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ARTICLE INFO ABSTRACT

Keywords: Video semantic segmentation is beneficial for dynamic scene processing in real-world environments,
Semantic segmentation and achieves superior performance on independent and identically distributed data. However, it
Video domain generalization suffers from performance degradation in environments with various domain styles, which is known
Non-salient region as the distribution shift problem. Although some previous studies on image generalized semantic
Class-wise relationship reasoning segmentation considered the distribution shift problem, temporal-frame information could not be
Domain-invariant feature used to obtain more accurate prediction. Thus, in this study, we explore a new task, known as

the video generalized semantic segmentation (VGSS) task, which establishes a connection between
continuous frames and domain generalization. We propose a novel method named Non-Salient Feature
Reasoning and Consistency (NSFRC) for this task. Specifically, we first define the class-wise non-
salient feature, which describes the features of the class-wise non-salient region that carry more
generalized information. We then propose a class-wise non-salient feature reasoning strategy to select
and enhance generalized channels adaptively. This strategy adopts a new form to use domain-invariant
features by treating the domain-invariant features as prior information to assist domain-invariant
model learning. Finally, we propose a non-salient centroid alignment loss to alleviate the temporally
inconsistent and negative transfer problems in the VGSS task. We also extend our video-based
framework to the image generalized semantic segmentation (IGSS) task. Experiments demonstrate
that our NSFRC framework yields significant improvements in both the VGSS and IGSS tasks. To
explain the idea of this research in a clear and attractive way, we provide the visual abstract shown in

Figure 1.

1. Introduction Iz £ *

Semantic segmentation has been employed in many ap-
plications such as automatic driving [1], robotics [2] and
medicinal diagnosis [3]. It has made significant progress . Temporal DITs DIFs
owing to the development of deep learning technology and Extraction Alignment Relloenen
aims to assign an object class to each pixel of an image Generalized
[4,5]. As image-based semantic segmentation cannot use the E Hoature
results of previous frames as prior information to assist in the A — +
segmentation of the current frame, some researchers [6, 7]
have established the connection between continuous tempo- Figure 1:  Visual abstract of our method. Domain invariant features
ral frames for video-based semantic segmentation (VSS). (DIFs) extraction, temporal DIFs alignment, and DIFs refinement
Although these previous studies obtained more accurate correspond to the proposed class-wise non-salient feature, non-salient
segmentation results through inter-frame fusion or consis- centroid alignment, and non-salient feature reasoning, respectively.

The upper right index * (! or /) represents different frames and f

tency, performance degradation occurs in environments with
is the deep feature.

diverse domain styles, which is known as the distribution
shift problem.

Unsupervised domain adaptation (UDA) is the preferred
technology for handling the distribution shift problem for  stage [10]. UDA technology faces two challenges. First, only
a single scene, in which the goal is to achieve remarkable one scene can be adapted using UDA methods. Second, the
performance on the target domain by transferring knowledge ~ target data used for training are not always available for
from the source domain to the target domain [8, 9]. The practical applications.
source domain with annotations and the target domain with- Domain generalization (DG) is more practical than UDA

out annotations are used simultaneously during the training ~ because it can be adapted to more scenes with diverse
domains and the target data are not used during training. The

ORCID(S):
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Figure 2: Different ways to utilize domain-invariant features (DIFs).
M, ®), and (®) refer to normalization, element-wise multiplication, and
refinement, respectively. CNSF, a type of DIF, represents the proposed
class-wise non-salient feature.

purpose of DG methods is to improve the robustness [11] and
generalize it well to unseen domains. Several breakthroughs
[12, 13] have recently been achieved in image generalized
semantic segmentation (IGSS). However, the task of video
generalized semantic segmentation (VGSS), which consid-
ers both temporal frames and domain generalizability, has
not yet been explored. Compared to IGSS, the VGSS task
is more in line with the dynamic attributes of the real world,
which is significant for more accurate and robust predictions.
Thus, with the aim of designing a learning framework for the
VGSS task, we observe three critical phenomena.

1. Domain-invariant features (DIFs) improve the gen-
eralizability of the model because they remain in-
variant when the styles change. Obtaining and uti-
lizing DIFs are the two main challenges in handling
the domain shift problem. As shown in Figure 2,
existing studies mainly focused on DIF selection and
constraints. One type of DIF selection, as shown in
Figure 2 (a), aims to process all deep features and
normalize them, such as feature normalization and
whitening [16, 17]. Another type of DIF selection,
as shown in Figure 2 (b), forces neural networks to
pay more attention to DIFs, such as structural edges
[18] and features with small gradients [19]. Based on
DIF constraints, some methods extract class proto-
types (the centroid of the class feature) and perform
distribution alignment between the class feature and
class prototype [20, 21], as shown in Figure 2 (c).
These studies have demonstrated that DIFs improve
the model generalizability.

2. The feature channel activations of the same classes
in different domains have gaps. Figure 3 shows the
class-wise feature channel activations of the last layer
in two images with the same content but different
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Figure 3: The class-wise feature channel activation in images
with different styles ((a) for GTAV [14] style, (b) for Cityscapes
[15] style), where the classes of road, sky, and vegetation are
shown from top to bottom, respectively.

styles. Three classes are depicted for simplicity. A
large gap between the diverse domains in the channels
means that the model can perceive style information
from the training images in addition to semantic in-
formation. Style information affects the class channel
distribution, which may result in misclassification.

3. Prediction inconsistency between adjacent tempo-
ral frames degrades the generalization and accu-
racy. Almost all video tasks in computer vision suffer
from temporal inconsistency problems [6, 22], which
may lead to performance deterioration. Previous VSS
studies alleviated this issue under the condition of
independent and identically distributed (i.i.d.) data
but they may not be effectively applied to the VGSS
task. More recently, TCR [23] and TPS [24] were
proposed for temporal adversarial consistency and
temporal pseudo consistency for video domain adap-
tation in semantic segmentation, respectively, and
were demonstrated to assist in the domain-invariant
representation extraction. Thus, temporal consistency
should be considered in the VGSS task for better
learning of the domain invariant representations.

Thus, to improve model generalizability by reducing
class misclassification and inter-frame inconsistency, three
key points should be considered. (1). What kind of feature
can be used to effectively represent DIFs? (2). Is there
an approach that can refine the feature channels to select
and enhance generalized channels adaptively? (3). How to
reduce temporal inconsistency beneficially in the VGSS
task? Based on the above, we devise a VGSS framework
known as Non-Salient Feature Reasoning and Consistency
(NSFRC), with its fundamental concept depicted in Figure
1. Specifically, we first define the class-wise non-salient
feature, which describes the features of the class-wise non-
salient region that carry more generalizable information, and
can be considered as a type of DIF. We then propose a
class-wise non-salient feature reasoning strategy to select

Yuhang Zhang et al.: Preprint submitted to Elsevier
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Table 1

Task setting comparison. ISS and VSS represent image semantic segmentation and video semantic segmentation, respectively.

