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Abstract: The build-up method is a powerful class of propagation rules that generate self-dual codes
over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order 4, to
generate quasi self-dual codes. In the present paper, we introduce three such propagation rules to
generate self-orthogonal, self-dual and quasi self-dual codes over a special non-unitary ring of order
9. As an application, we classify the three categories of codes completely in length at most 3, and
partially in lengths 4 and 5, up to monomial equivalence.

Keywords: non-unitary rings; self-dual codes; build-up construction
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1. Introduction

A potent way for creating self-dual codes over finite fields and unitary rings is the
build-up method [1–3]. By using a recursion on generator matrices, from a self-dual code
of length n, it creates a self-dual code of length n + h (with h small and fixed). This is
sometimes called a propagation rule of order h. For concreteness, h = 2 for binary codes [4]
and codes over a certain ring of order 4 [1], and h = 4 for ternary codes [2].

Recently, this technique was extended to certain non-unitary rings of order 4 [5,6],
with self-dual codes replaced by self-orthogonal codes of length n and of order 2n, the
so-called quasi self-dual (QSD) codes defined in [7].

In the present work, we modify this technique to produce self-orthogonal and self-dual
codes, as well as QSD codes over the ring I3, a non-unital, commutative ring of order 9.
This notation is consistent with the classification in [8] of rings of order p2, for a prime p.
Following [7], QSD codes are defined over the ring I3 as self-orthogonal codes of length n
and size 3n. We derive propagation rules of order 3 for self-orthogonal codes (Theorem 4)
and of order 4 for self-dual and quasi self-dual codes (Theorems 7 and 9). As an upshot
of these rules, we classify completely self-orthogonal, QSD and self-dual codes up to
length 3, and partially up to length 5. The classification is made under monomial action.
The mass formulas for the three types of codes considered are used as a stopping criteria
for code generation.

The rest of the paper is set up as follows. The next section contains the preliminary
notions and notations needed in the latter sections. The three propagation rules are derived
in Section 3. Section 4 contains some classification results. Section 5 concludes the article
and points out directions for further research.
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2. Preliminaries

Let F3 denote the finite field of order 3, and let Fn
3 be the vector space of n-tuples over

F3. A ternary linear code C of length n and dimension k, denoted simply as an [n, k]3 code,
is a k-dimensional subspace of Fn

3 . The dual of a ternary linear code is denoted by C⊥ and
is defined as

C⊥ = {y ∈ Fn
3 | ∀x ∈ C, (x, y) = 0},

where (x, y) =
n
∑

i=1
xiyi denotes the standard inner product. A code C is self-orthogonal if it

is included in its dual, that is, C ⊆ C⊥.
The number of nonzero coordinates of a vector x ∈ Fn

3 is called its (Hamming) weight,
denoted by wt(x). The Hamming distance d(x, y) between two vectors x, y ∈ Fn

3 is defined
by d(x, y) = wt(x − y). The minimum distance of a linear code C is

d(C) = min{d(x, y)|x, y ∈ C, x ̸= y} = min{wt(c) | c ∈ C, c ̸= 0}.

A ternary linear code of length n, dimension k and minimum distance d is said to be
an [n, k, d]3 code. The weight distribution of a code C is a sequence [A0, A1, . . . , An] where
Ai denotes the number of codewords of weight i.

2.1. The Ring I3

Following [8], we define the ring I3 of order 9 on two generators a and b by the relations

I3 =
〈

a, b | 3a = 3b = 0, a2 = b, ab = 0
〉

.

Thus, the ring I3 has the characteristic 3, and consists of nine elements:

I3 = {0, a, b, c, d, e, f , g, h},

where c = a + b, d = 2b, e = 2a

f = e + b, g = a + d, and h = d + e.

These definitions immediately lead to the addition and the multiplication tables given
as follow (Tables 1 and 2).

Table 1. Addition table for the ring I3.

+ 0 a b c d e f g h
0 0 a b c d e f g h
a a e c f g 0 b h d
b b c d g 0 f h a e
c c f g h a b d e 0
d d g 0 a b h e c f
e e 0 f b h a c d g
f f b h d e c g 0 a
g g h a e c d 0 f b
h h d e 0 f g a b c
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Table 2. Multiplication table for the ring I3.

× 0 a b c d e f g h
0 0 0 0 0 0 0 0 0 0
a 0 b 0 b 0 d d b d
b 0 0 0 0 0 0 0 0 0
c 0 b 0 b 0 d d b d
d 0 0 0 0 0 0 0 0 0
e 0 d 0 d 0 b b d b
f 0 d 0 d 0 b b d b
g 0 b 0 b 0 d d b d
h 0 d 0 d 0 b b d b

We can deduce from this table that this ring is commutative without unity and has a
unique maximal ideal S = {0, b, d}, with a residue field I3/S ≃ F3. As a result, we have the
following b-adic decomposition. It can be checked by inspection that any element i ∈ I3
can be expressed as

i = a x + b y

for unique scalars x, y ∈ F3.
We have defined a natural action of F3 on the ring I3 by the rule

r0 = 0r = 0, r1 = 1r = r, and r2 = r + r = r for all r ∈ I3.

Note that for all r ∈ I3, x, y ∈ F3, this action is “distributive” in the sense that r(x ⊕ y) = rx+ ry,
where ⊕ denotes the addition in F3. When x = (x1, . . . , xn) ∈ Fn

3 and r = (r1, . . . , rn) ∈ In
3 ,

we will occasionally use the inner product notation (x, r) to indicate

(x, r) = x1r1 + · · ·+ xnrn.

We define the reduction map modulo S as π : I3 −→ I3/S ≃ F3 by

π(0) = π(b) = π(d) = 0,

π(a) = π(c) = π(g) = 1,

π(e) = π( f ) = π(h) = 2.

This map is extended in the natural way to a map from In
3 to Fn

3 .

2.2. Codes over I3

A linear I3 code C of length n is defined as an I3 submodule of In
3 . It may be thought

of as the I3 span of the rows of a matrix called a generator matrix (we assume that these
rows belong to C). There are two ternary codes of length n associated with the code C. The
residue code res(C) is just π(C), and the torsion code tor(C) is

{
x ∈ Fn

3 | bx ∈ C
}

.
It is easy to verify that res(C) ⊆ tor(C) [7]. We denote the dimension of the residue

code by k1 and the dimension of the torsion code by k1 + k2. Such a code C is said to
be of type {k1, k2}. A straightforward application of the first isomorphism theorem [7]
shows that

|C| = |res(C)||tor(C)| = 32k1+k2 .

Define the inner product of x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ In
3 as (x, y) = x1y1 +

· · ·+ xnyn,. The dual code C⊥ of the code C is the module defined as

C⊥ = {y ∈ In
3 | ∀x ∈ C , (x, y) = 0}.

An I3 code C is self-dual (SD) if C = C⊥. If for all x, y ∈ C, (x, y) = 0, then C is self-
orthogonal (SO). Following the terminology introduced in [6], upon passing from charac-
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teristic 2 to 3, an I3 code of length n that is self-orthogonal and of size 3n is called a quasi
self-dual (QSD) code.

Two I3 codes are monomially equivalent if there is a monomial permutation that
maps one to the other.

In the following, we give an example of a quasi self-dual (QSD) code.

Example 1. The I3 code with generator matrix

c c d a
b 0 b b
0 b b d

 is quasi self-dual, with residue

code generated by
(
1 1 0 1

)
and torsion code generated by

1 1 0 1
1 0 1 1
0 1 1 2

. The residue code

is self-orthogonal.

Example 2. Let R3 = {000, aaa, bbb, ccc, ddd, eee, f f f , ggg, hhh}, the repetition code of length 3,
with weight distribution [1, 0, 0, 8]. Clearly, it is self-orthogonal but not quasi self-dual, as its size is
9 < 3n = 27.

However, as an I3 code of length 1, S = {0, b, d} is of size 3 = 31 and is, thus, quasi self-dual.

2.3. Codes over F9

An additive code C of length n over F9 is an additive subgroup of Fn
9 . Thus, C contains

3k codewords for some integer 0 ≤ k ≤ 2n and is called an (n, 3k) code. If, furthermore, C
has a minimum distance d, we write the parameters of C as (n, 3k, d). An additive code C
over F9 can be represented by a k × n generator matrix with entries from F9 whose rows
span C, called a generator matrix. That is, C is the F3 span of its rows.

Let ω ∈ F9 be such that ω2 = ω + 1. The trace map, Tr : F9 −→ F3, is defined as
Tr(x) = x + x3.

