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Abstract

7-Ketocholesterol (or 7-oxocholesterol) is an oxysterol essentially formed by cholesterol 
autoxidation. It is often found at enhanced levels in the body fluids and/or target tissues of 
patients with age-related diseases (cardiovascular, neuronal, and ocular diseases) as well as in 
subjects concerned with civilization diseases (type 2 diabetes, bowel diseases, and metabolic 
syndrome). The involvement of increased 7-ketocholesterol levels in the pathophysiology 
of these diseases is widely suspected. Indeed, 7-ketocholesterol at elevated concentrations 
is a powerful inducer of oxidative stress, inflammation, and cellular degeneration which 
are common features of all these diseases. It is important to better know the origin of 
7-ketocholesterol (diet, incidence of environmental factors, and endogenous formation 
(autoxidation and enzymatic synthesis)) and its inactivation mechanisms which include 
esterification, sulfation, oxidation, and reduction. This knowledge will make it possible to act 
at different levels to regulate 7-ketocholesterol level and counteract its toxicity in order to 
limit the incidence of diseases associated with this oxysterol. These different points as well as 
food and biomedical applications are addressed in this review.

Introduction

7-ketocholesterol (7KC; C27H44O2; PubChem CID 91474; 
also named 7-oxocholesterol) is a lipid molecule. It is 
a cholesterol oxide derivative (oxysterol) essentially 
resulting from the autoxidation of cholesterol which 
is the most abundant member of a family of polycyclic 
compounds known as sterols. 7KC was first identified 
in large quantities in oxidized low-density lipoproteins 
(LDLox) and in atherosclerotic plaques (Brown & Jessup 
1999, Vejux & Lizard 2009). It is also present in high 
quantities in the retina of patients with age-related 
macular degeneration (AMD) (Rodríguez & Larrayoz 
2010) and in the cortex of Alzheimer’s patients (Testa et al. 
2016). The contribution of 7KC to Alzheimer’s disease is 
well documented (Mahalakshmi et  al. 2021). 7KC is also 
increased in the plasma of sarcopenic patients (Ghzaiel 
et  al. 2021b). 7KC is also elevated in plasma and tissues 
of patients with rare diseases such as Smith–Lemli–Opitz 
syndrome (SLO) (PMID: 26976653), Nieman Pick disease 
type C (PMID: 29626102), and type B (PMID: 31009661), 
as well as in patients with severe forms of X-linked 
adrenoleukodystrophy (X-ALD, PMID: 300100) (Nury 
et  al. 2017). In vitro, 7KC induces oxidative stress, as well 
as cytokinic and non-cytokinic inflammation, often 
leading to an apoptotic mode of cell death associated 
with autophagy criteria. The type of cell death frequently 
induced by 7KC, as well as by other cytotoxic oxysterols 
(7β-hydroxycholesterol, 24S-hydroxycholesterol, 
25-hydroxycholesterol, 5,6 epoxycholesterol isomers), is 
defined as oxiapoptophagy (Nury et al. 2021b) and has been 
observed on different cell types: human monocytic U397 

cells (Monier et al. 2003), human myeloma cells (Jaouadi 
et  al. 2021), nerve cells (158N oligodendrocytes (Nury 
et al. 2014, 2015), murine microglial BV-2 cells (Nury et al. 
2017), murine neuronal N2a-cells (Yammine et  al. 2020), 
human bone marrow mesenchymal stem cells (Paz et  al. 
2019), and L929 mouse fibroblast cells (You et  al. 2021). 
Currently, due to the ability of 7KC to trigger cytotoxic 
activities (oxidative stress, inflammation, cell death 
induction) characterizing frequent age-related diseases 
(cardiovascular, ocular, and neurodegenerative diseases), 
the involvement of this oxysterol in the pathophysiology 
of these illnesses is well accepted (Zarrouk et  al. 2014, 
Samadi et al. 2021). Consequently, to efficiently treat these 
highly disabling diseases which have a high cost for society, 
a better knowledge of the production and inactivation of 
7KC is required. However, if 7KC is mainly studied for its 
cytotoxic activities, this should not lead to ignore that 
this molecule could also have beneficial effects on the 
immune response, control of infectious diseases, and cell 
proliferation and differentiation (Lembo et  al. 2016, de 
Freitas et al. 2021, Ghzaiel et al. 2021a).

Cholesterol and related sterols autoxidation: 
formation of 7-ketocholesterol

Cholesterol autoxidation falls within the lipid peroxidation 
field. Cholesterol oxide derivatives (also named oxysterols) 
are 27 carbons molecules formed by the addition of oxygen 
to the cholesterol molecule (an overview of oxysterols 
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formation is provided on the LipidWeb website: https://
lipidmaps.org/resources/lipidweb/lipidweb_html/lipids/
simple/chol-der/index.htm; May 2022). This addition of 
oxygen to cholesterol can be achieved by non-enzymatic 
and/or enzymatic reactions (Mutemberezi et  al. 2016a, 
Brown et al. 2021). Electrochemical oxidation of cholesterol-
generating numerous oxysterols, including 7KC, in a short 
time has also been described (Weber et al. 2016). The term 
autoxidation refers to non-enzymatic oxidation which 
can be considered as a part of chemical reactions which 
contribute to produce cholesterol derivatives (Morzycki 
2014). For cholesterol, a distinction is made between type 
I autoxidation induced by reactive oxygen species (ROS 
such as superoxide anion (O2