Task Continuous frames | Domain gap | Access target distribution
Image semantic segmentation 4
Video semantic segmentation v v
Unsupervised domain adaptation for ISS v v
Unsupervised domain adaptation for VSS v v v
Image generalized semantic segmentation v
Video generalized semantic segmentation (Ours) v v

and enhance generalized channels using the class-wise non-
salient features and graph relationship reasoning. In contrast
to approaches shown in Figure 2 (a), (b), and (c), we explore
a novel form (see Figure 2 (d) known as FID refinement,
which considers DIFs as prior information to attend to the
training process and assists the model in adaptively refining
the features. Finally, we propose an inter-frame non-salient
centroid alignment loss to reduce the gap between class-
wise non-salient centroids of two adjacent frames. The main
contributions of this work could be concluded as follows.

e We explore a new task known as VGSS, to handle dy-
namic scenes in real-world environments. To the best
of our knowledge, this has not been studied in existing
research. In addition, we propose the corresponding
VGSS framework NSFRC.

e Based on the novel observation that channel activa-
tions between diverse domains have a discrepancy,
we propose a class-wise non-salient feature reasoning
strategy to select and enhance generalized channels
adaptively, which also provides a new form for utiliz-
ing domain-invariant features.

e We propose the inter-frame non-salient centroid align-
ment loss to deal with the temporal inconsistency
problem and alleviate negative transfer.

e We generalize our NSFRC framework from the VGSS
task to the IGSS task, and achieve competitive results
compared with its counterparts in multiple challeng-
ing benchmarks for both tasks.

Remainder of this paper is organized as follows. Section
2 discusses the related research fields. Section 3 introduces
the NSFRC framework. Section 4 presents the extensive ex-
periments and an analysis of the results. Section 6 concludes
the paper.

2. Literature review

In this section, we first review several tasks including
image semantic segmentation, video semantic segmentation,
unsupervised domain adaptation, and domain generaliza-
tion. The relationships among these are shown in Table 1.
Thereafter, some related works on class activation map, pro-
totypical alignment, and graph convolution are introduced.

2.1. Image semantic segmentation

Semantic segmentation is a typical computer vision task
that predicts the semantic classes of each pixel in an image
[25, 26]. Semantic segmentation methods can be roughly
divided into architectural design and richer context aggre-
gation methods. For architectural design, a fully convolu-
tional network [27] and U-Net [28] have been used as the
baselines of many existing sophisticated methods as they
maintain both coarse and refined information depending
on the skip connection operation. HRNet [29] maintains a
semantically strong high-resolution feature map. In recent
years, SETR [30] and SegFormer [31] have been developed
as Transformer-based architectures that convert the original
segmentation into a sequence-to-sequence prediction task.
RepMLPNet [32] is a multilayer perceptron block with three
fully connected layers to capture local priors via locality
injection. Some methods obtain richer contexts using multi-
scale information fusion, such as DeepLab-series methods
[33, 34] and PSPNet [35]. Attention is also commonly used
for capturing long-range dependencies; for example, in CC-
Net [36], Non-local [37], and SegNeXt [38].

2.2. VSS

VSS has received widespread attention because it further
considers the dynamic attributes of the real world. These
methods can be mainly divided into reducing the cost of
per-frame computation and improving the segmentation per-
formance. To reduce the cost of per-frame computation,
DFF [39] calculates the optical flow between the keyframe
and current frame and obtains the predicted results by the
wrapping operation. DVS [40] is a dynamic selection strat-
egy that dynamically adopts a keyframe or segmentation
network for semantic segmentation. LLVSS [41] obtains
predicted results by fusing the low-level features of the
current frame and high-level features of the keyframe. To
devise a video framework at a low price, DAFC [42] was
proposed as a distortion-aware feature correction method for
correcting features in distorted regions, while preserving the
propagated features for other regions. Inter-frame fusion and
consistency are two core methods for devising a superior
VSS framework to improve the segmentation performance.
The keyframe usually serves as the prior information to
refine the features of the current frame. EFC [43] jointly
learns the video segmentation and optical flow tasks to
improve both. GCS [44] is a guided co-segmentation net-
work that simultaneously incorporates the short, middle,
and long-term temporal inter-frame relationships. STT [6]
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used Transformer-based architecture to balance accuracy
and efficiency. TMA [7] includes inter-frame self-attention
to perceive the inter-frame relationships better. In addition,
the temporal consistency constraint ensures the prediction
consistency of the temporal frames. UTC [45] provides an
unsupervised temporal consistency loss to penalize unstable
segmentation results. EFC [43] achieves temporal consis-
tency outside the occluded regions to reduce the effects of
unstable occluded regions. However, these methods cannot
generalize effectively to other unseen domains because of
the distribution gap between the source domain (domain for
training) and unseen target domain (domain for testing).

2.3. UDA

UDA aims to perform effectively in the target domain,
given the label source and unlabeled target domains [46].
Domain distribution alignment, self-training strategies, and
sample mixing strategies are the three general methods for
UDA semantic segmentation. Domain distribution align-
ment involves image-level [47, 48], feature-level [49, 50],
and output-level [51-53] distribution alignment. The self-
training strategy supervises unlabeled target data using
pseudo-labels. BDL [54] uses the maximum probability
threshold to filter target pixels with a confident prediction.
For sample mixing, a context-aware mixup architecture [55]
has been employed to explore and leverage the context
relationship between two domains. ProDA [56] uses class
prototypes to rectify the pseudo-labels. More recently, TCR
[23] and TPS [24] were proposed for temporal adversarial
consistency and temporal pseudo consistency in video do-
main adaptation for semantic segmentation, thereby facil-
itating the extraction of domain invariant representations.
However, the testing environment is unseen and varies in
many practical applications, which is a limitation of UDA
technology.

24. DG

DG targets generalize well to other unseen domains
using only the labeled source domain, where there is a gap
between the source and unseen domains [57]. Data gener-
ation aims to extend the data as much as possible to cover
unseen domains. DPRC [58] generates synthetic images
using the styles of auxiliary data by leveraging CycleGAN
[59]. FSDR [60] randomizes images using different domain-
invariant frequencies. GLTR [61] harmonizes the global and
local texture randomizations. To extract domain-invariant
features, as shown in Figure 2 (a), some methods, such as
IBN-Net [16], SW [62], ISW [17], and SAN [12], perform
normalization or whitening on all features to reduce domain-
specific information. PinMem [13] was recently proposed as
ameta-learning framework that memorizes domain-agnostic
and class-wise distinct information to reduce the represen-
tation ambiguity. These DG methods only segment using
a single image and may not achieve better performance in
a dynamic scene owing to the lack of continuous frame
information.

