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A B S T R A C T
Video semantic segmentation is beneficial for dynamic scene processing in real-world environm
and achieves superior performance on independent and identically distributed data. Howev
suffers from performance degradation in environments with various domain styles, which is k
as the distribution shift problem. Although some previous studies on image generalized sem
segmentation considered the distribution shift problem, temporal-frame information could n
used to obtain more accurate prediction. Thus, in this study, we explore a new task, know
the video generalized semantic segmentation (VGSS) task, which establishes a connection bet
continuous frames and domain generalization. We propose a novel method named Non-Salient Fe
Reasoning and Consistency (NSFRC) for this task. Specifically, we first define the class-wise
salient feature, which describes the features of the class-wise non-salient region that carry
generalized information. We then propose a class-wise non-salient feature reasoning strategy to s
and enhance generalized channels adaptively. This strategy adopts a new form to use domain-inva
features by treating the domain-invariant features as prior information to assist domain-inva
model learning. Finally, we propose a non-salient centroid alignment loss to alleviate the tempo
inconsistent and negative transfer problems in the VGSS task. We also extend our video-b
framework to the image generalized semantic segmentation (IGSS) task. Experiments demon
that our NSFRC framework yields significant improvements in both the VGSS and IGSS task
explain the idea of this research in a clear and attractive way, we provide the visual abstract sho
Figure 1.

oduction
ntic segmentation has been employed in many ap-
s such as automatic driving [1], robotics [2] and
l diagnosis [3]. It has made significant progress
the development of deep learning technology and

assign an object class to each pixel of an image
image-based semantic segmentation cannot use the
previous frames as prior information to assist in the
tion of the current frame, some researchers [6, 7]
blished the connection between continuous tempo-
s for video-based semantic segmentation (VSS).
these previous studies obtained more accurate

tion results through inter-frame fusion or consis-
rformance degradation occurs in environments with
omain styles, which is known as the distribution
lem.

pervised domain adaptation (UDA) is the preferred
y for handling the distribution shift problem for

scene, in which the goal is to achieve remarkable
nce on the target domain by transferring knowledge
source domain to the target domain [8, 9]. The
main with annotations and the target domain with-
ations are used simultaneously during the training
(s):

Figure 1: Visual abstract of our method. Domain invariant fea
(DIFs) extraction, temporal DIFs alignment, and DIFs refine
correspond to the proposed class-wise non-salient feature, non-sa
centroid alignment, and non-salient feature reasoning, respect
The upper right index ∗ (𝑡−1 or 𝑡) represents different frames a
is the deep feature.

stage [10]. UDA technology faces two challenges. First,
one scene can be adapted using UDA methods. Second
target data used for training are not always available
practical applications.

Domain generalization (DG) is more practical than U
because it can be adapted to more scenes with div
domains and the target data are not used during training.
ang et al.: Preprint submitted to Elsevier Page 1 of 16
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Different ways to utilize domain-invariant features (DIFs).
d R⃝ refer to normalization, element-wise multiplication, and
, respectively. CNSF, a type of DIF, represents the proposed
non-salient feature.

f DG methods is to improve the robustness [11] and
e it well to unseen domains. Several breakthroughs
have recently been achieved in image generalized
segmentation (IGSS). However, the task of video
ed semantic segmentation (VGSS), which consid-
temporal frames and domain generalizability, has
een explored. Compared to IGSS, the VGSS task

line with the dynamic attributes of the real world,
ignificant for more accurate and robust predictions.
h the aim of designing a learning framework for the
sk, we observe three critical phenomena.
main-invariant features (DIFs) improve the gen-
lizability of the model because they remain in-
iant when the styles change. Obtaining and uti-

ing DIFs are the two main challenges in handling
domain shift problem. As shown in Figure 2,

sting studies mainly focused on DIF selection and
straints. One type of DIF selection, as shown in
ure 2 (a), aims to process all deep features and

rmalize them, such as feature normalization and
itening [16, 17]. Another type of DIF selection,
shown in Figure 2 (b), forces neural networks to

more attention to DIFs, such as structural edges
] and features with small gradients [19]. Based on

F constraints, some methods extract class proto-
es (the centroid of the class feature) and perform
tribution alignment between the class feature and
ss prototype [20, 21], as shown in Figure 2 (c).
ese studies have demonstrated that DIFs improve
model generalizability.

e feature channel activations of the same classes
different domains have gaps. Figure 3 shows the
ss-wise feature channel activations of the last layer
two images with the same content but different

Figure 3: The class-wise feature channel activation in im
with different styles ((a) for GTAV [14] style, (b) for Citysc
[15] style), where the classes of road, sky, and vegetatio
shown from top to bottom, respectively.

styles. Three classes are depicted for simplicity
large gap between the diverse domains in the chan
means that the model can perceive style informa
from the training images in addition to semantic
formation. Style information affects the class cha
distribution, which may result in misclassification

3. Prediction inconsistency between adjacent tem
ral frames degrades the generalization and a
racy. Almost all video tasks in computer vision su
from temporal inconsistency problems [6, 22], w
may lead to performance deterioration. Previous
studies alleviated this issue under the conditio
independent and identically distributed (i.i.d.)
but they may not be effectively applied to the VG
task. More recently, TCR [23] and TPS [24] w
proposed for temporal adversarial consistency
temporal pseudo consistency for video domain a
tation in semantic segmentation, respectively,
were demonstrated to assist in the domain-invar
representation extraction. Thus, temporal consiste
should be considered in the VGSS task for b
learning of the domain invariant representations.

Thus, to improve model generalizability by redu
class misclassification and inter-frame inconsistency, t
key points should be considered. (1). What kind of fea
can be used to effectively represent DIFs? (2). Is t
an approach that can refine the feature channels to se
and enhance generalized channels adaptively? (3). How
reduce temporal inconsistency beneficially in the VG
task? Based on the above, we devise a VGSS framew
known as Non-Salient Feature Reasoning and Consiste
(NSFRC), with its fundamental concept depicted in Fi
1. Specifically, we first define the class-wise non-sa
feature, which describes the features of the class-wise n
salient region that carry more generalizable information,
can be considered as a type of DIF. We then propo
class-wise non-salient feature reasoning strategy to se
ang et al.: Preprint submitted to Elsevier Page 2 of 16
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Table  1
Task  settin
Task Continuous frames Domain gap Access target distribution
Image semantic segmentation ✓
Video semantic segmentation ✓ ✓

Unsupervised domain adaptation for ISS ✓ ✓
Unsupervised domain adaptation for VSS ✓ ✓ ✓
Image generalized semantic segmentation ✓

Video generalized semantic segmentation (Ours) ✓ ✓

nce generalized channels using the class-wise non-
atures and graph relationship reasoning. In contrast
ches shown in Figure 2 (a), (b), and (c), we explore
orm (see Figure 2 (d) known as FID refinement,
nsiders DIFs as prior information to attend to the
rocess and assists the model in adaptively refining

res. Finally, we propose an inter-frame non-salient
alignment loss to reduce the gap between class-
-salient centroids of two adjacent frames. The main
ions of this work could be concluded as follows.
explore a new task known as VGSS, to handle dy-
ic scenes in real-world environments. To the best

our knowledge, this has not been studied in existing
earch. In addition, we propose the corresponding
SS framework NSFRC.

sed on the novel observation that channel activa-
ns between diverse domains have a discrepancy,
propose a class-wise non-salient feature reasoning

ategy to select and enhance generalized channels
ptively, which also provides a new form for utiliz-
domain-invariant features.
propose the inter-frame non-salient centroid align-

nt loss to deal with the temporal inconsistency
blem and alleviate negative transfer.
generalize our NSFRC framework from the VGSS

k to the IGSS task, and achieve competitive results
pared with its counterparts in multiple challeng-
benchmarks for both tasks.
inder of this paper is organized as follows. Section
es the related research fields. Section 3 introduces
C framework. Section 4 presents the extensive ex-

s and an analysis of the results. Section 6 concludes
.

rature review
is section, we first review several tasks including

antic segmentation, video semantic segmentation,
ised domain adaptation, and domain generaliza-
relationships among these are shown in Table 1.
r, some related works on class activation map, pro-
alignment, and graph convolution are introduced.