Every linear I3 code C is attached with an additive F9 code ϕ(C) by the alphabet
substitution

0 7→ 0, a 7→ 2, b 7→ ω2

c 7→ ω, d 7→ 2ω2, e 7→ 1

f 7→ 2 + ω, g 7→ 1 + 2ω, h 7→ 2ω,

where F9 = F3[ω], extended naturally to Fn
9 . The parameters (n, 3k, d) of an I3 code are

identified with that of its image under ϕ. It can be checked that for all x ∈ In
3 , we have

Tr(ϕ(x)) = π(x) and, thus, res(C) = Tr(ϕ(C)). Similarly, we see that tor(C) is the so-called
subfield subcode of ϕ(C) that is Fn

3 ∩ ϕ(C).

2.4. Mass Formulas

We recall the mass formulas for ternary codes [9–11].

Theorem 1. Let φn,k be the number of self-orthogonal ternary codes having parameters [n, k].
Then:

(i) If n ≥ 3 is odd, then

φn,k =
∏k−1

i=0 3n−1−2i − 1

∏k
i=1 3i − 1

;

(ii) If n ≥ 2 is even, then

φn,k =


(3n−k−3n/2−k+3n/2−1)∏k−1

i=1 3n−2i−1

∏k
i=1 3i−1

: if (−1)
n
2 is square

(3n−k+3n/2−k−3n/2−1)∏k−1
i=1 3n−2i−1

∏k
i=1 3i−1

: if (−1)
n
2 is not square.
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These formulas are valid for k ≥ 1.

We define the Gaussian coefficient
[

n
k

]
q

for k ≤ n as

[
n
k

]
q
=

(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
,

which gives the number of subspaces of dimension k contained in an n-dimensional vector
space over Fq.

In what follows, we present a mass formula for SO codes, which is a characteristic
3-version of Theorem 7 in [12].

Theorem 2. For all lengths n, and for the type {k1, k2}, the number of self-orthogonal codes over
I3 is

NSO(n, k1, k2) = φn,k1

[
n − k1

k2

]
3
3k1(n−k1−k2).

The following follows from the usual counting technique under the group action.

Corollary 1. For a given length n and type {k1, k2}, with 0 ≤ k1, k2 ≤ n, we have

∑
C

1
|Aut(C)| =

NSO(n, k1, k2)

2nn!
,

where C runs over distinct representatives of equivalence classes under monomial column permuta-
tions of SO codes of length n and type {k1, k2}.

Corollary 2. For a given length n and type {k1, k2}, with 0 ≤ k1, k2 ≤ n, we have

∑
C

1
|Aut(C)| =

NQSD(n, k1, k2)

2nn!
=

φn,k1

[
k1 + k2

k2

]
3
3k2

1

2nn!
,

where C runs over distinct representatives of equivalence classes under monomial column permuta-
tions of QSD codes of length n and type {k1, k2}.

Corollary 3. For a given length n and type
{ n

2 , n
2
}

, with 0 ≤ n
2 , we have

∑
C

1
|Aut(C)| =

NSD(n, n
2 , n

2 )

2nn!
=

φn, n
2

2nn!
,

where C runs over distinct representatives of equivalence classes under monomial column permuta-
tions of SD codes of length n and type

{ n
2 , n

2
}

.

3. Constructions
3.1. Construction of Self-Orthogonal Codes

In this section, we present the build-up construction method for self-orthogonal codes
over I3. We begin by a result similar to Theorem 1 in [7]. The proof is omitted here.

Lemma 1. Let C be an I3 linear code of type {k1, k2} and length n. Then, a generator matrix G of
the code is of the form [

aIk1 aX Y
0 bIk2 bZ

]
,
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where Y is a matrix with entries in I3, X and Z are matrices with entries in F3 and Ik1 , Ik2 are
identity matrices.

Before presenting the construction methods, we look first at a characterization of
self-orthogonal codes over I3.

Theorem 3. A linear code C of length n over I3 is self-orthogonal if and only if res(C) is a ternary
self-orthogonal code.

Proof. Using similar proof to Theorem 1 in [13], it can be shown that every codeword
i ∈ C can be written as i = au + bv for some u ∈ res(C) and v ∈ Fn

3 , and if u ∈ res(C),
then au + bv ∈ C for some v ∈ Fn

3 . If i1, i2 ∈ C, then we can write i1 and i2 in b-adic
decomposition form as i1 = ax1 + by1 and i2 = ax2 + by2 where x1, x2 ∈ res(C) and
y1, y2 ∈ Fn

3 . We compute (i1, i2) as

(ax1 + by1, ax2 + by2) = a2(x1, x2) + ab(x1, y2) + ab(x2, y1) + b2(y1, y2) = b(x1, x2).

By the relation between C and res(C), the result follows.

The following theorem gives a propagation rule of order 3 for self-orthogonal codes.

Theorem 4. Let C0 be a self-orthogonal code over I3 of length n with generator matrix G0 = (ri)
where ri is the ith row of G0 for i = 1, 2, . . . , m. Let x ∈ Fn

3 and α, β, γ ∈ I3, not all zero, such that
α + β + γ = 0. Then the code C, with the following generator matrix

G =


α β 0 γx

(x, r1) (x, r1) (x, r1) r1
...

...
...

...
(x, rm) (x, rm) (x, rm) rm

,

is self-orthogonal of length n + 3 if

(i) (x, x) = 1, and α2 + β2 + γ2 = 0, or
(ii) (x, x) = −1 and α2 + β2 − γ2 = 0.

Proof. It suffices to show that the rows of G are orthogonal to one another. Let y0 =(
α β 0 γx

)
, the first row of G, and let yi =

(
(x, ri) (x, ri) (x, ri) ri

)
, the i + 1st

row of G, for i = 1, 2, . . . , m.

(i) If (x, x) = 1 and α2 + β2 + γ2 = 0, then

(y0, y0) = α2 + β2 + γ2(x, x) = α2 + β2 + γ2 = 0

(y0, yi) = α(x, ri) + β(x, ri) + γ(x, ri) = (α + β + γ)(x, ri) = 0

(yi, yj) = 3(x, ri)(x, rj) + (ri, rj) = 0

for all i, j = 1, 2, . . . , m.
(ii) If (x, x) = −1 and α2 + β2 − γ2 = 0, then

(y0, y0) = α2 + β2 + γ2(x, x) = α2 + β2 − γ2 = 0

(y0, yi) = α(x, ri) + β(x, ri) + γ(x, ri) = (α + β + γ)(x, ri) = 0

(yi, yj) = 3(x, ri)(x, rj) + (ri, rj) = 0

for all i, j = 1, 2, . . . , m.

In both cases, we see that C is a self-orthogonal code.
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Corollary 4. Let C0 be a quasi self-dual code over I3 of length n with generator matrix G0 = (ri),
where ri is the ith row of G0 for i = 1, 2, . . . , m. Let x ∈ Fn

3 and α, β, γ ∈ I3, not all zero, such that
α + β + γ = 0. Let σ, τ, µ ∈ S = {0, b, d}, not all zero, such that σ + τ + µ = 0. Then the code
C, with the following generator matrix

G =


α β 0 γx
0 σ τ µx

(x, r1) (x, r1) (x, r1) r1
...

...
...

...
(x, rm) (x, rm) (x, rm) rm

,

is quasi self-dual of length n + 3 if

1. (x, x) = 1, and α2 + β2 + γ2 = 0, or
2. (x, x) = −1, and α2 + β2 − γ2 = 0.

Proof. We first show that C is self-orthogonal. Following the proof of Theorem 4, it
suffices to show that y′

0 =
(

0 σ τ µx
)

is orthogonal to itself and every vector yi for
i = 0, 1, 2, . . . , m. Indeed,

(y′
0, y′

0) = σ2 + τ2 + µ2(x, x) = 0

(y0, y′
0) = βσ + γµ(x, x) = 0

(y′
0, yi) = σ(x, ri) + τ(x, ri) + µ(x, ri) = (σ + τ + µ)(x, ri) = 0,

as σ, τ, µ ∈ S. Therefore, C is self-orthogonal. Since |C| = 9131|C0| = 3n+3, C is a quasi
self-dual code of length n + 3.

Example 3. We construct self-orthogonal codes of length 7 from self-orthogonal codes of length 4.
By Theorem 3, we have the self-orthogonal (4, 33, 2) code with generator matrix

G0 =

(
a 0 a a
0 b 0 b

)
and weight distribution [1, 0, 2, 10, 14].