2.5. Class activation map

A class activation map (CAM) is used to identify the
discriminative region [63—65] using a single forward pass.
The visual interpretability of CAM can build trustworthy
intelligent systems, CAM methods, such as Grad-CAM [64],
and Grad-CAM++ [65] have been extensively explored.
Instead of improving the CAM, CAM technology is also
widely used in the weakly-supervised semantic segmen-
tation [66, 67], which fully leverages the discriminative
localization ability of CAM. More recently, CDG [68] was
used to calculate the CAM of a model trained on other
domains as the weight to determine the feature dropout in
DG training. Similar to the above methods, we also leverage
the discriminative localization ability of the CAM to identify
the less discriminative region (i.e., the non-salient region) to
obtain a generalized representation.

2.6. Prototypical alignment

The prototype constraint shown in Figure 2 (c) is an
effective strategy and is used in many UDA methods, where
the class prototype is the class feature centroid and can
be regarded as a type of DIF. ProCA [69] includes a pro-
totypical contrast adaptation that pulls closer to the pixel
and its corresponding class prototype. BISMAP [21] utilizes
source and target prototypes together to degrade hard-source
samples. BAPA-Net [20] performs prototype alignment be-
tween the mixed and source images. Note that these methods
employ all spatial features to generate and align prototypes.
In contrast to these methods, our method considers credible
features to generate a centroid and treats a non-salient cen-
troid as prior information to enhance the domain-invariance
model. Meanwhile, the proposed non-salient centroid align-
ment introduces temporal dimension alignment rather than
spatial dimension alignment.

2.7. Graph convolution

Graph reasoning has become a popular means of con-
structing graph relationships for graph analogs. It has re-
cently been used extensively in the semantic segmentation
task, which can be roughly grouped into three types: spatial,
class-wise, and temporal graphs. In the first type, the graph is
constructed in spatial features. DGCN [70] uses a coordinate
graph and feature graph in the spatial dimension. CNN-
G [71] constructs a spatial graph considering the distance-
based and semantic relationships. SPGR [72] explores multi-
scale spatial graphs to enhance long-range contextual cap-
ture. MDGCN [73] employs a superpixel-based graph to
adapt to various object distributions and geometric appear-
ances. In terms of class-wise graphs, ADD-GCN [74] mod-
els the relation of content-aware category representations
as a graph. CD-GCN [75] adopts a coarse-to-fine paradigm
to learn the feature aggregation and weight allocation. For
temporal graphs, SST-GCN [76] uses a stacked hourglass
architecture to enable accurate action boundaries. These
previous works used the strong ability of the relationship
capture of graph convolution and achieved impressive per-
formance. In our case, owing to the observation that feature
channel activations of the same classes in different domains

Yuhang Zhang et al.: Preprint submitted to Elsevier
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extraction, non-salient centroid alignment, and non-salient feature reasoning, respectively. Cubes represent deep features.

have a gap, we performed graph reasoning in the channel
dimension to reduce class-wise confusion.

3. NSFRC framework

3.1. Problem statement

Given a seen source domain {X,Y;} € D and K
unseen target domains ({X;,Y} € D, {Xp, Y} €
Dy,..{ Xk, Y,k } € D,x), a DG model is trained using the
source domain D, and then evaluated on these K unseen
target domains (D,,...,D,x), which aims to generalize well
on all unseen target domains. X, and Y, are images and
labels from different domains, respectively. The main dif-
ference between the IGSS and VGSS tasks is the input data.
The input of the image-based DG model is one image x,.
However, the input of the VGSS task modifies one image
X, into two (xfk‘l, x' ) or more temporally continuous frames
(', xfk‘l, x!), where the previous frames (x) are used
as the prior information to refine the segmentation of current
frame x! .

3.2. Overview of framework

As illustrated in Figure 4, the proposed NSFRC frame-
work contains class-wise non-salient feature generation,
non-salient feature reasoning (NSFR), and non-salient cen-
troid alignment (NSCA), where the class-wise non-salient
feature generation is constructed using CAM generation and
non-salient centroid extraction. The final objective of this
framework is defined as:

L= Es + ﬁl ﬁcls + ﬂ2£nsca (1)

, where L is the segmentation loss using the cross-entropy
function in Equation (15). £, and L, ., represent the
classification loss (Equation (4)) and non-salient centroid
alignment loss (Equation (16)), respectively. f; and f, are
hyperparameters of the loss terms.

Ground truth

Class-wiselfilter

Figure 5: Depiction of CAM generation. At the training stage, the
auxiliary classifier model updates parameters to learn meaningful
CAM, while the auxiliary model captures CAM for the NSFR module
at the test stage. Black lines denote the flow of both stages and green
lines denote the flow of the training stage.

Our framework obeys two devising keys of video-based
methods mentioned in the Literature Review section: inter-
frame fusion and inter-frame consistency. To enhance the
generalizability of the model fully, we further embed the
consideration of DG into the above guidelines. As shown
in Figure 4, class-wise non-salient features are obtained
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at the training stage and are sub-parts of class-wise non-salient features.

separately in the previous and current frames, which pro-
vide a more generalized representation for the following
module. NSFR is performed for inter-frame fusion. The
NSFR module adaptively selects generalized channels and
enhances the features using class-wise non-salient features
and graph relationship reasoning. For inter-frame consis-
tency, the NSCA module is proposed to align the distribution
of non-salient centroid between adjacent temporal frames
to alleviate prediction inconsistency between the adjacent
temporal frames.

3.3. Class-wise non-salient feature generation
Because domain-invariant features help to improve the
model generalizability, as noted in Section 1, the class-wise
non-salient feature with more domain-invariant information
is defined, which is formed by the non-salient prototype
and CAM. The steps of the class-wise non-salient feature
generation include CAM generation, non-salient prototype
extraction, and class-wise non-salient feature integration.

3.3.1. CAM generation

To obtain a CAM, a classification network is introduced
as an auxiliary task. Given the deep feature f, extracted
by the segmentation feature extractor, f, is pulled into the
feature extractor of the auxiliary classifier F,(-). Then, the
n € N class feature f” is filtered by the one-hot encoded
ground truth y,, which is denoted as:

f" = F(f )10 == 1) 2

1’thn —_— 1

0 yh,w,n — 0
s
The class n feature centroid c¢” is obtained by the average of

, where 1 is the indicator function, 1(-) =

Thereafter, ¢” is pulled into the auxiliary classifier C7, to
obtain the prediction. The classifier loss L, is calculated
using the cross-entropy:

N
Loy ==Y V'log(C (c") @
i=0

, where L, is designed to capture meaningful weights of the
classifier. Finally, the class n activation map M" is denoted
as:

G
= 2wty )
g=1

, where g € G is the channel of the feature. w” represents the
weight of class n in channel g, which belongs to the auxiliary
classifier Cc”ls and is learned by Equation (4). The process of
this module is shown in Figure 5.