2.1. Image semantic segmentation
Semantic segmentation is a typical computer vision

that predicts the semantic classes of each pixel in an im
[25, 26]. Semantic segmentation methods can be rou
divided into architectural design and richer context ag
gation methods. For architectural design, a fully conv
tional network [27] and U-Net [28] have been used as
baselines of many existing sophisticated methods as
maintain both coarse and refined information depen
on the skip connection operation. HRNet [29] maintai
semantically strong high-resolution feature map. In re
years, SETR [30] and SegFormer [31] have been develo
as Transformer-based architectures that convert the orig
segmentation into a sequence-to-sequence prediction t
RepMLPNet [32] is a multilayer perceptron block with t
fully connected layers to capture local priors via loc
injection. Some methods obtain richer contexts using m
scale information fusion, such as DeepLab-series meth
[33, 34] and PSPNet [35]. Attention is also commonly u
for capturing long-range dependencies; for example, in
Net [36], Non-local [37], and SegNeXt [38].
2.2. VSS

VSS has received widespread attention because it fur
considers the dynamic attributes of the real world. T
methods can be mainly divided into reducing the cos
per-frame computation and improving the segmentation
formance. To reduce the cost of per-frame computa
DFF [39] calculates the optical flow between the keyfr
and current frame and obtains the predicted results by
wrapping operation. DVS [40] is a dynamic selection s
egy that dynamically adopts a keyframe or segmenta
network for semantic segmentation. LLVSS [41] obt
predicted results by fusing the low-level features of
current frame and high-level features of the keyframe
devise a video framework at a low price, DAFC [42]
proposed as a distortion-aware feature correction method
correcting features in distorted regions, while preserving
propagated features for other regions. Inter-frame fusion
consistency are two core methods for devising a supe
VSS framework to improve the segmentation performa
The keyframe usually serves as the prior informatio
refine the features of the current frame. EFC [43] joi
learns the video segmentation and optical flow task
improve both. GCS [44] is a guided co-segmentation
work that simultaneously incorporates the short, mid
and long-term temporal inter-frame relationships. STT

g  comparison.  ISS  and  VSS  represent  image  semantic  segmentation  and  video  semantic  segmentation,  respectively.
ang et al.: Preprint submitted to Elsevier Page 3 of 16
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nsformer-based architecture to balance accuracy
ency. TMA [7] includes inter-frame self-attention
ve the inter-frame relationships better. In addition,
oral consistency constraint ensures the prediction
cy of the temporal frames. UTC [45] provides an
ised temporal consistency loss to penalize unstable
tion results. EFC [43] achieves temporal consis-

tside the occluded regions to reduce the effects of
occluded regions. However, these methods cannot
e effectively to other unseen domains because of
bution gap between the source domain (domain for
and unseen target domain (domain for testing).
A
aims to perform effectively in the target domain,
label source and unlabeled target domains [46].

distribution alignment, self-training strategies, and
ixing strategies are the three general methods for
antic segmentation. Domain distribution align-

olves image-level [47, 48], feature-level [49, 50],
ut-level [51–53] distribution alignment. The self-
strategy supervises unlabeled target data using
bels. BDL [54] uses the maximum probability
to filter target pixels with a confident prediction.

le mixing, a context-aware mixup architecture [55]
employed to explore and leverage the context

ip between two domains. ProDA [56] uses class
s to rectify the pseudo-labels. More recently, TCR
TPS [24] were proposed for temporal adversarial
cy and temporal pseudo consistency in video do-
ptation for semantic segmentation, thereby facil-
e extraction of domain invariant representations.
, the testing environment is unseen and varies in
ctical applications, which is a limitation of UDA
y.

argets generalize well to other unseen domains
y the labeled source domain, where there is a gap
the source and unseen domains [57]. Data gener-
s to extend the data as much as possible to cover
omains. DPRC [58] generates synthetic images
styles of auxiliary data by leveraging CycleGAN
R [60] randomizes images using different domain-
frequencies. GLTR [61] harmonizes the global and
ture randomizations. To extract domain-invariant
as shown in Figure 2 (a), some methods, such as
[16], SW [62], ISW [17], and SAN [12], perform
ation or whitening on all features to reduce domain-
nformation. PinMem [13] was recently proposed as
arning framework that memorizes domain-agnostic
-wise distinct information to reduce the represen-
biguity. These DG methods only segment using

image and may not achieve better performance in
ic scene owing to the lack of continuous frame
on.

2.5. Class activation map
A class activation map (CAM) is used to identify

discriminative region [63–65] using a single forward p
The visual interpretability of CAM can build trustwo
intelligent systems, CAM methods, such as Grad-CAM [
and Grad-CAM++ [65] have been extensively explo
Instead of improving the CAM, CAM technology is
widely used in the weakly-supervised semantic segm
tation [66, 67], which fully leverages the discrimina
localization ability of CAM. More recently, CDG [68]
used to calculate the CAM of a model trained on o
domains as the weight to determine the feature dropou
DG training. Similar to the above methods, we also leve
the discriminative localization ability of the CAM to iden
the less discriminative region (i.e., the non-salient region
obtain a generalized representation.
2.6. Prototypical alignment

The prototype constraint shown in Figure 2 (c) i
effective strategy and is used in many UDA methods, w
the class prototype is the class feature centroid and
be regarded as a type of DIF. ProCA [69] includes a
totypical contrast adaptation that pulls closer to the p
and its corresponding class prototype. BiSMAP [21] util
source and target prototypes together to degrade hard-so
samples. BAPA-Net [20] performs prototype alignment
tween the mixed and source images. Note that these meth
employ all spatial features to generate and align prototy
In contrast to these methods, our method considers cred
features to generate a centroid and treats a non-salient
troid as prior information to enhance the domain-invaria
model. Meanwhile, the proposed non-salient centroid al
ment introduces temporal dimension alignment rather
spatial dimension alignment.
2.7. Graph convolution

Graph reasoning has become a popular means of
structing graph relationships for graph analogs. It has
cently been used extensively in the semantic segmenta
task, which can be roughly grouped into three types: spa
class-wise, and temporal graphs. In the first type, the grap
constructed in spatial features. DGCN [70] uses a coordi
graph and feature graph in the spatial dimension. C
G [71] constructs a spatial graph considering the dista
based and semantic relationships. SPGR [72] explores m
scale spatial graphs to enhance long-range contextual
ture. MDGCN [73] employs a superpixel-based grap
adapt to various object distributions and geometric app
ances. In terms of class-wise graphs, ADD-GCN [74] m
els the relation of content-aware category representat
as a graph. CD-GCN [75] adopts a coarse-to-fine parad
to learn the feature aggregation and weight allocation.
temporal graphs, SST-GCN [76] uses a stacked hourg
architecture to enable accurate action boundaries. T
previous works used the strong ability of the relation
capture of graph convolution and achieved impressive
formance. In our case, owing to the observation that fea
channel activations of the same classes in different dom
ang et al.: Preprint submitted to Elsevier Page 4 of 16
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Overview of NSFRC framework. CAMG, NSCE, NSCA, and NSFR represent class activation map generation, non-salient cen
non-salient centroid alignment, and non-salient feature reasoning, respectively. Cubes represent deep features.

ap, we performed graph reasoning in the channel
n to reduce class-wise confusion.