Using Theorem 4(i), from G0 with α = β = γ = a, and x = (1, 2, 1, 2), we obtain a
self-orthogonal (7, 35, 3) code with generator matrix

G0,1 =

 a a 0 a e a e
a a a a 0 a a
b b b 0 b 0 b


and weight distribution [1, 0, 0, 12, 4, 30, 62, 134]. Also, if we use Theorem 4(ii) with α = h, β = 0,
γ = c and x = (0, 0, 1, 1), we obtain another self-orthogonal (7, 35, 2) code with generator matrix

G0,2 =

 h 0 0 0 0 c c
e e e a 0 a a
b b b 0 b 0 b


and weight distribution [1, 0, 2, 18, 14, 16, 80, 112].

Example 4. Using Corollary 4 with the same generator matrix G0, α = h, β = 0, γ = c, σ, τ = b,
µ = d and x = (1, 2, 0, 0), we obtain a self-orthogonal (7, 36, 2) code over I3 with generator matrix
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G0,3 =


h 0 0 c h 0 0
0 b b d b 0 0
a a a a 0 a a
d d d 0 b 0 b


and weight distribution [1, 0, 4, 18, 42, 56, 230, 378].

3.2. Construction of Quasi Self-Dual Codes

In this section, we discuss two kinds of build-up construction method for quasi self-
dual codes over I3. We begin with the construction of I3 codes from ternary codes, known
traditionally as the multilevel construction.

Theorem 5. Let C1 be a self-orthogonal ternary code of length n, and let C2 be a ternary code of
length n such that C1 ⊆ C2. The code C, defined by the relation

C = aC1 + bC2,

is self-orthogonal with residue code C1 and torsion code C2. Furthermore, if |C1||C2| = 3n, then C is
quasi self-dual.

This is a direct analogue of Theorem 4 in [7], upon passing from characteristic 2 to 3.
The proof is omitted here.

The following theorem is a propagation rule of order 3, which increases the number of
generators by three.

Theorem 6. Let C0 be a quasi self-dual code of length n over I3 with generator matrix G0 = (ri),
where ri is the i-th row of G0 for 1 ≤ i ≤ m. If x ∈ Fn

3 and σ, τ, µ ∈ S = {0, b, d} are nonzero
elements, then the code C, with the following generator matrix

G =



σ 0 0 σx
0 τ 0 τx
0 0 µ µx

2(x, r1) 2(x, r1) 2(x, r1) r1
...

...
...

...
2(x, rm) 2(x, rm) 2(x, rm) rm


,

is quasi self-dual of length n + 3.

Proof. Let y0 =
(

σ 0 0 σx
)
, y′

0 =
(

0 τ 0 τx
)

and y′′
0 =

(
0 0 µ µx

)
.

We see that
(y0, y′

0) = στ(x, x) = 0,

because στ = 0. Similar arguments show that y0, y′
0 and y′′

0 are orthogonal to one another
and to themselves, as σ, τ, µ ∈ S.

Now, let yi =
(

2(x, ri) 2(x, ri) 2(x, ri) ri
)

for 1 ≤ i ≤ m. Then

(y0, yi) = 2σ(x, ri) + σ(x, ri) = 0.

Similarly, (y′
0, yi) = 0 and (y′′

0 , yi) = 0. Also, for 1 ≤ j ≤ m,

(yi, yj) = 3(x, ri)(x, rj) + (ri, rj) = 0.

Thus, C is a self-orthogonal code. Furthermore, since |C| = 33|C0| = 3n+3, C is quasi
self-dual. Hence, the code C obtained from the quasi self-dual code C0 by the build-up
construction is also quasi self-dual.
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Denote by Ĉ0 the span of the last m rows of G and for every y ∈ I3, write

Ty = (y, 0, 0, yx), Uy = (0, y, 0, yx) and Vy = (0, 0, y, yx).

The construction in Theorem 6 may be shown to be equivalent to C = ∪̇t,u,v∈S(Tt + Uu +

Vv + Ĉ0), where ∪̇ denotes disjoint union.

Example 5. Using Theorem 5, we construct quasi self-dual codes of lengths 6 and 9 from a (3, 33, 1)
code with generator matrix

G1 =

(
a a c
0 b b

)
and weight distribution [1, 2, 2, 22].

Using G1 as the base generator matrix and x = (0, 1, 1), we obtain a quasi self-dual (6, 36, 1)
code with generator matrix

G1,1 =


b 0 0 0 b b
0 b 0 0 b b
0 0 b 0 b b
g g g a a c
b b b 0 b b


and weight distribution [1, 8, 26, 48, 64, 64, 518].

Using G1,1 with x = (1, 2, 1, 1, 2, 0), we obtain a quasi self-dual (9, 39, 1) code with generator
matrix

G1,1,1 =



b 0 0 b d b b d 0
0 b 0 b d b b d 0
0 0 b b d b b d 0
0 0 0 b 0 0 0 b b
b b b 0 b 0 0 b b
0 0 0 0 0 b 0 b b
f f f g g g a a c
0 0 0 b b b 0 b b


and weight distribution [1, 8, 44, 212, 686, 1370, 1760, 1520, 800, 13282].

The next propagation rule uses two more generators while still creating quas -self-dual
codes over I3 of length 4 more.

Theorem 7. Let C0 be a quasi self-dual code over I3 of length n with generator matrix G0 = (ri),
where ri is the ith row of G0 for i = 1, 2, . . . , m. Let x1, x2 ∈ Fn

3 such that (x1, x2) = 0 and
(xi, xi) = 2 for i = 1, 2. For 1 ≤ i ≤ m, define ui = (x1, ri) and vi = (x2, ri). If α, β ∈ I3 \ S,
then the code C, with the following generator matrix

G =


α 0 0 0 αx1
0 β 0 0 βx2

2u1 2v1 u1 + v1 2u1 + v1 r1
...

...
...

...
...

2um 2vm um + vm 2um + vm rm

,

is quasi self-dual of length n + 4.

Proof. Let y0 =
(

α 0 0 0 αx1
)

and y′
0 =

(
0 β 0 0 βx2

)
. Then
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(y0, y0) = α2 + α2(x1, x1) = 0

(y′
0, y′

0) = β2 + β2(x2, x2) = 0

(y0, y′
0) = αβ(x1, x2) = 0.

Now, for 1 ≤ i ≤ m, let yi =
(

2ui 2vi ui + vi 2ui + vi ri
)
. So for 1 ≤ j ≤ m,

(yi, yj) = uiuj + vivj + (ui + vi)(uj + vj) + (2ui + vi)(2uj + vj) + (ri, rj) = 0.

Thus, C is self-orthogonal and since |C| = 92|C0| = 3n+4, C is quasi self-dual.

Define Ĉ0 to be the span of the last m rows of G, and for every y ∈ I3 write

Ty = (y, 0, 0, 0, yx1), and Uy = (0, y, 0, 0, yx2).

The construction in Theorem 7 maybe demonstrated to be equivalent to

C = ∪̇t,u∈I3\S(Tt + Uu + Ĉ0).

Remark 1. Vectors x1 and x2 satisfying the conditions of Theorem 7 is valid for n ≥ 2.

Example 6. We construct a quasi self-dual code of length 8 from a quasi self-dual (4, 34, 1) with
generator matrix

G2 =

a 0 a c
0 b 0 b
0 0 b b


and weight distribution [1, 2, 6, 32, 40]. Using Theorem 7 with α = β = a, x1 = (1, 0, 0, 1) and
x2 = (0, 1, 2, 0), we obtain a quasi self-dual (8, 38, 2) code with generator matrix

G2,2 =


a 0 0 0 a 0 0 a
0 a 0 0 0 a e 0
g a c d a 0 a c
d d d 0 0 b 0 b
d b 0 b 0 0 b b


and weight distribution [1, 0, 2, 58, 150, 344, 1318, 2712, 1976].

Remark 2. If two quasi self-dual I3 codes are monomially equivalent, then their residue codes are
also equivalent. But the converse does not hold, as seen in the next example.

Example 7. Let C1 and C2 be quasi self-dual I3 codes with generator matrices

a 0 a a
0 b 0 b
0 0 b d


and

a 0 a a
0 b 0 b
0 0 b b

, respectively. Then, res(C1) = res(C2) with generator matrix
(
1 0 1 1

)
.