·−) and hydroxyl anion (HO·)), 
reactive nitrogen species (RNS such as nitric oxide (NO) 
and peroxynitrite ONOO·), Fenton reaction (H2O2 + Men+ 
→ HO· + OH− + Me(n+1)+ where Me is a transition metal such 
as copper, iron, or aluminium) or Haber–Weiss reaction 
(O2

·− + H2O2 → HO· + HO− + O2)), and type II autoxidation 
induced by ozone (O3), hypochlorite (HOCl), and singlet 
oxygen (1ΔgO2) (Iuliano 2011). The preferred site for 
cholesterol autoxidation is at carbon 7 where the carbon–
hydrogen bond is weak (Iuliano 2011). The three oxysterols, 

7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC), 
and 7α-hydroxycholesterol (7α-OHC), are mainly formed 
by type I autoxidation and 7KC is the most abundant 
(Anderson et al. 2020, Nury et al. 2021a) (Fig. 1A). Hydro-
peroxycholesterol C4, C5, and C6 are also produced by type 
I autoxidation and give 4α-hydroxycholesterol (4α-OHC), 
5α- or 5β-hydroxycholesterol (5α-OHC or 5β-OHC: 5α/β-
hydroxycholesterol), and 6α- or 6β-hydroxycholesterol (6α-
OHC or 6β-OHC: 6α/β-hydroxycholesterol), respectively 
(Zerbinati & Iuliano 2017) (Fig. 1B). 4β-hydroxycholesterol 
(4β-OHC) is enzymatically formed by CYP3A4 and CYP3A5 
in humans (Diczfalusy et  al. 2011, Mutemberezi et  al. 
2016a). As for cholesterol epoxides (5α,6α-epoxycholesterol 
and 5β,6β-epoxycholesterol), which are stable molecules 
(Paillasse et al. 2012), they can be formed either by type I 
autoxidation or type II autoxidation (with O3) and can 
give cholestane 3β,5α,6β-triol (cholestane-triol) (Noguer 
et  al. 2017) which can also be enzymatically formed 
from 5α,6α-epoxycholesterol by the cholesterol epoxide 
hydrolase (Ch-EH) (Iuliano 2011, Silvente-Poirot & Poirot 
2012, Zerbinati & Iuliano 2017) (Fig. 1B). Noteworthy, 
whereas the reactions on the cholesterol side chain are 
mostly enzymatic reactions, 25-hydroxycholesterol 

Figure 1
Production of oxysterols, including 7-ketocholesterol, by cholesterol autoxidation. (A) 7-Ketocholesterol can be formed by type I autoxidation as well as 
Fenton and Haber–Weiss reactions. (B) 4α-Hydroxycholesterol, 5α (or 5β)-hydroxycholesterol (5α/β-hydroxycholesterol), and 6α (or 6β)-hydroxycholesterol 
(6α/β-hydroxycholesterol) are formed by cholesterol autoxidation involving type I autoxidation (ROS/RNS), whereas 5α,6α-epoxycholesterol and 
5β,6β-epoxycholesterol can be formed by type I autoxidation (ROS/RNS) and type II autoxidation (Ozone: O3). Triol is formed from 5α,6α epoxycholesterol 
or 5β,6β epoxycholesterol in an acidic environment.
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(25-OHC) can be formed both by autoxidation as 
well as enzymatically by the enzyme 25-hydroxylase 
(cholesterol + AH2 + O2 ↔ 25-hydroxycholesterol + A + H2O) 
(Lund et al. 1998).