RC framework
blem statement
a seen source domain {𝑋𝑠, 𝑌𝑠} ∈ 𝐷𝑠 and 𝐾

arget domains ({𝑋𝑡1, 𝑌𝑡1} ∈ 𝐷𝑡1, {𝑋𝑡2, 𝑌𝑡2} ∈
𝑡𝐾 , 𝑌𝑡𝐾} ∈ 𝐷𝑡𝐾 ), a DG model is trained using the

omain 𝐷𝑠 and then evaluated on these K unseen
mains (𝐷𝑡1,...,𝐷𝑡𝐾 ), which aims to generalize well
seen target domains. 𝑋∗ and 𝑌∗ are images and
m different domains, respectively. The main dif-
etween the IGSS and VGSS tasks is the input data.
t of the image-based DG model is one image 𝑥∗.
, the input of the VGSS task modifies one image
o (𝑥𝑡−1∗ , 𝑥𝑡∗) or more temporally continuous frames
𝑥𝑡−1∗ , 𝑥𝑡∗), where the previous frames (𝑥<𝑡∗ ) are used
or information to refine the segmentation of current
.
erview of framework
ustrated in Figure 4, the proposed NSFRC frame-
ntains class-wise non-salient feature generation,
nt feature reasoning (NSFR), and non-salient cen-
nment (NSCA), where the class-wise non-salient
neration is constructed using CAM generation and
nt centroid extraction. The final objective of this
rk is defined as:
𝑠 + 𝛽1𝑐𝑙𝑠 + 𝛽2𝑛𝑠𝑐𝑎 (1)

𝑠 is the segmentation loss using the cross-entropy
in Equation (15). 𝑐𝑙𝑠 and 𝑛𝑠𝑐𝑎 represent the
tion loss (Equation (4)) and non-salient centroid
t loss (Equation (16)), respectively. 𝛽1 and 𝛽2 are
ameters of the loss terms.

Figure 5: Depiction of CAM generation. At the training stage
auxiliary classifier model updates parameters to learn meani
CAM, while the auxiliary model captures CAM for the NSFR mo
at the test stage. Black lines denote the flow of both stages and g
lines denote the flow of the training stage.

Our framework obeys two devising keys of video-b
methods mentioned in the Literature Review section: in
frame fusion and inter-frame consistency. To enhance
generalizability of the model fully, we further embed
consideration of DG into the above guidelines. As sh
in Figure 4, class-wise non-salient features are obta
ang et al.: Preprint submitted to Elsevier Page 5 of 16
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Structure of class-wise non-salient centroid extraction and non-salient centroid alignment. Note that non-salient prototypes are lea
ing stage and are sub-parts of class-wise non-salient features.

y in the previous and current frames, which pro-
ore generalized representation for the following
NSFR is performed for inter-frame fusion. The
odule adaptively selects generalized channels and
the features using class-wise non-salient features

h relationship reasoning. For inter-frame consis-
NSCA module is proposed to align the distribution
lient centroid between adjacent temporal frames
te prediction inconsistency between the adjacent
frames.
ss-wise non-salient feature generation

use domain-invariant features help to improve the
neralizability, as noted in Section 1, the class-wise
nt feature with more domain-invariant information
d, which is formed by the non-salient prototype

. The steps of the class-wise non-salient feature
n include CAM generation, non-salient prototype
, and class-wise non-salient feature integration.

AM generation
tain a CAM, a classification network is introduced

xiliary task. Given the deep feature 𝑓𝑜 extracted
gmentation feature extractor, 𝑓𝑜 is pulled into the
tractor of the auxiliary classifier 𝐹𝑎(⋅). Then, the
lass feature 𝑓 𝑛 is filtered by the one-hot encoded
uth 𝑦𝑠, which is denoted as:
= 𝐹𝑎(𝑓𝑜)𝟙(𝑦(ℎ,𝑤,𝑛)

𝑠 == 1) (2)

is the indicator function, 𝟙(⋅) =
{

1,𝑦ℎ,𝑤,𝑛
𝑠 == 1

0,𝑦ℎ,𝑤,𝑛
𝑠 == 0

.
𝑛 feature centroid 𝑐𝑛 is obtained by the average of
𝑛 feature 𝑓 𝑛, which can be defined as:

=
∑

𝑥𝑠∈𝑋𝑠

∑
ℎ
∑

𝑤 𝑓 𝑛

∑
𝑥𝑠∈𝑋𝑠

∑
ℎ
∑

𝑤 𝟙(𝑦(ℎ,𝑤,𝑛)
𝑠 == 1)

(3)

Thereafter, 𝑐𝑛 is pulled into the auxiliary classifier 𝐶𝑛
𝑐obtain the prediction. The classifier loss 𝑐𝑙𝑠 is calcul

using the cross-entropy:

𝑐𝑙𝑠 = −
𝑁∑
𝑖=0

𝑦𝑛𝑙𝑜𝑔(𝐶𝑛
𝑐𝑙𝑠(𝑐

𝑛))

, where𝑐𝑙𝑠 is designed to capture meaningful weights o
classifier. Finally, the class 𝑛 activation map 𝑀𝑛 is den
as:

𝑀𝑛 =
𝐺∑
𝑔=1

𝑤𝑛
𝑔𝑓

𝑛
𝑔

, where 𝑔 ∈ 𝐺 is the channel of the feature. 𝑤𝑛
𝑔 represent

weight of class 𝑛 in channel 𝑔, which belongs to the auxil
classifier 𝐶𝑛

𝑐𝑙𝑠 and is learned by Equation (4). The proces
this module is shown in Figure 5.
3.3.2. Non-salient prototype extraction

As indicated by Maxdrop [77] and RSC [19], most
dictive parts contain less domain-invariant information. T
is, the non-salient region is expected to be a more general
region. The non-salient region in the feature map is ident
by the CAM [63] owing to its discriminative localiza
ability. The class 𝑛 non-salient mask 𝑀𝑛

𝑛𝑠 is obtained
threshold filter, which is denoted as:

𝑀𝑛
𝑛𝑠 =

{
1 0 < 𝑀𝑛(ℎ,𝑤) <= 𝑀𝑛(𝛼)
0 𝑀𝑛(ℎ,𝑤) > 𝑀𝑛(𝛼)

, where 𝛼 is a hyperparameter to represent the pixel perc
age that needs to be filtered. 𝑀𝑛(𝛼) is the 𝐽 𝑡ℎ-largest v
in 𝑀𝑛, where 𝐽 = 𝐻 × 𝑊 × 𝛼. The non-salient cent
𝑝𝑛 is calculated as the average value of 𝑓 𝑛 under non-sa
mask 𝑀𝑛

𝑛𝑠, which is denoted as:

𝑝𝑛 =
∑

𝑥𝑠∈𝑋𝑠

∑
ℎ
∑

𝑤 𝑓 𝑛𝟙(𝑀𝑛(ℎ,𝑤,𝑛)
𝑛𝑠 == 1)

∑
𝑥𝑠∈𝑋𝑠

∑
ℎ
∑

𝑤 𝟙(𝑀𝑛(ℎ,𝑤,𝑛)
𝑛𝑠 == 1)
ang et al.: Preprint submitted to Elsevier Page 6 of 16
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Figure 7: Depiction of class-wise non-salient feature integration and non-salient feature reasoning.