However, C1 and C2 are not monomially equivalent, as their weight distributions are [1, 0, 12, 26, 42]
and [1, 2, 6, 32, 40], respectively.

3.3. Construction of Self-Dual Codes

In this section, we discuss the build-up construction method for self-dual codes over
I3. We start with characterizations of self-dual codes.

Theorem 8. A linear code C of length n over I3 is self-dual if and only if the following hold:
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(i) res(C) is self-dual ternary code,
(ii) tor(C) = Fn

3 .

The code C is defined by the relation

C = a res(C) + b Fn
3 .

Moreover, |C| = 3
3n
2 .

Proof. The proof is similar to Theorems 3, 4 and 5 in [13] upon passing from characteristic
2 to 3. Moreover, |C| = |res(C)||tor(C)| = 3

n
2 3n = 3

3n
2 .

Corollary 5. Self-dual codes over I3 of length n occur if and only if n is a multiple of 4.

Proof. We know that C is a self-dual code over I3 if and only if res(C) is a self-dual code
over F3. Then, by Theorem 3 in [14], a self-dual code over F3 of length n exists if and only
if n is a multiple of 4. This completes the proof.

Theorem 9. Let n be a multiple of 4. Suppose C0 is a self-dual code over I3 of length n and generator
matrix G0 = (ri), where ri are the row vectors of G0 for 1 ≤ i ≤ m over I3. Let x1, x2 ∈ Fn

3
such that (x1, x2) = 0 and (xi, xi) = 2 for each i = 1, 2. For 1 ≤ i ≤ m, let ui = (x1, ri) and
vi = (x2, ri). Then the code C, with the generator matrix

G =



a 0 0 0 ax1
0 a 0 0 ax2
0 0 b 0 b(x1 + x2)
0 0 0 b b(x1 + 2x2)

2u1 2v1 2u1 + 2v1 2u1 + v1 r1
...

...
...

...
...

2um 2vm 2um + 2vm 2um + vm rm


,

is self-dual of length n + 4.

Proof. We can show that G generates a self-orthogonal code C in a similar way as in
Theorem 7. Indeed, define Ĉ0 to be the span of the last m generators. Furthermore,
define D as the F3-span of {v1, v2, v3, v4}, where v1 = (1, 0, 0, 0, x1), v2 = (0, 1, 0, 0, x2),
v3 = (0, 0, 1, 0, (x1 + x2)), and v4 = (0, 0, 0, 1, (x1 + 2x2)). It can be seen that the construction
of tor(C) in the theorem is equivalent to

tor(C) = D + tor(Ĉ0).

As C0 is self-dual, by Theorem 8 we can see that tor(C0) is equal to Fn
3 . Through this

hypothesis, we have a ratio of 34 on the sizes, because |D| = 34, and tor(C) = Fn+4
3 .

Now, it suffices to show that res(C) is a self-dual ternary code. Since C is self-
orthogonal, we can see that res(C) is also self-orthogonal and thus, res(C) ⊆ res(C)⊥.

Note that |C0| = 3
3n
2 by Theorem 8 and because G has four more generators, this

shows that |C| = 3292|C0| = 3
3(n+4)

2 . Thus, |res(C)| =
∣∣res(C)⊥

∣∣ = 3
n+4

2 and hence, res(C) is
a self-dual ternary code.

Therefore, C = a res(C) + b Fn+4
3 and the code C obtained from the self-dual code C0

by the build-up construction is also self-dual.

Theorem 10. Two self-dual codes C1 and C2 over I3 are monomially equivalent if and only if their
residue codes are equivalent.
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Proof. Let C1 and C2 be two monomially equivalent codes over I3. Then res(C1) and res(C2)
are equivalent since a res(C1) ⊆ C1 and a res(C2) ⊆ C2.

Conversely, if C1 and C2 are self-dual codes over I3, and res(C1) and res(C2) are mono-
mially equivalent, then there is a monomial matrix M such that res(C2) = res(C1)M and
Fn

3 = Fn
3 M. Since C1 and C2 are self-dual, by Theorem 8 we have

C2 = a res(C2) + bFn
3 = a res(C1)M + bFn

3 M = C1M. (1)

From (1), we get C2 = C1M, proving that C1 and C2 are monomially equivalent.

4. Computational Results

In this section, we classify self-orthogonal, quasi self-dual and self-dual I3 codes of
length n ≤ 5 and residue dimensions k0 = 0, 1, 2 using the multilevel constructions in
Theorems 3, 5 and 8. All computations were done with the aid of MAGMA [15].

4.1. Length 1

There is one quasi self-dual code over I3 of type {0, 1}, with generator matrix (b) and
weight distribution [1, 2].

4.2. Length 2

There is one quasi self-dual code over I3 of type {0, 2}, with generator matrix(
b 0
0 b

)
and weight distribution [1, 4, 4].

4.3. Length 3

• For type {0, 3}, there is one quasi self-dual code over I3, with generator matrixb 0 0
0 b 0
0 0 b


and weight distribution [1, 6, 12, 8].

• For type {1, 0}, there are four distinct self-orthogonal codes over I3, with generator
matrices in the following table:

Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution(
a a a

)
12 [1, 0, 0, 8]

(
c a a

)
4 [1, 0, 0, 8]

(
g a a

)
4 [1, 0, 0, 8]

(
a c g

)
6 [1, 0, 0, 8]

For length 3 and type {1, 0}, we have

4

∑
1

1
|Aut(C)| =

1
12

+
1
4
+

1
4
+

1
6
= 0.75 =

NSO(n, k1, k2)

2nn!
.

• For type {1, 1}, there are five distinct quasi self-dual codes over I3, with generator
matrices in the following table:
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Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution(
a a a

0 0 b

)
4 [1, 2, 2, 22]

(
c a a

0 0 b

)
2 [1, 2, 2, 22]

(
a a a

0 b d

)
12 [1, 0, 6, 20]

(
c a a

0 b d

)
12 [1, 0, 6, 20]

(
g a a

0 b d

)
12 [1, 0, 6, 20]

For length 3 and type {1, 1}, we have

5

∑
1

1
|Aut(C)| =

1
4
+

1
2
+

1
12

+
1
12

+
1

12
= 1 =

NQSD(n, k1, k2)

2nn!
.

4.4. Length 4

• For type {0, 4}, there is one quasi self-dual code over I3, with generator matrix
b 0 0 0
0 b 0 0
0 0 b 0
0 0 0 b


and weight distribution [1, 8, 24, 32, 16].

• For type {1, 0}, there are eight distinct self-orthogonal codes over I3, with generator
matrices in the following table:

Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution(
a 0 a a

)
24 [1, 0, 0, 8, 0]

(
c 0 a a

)
8 [1, 0, 0, 8, 0]

(
g 0 a a

)
8 [1, 0, 0, 8, 0]

(
a 0 c g

)
12 [1, 0, 0, 8, 0]

(
a b a a

)
4 [1, 0, 0, 2, 6]

(
c b a a

)
4 [1, 0, 0, 2, 6]

(
g b a a

)
12 [1, 0, 0, 2, 6]

(
a b c g

)
6 [1, 0, 0, 2, 6]

For length 4 and type {1, 0}, we have

8

∑
1

1
|Aut(C)| =

1
24

+
1
8
+

1
8
+

1
12

+
1
4
+

1
4
+

1
6
+

1
12

= 1.125 =
NSO(n, k1, k2)

2nn!
.