Exogenous and endogenous sources 
of 7-ketocholesterol

Dietary origin of 7-ketocholesterol

Oxysterols formed by autoxidation, such as 7KC, are often 
present in high amounts in manufactured food products 
(Yan 1999, Rodriguez-Estrada et  al. 2014, Poli et  al. 2022). 
With the following oxysterols (7α-hydroxycholesterol 
(7α-OHC), 7β-hydroxycholesterol (7β-OHC), 5α,6α-
epoxycholesterol (5α,6α-EPOC), 5β,6β-epoxycholesterol 
(5β,6β-EPOC), cholestane-3β,5α,6β-triol (cholestane-triol), 
and 25-hydroxycholesterol (25-OHC)), 7KC is one of the 
oxysterols present in significant quantities in food products 
of animal origin (Maraschiello et al. 1998, Petrón et al. 2003, 
Canzoneri et al. 2022). While 7KC is metabolized by the liver 
(Lyons et  al. 1999), the lack of regulation on the content 
of cytotoxic oxysterols mainly formed by autoxidation 
(7KC, 7β-OHC, 5β,6β-EPOC, cholestane-triol) and present 
in manufactured food products constitutes a real public 
health problem when they are consumed regularly and 
in large quantities. Thus, 7KC is abundant in industrial 
foods associated with a complex manufacturing process 
involving raw materials where cholesterol is present in large 
quantities (butter, cream, eggs, meat, milk, milk chocolates) 
(Clariana & García-Regueiro 2011, Risso et al. 2021, 2022). 
In addition, during the industrial processes, high heating 
steps and exposure to air favour cholesterol autoxidation 
(Sabolová et al. 2017). Prolonged storage of butter, pastries, 
shellfish, and meat also promotes the formation of 7KC 
(Nielsen et al. 1996, Lee et al. 2001, Mazalli & Bragagnolo 
2007, Hernández Becerra et al. 2014). In traditional cuisine, 
the way of cooking can also lead to more or less important 
7KC formation (Echarte et al. 2005, Lee et al. 2006). It is also 
important to highlight that several oxysterols, including 
7KC, have been identified in high quantities in baby’s and 
children’s foods (Sander et al. 1989, Kilvington et al. 2021). 
Some data support the serious consequences of oxysterols 
on the intellectual and physical development of children 
(Kilvington et  al. 2021) and underline that they could 
promote metabolic syndrome and obesity (Guillemot-
Legris et  al. 2016, Mutemberezi et  al. 2016b), as well as 
inflammatory bowel disease (Guina et al. 2015). Therefore, 
in the food industry, it seems important to take appropriate 

measures to control and limit oxysterol levels in food. 
In a first step, oxysterols profile (realized by HPLC-mass 
spectrometry or gas chromatography-mass spectrometry) 
could be implemented as a guarantee of quality, safety, 
and nutritional value in the selection of ingredients but 
also during processing and storage (van de Bovenkamp 
et al. 1988, Razzazi-Fazeli et al. 2000, Gorassini et al. 2017). 
In addition, some oxysterols present in the digestive tract, 
such as 7KC, can also come from cholesterol-rich foods 
and can be the consequence of digestion in the stomach. 
Indeed, the acidic pH of the latter, and the presence of free 
iron and heme proteins, such as myoglobin provided by 
red meats, make it a very pro-oxidant medium which can 
favour cholesterol autoxidation (Kanner & Lapidot 2001, 
Lapidot et al. 2005). It is suggested that the presence of 7KC 
in the stomach could destabilize the gastric epithelial cell 
barrier (Gajewski et al. 2016).

Metabolic origin of 7-ketocholesterol

The production of 7KC by type I autoxidation is the most 
frequent and it is well established in several age-related 
diseases (Zarrouk et  al. 2014, Zerbinati & Iuliano 2017, 
Nury et  al. 2021a). However, 7KC can also be obtained 
enzymatically (Fig. 2). Thus, 7KC can also be formed 
enzymatically from 7β-OHC by the hydroxysteroid 
dehydrogenase type 2 (11β-HSD2; HSD11B2 gene, OMIM 
614232) which is mainly expressed in the kidney, colon, 
and placenta (Ferrari 2010). In addition, in patients with 
cerebrotendinous xanthomatosis or with SLO syndrome, 
7KC can be formed from 7-dehydrocholesterol (7DHC, a 
direct precursor in cholesterol biosynthesis belonging to 
the Kandutsch–Russel pathway (Petrov et al. 2016)) by the 
enzyme cholesterol-7α-hydroxylase (CYP7A1) (Liu et  al. 
2013, Björkhem et al. 2014).

Age-related diseases and civilization diseases 
associated with 7-ketocholesterol

7KC is greatly increased in the tissues (vascular wall, retina, 
and certain brain regions) of patients with cardiovascular 
diseases, AMD, Alzheimer’s disease, and Parkinson’s 
disease (Zarrouk et al. 2014, Pariente et al. 2019), and most 
likely in X-ALD which is also associated with important 
oxidative stress (Deon et al. 2016, Nury et al. 2017). It is now 
well accepted that 7KC, which triggers oxidative stress and 
inflammation leading to numerous cell damages, plays 
key roles in the pathophysiology and in the outcome of 
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age-related diseases (Samadi et al. 2021). Several data also 
support that 7KC can contribute to ageing (de Medina et al. 
2022) as well as civilization diseases such as diabetes type 2 
(Endo et al. 2008, Samadi et al. 2019), bowel diseases (Poli 
et  al. 2013), metabolic syndrome, and obesity (Murdolo 
et al. 2016) resulting from life habits (diet, physical activity), 
environmental pollution (air pollution, endocrine 
disrupters, and obesogens), and neuroemotional pollution 
(chronic stress). Currently, different types of relationships 
have been found between environmental pollution that 
can promote age-related and civilization diseases and 7KC. 
Thus, it has been reported that 7KC accumulates in vessels 
as a result of the stress caused by air pollution (Rao et  al. 
2014), is an endogenous modulator for the aryl hydrocarbon 
receptor which interacts with dioxin (Savouret et al. 2001), 
contributes to cigarette smoke side effects (Steffen et  al. 
2012), could favour asthma (Zanjani et  al. 2022) as well 
as silicosis (Aksu et al. 2020), and increases the toxicity of 
nanoparticles (Kahn et al. 2010). In civilization diseases, it 

is suggested that 7KC, when present at increased levels, may 
act as an adipokine modulating the adipogenic potential 
of undifferentiated adipose precursor cells (Murdolo et al. 
2016). There are also evidences that dietary 7KC accelerates 
hepatic steatosis and inflammation in obese mice models 
(Chang et al. 2020). Currently, several studies also support 
that 7KC acts on adipogenic differentiation factor (de Freitas 
et al. 2021). In the context of osteoporosis, it has also been 
reported that 7KC induces miR107-5p which promotes the 
differentiation of osteoclasts by downregulating mitogen-
activated protein kinase 1 (MKP1) (Li et al. 2022).