𝑛 is also the initial value of the non-salient pro-
n exponential moving average (EMA) operation

the two iterations is used to update the non-salient
, which can be represented as:
← 𝜆𝑝𝑛 + (1 − 𝜆)𝑝′𝑛 (8)
𝑝′𝑛 represents the non-salient centroid using the
rame in Equation (7). The non-salient prototype
re generalizable compared to the naive prototype
using Equation (3) because the less generalized
ation is filtered. For clarity, Figure 6 exhibits the

of the non-salient centroid and non-salient pro-
uring the training stage, the non-salient prototype
s updates at every iteration, and the parameters of
types at the final iteration are saved. In the testing
non-salient prototype employs the stored prototype
rs and maintains them as fixed.
lass-wise non-salient feature integration
dicated in the above section, the value of the CAM
to the degree of generalization of the spatial pixel,
non-salient region carries more generalized infor-
achieve domain generalization. Thus, the CAM
the generalized importance of spatial features,

employed as significant information constructing
e non-salient features. Specifically, the class-wise
nt feature 𝑓 𝑛

𝑠𝑔 is defined as the concatenation of the
nt prototype 𝑝𝑛 and CAM 𝑀𝑛, which is denoted as:

= Ψ(𝐶𝑜𝑛𝑣(𝑝𝑛), 𝐹 𝑙𝑎𝑡𝑡𝑒𝑛(𝑀𝑛)) (9)
(⋅) and𝐹 𝑙𝑎𝑡𝑡𝑒𝑛(⋅) refer to feature concatenation and
attening, respectively. Figure 7 depicts integration
process.

3.4. Class-wise NSFR
Another concern is the use of class-wise non-sa

features. As explained in Section 1, the feature cha
activations for the same class in different domains h
a gap, which means that the model can perceive dom
information from training images rather than only the
mantic information. This motivated us to propose a cha
distribution reweighting strategy for adaptively selecting
enhancing the generalized channels of the original featu
Furthermore, previous studies have shown that DIFs
enhance the model generalizability, as shown in Figur
Combining these two observations, a straightforward
cept is to embed the DIFs into the original features to a
in reducing the domain-variant information of the orig
features, which is known as DIF refinement. In particular
propose class-wise non-salient feature reasoning to ach
DIF refinement. Class-wise non-salient features, as a typ
DIFs, are adopted as the input for feature reasoning, w
captures the inter-class relationship of the DIFs to se
generalized channels and enhance the features adaptivel

As graph convolution excels in capturing node relat
ships and adaptively propagating information [78, 79],
suitable for adoption as a class-wise relationship reaso
method. Given a graph  containing nodes  and edge
the graph convolution can be defined as:

𝑂𝑟 = 𝜎(𝑊𝑟𝑓𝑠𝑔𝐴𝑟)

, where 𝑂𝑟, 𝐴𝑟, and 𝑊𝑟 are the output, adjacency matrix
the relationship between nodes), and learnable weight
trix, respectively. 𝜎(⋅) denotes the non-linear activation f
tion. To capture the relationship between different clas
the non-salient features of each category are employe
nodes in the graph. A 1 × 1 convolution layer is use
get the adjacent matrix 𝐴𝑟 as in GloRe [78]. Meanw
the relationship reasoning also conducts Laplacian ma
smoothing (𝐼 − 𝐴𝑟) using the a residual sum between
ang et al.: Preprint submitted to Elsevier Page 7 of 16
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atrix 𝐼 and adjacent matrix 𝐴𝑟 to propagate the
ures over the graph more effectively. Therefore, the
ationship reasoning can be rewritten as:
= 𝜎(𝑊𝑟𝑓𝑠𝑔(𝐼 − 𝐴𝑟)) (11)
r, another 1×1 convolution𝑊𝑎 is used to match the
imension of original feature 𝑓𝑜. The reconstructed
can be defined as:
𝛿(𝑊𝑎𝑂𝑟) ∗ 𝑓𝑜 + 𝑓𝑜 (12)

(⋅) is the sigmoid operation. Note that the shape of
ned feature 𝛿(𝑊𝑎𝑂𝑟) is 1 × 𝐶𝑓𝑜 , where 𝐶𝑓𝑜 is the
umber of 𝑓𝑜.ffect of the proposed feature reasoning is twofold.
reconstructed feature is expected to learn and

eneralized and representative channels because the
ip between class-wise non-salient prototypes con-
ore domain-invariant information is captured and

. Second, a new form that differs from that Figure
, and (c) is adopted; that is, DIFs are embedded

original features to reduce the domain-variant in-
of the original feature, which potentially provides

insights and inspiration for follow-up studies. It can
at the proposed method compiles well with the first
d observations mentioned in Section 1.
oral feature fusion between two frames is em-
integrate the segmentation results of the temporal
r more accurate prediction. Considering the tem-
es, the final feature of the 𝑡𝑡ℎ frame 𝑓𝑡 can be con-
from the high-level feature 𝑓𝑡ℎ , low-level feature

econstructed feature 𝑓𝑡, which can be defined as:
= Ψ(𝑈 (𝑓𝑡ℎ ), 𝑓𝑡𝑙 , 𝑈 (𝑓𝑡)) (13)
the original feature 𝑓𝑡𝑜 is pulled into the 𝐴𝑆𝑃𝑃
33] to aggregate the multi-scale context, where
𝑃𝑃 (𝑓𝑡𝑜 ). The low-level feature 𝑓𝑡𝑙 is the feature of
the backbone network. 𝑈 refers to the upsample
to match the dimension of 𝑓𝑡𝑙 . The temporal fused

n 𝑃𝑓𝑢𝑠𝑒 is obtained by concatenating the predictions
mes, which is denoted as:
𝑢𝑠𝑒 = 𝐶𝑓𝑢𝑠𝑒(Ψ(𝐶(𝑓𝑡),(𝐶(𝑓𝑡−1), ))) (14)

is the warping operation, and  is the optical flow
by FlowNet-V2 [80]. 𝐶𝑓𝑢𝑠𝑒 is the classifier for the
fused prediction. Finally, a cross-entropy function
ed as the segmentation loss:
= −

∑
ℎ,𝑤

∑
𝑛∈𝑁

𝑦(ℎ,𝑤,𝑛)
𝑠 𝑙𝑜𝑔(𝑃 (ℎ,𝑤)

𝑓𝑢𝑠𝑒 )) (15)

e 7 depicts the process of the NSFR module.
CA
red by TCR [23] and TPS [24], which alleviate
inconsistency in video domain adaptation semantic

segmentation for better learning of the domain-invariant
resentation, we propose the NSCA loss to constrain adja
frames, as shown in Figure 6, which can be describe
follows:

𝑛𝑠𝑐𝑎 =
1
𝑁

𝑁∑
𝑛=0

|𝑝𝑛𝑡−1 − 𝑝𝑛𝑡 |

where the non-salient centroids 𝑝𝑛𝑡−1 and 𝑝𝑛𝑡 represent
class centroids in the (𝑡 − 1)𝑡ℎ and 𝑡𝑡ℎ frames, respectiv
calculated by Equation (7).