• For type {1, 1}, there are 23 distinct self-orthogonal codes over I3, with generator
matrices in the following table:
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Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution(
a 0 a a

0 b 0 0

)
24 [1, 2, 0, 8, 16]

(
c 0 a a

0 b 0 0

)
8 [1, 2, 0, 8, 16]

(
g 0 a a

0 b 0 0

)
8 [1, 2, 0, 8, 16]

(
a 0 c g

0 b 0 0

)
12 [1, 2, 0, 8, 16]

(
a 0 a a

0 b b 0

)
4 [1, 0, 2, 10, 14]

(
c 0 a a

0 b b 0

)
2 [1, 0, 2, 10, 14]

(
g 0 a a

0 b b 0

)
2 [1, 0, 2, 10, 14]

(
a 0 c g

0 b b 0

)
2 [1, 0, 2, 10, 14]

(
c 0 a a

0 b b b

)
4 [1, 0, 2, 10, 14]

(
g 0 a a

0 b b b

)
4 [1, 0, 2, 10, 14]

(
a 0 a a

0 0 b d

)
24 [1, 0, 6, 20, 0]

(
c 0 a a

0 0 b d

)
24 [1, 0, 6, 20, 0]

(
g 0 a a

0 0 b d

)
24 [1, 0, 6, 20, 0]

(
a 0 c g

0 0 b d

)
24 [1, 0, 6, 20, 0]

(
a 0 a a

0 b b d

)
12 [1, 0, 0, 14, 12]

(
c 0 a a

0 b b d

)
4 [1, 0, 0, 14, 12]

(
g 0 a a

0 b b d

)
4 [1, 0, 0, 14, 12]

(
a 0 c g

0 b b d

)
6 [1, 0, 0, 14, 12]

(
a 0 a a

0 0 b 0

)
8 [1, 2, 2, 22, 0]

(
c 0 a a

0 0 b 0

)
4 [1, 2, 2, 22, 0]

(
a 0 a a

0 0 b 0

)
8 [1, 2, 2, 22, 0]

(
a b a a

0 0 b 0

)
4 [1, 2, 2, 4, 18]

(
c b a a

0 0 b 0

)
2 [1, 2, 2, 4, 18]

For length 4 and type {1, 1}, we have

23

∑
1

1
|Aut(C)| = 4.7 =

NSO(n, k1, k2)

2nn!
.

• For type {1, 2}, there are 10 distinct quasi self-dual codes over I3, with generator
matrices in the following table:
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Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution
a 0 a a

0 b 0 0

0 0 b 0

 8 [1, 4, 6, 26, 44]


c 0 a a

0 b 0 0

0 0 b 0

 4 [1, 4, 6, 26, 44]


a 0 a a

0 b 0 b

0 0 b b

 4 [1, 4, 6, 26, 44]


a 0 a c

0 b 0 b

0 0 b b

 2 [1, 2, 6, 32, 40]


a 0 a a

0 b 0 0

0 0 b d

 24 [1, 2, 6, 32, 40]


c 0 a a

0 b 0 0

0 0 b d

 24 [1, 2, 6, 32, 40]


g 0 a a

0 b 0 0

0 0 b d

 24 [1, 2, 6, 32, 40]


a 0 a a

0 b 0 b

0 0 b d

 12 [1, 0, 12, 26, 42]


c 0 a a

0 b 0 b

0 0 b d

 12 [1, 0, 12, 26, 42]


g 0 a a

0 b 0 b

0 0 b d

 12 [1, 0, 12, 26, 42]

For length 4 and type {1, 2}, we have

∑
C

1
|Aut(C)| = 1.5 <

NQSD(n, k1, k2)

2nn!
= 1.6,

where the summation runs over the representatives of the equivalence classes of codes
constructed by our propagation rules.

• For type {2, 0}, there are nine quasi self-dual codes over I3, with generator matrices in
the following table.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution(
a 0 a a

0 a a e

)
48 [1, 0, 0, 32, 48]

(
c 0 a a

0 a a e

)
12 [1, 0, 0, 32, 48]

(
g 0 a a

0 a a e

)
12 [1, 0, 0, 32, 48]

(
a 0 a a

0 a a h

)
2 [1, 0, 0, 32, 48]

(
a 0 c a

0 c a e

)
6 [1, 0, 0, 32, 48]

(
a 0 g a

0 g a e

)
6 [1, 0, 0, 32, 48]
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Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution(
a 0 c a

0 g a e

)
4 [1, 0, 0, 32, 48]

(
a 0 c c

0 c a e

)
4 [1, 0, 0, 32, 48]

(
c 0 g c

0 c c e

)
8 [1, 0, 0, 32, 48]

For length 4 and type {2, 0}, we have

9

∑
1

1
|Aut(C)| = 1.6 =

NQSD(n, k1, k2)

2nn!
.

• For type {2, 2}, there is an unique self-dual code over I3, with generator matrix:

Generator Matrix |Aut(C)| Weight Distribution
a 0 a a

0 a a e

0 0 b 0

0 0 0 b

 48 [1, 8, 24, 248, 448].

For length 4 and type {2, 2}, we have

1
|Aut(C)| =

1
48

=
NSD(n, k1, k2)

2nn!
.

4.5. Length 5

• For type {0, 4}, there are five distinct self-orthogonal codes over I3, with generator
matrices in the following table.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution
b 0 b 0 b
0 b 0 b 0

0 0 b 0 b
0 0 0 b 0

 192 [1, 6, 14, 20, 24, 16]


b d b b 0

0 b d b b
0 0 b d b
b 0 b 0 b

 240 [1, 0, 20, 20, 30, 10]


d 0 0 b 0

0 0 b b 0

0 b 0 0 b
b 0 0 d b

 96 [1, 4, 10, 26, 32, 8]


b 0 0 0 0

0 b 0 0 0

0 0 b 0 0

0 0 0 b 0

 768 [1, 8, 24, 32, 16, 0]


b 0 0 b 0

0 0 b 0 0

0 0 d 0 b
0 0 0 0 b

 64 [1, 4, 6, 8, 8, 0]

For length 5 and type {0, 4}, we have

5

∑
1

1
|Aut(C)| = 0.03 =

NSO(n, k1, k2)

2nn!
.
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• For type {0, 5}, there is one quasi self-dual code over I3, with generator matrix
b 0 0 0 0
0 b 0 0 0
0 0 b 0 0
0 0 0 b 0
0 0 0 0 b


and weight distribution [1, 10, 40, 80, 80, 32].

• For type {1, 0}, there are 12 distinct self-orthogonal codes over I3, with generator
matrices in the following table:

Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution(
a 0 0 a a

)
96 [1, 0, 0, 8, 0, 0]

(
c 0 0 a a

)
32 [1, 0, 0, 8, 0, 0]

(
g 0 0 a a

)
32 [1, 0, 0, 8, 0, 0]

(
a 0 0 c g

)
48 [1, 0, 0, 8, 0, 0]

(
a b 0 a a

)
24 [1, 0, 0, 2, 6, 0]

(
c b 0 a a

)
8 [1, 0, 0, 2, 6, 0]

(
g b 0 a a

)
8 [1, 0, 0, 2, 6, 0]

(
a b 0 c g

)
12 [1, 0, 0, 2, 6, 0]

(
a b b a a

)
24 [1, 0, 0, 2, 0, 6]

(
c b b a a

)
8 [1, 0, 0, 2, 0, 6]

(
a b b c g

)
12 [1, 0, 0, 2, 0, 6]

(
g b b a a

)
8 [1, 0, 0, 2, 0, 6]

For length 5 and type {1, 0}, we have

12

∑
1

1
|Aut(C)| = 0.84 =

NSO(n, k1, k2)

2nn!
.

• For type {1, 3}, there are 15 quasi self-dual codes over I3, with generator matrices in
the following table:

Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution
a 0 0 a a
0 b 0 0 0

0 0 b 0 0

0 0 0 b b

 32 [1, 6, 14, 38, 96, 88]


c 0 0 a a
0 b 0 0 0

0 0 b 0 0

0 0 0 b b

 16 [1, 6, 14, 38, 96, 88]


a 0 0 a a
0 b 0 0 b
0 0 b 0 b
0 0 0 b b

 8 [1, 2, 12, 50, 94, 84]


a 0 0 a c
0 b 0 0 b
0 0 b 0 b
0 0 0 b b

 4 [1, 2, 12, 50, 94, 84]


a 0 0 a a
0 b 0 0 0

0 0 b 0 b
0 0 0 b b

 8 [1, 4, 10, 44, 104, 80]


a 0 0 a c
0 b 0 0 0

0 0 b 0 b
0 0 0 b b

 4 [1, 4, 10, 44, 104, 80]
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Generator |Aut(C)| Weight Generator |Aut(C)| Weight

Matrix Distribution Matrix Distribution
a 0 0 a a
0 b 0 0 0

0 0 b 0 0

0 0 0 b d

 96 [1, 4, 10, 44, 104, 80]


c 0 0 a a
0 b 0 0 0

0 0 b 0 0

0 0 0 b d

 96 [1, 4, 10, 44, 104, 80]


g 0 0 a a
0 b 0 0 0

0 0 b 0 0

0 0 0 b d

 96 [1, 4, 10, 44, 104, 80]


a 0 0 a a
0 b 0 0 d
0 0 b 0 b
0 0 0 b d

 24 [1, 0, 20, 38, 102, 82]


c 0 0 a a
0 b 0 0 d
0 0 b 0 b
0 0 0 b d

 24 [1, 0, 20, 38, 102, 82]


g 0 0 a a
0 b 0 0 d
0 0 b 0 b
0 0 0 b d

 24 [1, 0, 20, 38, 102, 82]


a 0 0 a a
0 b 0 0 0

0 0 b 0 d
0 0 0 b d

 24 [1, 2, 12, 50, 94, 84]


c 0 0 a a
0 b 0 0 0

0 0 b 0 d
0 0 0 b d

 24 [1, 2, 12, 50, 94, 84]


g 0 0 a a
0 b 0 0 0

0 0 b 0 d
0 0 0 b d

 24 [1, 2, 12, 50, 94, 84]

For length 5 and type {1, 3}, we have

∑
C

1
|Aut(C)| = 1.125 ̸=

NQSO(n, k1, k2)

2nn!
= 1.2,

where the summation bears on representatives of the equivalence classes of codes
constructed by our propagation rules.