3.3.2. Non-salient prototype extraction

As indicated by Maxdrop [77] and RSC [19], most pre-
dictive parts contain less domain-invariant information. That
is, the non-salient region is expected to be a more generalized
region. The non-salient region in the feature map is identified
by the CAM [63] owing to its discriminative localization
ability. The class n non-salient mask M, is obtained by a
threshold filter, which is denoted as:

1 0<M™ <= M"(a)

ns — 0 Mn(h,w) > M"(a) (6)
, where a is a hyperparameter to represent the pixel percent-
age that needs to be filtered. M" () is the J'-largest value
in M", where J = H X W X a. The non-salient centroid
p" is calculated as the average value of /" under non-salient

the class n feature f”, which can be defined as: mask M, which is denoted as:
(h,w,n)
M= ZXSEX zh Zw fn (3) pn _ ZXSGXS Zh Zw fn]](M}I:s == 1) (7)
h - R7IN]
Zx EX, Zh Zw ﬂ(y( W”) 1) ZXSEXS zh Zw ]](M;l;h ' == 1)
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Figure 7: Depiction of class-wise non-salient feature integration and non-salient feature reasoning.

, where p" is also the initial value of the non-salient pro-
totype. An exponential moving average (EMA) operation
between the two iterations is used to update the non-salient
prototype, which can be represented as:

P Ap" (1= Ap" ®8)

, where p'" represents the non-salient centroid using the
current frame in Equation (7). The non-salient prototype
p" is more generalizable compared to the naive prototype
obtained using Equation (3) because the less generalized
representation is filtered. For clarity, Figure 6 exhibits the
extraction of the non-salient centroid and non-salient pro-
totype. During the training stage, the non-salient prototype
undergoes updates at every iteration, and the parameters of
the prototypes at the final iteration are saved. In the testing
stage, the non-salient prototype employs the stored prototype
parameters and maintains them as fixed.

3.3.3. Class-wise non-salient feature integration

As indicated in the above section, the value of the CAM
is linked to the degree of generalization of the spatial pixel,
where the non-salient region carries more generalized infor-
mation to achieve domain generalization. Thus, the CAM
perceives the generalized importance of spatial features,
which is employed as significant information constructing
class-wise non-salient features. Specifically, the class-wise
non-salient feature f S”g is defined as the concatenation of the
non-salient prototype p” and CAM M", which is denoted as:

fs”g = ¥Y(Conv(p"), Flatten(M™)) )
, where W(-) and Flatten(-) refer to feature concatenation and

feature flattening, respectively. Figure 7 depicts integration
operation process.

3.4. Class-wise NSFR
Another concern is the use of class-wise non-salient
features. As explained in Section 1, the feature channel
activations for the same class in different domains have
a gap, which means that the model can perceive domain
information from training images rather than only the se-
mantic information. This motivated us to propose a channel
distribution reweighting strategy for adaptively selecting and
enhancing the generalized channels of the original features.
Furthermore, previous studies have shown that DIFs can
enhance the model generalizability, as shown in Figure 2.
Combining these two observations, a straightforward con-
cept is to embed the DIFs into the original features to assist
in reducing the domain-variant information of the original
features, which is known as DIF refinement. In particular, we
propose class-wise non-salient feature reasoning to achieve
DIF refinement. Class-wise non-salient features, as a type of
DIFs, are adopted as the input for feature reasoning, which
captures the inter-class relationship of the DIFs to select
generalized channels and enhance the features adaptively.
As graph convolution excels in capturing node relation-
ships and adaptively propagating information [78, 79], it is
suitable for adoption as a class-wise relationship reasoning
method. Given a graph G containing nodes N and edges &,
the graph convolution can be defined as:
O, =c(W,fsA,) (10)
, where O,.,, A,, and W, are the output, adjacency matrix (i.e.,
the relationship between nodes), and learnable weight ma-
trix, respectively. o () denotes the non-linear activation func-
tion. To capture the relationship between different classes,
the non-salient features of each category are employed as
nodes in the graph. A 1 X 1 convolution layer is used to
get the adjacent matrix A, as in GloRe [78]. Meanwhile,
the relationship reasoning also conducts Laplacian matrix
smoothing (I — A,) using the a residual sum between the
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identity matrix I and adjacent matrix A, to propagate the
node features over the graph more effectively. Therefore, the
graph relationship reasoning can be rewritten as:

Or = G(I/I/rfsg(l - Ar)) (11)

Thereafter, another 1x1 convolution W, is used to match the
channel dimension of original feature f,,. The reconstructed
feature f can be defined as:

f=0W,0,) % f,+ [, (12)

, where 6(-) is the sigmoid operation. Note that the shape of
the reasoned feature 6(W,0,) is 1 X Cy , where C is the
channel number of f,,.

The effect of the proposed feature reasoning is twofold.
First, the reconstructed feature is expected to learn and
activate generalized and representative channels because the
relationship between class-wise non-salient prototypes con-
taining more domain-invariant information is captured and
reasoned. Second, a new form that differs from that Figure
2 (a), (b), and (c) is adopted; that is, DIFs are embedded
into the original features to reduce the domain-variant in-
formation of the original feature, which potentially provides
valuable insights and inspiration for follow-up studies. It can
be seen that the proposed method compiles well with the first
and second observations mentioned in Section 1.

Temporal feature fusion between two frames is em-
ployed to integrate the segmentation results of the temporal
frames for more accurate prediction. Considering the tem-
poral frames, the final feature of the " frame f; can be con-
catenated from the high-level feature f,h, low-level feature

ft/’ and reconstructed feature f, which can be defined as:

f, =YW, £, UG (13)

, where the original feature f, is pulled into the ASPP
module [33] to aggregate the ‘multi-scale context, where
f,h = ASPP( f,g). The low-level feature f,/ is the feature of
stage 1 in the backbone network. U refers to the upsample
operation to match the dimension of f r The temporal fused
prediction Py, is obtained by concatenating the predictions
of two frames, which is denoted as:

Prise = Cruse (Y(C(f). WC(f1-1). F)) (14)

, where W is the warping operation, and F is the optical flow
estimated by FlowNet-V2 [80]. Cy,, is the classifier for the
temporal fused prediction. Finally, a cross-entropy function
is leveraged as the segmentation loss:

Ly==3 X wWPlog(PL) (15)

fuse
h,w neN

Figure 7 depicts the process of the NSFR module.