The effect of the alignment loss is two-fold. First,
inter-frame feature alignment alleviates the temporal in
sistency problem to learn the domain-invariant repre
tation more effectively. Second, compared with the n
centroid alignment, as the non-salient centroid is gener
by the more generalized region, this strategy encourages
alignment of generalized features between different fra
rather than the global features. This learning strategy
ters out the less generalized features (i.e., unrelated so
features) to alleviate the effect of the outliers in the gl
features; that is, it alleviates negative transfer [81].

4. Experiments
Extensive experiments were conducted to verify

superiority of our NSFRC framework in the VGSS t
including qualitative and quantitative comparisons and
lation studies. Our NSFRC framework was also extende
demonstrate its effectiveness in the IGSS task.
4.1. Dataset

Nine datasets were used in both the IGSS and VG
tasks, including four real-world datasets (Cityscapes [
CamVid [83], Mapillary [84], and BDD100K [85])
five synthetic datasets (VIPER [86], GTAV [14], SYNT
[87], V2X [88], and VKitti2 [89]).

Four synthetic datasets and two real-world datasets w
used in the VGSS task. The VIPER dataset is a synth
dataset of urban scenes containing over 25000 video fra
with FHD resolution (1920 × 1080) under different e
ronmental conditions, which were captured in the comp
game Grand Theft Auto V. The SYNTHIA-Seq dat
which is a sub-dataset of SYNTHIA, has 8500 video fra
with eight views, where the images of six views and the o
two views are used as the training and validation sets, res
tively. The large-scale V2X dataset contains 37330 v
frames with a resolution of 1600 × 900 for autonomous d
ing, supporting multi-agent multi-modality research. F
sequences (35030 frames) and one sequence (2300 fram
are used as the training and the testing sets, respectiv
The Vkitti2 dataset is a large-scale dataset containing
scenes (42520 video frames) with a resolution of 124
375. Similar to the V2X dataset, four scenes (33580 fram
and one scene (8940 frames) in the VKitti2 dataset are u
as the training and the validation sets, respectively. For
real-world datasets, 5950 training and 1000 validation v
frames with a resolution of 2048 × 1024 were adopted f
ang et al.: Preprint submitted to Elsevier Page 8 of 16
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e comparisons for the VGSS task on widely-used datasets. The best and second-best performances are represented by bold
respectively. → refers to “generalize to”. Avg refers to the average mIoU on different evaluation datasets. DG and Video repre
neralization strategy and continuous frames, respectively. Model T, R, M, and S denote Transformer, ResNet-50, MobileNet-V2
-V2, respectively.

Model Avg DG Video VIPER (𝑉𝑠)→ Synthia-Seq (𝑆𝑠)→ CamVid (𝐶𝑉𝑠)→ Cityscapes-Seq (𝐶𝑠)→
→𝑆𝑠 →𝐶𝑠 →𝐶𝑉𝑠 →𝑉 2𝑠 →𝑉 𝐾𝑠 →𝑉𝑠 →𝐶𝑠 →𝐶𝑉𝑠 →𝑉 2𝑠 →𝑉 𝐾𝑠 →𝑉𝑠 →𝐶𝑠 →𝑆𝑠 →𝑉 2𝑠 →𝑉 𝐾𝑠 →𝑉𝑠 →𝐶𝑉𝑠 →𝑆𝑠 →𝑉 2𝑠 →

30.4T ✓ 26.933.028.334.2 26.8 27.427.937.418.2 29.8 25.824.718.5 39.1 18.7 38.341.146.024.9
29.5R ✓ 31.438.334.935.4 30.9 20.910.719.411.5 12.0 29.335.618.9 44.5 26.4 44.633.052.524.0
36.4R ✓ 35.230.533.536.3 29.6 21.1 40.0 37.429.945.7 37.329.621.6 44.6 39.6 42.740.960.223.0

R 39.1 ✓ 45.2 40.334.335.228.9 22.6 41.0 45.7 42.037.6 22.9 47.7 40.2 37.6 38.5 60.821.9 43.8 45.5
37.7R ✓ 42.3 40.738.634.0 40.6 39.130.744.624.4 40.1 34.930.521.1 43.7 39.2 39.140.560.120.8
38.9R] ✓ 40.6 30.8 43.2 33.243.9 32.121.4 37.5 38.935.9 23.9 56.0 37.536.443.6 29.9 43.040.261.1

R) 42.2 ✓✓ 41.1 36.0 39.6 40.945.9 37.647.826.1 42.1 41.1 27.2 52.7 41.443.7 37.9 48.950.961.733.1

28.7M ✓ 24.430.936.331.6 26.7 23.623.223.018.5 15.7 29.837.220.8 44.1 36.9 39.420.143.218.9
34.6M ✓ 33.130.134.235.8 26.2 21.6 37.227.640.035.9 18.5 43.9 37.4 41.4 35.7 37.036.855.517.4

M 36.1 ✓ 38.3 23.5 37.5 29.741.3 20.0 34.7 42.6 38.831.2 21.4 46.2 40.4 39.6 37.0 15.3 34.657.7 47.7
35.3M ✓ 28.934.635.5 25.6 34.8 21.6 30.740.835.9 39.5 18.7 43.7 36.3 34.640.2 19.2 58.6 41.239.1
35.2M] ✓ 37.6 27.1 43.3 31.833.3 37.624.531.018.7 24.9 23.8 51.5 35.331.936.2 56.029.4 38.543.9

M) 39.3 ✓✓ 38.8 31.9 34.3 36.741.9 37.445.726.2 39.8 39.0 25.1 50.1 39.539.1 36.7 30.4 55.3 45.6 45.3

28.3S ✓ 33.6 27.534.530.526.9 21.917.722.813.6 7.5 36.121.3 43.3 31.437.3 27.145.719.9 37.7
32.4S ✓ 29.027.934.5 23.3 37.2 43.123.3 32.5 26.8 36.6 32.228.231.119.5 38.1 33.435.554.616.9
32.5S ✓ 35.4 21.8 28.233.6 37.8 21.7 32.125.240.833.5 34.133.432.919.9 39.2 33.632.153.515.2
32.3S ✓ 35.628.128.935.1 24.4 22.1 32.1 33.224.843.6 32.925.830.918.9 38.1 31.237.955.522.2

S] 33.3 ✓ 32.3 28.5 29.8 26.534.9 34.625.826.717.2 23.7 22.7 37.252.1 33.0 34.8 27.4 56.5 35.342.0
S) 37.6 ✓✓ 42.536.336.6 28.5 33.7 37.535.444.823.8 35.2 24.2 46.6 36.8 35.038.5 27.9 56.3 45.342.5

e comparisons for the VGSS task on large-scale datasets.
nd second-best performances are represented by bold and
respectively. → refers to “generalize to”. Avg refers to the
IoU on different evaluation datasets. Model T, R, M, and
ransformer, ResNet-50, MobileNet-V2, and ShuffleNet-V2,

ly.