Next, we use our build-up construction methods to obtain SO, QSD and SD codes
over I3. The partial classification results are summarized in Table 3 below.

Table 3. Classification of SO, QSD and SD codes using the building method in Section 3.

n Code Construction
Length of

x d(C) WeightConstructed DistributionCode

1 (b) Theorem 4 4 (1) 1 [1, 2, 0, 8, 16]
Theorem 6 (2) 1 [1, 8, 24, 32, 16]

2
(

b 0
0 b

)
Theorem 4 5 (10) 1 [1, 4, 4, 8, 32, 32]

Theorem 6 5 (02) 1 [1, 10, 40, 80, 80, 32]
Theorem 7 6 (11), (12) 1 [1, 4, 4, 32, 176, 320, 192]
Corollary 4 5 (12) 1 [1, 6, 14, 38, 96, 88]
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Table 3. Cont.

n Code Construction
Length of

x d(C) WeightConstructed DistributionCode

3

b 0 0
0 b 0
0 0 b

 Theorem 4 6 (002) 1 [1, 12, 60, 160, 240, 192, 64]

Corollary 4 6 (100) 1 [1, 8, 26, 66, 172, 280, 176]
Theorem 6 6 (112) 1 [1, 12, 60, 160, 240, 192, 64]
Theorem 7 7 (202), (102) 1 [1, 6, 12, 40, 240, 672, 832, 384](

a a a
)

Theorem 4 6 (010) 2 [1, 0, 2, 20, 30, 28, 162]
(002) 3 [1, 0, 0, 16, 0, 0, 64]

Corollary 4 6 (100) 2 [1, 0, 2, 20, 30, 28, 162](
c a a

)
Theorem 4 6 (010) 2 [1, 0, 2, 20, 30, 28, 162]

(002) 3 [1, 0, 0, 16, 0, 0, 64]
Corollary 4 6 (100) 2 [1, 0, 2, 20, 30, 28, 162](

g a a
)

Theorem 4 6 (010) 2 [1, 0, 2, 20, 30, 28, 162]
(002) 3 [1, 0, 0, 16, 0, 0, 64]

Corollary 4 6 (100) 2 [1, 0, 2, 20, 30, 28, 162](
a c g

)
Theorem 4 6 (100) 2 [1, 0, 2, 20, 30, 28, 162]

(002) 3 [1, 0, 0, 16, 0, 0, 64]
Corollary 4 6 (100) 2 [1, 0, 2, 20, 30, 28, 162](

a a a
0 0 b

)
Theorem 4 6 (010) 1 [1, 2, 2, 30, 16, 16, 176]

(200) 1 [1, 4, 8, 52, 92, 88, 484]
(001) 1 [1, 2, 6, 44, 94, 126, 456]

Corollary 4 6 (110) 1 [1, 4, 8, 52, 92, 88, 484]
(120) 1 [1, 2, 6, 92, 166, 162, 300]
(011) 1 [1, 2, 6, 44, 94, 126, 456]

Theorem 6 6 (120) 1 [1, 2, 20, 78, 178, 286, 164]
(001) 1 [1, 8, 26, 48, 64, 518, 0]
(121) 1 [1, 2, 20, 60, 70, 70, 506]
(111) 1 [1, 8, 26, 66, 172, 280, 176]

Theorem 7 7 (110), (120) 1 [1, 2, 2, 54, 112, 160, 800, 1056](
c a a
0 0 b

)
Theorem 4 6 (010) 1 [1, 2, 2, 30, 16, 16, 176]

(200) 1 [1, 4, 8, 52, 92, 88, 484]
(001) 1 [1, 2, 6, 44, 94, 126, 456]

Corollary 4 6 (110) 1 [1, 4, 8, 52, 92, 88, 484]
(120) 1 [1, 2, 6, 92, 166, 162, 300]
(011) 1 [1, 2, 6, 44, 94, 126, 456]

Theorem 6 6 (012) 1 [1, 2, 20, 78, 178, 286, 164]
(001) 1 [1, 8, 26, 48, 64, 64, 518]
(121) 1 [1, 2, 20, 60, 70, 70, 506]
(111) 1 [1, 8, 26, 66, 172, 280, 176]

Theorem 7 7 (110), (120) 1 [1, 2, 2, 54, 112, 160, 800,
1056]

(102), (101) 1 [1, 2, 6, 44, 94, 126, 0, 456]
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Table 3. Cont.

n Code Construction
Length of

x d(C) WeightConstructed DistributionCode

3
(

a a a
0 b d

)
Theorem 4 6 (010) 1 [1, 2, 2, 30, 16, 16, 176]

(200) 1 [1, 4, 8, 52, 92, 88, 484]
(001) 1 [1, 2, 6, 44, 94, 126, 456](

a a a
0 b d

)
Theorem 6 6 (111) 1 [1, 6, 18, 64, 192, 288, 160]

(011) 2 [1, 0, 30, 40, 90, 60, 508]
Corollary 4 6 (011) 2 [1, 0, 12, 40, 90, 132, 454]

(012) 1 [1, 2, 8, 90, 160, 172, 296]

Theorem 7 7 (110), (120) 2 [1, 0, 6, 52, 48, 192, 928,
960](

c a a
0 b d

)
Theorem 4 6 (110) 1 [1, 2, 2, 30, 16, 16, 176]

(100) 1 [1, 4, 8, 52, 92, 88, 484]
Theorem 6 6 (111) 1 [1, 6, 18, 64, 192, 288, 160]
Corollary 4 6 (011) 2 [1, 0, 12, 40, 90, 132, 454]

(012) 1 [1, 2, 8, 90, 160, 172, 296]
Theorem 7 7 (101), (102) 2 [1, 0, 6, 52, 48, 192, 928, 960](

g a a
0 b d

)
Theorem 4 6 (100) 1 [1, 2, 8, 54, 52, 172, 440]

(020) 2 [1, 0, 6, 28, 0, 48, 160]
(002) 2 [1, 0, 12, 40, 90, 132, 454]

Theorem 6 6 (111) 1 [1, 6, 18, 64, 192, 288, 160]
(011) 2 [1, 0, 30, 40, 90, 60, 508]

Corollary 4 6 (011) 2 [1, 0, 12, 40, 90, 132, 454]
(012) 1 [1, 2, 8, 90, 160, 172, 296]

4


b 0 0 0
0 b 0 0
0 0 b 0
0 0 0 b

 Theorem 4 7 (0100) 1 [1, 8, 24, 40, 80, 192, 256, 128]

Corollary 4 7 (0110) 1 [1, 4, 12, 52, 124, 168, 208,
160]

Theorem 6 7 (0100) 1 [1, 14, 84, 280, 560, 672, 448,
128]

Theorem 7 8 (0110), (1001) 1 [1, 8, 24, 64, 320, 1152,
2176, 2048, 768](

a 0 a a
)

Theorem 4 7 (1000) 3 [1, 0, 0, 16, 0, 0, 64, 0]
(1122) 4 [1, 0, 0, 0, 8, 8, 16, 48]
(1212) 3 [1, 0, 0, 8, 0, 0, 24, 48]

Corollary 4 7 (1100) 2 [1, 0, 2, 6, 16, 16, 68, 134]
(1000) 2 [1, 0, 2, 20, 30, 28, 162, 0]
(1212) 2 [1, 0, 2, 10, 16, 4, 76, 134]
(1122) 2 [1, 0, 2, 3, 10, 40, 54, 134](

c 0 a a
)

Theorem 4 7 (1000) 3 [1, 0, 0, 16, 0, 0, 64, 0]
(1121) 3 [1, 0, 0, 8, 0, 0, 24, 48]