Characteristics of 7-ketocholesterol-induced 
cytotoxic effects

7KC has been shown to accumulate in lipid rafts (Royer 
et  al. 2009, Ragot et  al. 2013). 7KC disrupts plasma 
membrane organization (Kahn et  al. 2011, Wnętrzak 
et  al. 2022) and enhances plasma membrane rigidity 
(Olkkonen & Hynynen 2009, Vejux et  al. 2009), as well 
as permeability (Vejux et al. 2020, Nury et al. 2021a). 7KC 
is also a strong inducer of oxidative stress and triggers 
organelles dysfunctions (mitochondria, peroxisome, 
lysosome, endoplasmic reticulum), inflammation, and 
cell death (Nury et  al. 2021a) (Fig. 3). 7KC activates cell 
death on different cell types (primary cultures, cell lines) 
of different species in a concentration range of 25–50 
μM after 24–48 h of culture. 7KC-induced cell death can 
be either a mode of cell death by apoptosis (caspases-
dependent cell death) or a caspases-independent cell 
death process (Fig. 4). 7KC-induced apoptosis has been 
described on vascular wall cells, monocytes/macrophages, 
and nerve cells (neurons, glial cells (oligodendrocytes), 
and microglial cells). On human monocytic THP-1 cells, 
7KC-induced cell death is associated with a sustained 
increase of Ca2+ which elicits the mitochondrial pathway 
of apoptosis (Berthier et al. 2004). A non-apoptotic mode 
of cell death, without caspases activation, has been 
described on human fibroblasts, MCF-7 mammary tumor 
cells, which are deficient in caspase-3, as well as on C6 
rat glioblastoma cells (Vejux et  al. 2020), and in some 
cases on ARPE-19, a human retinal pigment epithelial cell 
lines with differentiated properties (Dugas et  al. 2010). A 
caspase-independent cell death has also been observed 
on C2C12 murine myoblasts (Ghzaiel et al. 2021b). In all 
the cases, whether it is an apoptotic mode of cell death 
or a caspases-independent cell death process, significant 
mitochondrial and peroxisomal alterations have been 
found. Thus, topographical and morphological changes 

Figure 2
Enzymatic synthesis of 7-ketocholesterol. 7-ketocholesterol can be formed 
from 7β-hydroxycholesterol by the 11β hydroxysteroid dehydrogenase type 
2 (11β-HSD2) and from 7-dehydrocholesterol by cholesterol-7α-hydroxylase 
(CYP7A1). 7-Ketocholesterol can also give 7β-hydroxycholesterol via the 11β 
hydroxysteroid dehydrogenase type 1 (11β-HSD1).
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in mitochondria have been observed; these changes were 
associated with a drop in transmembrane mitochondrial 
potential (ΔΨm) (Nury et  al. 2021a). On A7r5 rat aorta 
smooth muscle cells, it has been shown that the drop of 
ΔΨm induced by 7KC precedes the activation of apoptosis 
associated with a loss of cell adhesion (Zahm et al. 2003). 
In addition, under treatment with 7KC, the Krebs cycle 
(also called the citric acid cycle), as well as the oxidative 
phosphorylation, is also strongly altered leading to lower 
glycolysis and a decrease in ATP production (Leoni et  al. 
2017). Overproduction of reactive oxygen species (ROS), 
especially superoxide anions (O2

·−), is also observed 
at the mitochondrial level (Nury et  al. 2021a). Like 
mitochondria, the peroxisome, which is functionally 
connected to the mitochondria and vice versa (Lismont 
et al. 2015, Fransen et al. 2017), is also subject to significant 
topographical and morphological changes. In addition, 

a reduction in peroxisomal mass is always observed, 
as well as a decrease in peroxisomal β-oxidation which 
results in a cytoplasmic accumulation of very long-
chain fatty acids (VLCFA) known for their cytotoxic and 
pro-oxidant activities (Zarrouk et  al. 2012, Nury et  al. 
2018). This alteration of the peroxisome, in particular, 
the decrease in the levels of peroxisomal proteins, ATP-
binding cassette subfamily D member 1 (ABCD1, involved 
in the transport of VLCFA from the cytoplasm inside 
the peroxisome) and acyl-CoA oxidase 1 (ACOX1, the 
first and rate-limiting enzyme in peroxisomal fatty acid 
β-oxidation of VLCFA), could contribute to 7KC-induced 
oxidative stress (Trompier et  al. 2014). Indeed, on 
158N rat oligodendrocytes, it has been shown that the 
decreased expression of ABCD1 and ACOX1 induced by 
RNA silencing triggered a strong overproduction of ROS 
and reactive nitrogen species (RNS) (Baarine et  al. 2012). 