3.5. NSCA
Inspired by TCR [23] and TPS [24], which alleviate
temporal inconsistency in video domain adaptation semantic

segmentation for better learning of the domain-invariant rep-
resentation, we propose the NSCA loss to constrain adjacent
frames, as shown in Figure 6, which can be described as
follows:

N
1
['nsca = N Z |p:l_1 _P:l| (16)
n=0

where the non-salient centroids p:’_ { and p! represent the
class centroids in the (f — 1)”’ and " frames, respectively,
calculated by Equation (7).

The effect of the alignment loss is two-fold. First, the
inter-frame feature alignment alleviates the temporal incon-
sistency problem to learn the domain-invariant represen-
tation more effectively. Second, compared with the naive
centroid alignment, as the non-salient centroid is generated
by the more generalized region, this strategy encourages the
alignment of generalized features between different frames
rather than the global features. This learning strategy fil-
ters out the less generalized features (i.e., unrelated source
features) to alleviate the effect of the outliers in the global
features; that is, it alleviates negative transfer [81].

4. Experiments

Extensive experiments were conducted to verify the
superiority of our NSFRC framework in the VGSS task,
including qualitative and quantitative comparisons and ab-
lation studies. Our NSFRC framework was also extended to
demonstrate its effectiveness in the IGSS task.

4.1. Dataset

Nine datasets were used in both the IGSS and VGSS
tasks, including four real-world datasets (Cityscapes [15],
CamVid [83], Mapillary [84], and BDD100K [85]) and
five synthetic datasets (VIPER [86], GTAV [14], SYNTHIA
[87], V2X [88], and VKitti2 [89]).

Four synthetic datasets and two real-world datasets were
used in the VGSS task. The VIPER dataset is a synthetic
dataset of urban scenes containing over 25000 video frames
with FHD resolution (1920 x 1080) under different envi-
ronmental conditions, which were captured in the computer
game Grand Theft Auto V. The SYNTHIA-Seq dataset,
which is a sub-dataset of SYNTHIA, has 8500 video frames
with eight views, where the images of six views and the other
two views are used as the training and validation sets, respec-
tively. The large-scale V2X dataset contains 37330 video
frames with a resolution of 1600 X 900 for autonomous driv-
ing, supporting multi-agent multi-modality research. Four
sequences (35030 frames) and one sequence (2300 frames)
are used as the training and the testing sets, respectively.
The Vkitti2 dataset is a large-scale dataset containing five
scenes (42520 video frames) with a resolution of 1242 x
375. Similar to the V2X dataset, four scenes (33580 frames)
and one scene (8940 frames) in the VKitti2 dataset are used
as the training and the validation sets, respectively. For the
real-world datasets, 5950 training and 1000 validation video
frames with a resolution of 2048 x 1024 were adopted from
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Table 2

Quantitative comparisons for the VGSS task on widely-used datasets. The best and second-best performances are represented by bold and
underline, respectively. — refers to “generalize to”. Avg refers to the average mloU on different evaluation datasets. DG and Video represent
domain generalization strategy and continuous frames, respectively. Model T, R, M, and S denote Transformer, ResNet-50, MobileNet-V2, and

ShuffleNet-V2, respectively.

Methods Model Avg DG Video VIPER (V,)— Synthia-Seq (:S,)— CamVid (CV,)— Cityscapes-Seq (C)—
-8, =»C, -CV, -V2 VK |-V, -C ->CV, -V2 VK |-V, -C =S8 ->V2 -SVK |-V, -CV, =S ->V2 -SVK

CFFM [82] T 304 v/ | 342 2658 283 330 269 |18.2 298 374 279 274 | 185 39.1 18.7 247 258 (249 46.0 411 383 40.1
TMA[7] R 295 v/ |354 309 349 383 314 | 115 120 194 10.7 209 |18.9 445 264 356 293 (240 525 33.0 446 36.1
IBN [16] R 364 v 36.3 296 335 305 352 (211 400 457 299 374 |21.6 446 396 296 37.3 |23.0 60.2 409 427 496
SW [62] R 391 v 452 289 352 343 403 |226 41.0 457 37.6 420 |229 477 402 376 385 |21.9 608 43.8 455 50.9
ISW [17] R 377 v/ 423 340 386 407 406 |244 401 446 307 391 |21.1 437 392 305 349 [208 601 405 391 481
PinMem[13] R 389 v 406 30.8 432 439 332 |21.4 375 321 359 389 (239 560 436 364 375 |299 61.1 402 430 489
NSFRC (Ours) R 422 vV v |411 36.0 39.6 459 40.9 |26.1 421 478 376 411 |27.2 527 437 414 379 (331 617 509 489 47.6
TMA [7] M 287 v/ |316 267 363 309 244 |185 157 23.0 232 23.6 |20.8 441 36.9 37.2 29.8 189 432 20.1 394 291
IBN [16] M 346 V 358 26.2 342 30.1 33.1 |21.6 359 40.0 276 372 | 185 439 374 414 357 |17.4 555 36.8 37.0 46.2
SW [62] M 361 vV 38.3 235 375 41.3 297 200 347 426 312 388 |21.4 462 404 396 370 |153 577 346 47.7 440
ISW [17] M 353 v 355 256 346 289 348 [21.6 359 408 307 395 |187 437 363 402 346 (192 586 391 412 471
PinMem [13] M 352 V/ 376 27.1 433 333 31.8 |18.7 249 31.0 245 376 |23.8 515 36.2 319 353 |29.4 56.0 439 385 48.1
NSFRC(Ours) M 393 v / [388 319 343 419 367 |262 398 457 374 390 |251 501 391 395 367 (304 553 456 453 465
TMA [7] S 283 v/ |336 269 305 345 275 |136 75 228 17.7 219 |213 433 361 373 314 |19.9 457 271 377 299
IBN [16] S 324 / 345 233 279 29.0 37.2 | 233 325 431 268 36.6 |19.5 38.1 31.1 282 322 |169 546 355 334 44.7
SW [62] S 325 vV 354 218 336 282 378 |21.7 335 408 252 321 | 199 39.2 329 334 341 |152 535 321 336 46.0
ISW [17] S 323 V/ 35.1 244 289 28.1 356 |221 321 436 248 332 | 189 381 309 258 329 |222 555 379 312 43.6
PinMem [13] S 333 v 323 285 298 349 265 |172 237 267 258 346 |227 521 37.2 330 348 |274 565 420 353 44.6
NSFRC (Qurs) S 376 v v/ |366 285 363 425 33.7 |23.8 352 448 354 375 | 242 46.6 36.8 38.5 35.0 |27.9 56.3 425 453 45.6

Table 3

Quantitative comparisons for the VGSS task on large-scale datasets.
The best and second-best performances are represented by bold and
underline, respectively. — refers to “generalize to”. Avg refers to the
average mloU on different evaluation datasets. Model T, R, M, and
S denote Transformer, ResNet-50, MobileNet-V2, and ShuffleNet-V2,
respectively.