Corollary 4 7 (1100) 2 [1, 0, 2, 6, 16, 16, 68, 134]
(1000) 2 [1, 0, 2, 20, 30, 28, 162, 0]
(1122) 2 [1, 0, 2, 10, 16, 4, 76, 134]
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Table 3. Cont.

n Code Construction
Length of

x d(C) WeightConstructed DistributionCode

4
(

g 0 a a
)

Theorem 4 7 (1000) 3 [1, 0, 0, 16, 0, 0, 64, 0]
(1122) 3 [1, 0, 0, 2, 0, 12, 24, 42]
(1212) 3 [1, 0, 0, 2, 6, 0, 30, 42]

Corollary 5 7 (1100) 2 [1, 0, 2, 6, 16, 16, 68, 134]
(1000) 2 [1, 0, 2, 20, 30, 28, 162, 0]
(1122) 2 [1, 0, 2, 4, 10, 22, 82, 122](

a b a a
)

Theorem 4 7 (1000) 3 [1, 0, 0, 10, 6, 0, 16, 48]
(1122) 3 [1, 0, 0, 2, 0, 12, 24, 42]

Corollary 4 7 (1100) 2 [1, 0, 2, 6, 16, 16, 68, 134]
(1000) 2 [1, 0, 2, 14, 24, 28, 42, 132]
(1122) 2 [1, 0, 2, 4, 10, 22, 82, 122](

a 0 a a
0 b 0 0

)
Theorem 4 7 (1000) 1 [1, 2, 0, 16, 32, 0, 64, 128]

(1122) 3 [1, 0, 0, 4, 14, 36, 52, 136]
(1212) 3 [1, 0, 0, 8, 14, 24, 60, 136]

Corollary 4 7 (1000) 1 [1, 1, 2, 24, 70, 88, 218, 324]
(1212) 2 [1, 0, 4, 14, 52, 50, 228, 380]
(1122) 2 [1, 0, 2, 16, 22, 112, 196, 380](

a 0 a a
0 b b 0

)
Theorem 4 7 (1000) 2 [1, 0, 2, 18, 14, 16, 80, 112]

(1122) 2 [1, 0, 4, 0, 22, 14, 68, 134]
(1212) 2 [1, 0, 2, 10, 16, 4, 76, 134]

Corollary 4 7 (1000) 2 [1, 0, 4, 24, 54, 92, 260, 294]
(1212) 2 [1, 0, 6, 14, 44, 54, 234, 376]
(1122) 2 [1, 0, 8, 6, 32, 82, 236, 364]
(1100) 2 [1, 0, 4, 18, 42, 74, 194, 396]
(0012) 2 [1, 0, 2, 42, 110, 160, 218, 196](

a 0 a a
0 b b d

)
Theorem 4 7 (1000) 3 [1, 0, 0, 22, 12, 0, 112, 96]

(1122) 3 [1, 0, 0, 4, 12, 24, 82, 120]
(1212) 3 [1, 0, 0, 16, 12, 0, 82, 132]

Corollary 4 7 (1000) 2 [1, 0, 2, 30, 50, 88, 266, 292]
(1212) 2 [1, 0, 2, 10, 28, 76, 274, 338]
(1122) 2 [1, 0, 2, 24, 38, 52, 236, 376]
(1100) 2 [1, 0, 2, 12, 26, 106, 212, 370](

a b a a
0 0 b 0

)
Theorem 4 7 (1000) 1 [1, 2, 2, 12, 34, 16, 32, 144]

(1122) 2 [1, 0, 2, 4, 10, 22, 82, 122]
(1212) 2 [1, 0, 2, 10, 16, 4, 76, 134]
(1100) 1 [1, 2, 0, 2, 12, 36, 54, 136]

Corollary 4 7 (1000) 1 [1, 2, 6, 26, 76, 126, 96, 396]
(1122) 2 [1, 0, 2, 10, 40, 76, 238, 362]
(1212) 2 [1, 0, 4, 18, 42, 56, 230, 378]
(1122) 2 [1, 0, 2, 12, 30, 74, 254, 354]
(1100) 1 [1, 2, 2, 8, 26, 100, 228, 362]
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Table 3. Cont.

n Code Construction
Length of

x d(C) WeightConstructed DistributionCode

4

a 0 a a
0 b 0 0
0 0 b 0

 Theorem 4 7 (1000) 1 [1, 4, 6, 34, 76, 48, 208, 352]

(1122) 2 [1, 0, 4, 10, 38, 80, 226, 370]
(1212) 2 [1, 0, 4, 14, 52, 50, 228, 380]

Corollary 4 7 (1000) 1 [1, 4, 10, 56, 182, 314, 708, 912]
(1212) 2 [1, 0, 8, 36, 74, 244, 800, 1024]
(1122) 2 [1, 0, 10, 32, 124, 206, 732, 1082]

Theorem 6 7 (1000) 1 [1, 4, 6, 34, 76, 48, 208, 352]
(2112) 2 [1, 0, 2, 4, 10, 22, 82, 122]
(2222) 1 [1, 2, 2, 18, 58, 106, 242, 300]a 0 a a

0 b 0 0
0 0 b 0

 Theorem 7 8 (0110), (1001) 1 [1, 4, 10, 52, 136, 322, 1324,
2776, 1936]

(0110), (0120) 1 [1, 4, 6, 58, 220, 384, 1120,
2656, 2112]

(1020), (0102) 1 [1, 2, 28, 98, 174, 970,
2816, 0, 2472]

(0202), (1010) 1 [1, 2, 46, 170, 354, 1276,
2744, 1968, 0]

(1002), (0110) 2 [1, 0, 14, 40, 60, 320, 958,
2424, 2744]

(2001), (0210) 2 [1, 0, 8, 46, 66, 356, 1006,
2202, 2876]a 0 a a

0 b 0 b
0 0 b b

 Theorem 4 7 (1000) 1 [1, 2, 6, 40, 56, 48, 256, 320]

(1122) 1 [1, 2, 4, 8, 30, 86, 234, 364]
(1212) 2 [1, 0, 2, 24, 38, 52, 236, 376]
(1112) 1 [1, 2, 6, 34, 44, 12, 226, 404]

Corollary 4 7 (1000) 1 [1, 4, 12, 70, 160, 276, 784, 880]
(1212) 1 [1, 2, 12, 28, 62, 258, 808, 1016]
(1122) 2 [1, 0, 6, 46, 108, 210, 736, 1080]
(1112) 1 [1, 4, 12, 52, 124, 168, 694, 1132]

Theorem 6 7 (2000) 1 [1, 8, 30, 82, 176, 240, 646, 1004]
(2121) 2 [1, 2, 30, 100, 170, 240, 628, 1016]
(0021) 1 [1, 2, 30, 118, 314, 672, 718, 332]

Theorem 7 8 (1100), (1200) 1 [1, 2, 6, 64, 152, 288, 1312,
2816, 1920]

(1100), (0011) 2 [1, 0, 2, 58, 150, 344, 1318,
2712, 1976]

(1001), (0110) 1 [1, 2, 6, 100, 188, 108,
1276, 3104, 1776]

(2001), (0110) 1 [1, 2, 6, 46, 80, 108, 1006,
2888, 2424]

(1010), (0101) 2 [1, 0, 2, 58, 150, 344, 1318,
2712, 1976]

(1010), (0102) 2 [1, 0, 18, 100, 276, 720,
2338, 3108]
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Table 3. Cont.

n Code Construction
Length of

x d(C) WeightConstructed DistributionCode

4

a 0 a a
0 b 0 b
0 0 b d

 Theorem 4 7 (1000) 2 [1, 0, 12, 34, 42, 96, 208, 336]

(1122) 2 [1, 0, 12, 10, 60, 42, 196, 408]
(1212) 2 [1, 0, 6, 16, 36, 66, 226, 378]
(1112) 1 [1, 2, 4, 26, 12, 68, 252, 364]

Corollary 4 7 (1000) 2 [1, 0, 20, 54, 170, 322, 710, 910]
(1212) 2 [1, 0, 20, 30, 104, 232, 698, 1102]
(1122) 2 [1, 0, 14, 30, 110, 220, 734, 1078]
(1112) 1 [1, 4, 8, 42, 96, 190, 794, 1052]

Theorem 6 7 (2000) 2 [1, 0, 42, 70, 210, 210, 640, 1014]
(2121) 1 [1, 6, 24, 106, 342, 660, 712, 336]

Theorem 7 8 (1100), (1200) 2 [1, 0, 12, 58, 90, 384, 1408, 2592, 2016]