Figure 3
Major characteristics of 7-ketocholesterol-
associated cytotoxic effects. The main cytotoxic 
effects of 7-ketocholesterol, which are also 
hallmarks of age-related diseases and civilization 
diseases, are oxidative stress and inflammation 
which can contribute to trigger cell death.
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Thus, regardless of the type of cell death induced by 7KC 
(caspases-dependent or independent), mitochondrial 
and peroxisomal dysfunctions could favour oxidative 
stress. This latter could not only be due to mitochondrial 
and peroxisomal dysfunctions but also to the activation 
of NADPH oxidases. In addition, this oxidative stress is 
associated with a disruption of the RedOx equilibrium 
which results (i) in changes in the activity of antioxidant 
enzymes (catalase, superoxide dismutase, glutathione 
peroxidase) and (ii) in lipid peroxidation leading to the 
generation of aldehydes such as malondialdehyde (MDA)-
promoting protein carbonylation (Vejux et al. 2020, Nury 
et  al. 2021a). Therefore, 7KC-induced oxidative stress 
appears a major element in cellular dysfunctions leading 
to caspases-dependent and independent cell death. 
Moreover, among the events associated with cell death, 
7KC also activates an autophagic process considered as 
survival autophagy (Yammine et  al. 2020, Zhang et  al. 
2020). This latter is observed either during apoptosis or 
caspases-independent cell death. When autophagy is 
associated with oxidative stress and apoptosis, the term 

‘oxiapoptophagy’ (OXIdation + APOPTOsis + autoPHAGY) 
is used to define 7KC-induced cell death (Fig. 4) (Nury 
et  al. 2021b). The signalling pathways associated with 
this type of cell death have been described in the detail 
by Vejux et al. (2020) and Nury et al. (2021a). In the case 
of oxiapoptophagy, the autophagy observed (mitophagy, 
pexophagy, and/or reticulophagy) corresponds to 
survival autophagy (Yuan et  al. 2016). Indeed, when 
7KC is combined with 3-methyl adenine (an autophagy 
inhibitor), cell death increases, while when combined 
with rapamycin (an autophagy activator), cell death 
decreases (Yammine et al. 2020). In addition, 7KC also has 
pro-inflammatory activities. By interacting with the TLR4 
receptor (Erridge et al. 2007, Huang et al. 2014), it promotes 
the production of inflammatory cytokines (Prunet et  al. 
2006), increases the rate of adhesion molecules (Lemaire 
et  al. 1998, Shimozawa et  al. 2004), and promotes the 
transition of macrophages from the anti-inflammatory 
M1 phenotype to the pro-inflammatory M2 phenotype 
(Buttari et  al. 2013). On ARPE-19 cells, a link between 
7KC-induced autophagy, inflammation, and angiogenesis 

Figure 4
Hypothetical connection between 7-ketocholesterol-induced oxidative stress, inflammation, and cell death. 7-ketocholesterol (also named 
7-oxocholesterol) can induce either a caspase-dependent mode of cell death defined as oxiapoptophagy (OXIdative stress + APOPTOsis + autoPHAGY) on 
different cell types from different species (Nury et al. 2021b) or a caspase-independent mode of cell death (Dugas et al. 2010). These different types of cell 
death are associated with an important oxidative stress, plasma membrane alterations, and organelles dysfunctions (especially mitochondrial and 
peroxisomal dyfunctions) leading to cell death. On A7r5 rat smooth muscle cells and 158N oligodendrocytes, an accumulation of 7-ketocholesterol (7KC) 
in lipid raft has been shown (Royer et al. 2009, Ragot et al. 2013). Detailed signalling pathways associated with 7KC-induced cytotoxicity are described in 
the reviews by Vejux et al. (2020) and Nury et al. (2021a).
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has been shown: the inhibition of the mammalian target 
of rapamycin (mTOR) pathway by rapamycin suppresses 
7KC-induced IL-6, IL-8, and vascular endothelial growth 
factor (VEGF) expression by downregulating the mitogen-
activated protein kinase (MAPK) pathway (Yang et al. 2022). 
7KC also favours non-cytokinic inflammation. Thus, in 
human mesangial cell, 7KC induces ROS-mediated mRNA 
expression of 12-lipoxygenase and cyclooxygenase-2 
(Watanabe et  al. 2018). 7KC-induced oxidative stress 
also suppresses docosahexaenoic acid (DHA)-derived 
resolvins like RvD1 which prevents atheromatous plaque 
instability; it is suggested that 7KC could increase the 
ratio of (nuclear: non-nuclear lipoxygenase) which would 
decrease RvD1 (Fredman et  al. 2016). 7KC could also be 
involved in adipogenesis and vascularization (Chang et al. 
2020, de Freitas et al. 2021).