Methogs  Model Avg VX (V2,)— VKITTI2 (VK,)—
-8, =C, =CV, =V, -VK |=S, =C, -CV, =V, =V2,

CFFM[82] T 23.1|17.3 251 166 166 196 |27.4 326 322 172 266
TMA[7] R 240|153 344 271 217 306 |175 257 206 156 31.2
IBN [16] R 274|277 308 281 207 303 |223 360 27.4 173 331
SW [62] R 207|328 356 299 241 323 |219 365 287 21.8 337
ISW [17] R 274|312 357 283 238 3824 |157 353 27.2 150 29.8
PinMem [13] R 29.9|28.7 350 354 255 356 |244 37.1 322 200 253
NSFRC (Ours) R 34.8(353 404 389 302 39.8 |254 37.0 320 203 38.0
TMA[7] M 200| 93 177 264 196 251 |160 217 228 162 254
IBN [16] M 271|277 311 291 185 285 |240 349 277 176 319
SW [62] M 276|215 338 311 202 295 |21.0 333 289 210 352
ISW [17] M 275|287 320 290 199 313 |222 832 281 202 3804
PinMem [13] M 27.4|253 354 339 250 309 |208 339 311 17.1 206
NSFRC (Ours) M 32.0(33.7 380 402 27.7 37.7 |239 321 327 188 350
TMA[7] S 239|179 200 256 184 263 |287 29.0 253 204 323
IBN [16] S 257|235 293 292 176 29.0 |209 328 283 196 27.0
SW [62] S 269|242 298 283 199 313 |27.8 293 314 180 289
ISW [17] S 250|232 294 298 180 288 |186 336 262 158 26.8
PinMem [13] S 265|272 325 315 225 300 |21.9 315 288 168 220
NSFRC (Ours) S 29.8(31.1 320 37.8 255 329 |236 329 302 187 33.4

the Cityscapes-Seq dataset. The CamVid dataset contains
366 and 101 video frames with a resolution of 960 x 720
for the training and validation sets, respectively.

Two synthetic and three real-world datasets were used
in the IGSS task. For the synthetic datasets, the GTAV
dataset collects over 25000 images with a high resolution
of 1914 x 1052. The SYNTHIA-Rand set is the subset of the
SYNTHIA dataset and consists of 9400 1280 x 760 images
with different views. For real-world datasets, the BDD100K
dataset is a large driving dataset, where 7000 training and
1000 validation images of 1280 X 720 resolution are used in

the IGSS task. The Mapillary dataset covers six continents
and consists of 18000 training and 2000 validation images,
where the resolution of the images is at least FHD reso-
lution. The Cityscapes dataset is widely used in the street
understanding task, which contains 2975 training and 500
validation images with the resolution of 2048 x 1024.

4.2. Implementation detail

ResNet-50 [90], ShuffleNet-V2 [91], and MobileNet-V2
[92] were adopted as the backbone networks and the model
pre-trained on ImageNet was used as the initial model. The
segmentation model adopted a stochastic gradient descent
optimizer based on the Pytorch library [17], where the initial
learning rate, weight decay, and momentum are set to 0.01,
5e-4, and 0.9, respectively. The mean Intersection over union
(MIoU) of the categories was reported as the performance
metric for comparison. Similar to ISW [17], several photo-
metric transformations, such as Gaussian blurring and color
jittering, were used to avoid source overfitting. The hyperpa-
rameter of the filter for non-salient centroid generation was
set to 0.3. For the VGSS task, all video frames were resized
to 768x384. For the IGSS task, all input images were resized
to 768x768 like other methods (ISW [17] and PinMem
[13]). 4 in the Equation (8) was set to 0.9 and the number
of frames was 2. Both §; and f, were set to 0.001. The
auxiliary feature extractor was built sequentially, consisting
of a 3x3 convolution layer followed by batch normalization
and ReLU activation, then another 3x3 convolution layer
followed by batch normalization and ReLU activation. The
auxiliary classifier used a 3%X3 convolution layer.

4.3. Comparison with state-of-the-art methods

For the VGSS task, ResNet-50 [90], ShuffleNet-V2
[91], and MobileNet-V2 [92] were adopted as the backbone
networks. The video datasets VIPER (V), Synthia-Seq
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Figure 8: Result visualization comparison of state-of-the-art methods including IBN [16], SW [62], ISW [17], and PinMem [13]. Best viewed in

color.

(S,), CamVid (CV), Cityscapes-Seq (C;), V2X (V2;), and
VKitti2 (VK,) were used in turn as the source domain
for training, while the other datasets were used as the test
sets. Thus, the experiments consisted of V, — {S,.C,,
CVv, V2, VK}, S, =» {V,.C,, CV,, V2, VK.}, C; —
{(V,,CV,,S,, V2, ,VK,}, CV, - {C,V,S, V2, ,VK,},
V2, - {8, C,, CV, V,, VK}, and VK; — {S,, C,,
CV,, Vy, V2,}. The left of the — is the source domain for
training, whereas the right of the — is the target domain
for evaluation. A single model was selected to evaluate all
target domains instead of using multiple models such as
DPRC [58]. For better readability, we divided the above
experiments into two tables. Table 2 was used to evaluate the
performance on widely-used datasets (VIPER, Synthia-Seq,
CamVid, and Cityscapes-Seq), whereas Table 3 was em-
ployed to evaluate the performance on large-scale datasets
(V2X and VKitti2).

Two evaluation metrics were employed to validate the
effectiveness of our method. The first metric is the average
mloU in all evaluated settings for each method. A higher
average mloU reflects a better domain generalization ability.
For example, for the Resent-50 backbone, we achieved the
best performance with 42.2% in terms of the average mloU
in Table 2. However, if a method has good performance in

only one domain while getting bad performance in other do-
mains, it cannot meet competitive domain generalizability.
From this viewpoint, the second metric is the number of best
or second-best performances in different evaluated settings
(as indicated in the rows in Table 2). A higher number
of best or second-best performances in a method reflects
that the generalization can be relatively evenly distributed
across different domains. For example, for the Resnet-50
backbone, we achieved 14 best performances (including
Ve - {C, V2, VK }, S, = {V,,C,,CV,V2]}, CV, —
{(Vy, S, V2}, and C; — {V,,CV,,S;,V2.}) and four
second-best performances (V; — {CV,}, S; = {V K}, and
CV, - {C,,VK,}) in a total of 20 evaluated situations (V
or S, or CV; or C; — other five datasets). The performance
comparison on widely-used datasets is presented in Table
2. In the ResNet-50 backbone, our method achieved 42.2%
in terms of the average mloU and 14 best results in 20
evaluation settings. A 3.1% improvement in the average
mloU shows the superiority of our approach compared to
the second-best method. In the MobileNet-V2 backbone, our
approach outperformed all the state-of-the-art methods with
a significant improvement of at least 3.2% in average mloU.
In the ShuffleNet-V2 backbone, 15 best performances were
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Table 4

Quantitative comparisons for the IGSS task on ResNet-50 backbone. The best and second-best performances are represented by bold and
underline, respectively. — refers to “generalize to”. Avg refers to the average mloU on different evaluation datasets.