(1100), (0011) 2 [1, 0, 8, 58, 114, 368, 1372, 2640,
2000]

(2001), (0110) 1 [1, 4, 4, 16, 82, 208, 982, 2776,
2488]

(1010), (0102) 2 [1, 0, 18, 82, 168, 252, 1168,
3000, 1872]a 0 a a

0 b 0 0
0 0 b d

 Theorem 4 7 (1000) 1 [1, 2, 6, 40, 56, 48, 256, 320]

(1122) 2 [1, 0, 2, 16, 34, 76, 232, 368]
(1212) 2 [1, 0, 2, 24, 38, 52, 236, 376]

Corollary 4 7 (1000) 2 [1, 2, 12, 64, 170, 312, 718, 908]
(1212) 2 [1, 0, 8, 36, 74, 244, 800, 1024]
(1122) 2 [1, 0, 6, 46, 108, 210, 736, 1080]

Theorem 6 7 (2000) 1 [1, 2, 30, 100, 170, 240, 628, 1016]
(0021) 1 [1, 8, 30, 100, 320, 672, 736, 320]

Theorem 7 8 (1100), (1200) 1 [1, 2, 6, 64, 152, 288, 1312,
2816, 1920]

(2001), (0110) 2 [1, 0, 2, 40, 78, 164, 1012,
2784, 2480]

(1010), (0102) 2 [1, 0, 10, 40, 192, 412, 1084, 2850, 1972](
a 0 a a
0 a a e

)
Theorem 7 8 (1100), (0011) 3 [1, 0, 0, 34, 96, 0, 1024, 3072, 2304]

Theorem 6 7 (2000) 1 [1, 2, 30, 100, 170, 240, 628, 1016]
Theorem 4 7 (1122) 3 [1, 0, 0, 40, 48, 0, 256, 384]

(1212) 3 [1, 0, 0, 16, 24, 72, 280, 336]
Corollary 4 7 (1000) 2 [1, 0, 2, 48, 122, 196, 734, 1084]

(1212) 2 [1, 0, 4, 20, 70, 230, 924, 938]
(1122) 2 [1, 0, 2, 48, 122, 196, 734, 1084]
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Table 3. Cont.

n Code Construction
Length of

x d(C) WeightConstructed DistributionCode

4


a 0 a a
0 a a e
0 0 b 0
0 0 0 b

 Theorem 9 8 (1100), (0011) 1 [1, 16, 112, 880, 5440, 1907, 83008,
222208, 200704]

Theorem 4 7 (1122) 1 [1, 4, 10, 68, 296, 872, 2118, 3192]
(1212) 1 [1, 4, 12, 124, 376, 600, 2188, 3256]
(1000) 1 [1, 8, 24, 256, 512, 192, 1984, 3584]

Corollary 4 7 (1000) 1 [1, 10, 42, 334, 1168, 1920, 6352, 9856]
(1212) 1 [1, 6, 24, 124, 648, 2550, 7606, 8724]
(1122) 1 [1, 4, 24, 190, 910, 2370, 6928, 9256]

5. Conclusions

In this study, we have derived and used propagation rules over a non-unital ring
of order 9 to generate self-orthogonal, self-dual and quasi self-dual codes. Combining
this generating technique with mass formulas, we have classified the three categories of
codes above completely in length at most 3, and partially in length 4 and 5 up to monomial
equivalence. Mass formula computations show that some codes in each category exist in
lengths n = 4, 5 that cannot be constructed by the propagation rules we derived. It is a
challenging open problem to complete the classification in these cases, either by deriving
alternative propagation rules or by employing some other construction technique.

Author Contributions: Conceptualization, A.A. and P.S.; methodology, A.A. and P.S. validation, A.A.,
T.A., R.A.B., L.G. and P.S.; investigation, A.A., T.A., R.A.B., L.G. and P.S.; writing—original draft
preparation, A.A., T.A. and P.S.; writing—review and editing, R.A.B. and L.G. All authors have read
and agreed to the published version of the manuscript.

Funding: The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah,
Saudi Arabia funded this project, under grant no. (KEP-PhD: 100-130-1443).

Data Availability Statement: Data are available upon request to the corresponding author.

Acknowledgments: The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU),
Jeddah, Saudi Arabia funded this project, under grant no. (KEP-PhD: 100-130-1443). The authors ac-
knowledge the anonymous reviewers for their comments and suggestions to improve the presentation
of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Han, S.; Lee, H.; Lee, Y. Construction of self-dual codes over F2 + uF2. Bull. Korean Math. Soc. 2012, 49, 135–143. [CrossRef]
2. Kim, J.-L.; Lee, Y. Euclidean and hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. 2004, 105, 79–95.

[CrossRef]
3. Kim, J.-L.; Lee, Y. An efficient construction of self-dual codes. Bull. Korean Math. Soc. 2015, 52, 915–923. [CrossRef]
4. Aguilar-Melchor, C.; Gaborit, P.; Kim, J.; Sok, L.; Solé, P. Classification of extremal and s-extremal binary self-dual codes of length

38. IEEE Trans. Inf. Theory 2012, 58, 2253–2262. [CrossRef]
5. Kim, J.-L.; Roe, Y.G. Construction of quasi self-dual codes over a commutative non-unital ring of order 4. In Applicable Algebra in

Engineering, Communication and Computing; Springer: Berlin/Heidelberg, Germany, 2022. [CrossRef]
6. Alahmadi, A.; Alkathiry, A.; Altassan, A.; Bonnecaze, A.; Shoaib, H.; Solé, P. The build-up construction over a commutative

non-unital ring. Des. Codes Cryptogr. 2022, 90, 3003–3010. [CrossRef]
7. Alahmadi, A.; Altassan, A.; Basaffar, W.; Bonnecaze, A.; Shoaib, H.; Solé, P. Quasi type IV codes over a non-unital ring. Appl.

Algebra Eng. Commun. Comput. 2021, 32, 217–228. [CrossRef]
8. Fine, B. Classification of finite rings of order p2. Math. Mag. 1993, 66, 248–252. [CrossRef]
9. Kim, K.H.; Park, Y.H. The mass formula of self-orthogonal codes over GF(q). Korean J. Math. 2017, 25, 201–209.

http://doi.org/10.4134/BKMS.2012.49.1.135
http://dx.doi.org/10.1016/j.jcta.2003.10.003
http://dx.doi.org/10.4134/BKMS.2015.52.3.915
http://dx.doi.org/10.1109/TIT.2011.2177809
http://dx.doi.org/10.1007/s00200-022-00553-8
http://dx.doi.org/10.1007/s10623-022-01044-0
http://dx.doi.org/10.1007/s00200-021-00488-6
http://dx.doi.org/10.1080/0025570X.1993.11996133


Mathematics 2024, 12, 860 25 of 25

10. Pless, V. Number of isotropic subspaces in a finite geometry. In Atti della Accademia Nazionale dei Lincei Rendiconti-Classe di Scienze
Fisiche-Matematiche & Naturali; Accad Nationale Lincei Ufficio Pubblicazioni: Via Della Lungara 10, Rome, Italy, 1965; Volume 39,
pp. 418–421.

11. Pless, V. On the uniqueness of the Golay codes. J. Comb. Theory 1968, 5, 215–228. [CrossRef]
12. Alahmadi, A.; Alshuhail, A.; Solé, P. The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative

ring. AIMS Math. 2023, 8, 24367–24378. [CrossRef]
13. Alahmadi, A.; Melaibari, A.; Solé, P. Duality of codes over non-unital rings of order four. IEEE Access 2023, 11, 53120–53133.

[CrossRef]
14. Mallows, C.; Pless, V.; Sloane, N.J. Self-dual codes over GF(3). Appl. Math. 1976, 31, 649–666. [CrossRef]
15. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235–265.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0021-9800(68)80067-5
http://dx.doi.org/10.3934/math.20231242
http://dx.doi.org/10.1109/ACCESS.2023.3261131
http://dx.doi.org/10.1137/0131058
http://dx.doi.org/10.1006/jsco.1996.0125

	Introduction
	Preliminaries
	The Ring I3 
	Codes over I3
	Codes over F9
	Mass Formulas

	Constructions
	Construction of Self-Orthogonal Codes
	Construction of Quasi Self-Dual Codes
	Construction of Self-Dual Codes

	Computational Results
	Length 1
	Length 2
	Length 3
	Length 4
	Length 5

	Conclusions
	References

