ηP ) = 1, where ηP is the position of its maximum,
and it is plotted for various values of this position, ηP = 0.05, 0.10, 0.15, 0.20 and 0.25.

When using the approximate expression for σuv = 1− η, a fit of the parameter subset
such that σξ < 0.002 yields, with a high statistical significance (Student t > 45 for the R
coefficients):

µB = 14.084 − 16.94R+ 5.57R2 − 5.34αB + 37.11α2
B + 0.423 ηP . (72)

Neglecting the dependence of µB on αB and ηP which remains small, we obtain:

µB(R) = R0 − 2.18 (R− R0) + 5.5 (R−R0)
2, (73)

where R0 = 1.33 in that case.
When using the polynomial fit of [EJ] data for σuv (see Fig. 1), a fit of the parameter

subset such that σξ < 0.002 yields, with a high statistical significance (Student t > 70 for
the R coefficients):

µB = 12.182 − 13.00R+ 3.93R2 − 3.44αB + 23.0α2
B − 2.79 ηP + 7.82 η2

P . (74)

Neglecting the small dependence of µB on αB and ηP , we obtain:

µB(R) = R0 − 2.15 (R− R0) + 4.0 (R−R0)
2, (75)

where R0 = 1.38 in that case.
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Figure 22: Relation µB(R) solving the equation Q =cst (Eq. 50). The σv profile input in this
equation is the theoretical solution of the kv equation, while σuv is the solution of the RANS
and continuity equations Eq. 52. The different continuous curves correspond to the range of
possible values for αB and ηP . The equality µB = R is reached for R0 = 1.344. The dashed
curves correspond to two others choices, the standard simple solution σuv = 1 − η and a fit of
[EJ] [28] data. It is compared to the range of predicted values for R from quantized QHOs,
R = 1.34 ± 0.04, yielding possible values for µB in the range (1.28 − 1.45).

Appendix C: analytic solution from power series

Power series of function Q Another way to obtain solutions for the equation Q = 1
consists of expanding Q in power series. Since we expect Q to be a constant independent
from η, a linear expansion Q = A(R, µB)+B(R, µB) (η−η0) is sufficient and the searched
solution is given by the slope cancellation B(R, µB) = 0. Solving for this equation yields
the solution µB = µB(R), which depends also slightly on (αB, ηP and κ).

Since we already know that R lies in a restricted range R ≈ (1.3 − 1.4), we use
linear expansions for R and for µB. The power series is performed in terms of (R − R0),
(µB − µB0) and (η − η0) for various numerical values of the three remaining parameters,
αB, ηP , and κ. After expansion it takes the form:

Q = (a0 + b0R + c0µB + d0RµB) + (a + bR + c µB + dRµB) η. (76)

Thus the equation Q = 1 is translated into the slope cancellation equation (a + bR +
c µB + dRµB) = 0, which leads to the searched solution:

µB(R) = −a + bR

c + dR
. (77)
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Figure 23: Comparison between the solutions of the equation Q =cst obtained by fit with those
obtained by power series. The solution by fit is given by the black points, which are values of R
and µB such that the standard deviation of Q values around Q = 1 is σQ < 0.002. The dispersion
between the points mainly comes from variation between the values of αB and ηP . They have
been slightly displaced in function of the values of these parameters in order to distinguish them
(see Fig. 8 for a correction of their effect). The solutions by power series are found from the
cancelation of the η coefficient in the linear expansion of Q(η). The different curves correspond
to αB = (0.03, 0.045, 0.06), ηP = (0.15, 0.175, 0.20) and κ = (0.37, 0.40, 0.43).

We have taken η0 = 0.5, R0 = 1.34 and µB0 = 1.34, knowing that the final result is almost
independent from this choice. These operations have been performed for numerical values
of αB, ηP and κ taken in their expected range (see caption of Fig. 23). The parameters
(a, b, c, d) are found to weakly depend on these values. The result, plotted in Fig. 23, fully
agrees with the previous fit method.

One finds a median solution given to lowest order by:

µB = R0 − 2.25 (R−R0), (78)

where R0 = 1.334. Both the slope and the point R0 for which R = µB essentially agrees
with the result from the fit method.

The main variation comes fromR while the other variables contribute only by ≈ ±0.02.
In order to be more specific on this point, we have performed a power series expansion for
all parameters. We verify that the quadratic terms are small with respect to the linear
ones. We set n = η − η0, r = R − R0, m = µB − µB0, a = αB − αB0, p = ηP − ηP0

and k = κ − κ0. For example, performing an expansion of Q around R0 = µB0 = 1.344,
η0 = 0.5, αB0 = 0.045, ηP0 = 0.16 and κ0 = 0.4 we find:

Q = 1 − 0.026n+ 0.029n2 + 2.1 r − 0.59m+ 1.27 a+ 3.6 p− 0.32 k, (79)
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manisfesting a very flat variation with η as expected and a small dependence on the other
parameters.