Model Avg V2X (𝑉 2𝑠)→ VKITTI2 (𝑉 𝐾𝑠)→
→𝑆𝑠 →𝐶𝑠 →𝐶𝑉𝑠 →𝑉𝑠 →𝑉 𝐾𝑠 →𝑆𝑠 →𝐶𝑠 →𝐶𝑉𝑠 →𝑉𝑠 →𝑉 2𝑠

23.1T 19.616.616.617.3 25.1 27.4 32.6 32.2 26.617.2
24.0R 30.621.727.115.3 34.4 31.215.620.625.717.5
27.4R 30.320.728.127.7 30.8 33.117.327.436.022.3
29.7R 32.324.129.932.8 35.6 28.736.521.9 21.8 33.7
27.4R 31.2 32.423.828.335.7 29.815.027.235.315.7

R 29.9 28.7 35.0 35.4 25.5 35.6 24.4 32.237.1 25.320.0
R) 34.8 39.830.238.935.3 40.4 25.4 37.0 32.0 20.3 38.0

20.0M 25.119.626.49.3 17.7 25.416.222.816.0 21.7
27.1M 28.518.529.127.7 31.1 24.0 34.9 31.917.627.7

M 27.6 29.520.231.121.5 33.8 28.921.0 33.3 35.221.0
27.5M 19.929.028.7 32.0 31.3 28.122.2 33.2 30.420.2
27.4M 25.3 35.4 33.9 30.925.0 20.8 33.9 20.617.131.1

M) 32.0 37.727.740.233.7 38.0 23.9 32.1 32.7 18.8 35.0

23.9S 26.318.425.617.9 20.0 25.323.7 29.0 20.4 32.3
25.7S 29.017.629.223.5 29.3 28.320.9 32.8 27.019.6

S 26.9 19.928.324.2 29.8 31.3 27.8 29.3 31.4 28.918.0
25.0S 28.818.029.823.2 29.4 18.6 33.6 26.815.826.2
26.5S 27.2 32.5 31.5 30.022.5 22.016.828.821.9 31.5

S) 29.8 31.1 32.0 32.925.537.8 23.6 32.9 18.730.2 33.4

capes-Seq dataset. The CamVid dataset contains
101 video frames with a resolution of 960 × 720
ining and validation sets, respectively.

synthetic and three real-world datasets were used
SS task. For the synthetic datasets, the GTAV

ollects over 25000 images with a high resolution
1052. The SYNTHIA-Rand set is the subset of the

A dataset and consists of 9400 1280 × 760 images
rent views. For real-world datasets, the BDD100K
a large driving dataset, where 7000 training and

dation images of 1280 × 720 resolution are used in

the IGSS task. The Mapillary dataset covers six contin
and consists of 18000 training and 2000 validation ima
where the resolution of the images is at least FHD r
lution. The Cityscapes dataset is widely used in the s
understanding task, which contains 2975 training and
validation images with the resolution of 2048 × 1024.
4.2. Implementation detail

ResNet-50 [90], ShuffleNet-V2 [91], and MobileNe
[92] were adopted as the backbone networks and the m
pre-trained on ImageNet was used as the initial model.
segmentation model adopted a stochastic gradient des
optimizer based on the Pytorch library [17], where the in
learning rate, weight decay, and momentum are set to 0
5e-4, and 0.9, respectively. The mean Intersection over u
(MIoU) of the categories was reported as the performa
metric for comparison. Similar to ISW [17], several ph
metric transformations, such as Gaussian blurring and c
jittering, were used to avoid source overfitting. The hype
rameter of the filter for non-salient centroid generation
set to 0.3. For the VGSS task, all video frames were res
to 768×384. For the IGSS task, all input images were res
to 768×768 like other methods (ISW [17] and PinM
[13]). 𝜆 in the Equation (8) was set to 0.9 and the num
of frames was 2. Both 𝛽1 and 𝛽2 were set to 0.001.
auxiliary feature extractor was built sequentially, consis
of a 3×3 convolution layer followed by batch normaliza
and ReLU activation, then another 3×3 convolution l
followed by batch normalization and ReLU activation.
auxiliary classifier used a 3×3 convolution layer.
4.3. Comparison with state-of-the-art methods

For the VGSS task, ResNet-50 [90], ShuffleNe
[91], and MobileNet-V2 [92] were adopted as the backb
networks. The video datasets VIPER (𝑉𝑠), Synthia-
ang et al.: Preprint submitted to Elsevier Page 9 of 16
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Result visualization comparison of state-of-the-art methods including IBN [16], SW [62], ISW [17], and PinMem [13]. Best view

Vid (𝐶𝑉𝑠), Cityscapes-Seq (𝐶𝑠), V2X (𝑉 2𝑠), and
(𝑉 𝐾𝑠) were used in turn as the source domain
ng, while the other datasets were used as the test
s, the experiments consisted of 𝑉𝑠 → {𝑆𝑠,𝐶𝑠,
𝑠, 𝑉 𝐾𝑠}, 𝑆𝑠 → {𝑉𝑠, 𝐶𝑠, 𝐶𝑉𝑠, 𝑉 2𝑠, 𝑉 𝐾𝑠}, 𝐶𝑠 →
, 𝑆𝑠, 𝑉 2𝑠, 𝑉 𝐾𝑠}, 𝐶𝑉𝑠 → {𝐶𝑠, 𝑉𝑠, 𝑆𝑠, 𝑉 2𝑠, 𝑉 𝐾𝑠},
{𝑆𝑠, 𝐶𝑠, 𝐶𝑉𝑠, 𝑉𝑠, 𝑉 𝐾𝑠}, and 𝑉 𝐾𝑠 → {𝑆𝑠, 𝐶𝑠,
𝑉 2𝑠}. The left of the → is the source domain for
whereas the right of the → is the target domain
ation. A single model was selected to evaluate all
mains instead of using multiple models such as
8]. For better readability, we divided the above
nts into two tables. Table 2 was used to evaluate the
nce on widely-used datasets (VIPER, Synthia-Seq,
and Cityscapes-Seq), whereas Table 3 was em-
evaluate the performance on large-scale datasets
VKitti2).

evaluation metrics were employed to validate the
ess of our method. The first metric is the average
all evaluated settings for each method. A higher
IoU reflects a better domain generalization ability.
ple, for the Resent-50 backbone, we achieved the
rmance with 42.2% in terms of the average mIoU

2. However, if a method has good performance in

only one domain while getting bad performance in other
mains, it cannot meet competitive domain generalizab
From this viewpoint, the second metric is the number of
or second-best performances in different evaluated sett
(as indicated in the rows in Table 2). A higher num
of best or second-best performances in a method refl
that the generalization can be relatively evenly distrib
across different domains. For example, for the Resne
backbone, we achieved 14 best performances (inclu
𝑉𝑠 → {𝐶𝑠, 𝑉 2𝑠, 𝑉 𝐾𝑠}, 𝑆𝑠 → {𝑉𝑠, 𝐶𝑠, 𝐶𝑉𝑠, 𝑉 2𝑠}, 𝐶𝑉
{𝑉𝑠, 𝑆𝑠, 𝑉 2𝑠}, and 𝐶𝑠 → {𝑉𝑠, 𝐶𝑉𝑠, 𝑆𝑠, 𝑉 2𝑠}) and
second-best performances (𝑉𝑠 → {𝐶𝑉𝑠}, 𝑆𝑠 → {𝑉 𝐾𝑠},
𝐶𝑉𝑠 → {𝐶𝑠, 𝑉 𝐾𝑠}) in a total of 20 evaluated situations
or 𝑆𝑠 or 𝐶𝑉𝑠 or 𝐶𝑠 → other five datasets). The performa
comparison on widely-used datasets is presented in T
2. In the ResNet-50 backbone, our method achieved 42
in terms of the average mIoU and 14 best results in
evaluation settings. A 3.1% improvement in the ave
mIoU shows the superiority of our approach compare
the second-best method. In the MobileNet-V2 backbone
approach outperformed all the state-of-the-art methods
a significant improvement of at least 3.2% in average m
In the ShuffleNet-V2 backbone, 15 best performances w
ang et al.: Preprint submitted to Elsevier Page 10 of 16
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Table 4
Quantitativ and
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Methods 𝐵
IBN [16] .0
SW [62] .5

DRPC [58] .9
GTR [61] .6
ISW [17] .6
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e comparisons for the IGSS task on ResNet-50 backbone. The best and second-best performances are represented by bold
respectively. → refers to “generalize to”. Avg refers to the average mIoU on different evaluation datasets.