GTAV (G)— SYNTHIA (S)— Cityscapes (C)— BDD (B)— Mapillary (M)~
Methods Model MG | ¢ B oM =S| >C 5B —M 5G| 5B —M -G —5| =G =S —C M| =G -5 5C B
IBN[16]  ResNetS50 342 | 339 323 7.8 279 | 320 306 322 269 | 486 570 451 261 | 290 254 411 266 | 30.7 27.0 428 310
SW[62]  ResNetS50 322 | 289 27.5 297 276 | 282 271 263 265 | 485 558 449 261 | 277 254 409 258 | 285 27.4 407 305
DRPC[58]  ResNet50 358 | 37.4 321 341 281 | 357 315 327 288 | 409 563 456 266 | 332 208 41.3 819 | 330 206 462 329
GTR[61]  ResNet50 36.1 | 375 33.8 345 282 | 368 320 329 280 | 508 572 458 265 | 333 306 426 907 | 329 303 458 326
ISW[17]  ResNet50 36.4 | 366 352 403 283 | 358 316 808 277 | 507 586 450 262 | 327 305 435 O16 | 334 302 464 326
SAN[12]  ResNetS50 385 | 3.8 873 41.9 308 | 389 352 345 202 | 530 598 47.3 283 | 348 318 449 332 | 340 316 487 346
PinMem[13] ~ ResNet50 41.0 | 412 352 394 289 | 3882 823 339 821 | 506 570 451 204 | 424 201 548 510 | 441 308 559 47.6
NSFRC (Ours) ResNet50 422 | 426 37.9 420 331 | 385 300 323 207 | 509 578 453 305 | 30.6 336 57.4 562 | 497 346 60.0 512
Table 5 Table 6

Performance comparison in Foggy cityscapes and IDD datasets be-
tween the Baseline [17] and our method. — refers to “generalize to”.
Avg refers to the average mloU on different evaluation datasets.

Ablation studies on proposed component containing NSFR and NSCA.
The model is trained on the Cityscapes-Seq with ResNet-50 backbone
network.

C—
—-I —F
47.1 58.3
49.7 60.4

G-
—-I —>F
33.7 30.3
39.2 37.7

S—
-1 ->F
26.8 29.7
28.6 32.7

B—
—I —>F
45.4 477
48.8 50.6

M-
-1 —>F
411 407
49.3 491

Methods Avg

Baseline 40.1
Qurs 44.6

achieved in 20 evaluation settings. Compared to the second-
best method, the result of our framework is improved to
37.6% and had a clear increase of 4.3% in terms of the
average MIoU. These experiments and discussions indicate
that the segmentation quality is enhanced by the proposed
class-wise relationship reasoning and NSCA.

The performance comparison on large-scale datasets is
presented in Table 3. In the Resnet-50, MobileNet-V2, and
ShuffleNet-V2 backbones, our proposed method exhibited
a clear increase of at least 4.9%, 4.4%, and 2.9% in terms
of the average mloU, respectively. Meanwhile, our method
maintained relatively even generalizability to all testing do-
mains, achieving the highest number of the best and second-
best performances in all evaluated settings. For instance, our
method achieved six best performances and four second-best
performances in all 10 evaluated settings for the ResNet-50
backbone.

Two video-based segmentation methods, namely TMA
[7] and CFFM [82] are performed on the same experiments
to verify the importance of the DG strategy. As shown in
Tables 2 and 3, TMA and CFFM always exhibited inferior
performance to that of the DG methods, which shows that
such video-based methods cannot handle environments with
diverse styles. Thus, it is significant to fuse the DG and
continuous frames.

We also provide a visual comparison with state-of-the-
art methods including IBN [16], SW [62], ISW [17], and Pin-
Mem [13]. As shown in Figure 8, our methods achieved bet-
ter segmentation results with more completed object shapes
and fewer incorrect areas.

In addition, we report the performance in the IGSS task
in Table 4, where the model was trained on Mapillary (M),
GTAV (G), Cityscapes (C), BDD100K (B), and SYNTHIA
(.S) in turn similar to the VGSS task. Correspondingly, ex-
periments with 20 evaluation settings were performed: G —

Method NSFR NSCA|— V, —=CV, =S, Avg | lter time(s)
Baseline 28.2 60.8 40.0 43.0/ 0.0107
NSCA v 326 574 50.0 46.7| 0.0122
NSFR v 341 600 495 479| 0.0123
NSFR + NSCA| vV v/ | 331 617 509 48.6| 0.0128

{C,B,M,S}, S -» {G,C,B,M}, C — {G,S,B,M},
B - {G,C,S,. M}, M —{G,S,C, B}. In the IGSS task,
NSCA cannot perform alignment on inter-frame features
because the input is a single image. Thus, NSCA was im-
plemented by splitting the original features into two types
of features by odd and even indices to calculate the non-
salient centroid separately and perform centroid alignment.
NSFR retained the original settings because this module
does not require inter-frame information. The 13 best (G —
{B,M,C,S},S - {G},C - {S},B—> {M,C,S}, and
M — {G,B,S,C}) and two second-best (S — {C} and
C — {B}) performances in our framework show that the
NSFRC framework achieved state-of-the-art performance.
Our approach improved the performance by 1.2% in terms of
the average mloU compared to the second-best method (i.e.,
PinMem [13]). In addition, we compared the performance
of the baseline and our method on recent and challenging
datasets (i.e., Foggy Cityscapes (F) [93] and IDD (I) [94]).
As shown in Table 5, our method outperformed the baseline
model with a 4.5% gain in the mIoU. These experiments
verify that our proposed method is also effective for the IGSS
task and outperforms other state-of-the-art methods.

4.4. Ablation study
4.4.1. Individual components

Ablation studies were conducted to verify the effec-
tiveness of the proposed components. NSFR and NSCA
were the ablation terms used for evaluation. Note that the
model with only template feature fusion was the baseline;
that is, it employed Equations (13), (14) without non-salient
features. As shown in Table 6, the performance of the model
trained on Cityscapes-Seq on the ResNet-50 backbone was
reported and the remaining three datasets were evaluated.
The baseline model denotes the model using only temporal
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Figure 9: Result visualization comparison of different models on distinct domains. Best viewed in color. White boxes show the segmentation error

in the baseline model.

feature fusion without the reconstructed feature f gener-
ated by non-salient feature reasoning. Our NSCA module
achieved 46.7% in terms of the average mIoU with an 3.7%
improvement compared to the baseline. Furthermore, NSFR
achieved 47.9% in terms of the average mIoU. The perfor-
mance of the final model was improved to 48.6% in terms of
the average mloU and the performance improvement was ob-
vious compared to the baseline. Thus, the proposed modules
contribute to enhancing the generalizability of the model.
Meanwhile, there was no clear disparity in the iteration time
among the proposed modules.