Full order two power series In order to get a more complete understanding of the
behavior of the function Q = Q(R, µB, αB, ηP , κ; η) and of the way by which it can become
constant, we have performed a full power series expansion of Q, linear in terms of η and up
to order 2 in function of all the parameters. A full analytic form of the searched function
µB = µB(R,αB, ηP , κ) will then result from the cancellation of the η coefficient.

We have performed a power series expansion around the values (R0, µB0, αB0, ηP0, κ0) =
(1.35, 1.35, 0.045, 0.16, 0.40), which are central with respect to the previously established
possible range for these parameters. This allows us to now get an explicit form for the
dependence of the relation m(r) on the other parameters. After normalisation to 1 of the
constant coefficient, we find:

Q = 1 − 0.5037m+ 2.167 r + 1.411 a+ 4.378 p− 0.277 k

+ 1.127m2 + 3.59 r2 − 12.92 a2 − 0.60 p2 + 1.21 k2

+ 2.513mr + 2.27ma− 2.97mp+ 1.03mk + 9.65 ra

+ 7.78 rp+ 1.38 rk + 13.7 ap− 3.91 ak − 1.64 pk

+ (0.0543 + 1.618m+ 3.764 r − 1.771 a+ 1.070 p+ 0.632 k

− 0.0376m2 + 10.04 r2 − 70.93 a2 − 8.30 p2 − 1.52 k2

+ 7.801mr + 24.30ma− 1.63mp+ 1.58mk + 48.03 ra

− 0.096 rp+ 5.59 rk + 43.52 ap+ 27.24 ak − 2.42 pk)n. (80)

We express the constancy of Q by the cancellation of the coefficient of the n term. This
equation is solved in terms of the function m = m(r, a, p, k). We finally find a complete
analytical expression for m = µB − 1.35:

m = (−0.0336 + 1.596a− 0.694p− 0.357k − 13.04ak + 1.29k2 − 14.90ap+ 1.83kp)

+ (−2.161 − 5.079a+ 1.297p+ 0.421k + 62.82ak − 6.75k2 + 48.91ap− 9.85kp) r

+ (4.317 − 39.45a− 2.18p− 6.36k − 177.3ak + 39.7k2 − 249.5ap+ 44.8kp) r2. (81)

The resulting function and its dispersion agree with its numerical determination as given
in Fig. 23. In particular, its expression for R = µB = 1.35, αB = 0.045, ηP = 0.14 and
κ = 0.4 in the relevant range R = (1.3 − 1.4) is very close to the fit of the numerical
integration given by the red curve in Fig. 8. We show in Fig. 9 the function m(r) for
various values of the parameters. This analytical result supports our general conclusion
according to which µB ≈ R. The value for which µB = R is found to be more precisely
R0 = 1.34 ± 0.01.

Finally we have numerically checked the validity of this result by comparing the PDF
of the standard deviation σQ of Q values relative to Q = 1 under the constraint given
by Eq. 55, to the PDF obtained for all values without constraint. The result of this
comparison is given in Fig. 24 and is very satisfactory. The PDF obtained while using the
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analytic expression for µB shows a well defined peak at σQ = 0.002 then decreases with
σQ < 0.013. This is in good agreement with the constraint σQ < 0.002 − 0.005 which we
have used to numerically establish the µB(R,αB, ηP , κ) relation.
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Figure 24: Comparaison between the PDFs of standard deviations σQ under the constraint given
by Eq. 55 (red histogram) to their PDF without constraint (blue histogram). The analytic µB

expression has been obtained by cancelling the linear term B = 0 in the power series expansion
Q = A+Bn+O[n2]. We have cut the no constraint PDF at σQ = 0.02, but it actually continues
without decreasing up to large values ∼ 1.

Remark that this solution, obtained from the cancellation of the linear term of Q(n),
though satisfactory since agreeing with the numerical results, cannot be considered as yet
optimal. Indeed, the profile with smallest dispersion around Q = 1, may have a slope
which is small but nevertheless non-zero at n = 0. Actually, as can be seen in Fig. 7,
the profiles for which the standard deviation σQ with respect to Q =cst are the smallest
have a W-like shape which are characteristic of polynomials of order at least η4, with a
negative parabolic contribution −η2. We have compared these profiles with their power
series expression and found that a complete agreement can be obtained in every case only
at order η6 or η8. A more detailed analysis of this behavior will be presented in a future
work. In particular, we expect to recover in an analytic way the various properties which
have been obtained by numerical methods (PDFs of parameters and relations between
them).
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