Model Avg
GTAV (𝐺)→ SYNTHIA (𝑆)→ Cityscapes (𝐶)→ BDD (𝐵)→ Mapillary (𝑀 )→

→𝐶 →𝐵 →𝑀 →𝑆 →𝐶 →𝐵 →𝑀 →𝐺 →𝐵 →𝑀 →𝐺 →𝑆 →𝐺 →𝑆 →𝐶 →𝑀 →𝐺 →𝑆 →𝐶 →

ResNet-50 34.2 33.9 32.3 37.8 27.9 32.0 30.6 32.2 26.9 48.6 57.0 45.1 26.1 29.0 25.4 41.1 26.6 30.7 27.0 42.8 31
ResNet-50 32.2 29.9 27.5 29.7 27.6 28.2 27.1 26.3 26.5 48.5 55.8 44.9 26.1 27.7 25.4 40.9 25.8 28.5 27.4 40.7 30
ResNet-50 35.8 37.4 32.1 34.1 28.1 35.7 31.5 32.7 28.8 49.9 56.3 45.6 26.6 33.2 29.8 41.3 31.9 33.0 29.6 46.2 32
ResNet-50 36.1 37.5 33.8 34.5 28.2 36.8 32.0 32.9 28.0 50.8 57.2 45.8 26.5 33.3 30.6 42.6 30.7 32.9 30.3 45.8 32
ResNet-50 36.4 36.6 35.2 40.3 28.3 35.8 31.6 30.8 27.7 50.7 58.6 45.0 26.2 32.7 30.5 43.5 31.6 33.4 30.2 46.4 32
ResNet-50 38.5 39.8 37.3 41.9 30.8 38.9 35.2 34.5 29.2 53.0 59.8 47.3 28.3 34.8 31.8 44.9 33.2 34.0 31.6 48.7 34

] ResNet-50 41.0 41.2 35.2 39.4 28.9 38.2 32.3 33.9 32.1 50.6 57.9 45.1 29.4 42.4 29.1 54.8 51.0 44.1 30.8 55.9 47

s) ResNet-50 42.2 42.6 37.9 42.0 33.1 39.5 30.0 32.3 29.7 50.9 57.8 45.3 30.5 30.6 33.6 57.4 56.2 49.7 34.6 60.0 51

ce comparison in Foggy cityscapes and IDD datasets be-
Baseline [17] and our method. → refers to “generalize to”.
to the average mIoU on different evaluation datasets.

Avg
𝐺→ 𝑆→ 𝐶→ 𝐵→ 𝑀→

→𝐼 →𝐹 →𝐼 →𝐹 →𝐼 →𝐹 →𝐼 →𝐹 →𝐼 →𝐹
0.1 33.7 30.3 26.8 29.7 47.1 58.3 45.4 47.7 41.1 40.7
4.6 39.2 37.7 28.6 32.7 49.7 60.4 48.8 50.6 49.3 49.1

in 20 evaluation settings. Compared to the second-
hod, the result of our framework is improved to
d had a clear increase of 4.3% in terms of the
IoU. These experiments and discussions indicate

egmentation quality is enhanced by the proposed
e relationship reasoning and NSCA.
erformance comparison on large-scale datasets is
in Table 3. In the Resnet-50, MobileNet-V2, and

et-V2 backbones, our proposed method exhibited
crease of at least 4.9%, 4.4%, and 2.9% in terms

erage mIoU, respectively. Meanwhile, our method
ed relatively even generalizability to all testing do-
hieving the highest number of the best and second-
rmances in all evaluated settings. For instance, our

chieved six best performances and four second-best
nces in all 10 evaluated settings for the ResNet-50
.
video-based segmentation methods, namely TMA
FFM [82] are performed on the same experiments
the importance of the DG strategy. As shown in
and 3, TMA and CFFM always exhibited inferior
nce to that of the DG methods, which shows that
o-based methods cannot handle environments with
tyles. Thus, it is significant to fuse the DG and
us frames.
lso provide a visual comparison with state-of-the-
ds including IBN [16], SW [62], ISW [17], and Pin-
]. As shown in Figure 8, our methods achieved bet-
ntation results with more completed object shapes

r incorrect areas.
dition, we report the performance in the IGSS task
4, where the model was trained on Mapillary (𝑀),
), Cityscapes (𝐶), BDD100K (𝐵), and SYNTHIA

rn similar to the VGSS task. Correspondingly, ex-
s with 20 evaluation settings were performed: 𝐺 →

Table 6
Ablation studies on proposed component containing NSFR and NS
The model is trained on the Cityscapes-Seq with ResNet-50 back
network.

Method NSFR NSCA → 𝑉𝑠 →𝐶𝑉𝑠 →𝑆𝑠 Avg Iter
Baseline 28.2 60.8 40.0 43.0 0
NSCA ✓ 32.6 57.4 50.0 46.7 0
NSFR ✓ 34.1 60.0 49.5 47.9 0
NSFR + NSCA ✓ ✓ 33.1 61.7 50.9 48.6 0

{𝐶,𝐵,𝑀,𝑆}, 𝑆 → {𝐺,𝐶,𝐵,𝑀}, 𝐶 → {𝐺,𝑆, 𝐵,𝑀
𝐵 → {𝐺,𝐶, 𝑆,𝑀}, 𝑀 →{𝐺,𝑆, 𝐶, 𝐵}. In the IGSS t
NSCA cannot perform alignment on inter-frame feat
because the input is a single image. Thus, NSCA was
plemented by splitting the original features into two ty
of features by odd and even indices to calculate the n
salient centroid separately and perform centroid alignm
NSFR retained the original settings because this mo
does not require inter-frame information. The 13 best (𝐺
{𝐵,𝑀,𝐶, 𝑆}, 𝑆 → {𝐺}, 𝐶 → {𝑆}, 𝐵 → {𝑀,𝐶, 𝑆},
𝑀 → {𝐺,𝐵, 𝑆, 𝐶}) and two second-best (𝑆 → {𝐶}
𝐶 → {𝐵}) performances in our framework show that
NSFRC framework achieved state-of-the-art performa
Our approach improved the performance by 1.2% in term
the average mIoU compared to the second-best method
PinMem [13]). In addition, we compared the performa
of the baseline and our method on recent and challen
datasets (i.e., Foggy Cityscapes (𝐹 ) [93] and IDD (𝐼) [9
As shown in Table 5, our method outperformed the base
model with a 4.5% gain in the mIoU. These experim
verify that our proposed method is also effective for the IG
task and outperforms other state-of-the-art methods.
4.4. Ablation study
4.4.1. Individual components

Ablation studies were conducted to verify the eff
tiveness of the proposed components. NSFR and NS
were the ablation terms used for evaluation. Note that
model with only template feature fusion was the base
that is, it employed Equations (13), (14) without non-sa
features. As shown in Table 6, the performance of the m
trained on Cityscapes-Seq on the ResNet-50 backbone
reported and the remaining three datasets were evalua
The baseline model denotes the model using only temp
ang et al.: Preprint submitted to Elsevier Page 11 of 16
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esult visualization comparison of different models on distinct domains. Best viewed in color. White boxes show the segmentation
line model.