The segmentation visualizations of different models (the
baseline model, model with NSFR, and model with NSFR
+ NSCA) on distinct domains (C;, — CV,, C;, — S|,
C, — V,) are provided for comparison in Figure 9. The

NSFR model and final model exhibited better results than
the baseline model and the final model showed smaller
segmentation errors than the NSFR model, demonstrating
that our framework alleviates the class confusion problem.
For example, in the first row of C; — V, the bus shape in
our final model was closer to the ground truth.

4.4.2. Non-salient region validation

In addition, to validate the effectiveness of the non-
salient region, ablation studies were conducted on the sub-
components of the proposed modules. First, as mentioned
in Section 3.C, the class-wise non-salient feature was con-
catenated using the non-salient prototype and CAM. Table
7 shows the effects of these sub-components. The model
with the non-salient prototype had a gain of 1.2% in terms
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Table 7

Ablation studies on internal components of class-wise non-salient
features. NSP, NP, and CAM are the non-salient prototype, naive
prototype, and class activation map, respectively.

Method NP CAM NSP|—V, =CV, =S, Avyg
Baseline 28.2 60.8 40.0 43.0
NP 4 33.1 584 448 454
CAM v 327 604 437 456
NSP v/ | 338 578 48.2 46.6
NP +CAM |V V/ 328 61.2 45.0 46.3
NSP + CAM v / |341 600 495 479
Table 8

Ablation studies on internal component of inter-frame non-salient
centroid alignment. NSCA and NCA represent the non-salient centroid
and naive centroid alignments, respectively.

Table 9

Time complexity comparison. | represents that lower value is better
and 1 shows higher value is better.

Model Runtime (s) | | GFLOPS | | Parameter (M) | | FPS 1
CFFM[82] 0.0399 28.66 15.3 25.1
TMA[7] 0.0304 242.71 27.3 33.9
IBN[16] 0.0243 74.68 40.4 41.2
SW [62] 0.0317 74.63 40.4 31.5
ISW[17] 0.0280 74.65 40.4 35.7
Pinmem([13] 0.0275 78.37 40.5 36.4
Baseline 0.0310 149.31 40.4 32.3
NSCA 0.0318 168.68 45.7 31.4
NSFR 0.0331 190.43 46.3 30.2
NSFRC 0.0355 190.43 46.3 28.2

Method |NSCA NCA |-V, =CV, =S, Avg
Baseline 28.2 60.8 40.0 43.0
NCA v 32.8 56.9 454 45.0
NSCA v/ | 326 574 500 46.7
=== VIPER CamVid —==- Synthia-seq === Avg
508 612 G G 500 500 E08 50,
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Figure 10: The hyperparameter evaluation of deciding the non-salient
region. (w/o R) denotes the results without NSFR.

of the average performance compared to the model with
the naive prototype. Meanwhile, the NSP + CAM model
achieved an average mIoU of 47.9% and outperformed the
NP + CAM model by 1.3% on average, indicating that the
features in the non-salient region carry more generalized
information. Second, as shown in Table 8, the proposed
NSCA achieved an improvement of 1.7% in the average
mloU over the naive centroid alignment. These experiments
demonstrate the effectiveness of the proposed components
and non-salient region.

4.4.3. Non-salient region hyperparameter evaluation
The hyperparameter for determining the non-salient re-
gion is also important, where the hyperparameter a repre-
sents the filter percentage. For example, 30% of pixels in the
feature map will be filtered when the hyperparameter is 0.3.
As shown in Figure 10, the average performance was the best
when the hyperparameter « was 0.3. Meanwhile, the per-
formance reasonably increased and then decreased as a in-
creased. First, the performance without NSFR was the worst.
Then, the model with feature reasoning but without the

non-salient region filter (¢ = 0) improved the generalized
performance, which verifies the effectiveness of the feature
reasoning. Next, as the features of most salient regions that
provided less generalizable information were filtered out, the
performance increased when a increased. Finally, features
carrying domain-invariant information were filtered, which
led to decreased performance when « increased further.

4.4.4. Time complexity analysis

We also present a time complexity comparison in the
condition of the ResNet-50 backbone, including state-of-the-
art methods and the proposed sub-modules. As shown in Ta-
ble 9, CFFM had the lowest GFLOPS and parameters owing
to the new backbone Transformer, while suffering from the
lowest FPS owing to the complex calculation. Compared to
the other VSS method TMA, our final method had lower
GFLOPS and obtained a 12.7% improvement in the average
mloU with no significant difference in the FPS. Compared
with the IGSS methods, there was no significant variance
in the parameters and FPS, whereas our method achieved
an average mloU of at least 3.1%, thereby highlighting the
efficacy of our method.

5. Limitations

Although our method achieved state-of-the-art perfor-
mance, we reckon that some limitations need to be over-
come. Our core idea employs a class-wise non-salient fea-
ture as prior information to select and enhance the feature
channel adaptively, where the class-wise non-salient feature
is constructed using a class centroid and CAM. As noted in
RSSP [95], using one class prototype to present a class is not
sufficient, as the classes can also be divided into different
parts or originate from different domains. Thus, our work
may be improved by fine-grained class prototype extraction;
that is, by employing multiple prototypes for each category.
Meanwhile, as a pioneering VGSS method, our approach
mainly focuses on improving the generalized performance
using video information, without considering an increase in
consumption. Although the cost of our model is not signif-
icantly different from that of other state-of-the-art methods,
it is a valuable aspect for improvement. Moreover, although
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desirable, we could not perform our experiment on larger-
scale datasets such as the AIO Drive dataset [96] owing to
resource limitations.

6. Conclusions

We have introduced a new task to deal with dynamic
scenes in real-world environments, namely: VGSS, which
considers both continuous data and model generalizability.
To the best of our knowledge, this task has not been pre-
viously studied. For the VGSS task, we proposed a novel
method known as NSFRC. Specifically, we first defined the
class-wise non-salient feature, which describes the features
of the class-wise non-salient region that carry more gener-
alizable information. We then proposed a class-wise NSFR
strategy to select and enhance the generalizable channels
adaptatively. Finally, we presented the inter-frame NSCA
loss to alleviate temporally inconsistent and negative transfer
problems in the VGSS task. Furthermore, we extended our
method to the IGSS task. Extensive results on both the VGSS
and IGSS tasks demonstrate the superiority of our NSFRC
framework.
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