To reduce the cytotoxic activities of 7KC and to 
prevent and/or cure the diseases of civilizations and 
age-related diseases associated with increased levels of 
7KC, several strategies are possible. In this context, the 
identification of natural or synthetic molecules allowing 
to reduce the toxicity of 7KC takes an important place. 
Among the natural cytoprotective molecules are many 
nutrients present in the Mediterranean diet: tocopherols, 
fatty acids, and polyphenols (Nury et  al. 2021a). Many 
Mediterranean oils (argan oil, olive oil, milk thistle seed 
oil, and Pistacia lentiscus L. seed oil) also reduce the toxicity 
of this oxysterol (Nury et al. 2021a). Among the synthetic 
molecules, dimethyl fumarate used in the treatment of 
multiple sclerosis under the name Tecfidera as well as 
its major metabolite, monomethyl fumarate, also has 
powerful cytoprotective activities (Zarrouk et  al. 2017). 
Another strategy, probably more specific, is to promote 
the catabolism of 7KC to conteract or attenuate its toxicity. 
This concept was initially validated in vitro by Mathieu et al. 
under the name of medical bioremediation, by specifically 
targeting the degradation of 7KC in the lysosome in 
which this oxysterol accumulates (Mathieu et  al. 2008, 
Schloendorn et  al. 2009). Better knowledge of the 
production of 7KC and on its catabolism will contribute to 
open innovative and promising therapeutic perspectives.

Inactivation of 7-ketocholesterol

Many of the enzymatic pathways which contribute to 
metabolize cholesterol are also able to act on oxysterols 
(Gill et  al. 2008). The major oxysterol metabolite routes 
for oxysterol inactivation are esterification, sulfation, 
oxidation, and reduction (Brown & Jessup 2009).

Esterification

Both acyl-CoA cholesterol acyl transferase (ACAT), also 
named sterol-O-acyltransferase (SOAT), and lecithin-
cholesterol acyl transferase (LCAT) can esterify oxysterols 
in cells and plasma, respectively (Szedlacsek et  al. 1995, 
Brown & Jessup 2009, Rogers et al. 2015). Excess cholesterol 
in the cells is esterified under the action of ACAT, which is 
a normal cellular mechanism for limiting the level of free 
cholesterol (unesterified cholesterol) in cell membranes 
to maintain normal membrane structure (Chang et  al. 
2006). The esterified cholesterol is stored in lipid droplets 
(Luo et  al. 2020). However, in macrophage foam cells 
from human atherosclerotic lesions, 7KC levels are the 
highest in the endosomal and lysosomal compartments 
(Brown et  al. 2000), where it inhibits sphingomyelinase 
and facilitates the intralysosomal accumulation of both 
sphingomyelin and cholesterol (Maor et  al. 1995), and in 
7KC-treated human monocytic U937 cells, an important 
7KC-accumulation has been observed in multilamellar 
structures named myelin figures (Vejux & Lizard 2009). 
While ACAT is also able to esterify many oxysterols, 
cholesterol is superior to 7KC or 7α-OHC as an allosteric 
activator of this enzyme (Zhang et  al. 2003). It has also 
been reported that the esterification of 7KC to fatty acids 
involves the combined action of cytosolic phospholipase 
A2 alpha (cPLA2α) and sterol O-acyltransferase (SOAT1) 
(Lee et al. 2015). Inhibition of either one of these enzymes 
ablates 7KC-fatty acid ester (7KFAE) formation. The 7KFAEs 
are not toxic and do not induce inflammatory responses. 
An additional function of high-density lipoproteins (HDL) 
would be to favour the elimination of 7KC by returning 
7KFAEs to the liver for bile acid formation. However, 7KC 
could also inactivate 7α-hydroxylase (CYP7A1), a major 
hepatic enzyme involved in bile acid synthesis (Lyons & 
Brown 1999, Tempel et al. 2014).

Sulfation

Cytosolic SULT2 family of cytosolic sulfotransferase 
family 2 (SULT2B1b) shows a particular affinity for 
cholesterol and for oxysterols (Javitt et  al. 2001). SULTs 
sulfonates at the third position of the ring A of 7KC 
form 7-ketocholesterol-3- sulphate (7KCS). Sulfation is 
known to act as a detoxification pathway for the removal 
of 7KC (Fuda et  al. 2007, Sanchez et  al. 2021). Previous 
work demonstrated that human breast cancer MCF-7 
cells expressing high levels of SULT2B1b are significantly 
more resistant to the cytotoxic effect of 7KC than human 
embryonic kidney 293T cells that do not express this 
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isozyme (Fuda et  al. 2007). Over-expressing SULT2B1b 
in 293T cells increased sterol and 7KC sulfation and 
decreased the 7KC-mediated toxicity. Since SULTB1b 
expression is not universal, this detoxification pathway is 
not present in some important tissues such as retina where 
7KC toxic effects are prominent (Rodriguez & Fliesler 
2009, Vejux et al. 2011). Expression of SULT2B1b was not 
observed in neural retinal cells in rats, monkeys, or human 
(Moreira et al. 2009, Rodriguez & Fliesler 2009, Rodríguez 
& Larrayoz 2010). However, when added to cultured retinal 
cells in vitro, 7KCS attenuates cholesterol transporter, ATP-
binding cassette transporter ABCA1 (member 1 of human 
transporter sub-family ABCA), and vascular endothelial 
growth factor (VEGF) inductions by 7KC (Moreira et  al. 
2009). Gene transactivation of liver X receptors (LXRs) 
requires recruitment of co-activators in a ligand-dependent 
manner and 7KCS inhibited reporter gene activation by 
LXRα (Song et al. 2001). Despite these early investigations, 
there is more scope to understand the role of 7KCS 
on cholesterol homeostasis and pathophysiological 
consequences.