usion without the reconstructed feature 𝑓 gener-
on-salient feature reasoning. Our NSCA module
46.7% in terms of the average mIoU with an 3.7%
ent compared to the baseline. Furthermore, NSFR
47.9% in terms of the average mIoU. The perfor-
the final model was improved to 48.6% in terms of

ge mIoU and the performance improvement was ob-
pared to the baseline. Thus, the proposed modules

e to enhancing the generalizability of the model.
le, there was no clear disparity in the iteration time
e proposed modules.
egmentation visualizations of different models (the
model, model with NSFR, and model with NSFR
) on distinct domains (𝐶𝑠 → 𝐶𝑉𝑠, 𝐶𝑠 → 𝑆𝑠,
𝑠) are provided for comparison in Figure 9. The

NSFR model and final model exhibited better results
the baseline model and the final model showed sm
segmentation errors than the NSFR model, demonstra
that our framework alleviates the class confusion prob
For example, in the first row of 𝐶𝑠 → 𝑉𝑠, the bus shap
our final model was closer to the ground truth.
4.4.2. Non-salient region validation

In addition, to validate the effectiveness of the n
salient region, ablation studies were conducted on the
components of the proposed modules. First, as mentio
in Section 3.C, the class-wise non-salient feature was
catenated using the non-salient prototype and CAM. T
7 shows the effects of these sub-components. The m
with the non-salient prototype had a gain of 1.2% in te
ang et al.: Preprint submitted to Elsevier Page 12 of 16



Table 7
Ablation s
features. N
prototype,

Meth
Base
NP
CAM
NSP
NP +
NSP

Table 8
Ablation s
centroid al
and naive

M
B
N
N

Figure 10:
region. (w/

of the av
the naive
achieved
NP + CA
features
informati
NSCA a
mIoU ov
demonstr
and non-
4.4.3. N

The h
gion is a
sents the
feature m
As shown
when the
formance
creased. F
Then, th

etter

↑
.1
.9
.2
.5
.7
.4
.3
.4
.2
.2

ized
ture
that
, the
ures
hich

the
the-
Ta-
ing
the

d to
wer
rage
ared
nce
ved
the

rfor-
ver-
fea-
ture
ture
d in
not

rent
ork
ion;
ory.
ach
nce
e in
nif-
ods,
ugh

Yuhang Zh
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tudies on internal components of class-wise non-salient
SP, NP, and CAM are the non-salient prototype, naive

and class activation map, respectively.

od NP CAM NSP → 𝑉𝑠 →𝐶𝑉𝑠 →𝑆𝑠 Avg
line 28.2 40.0 43.060.8

✓ 44.8 45.458.433.1
✓ 43.7 45.660.432.7

✓ 57.833.8 48.2 46.6
CAM ✓ ✓ 32.8 61.2 45.0 46.3
+ CAM ✓✓ 34.1 60.0 49.5 47.9

tudies on internal component of inter-frame non-salient
ignment. NSCA and NCA represent the non-salient centroid
centroid alignments, respectively.

ethod NSCA NCA → 𝑉𝑠 →𝐶𝑉𝑠 →𝑆𝑠 Avg
aseline 28.2 60.8 40.0 43.0
CA ✓ 32.8 56.9 45.4 45.0
SCA ✓ 32.6 57.4 50.0 46.7

The hyperparameter evaluation of deciding the non-salient
o R) denotes the results without NSFR.

erage performance compared to the model with
prototype. Meanwhile, the NSP + CAM model

an average mIoU of 47.9% and outperformed the
M model by 1.3% on average, indicating that the

in the non-salient region carry more generalized
on. Second, as shown in Table 8, the proposed
chieved an improvement of 1.7% in the average
er the naive centroid alignment. These experiments
ate the effectiveness of the proposed components
salient region.
on-salient region hyperparameter evaluation
yperparameter for determining the non-salient re-

lso important, where the hyperparameter 𝛼 repre-
filter percentage. For example, 30% of pixels in the
ap will be filtered when the hyperparameter is 0.3.
in Figure 10, the average performance was the best
hyperparameter 𝛼 was 0.3. Meanwhile, the per-
reasonably increased and then decreased as 𝛼 in-
irst, the performance without NSFR was the worst.

e model with feature reasoning but without the

Table 9
Time complexity comparison. ↓ represents that lower value is b
and ↑ shows higher value is better.

Model Runtime (s) ↓ GFLOPS ↓ Parameter (M) ↓ FPS
CFFM[82] 0.0399 28.66 15.3 25

TMA[7] 0.0304 242.71 27.3 33
IBN[16] 0.0243 74.68 40.4 41
SW [62] 0.0317 74.63 40.4 31
ISW[17] 0.0280 74.65 40.4 35

Pinmem[13] 0.0275 78.37 40.5 36
Baseline 0.0310 149.31 40.4 32
NSCA 0.0318 168.68 45.7 31
NSFR 0.0331 190.43 46.3 30

NSFRC 0.0355 190.43 46.3 28

non-salient region filter (𝛼 = 0) improved the general
performance, which verifies the effectiveness of the fea
reasoning. Next, as the features of most salient regions
provided less generalizable information were filtered out
performance increased when 𝛼 increased. Finally, feat
carrying domain-invariant information were filtered, w
led to decreased performance when 𝛼 increased further.
4.4.4. Time complexity analysis

We also present a time complexity comparison in
condition of the ResNet-50 backbone, including state-of-
art methods and the proposed sub-modules. As shown in
ble 9, CFFM had the lowest GFLOPS and parameters ow
to the new backbone Transformer, while suffering from
lowest FPS owing to the complex calculation. Compare
the other VSS method TMA, our final method had lo
GFLOPS and obtained a 12.7% improvement in the ave
mIoU with no significant difference in the FPS. Comp
with the IGSS methods, there was no significant varia
in the parameters and FPS, whereas our method achie
an average mIoU of at least 3.1%, thereby highlighting
efficacy of our method.

5. Limitations
Although our method achieved state-of-the-art pe

mance, we reckon that some limitations need to be o
come. Our core idea employs a class-wise non-salient
ture as prior information to select and enhance the fea
channel adaptively, where the class-wise non-salient fea
is constructed using a class centroid and CAM. As note
RSSP [95], using one class prototype to present a class is
sufficient, as the classes can also be divided into diffe
parts or originate from different domains. Thus, our w
may be improved by fine-grained class prototype extract
that is, by employing multiple prototypes for each categ
Meanwhile, as a pioneering VGSS method, our appro
mainly focuses on improving the generalized performa
using video information, without considering an increas
consumption. Although the cost of our model is not sig
icantly different from that of other state-of-the-art meth
it is a valuable aspect for improvement. Moreover, altho
ang et al.: Preprint submitted to Elsevier Page 13 of 16
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, we could not perform our experiment on larger-
asets such as the AIO Drive dataset [96] owing to
limitations.

clusions
ave introduced a new task to deal with dynamic
real-world environments, namely: VGSS, which
both continuous data and model generalizability.

est of our knowledge, this task has not been pre-
tudied. For the VGSS task, we proposed a novel
nown as NSFRC. Specifically, we first defined the
e non-salient feature, which describes the features
ss-wise non-salient region that carry more gener-
nformation. We then proposed a class-wise NSFR
to select and enhance the generalizable channels
ely. Finally, we presented the inter-frame NSCA
eviate temporally inconsistent and negative transfer
in the VGSS task. Furthermore, we extended our
the IGSS task. Extensive results on both the VGSS
tasks demonstrate the superiority of our NSFRC

rk.
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