Oxidation

In humans, the enzyme sterol 27-hydroxylase cytochrome 
P450 27A1 (CYP27A1) eliminates cholesterol and likely 7KC 
from the retina and many other tissues (Charvet et al. 2011, 
Heo et al. 2011). CYP27A1 is a mitochondrial cytochrome 
P450 enzyme and the first enzyme of the acidic bile acid 
pathway; CYP27A1 is responsible for the initial metabolism 
of 7KC by HepG2 cells, a human hepatoblastoma cell line 
(Lyons & Brown 2001). Thus, via the enzyme CYP27A1, 7KC 
gives 27-hydroxycholesterol-7-ketocholesterol (27OHC-
7KC). The contribution of CYP27A1 in the catabolism of 
7KC has also been previously described in the context of 
the analysis of the cytotoxic effects of 7KC on 158N and 
BV-2 cells (Bezine et  al. 2018). In the insect, the enzyme 
CYP306A1 has 25-hydroxylase activity and allows the 
formation of 25-hydroxycholesterol-7-ketocholesterol 
(25OHC-7KC) from 7KC (Pan et al. 2021).

Reduction

The enzymatic conversion of 7KC to 7β-OHC by 
hydroxysteroid dehydrogenase 11β-HSD1 (11βHSD1/EC 
1.1.1.146 also known as cortisone reductase; HSD11B1 
gene, OMIM 600713) can occur in many tissues (Mitić et al. 
2013a,b). The conversion of 7KC in 7β-OHC by 11β-HSD1 
is well established in the arterial wall (Mitić et al. 2013a). 

Noteworthy, the activity and reaction direction of adipose 
11β-HSD1 are altered in oxysterol excess and could impact 
the pathophysiology of obesity and its complications 
(Wamil et al. 2008). The contribution of 11β-HSD1 in the 
catabolism of 7KC has also been previously described in 
the context of the analysis of the cytotoxic effects of 7KC 
on 158N and BV-2 cells (Bezine et al. 2018).

Biodegradation with bacterial enzymes: nutritional 
and biomedical aspects

The catabolic insufficiency of the human body to 
inactivate and degrade harmful oxysterols, such as 
7KC, leads to their progressive accumulation which can 
have pathophysiological consequences and trigger the 
development of diseases. An interesting solution termed 
‘Medical Bioremediation’, proposes the use of exogenous 
enzymes derived from micro-organisms to degrade 7KC 
either into less toxic metabolites or towards complete 
mineralization and further explores the delivery of these 
enzymes in disease conditions. The pioneering works in 
this field were reported as part of a pilot study funded by 
the Strategy for Engineered Negligible Senescence(SENS) 
research foundation (https://www.sens.org/; May 2022) 
where several bacterial strains such as Psedomonas aeruginosa, 
Rhodococcus jostii RHA1, Sphingomonas sp. JEM-1, Nocardia 
nova, and Proteobacterium Y-134 were explored for their 7KC 
degradation capability (de Grey et  al. 2005, Rittmann & 
Schloendorn 2007, Mathieu et al. 2008, 2009, Schloendorn 
et al. 2009). Further, genes responsible for 7KC degradation 
by Rhodococcus RHA1 were studied through transcriptomic 
studies, and several steroid catabolism gene clusters 
were found to be expressed, along with enzymes such as 
dioxygenase (hsaC), 7-keto reductase, and dehydratase 
(Mathieu et  al. 2010). Taking a cue, other researchers 
reported the high 7KC degradation by Pseudomonas 
aeruginosa PseA and Rhodococcus erythropolis MTCC 3951, 
facilitated by the production of the enzymes cholesterol 
oxidase, lipase, dehydrogenase, and reductase. Some of the 
identified degradation products were cholesta-3, 5-dien-
7-one/cholesta-4, 6-dien-3-one for P. aeruginosa, while in 
case of R. erythropolis, chol-5-en-3,7-dione and androsta-
4-ene-3,7,17-trione were identified (Ghosh & Khare 2016, 
2017, Vejux et al. 2020, Ravi et al. 2021). Several other 7KC 
degrading strains were reported including Thermobifida 
fusca IP1, Alcanivorax jadensis IP4, Streptomyces auratus 
IP2, and Serratia marcescens IP3 (Perveen 2016, Perveen 
et  al. 2018). From the above studies, the importance of 
the first enzyme of the 7KC biodegradation pathway, 
cholesterol oxidase, cannot be undermined in reducing 
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7KC cytotoxicity in cells. Thus, a plasmid construct 
of pEGFP‐N3, containing the Chromobacterium DS-1 
cholesterol oxidase gene fused with the signal sequence 
and transmembrane domain of the lysosomal membrane 
protein LAMP1, was found to localize into the lysosome, 
providing the cytoprotective effect in human fibroblast cells 
treated with 7KC (Mathieu et al. 2012). Cholesterol oxidase 
immobilized on magnetic iron (II, III) oxide nanoparticles 
have also been reported to convert cholesterol and 7KC to 
4-cholesten-3-one and 4-cholesten-3, 7-dione, respectively, 

in solution, which find applications as pharmaceutically 
important steroid precursors (Ghosh et  al. 2018a,b). An 
interesting study to mention is the biosorption of 7KC 
by the probiotic strain Lactobacillus casei ATCC334 which 
could be further explored in inhibiting 7KC absorption via 
intestine (Machorro-Méndez et  al. 2013). Thus, the use of 
bacteria and their degradative enzyme explore a promising 
route for remediation of 7KC-mediated cytotoxicity 
which has important applications in food industry and in 
pharmacology.

Figure 5
Metabolism of 7-ketocholesterol. The enzymes required for side-chain shortening are presumed to be those utilized in the acidic pathway of bile acid 
synthesis (Zhou & Hylemon 2014). Reactions catalysed by unknown enzymes are shown by broken arrows. 11β-HSD1, hydroxysteroid dehydrogenase 
type 1; 11β-HSD2, hydroxysteroid dehydrogenase type 2; CYP27A1, 27-hydroxylase cytochrome P450 27A1. The enzymes involved in bile acid synthesis 
are peroxisomal enzymes (ACOX2, acyl-coenzyme A oxidase 2; DBP, D bifuntional protein; SCP2, sterol carrier protein 2) and mitochondrial/peroxisomal 
enzymes (AMACR, alpha-methylacyl-CoA-racemase; BACS, bile acyl CoA-synthase).
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Metabolism of 7-ketocholesterol in patients with 
genetic diseases affecting cholesterol metabolism

The metabolism of 7KC is of interest to limit its accumulation 
and consequently reduce its side effects. Information on 
the metabolism of 7KC is often obtained from cell lines 
(Lyons & Brown 2001, Heo et  al. 2011) and from samples 
of patients where levels of 7KC are particularly high as in 
patients with Niemann–Pick disease type A, B, C1, and 
C2 (NPA, NPB, and NPC), lysosomal acid lipase deficiency 
(LALD) (Griffiths et al. 2019), and SLO syndrome (Björkhem 
et al. 2014, Griffiths et al. 2017). 7KC could also be used as 
a biomarker of neonatal cholestasis (López de Frutos et al. 
2021). In the catabolism of 7KC, different pathways have 
been identified (Fig. 5). Numerous enzymes are involved 
such as the 11β hydroxysteroid dehydrogenase type 1 (11β-
HSD1), the 11β hydroxysteroid dehydrogenase type 2 (11β-
HSD2), the sterol 27-hydroxylase cytochrome P450 27A1 
(CYP27A1), and the cholesterol 25 hydroxylase (CH25H). 
The following enzymes are also involved in bile acid 
synthesis: several peroxisomal enzymes (acyl-coenzyme 
A oxidase 2 (ACOX2), D bifuntional protein (DBP), sterol 
carrier protein 2 (SCP2)), as well as alpha-methylacyl-CoA-
racemase (AMACR), localized in the mitochondria and the 
peroxisome, and also the bile acyl CoA-synthase (BACS) 
(Griffiths et al. 2019).

Overview and conclusion

7KC is the most frequently formed oxysterol by 
autoxidation (Anderson et al. 2020, Nury et al. 2021a). This 
oxysterol, which is a biomarker of oxidative stress (Iuliano 
et al. 2003, Seet et al. 2010, Samadi et al. 2019), is present 
in high amounts in several foods (Canzoneri et  al. 2022) 
and it is formed in the stomach from cholesterol (Kanner 
& Lapidot 2001). The increase in oxidative stress during 
ageing and under the influence of environmental factors 
(lifestyle habits, stress, and pollution) can also, depending 
on the individual, contribute to a more or less important 
accumulation of 7KC in different tissues (Zarrouk et al. 2014, 
de Medina et al. 2022). This last aspect can lead to highly 
disabling diseases (cardiovascular, neurodegenerative, 
and ocular diseases, as well as metabolic syndrome) with 
significant societal consequences. It is therefore essential 
to better know the metabolism of 7KC in humans, and 
with appropriate models (Vejux et  al. 2020), to identify 
molecules counteracting 7KC-induced cytotoxicity 
(Brahmi et al. 2019, Nury et al. 2021a), and to develop new 
strategies to control the level of this oxysterol in food and in 

the body in order to avoid its toxic effects: oxidative stress, 
inflammation, and cell degeneration. Thus, 7KC, which is 
one of the oldest oxysterols identified, still deserves our full 
attention.
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