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a b s t r a c t 

Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes 

generating subject-specific features remains unknown. Most of the current literature uses techniques that as- 

sume stationarity (e.g., Pearson’s correlation), which might fail to capture the non-linear nature of brain activity. 

We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynam- 

ics) spread across the brain and carry subject-specific information, contributing the most to differentiability. 

To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magne- 

toencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis 

based on the ATMs, and compare the performance to that obtained using Pearson’s correlation (which assumes 

stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves 

differentiation ( P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are 

discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific in- 

formation, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from 

statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non- 

observable, microscopic processes. 
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. Introduction 

Higher cognitive functions rely on the complex, coordinated interac-
ions among multiple brain areas. Whole-brain functional measurements
e.g., fMRI, M/EEG) have been used to characterize such interactions,
ypically using the pair-wise statistical dependencies between regional
ignals as a proxy ( Bullmore and Sporns, 2009 ). The time-averaged pat-
erns of interactions (estimated via the Pearson’s or Spearman’s correla-
ion coefficient in fMRI or via synchronization metrics (among others)
n M/EEG) form the static functional connectome (sFC) ( Friston, 2011 ).
FCs contain subject-specific information, constituting a “brain finger-
Abbreviations: AAL, Automated Anatomical Labeling; ATM, Avalanche Transition

onnectome; ICA, independent component analysis; MEG, Magnetoencephalograph

oefficient; PCA, principal component analysis; ROIs, Regions of Interest; SC, Spear
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rint ” which allows individual differentiation ( Amico and Goñi, 2018 ;
a Silva Castanheira et al., 2021 ; Finn and Rosenberg, 2021 ). 

However, large-scale brain activity reconfigures itself over time
 Zalesky et al., 2014 ). A recent fMRI-based study used a sliding-window
pproach to show that specific time intervals carry the vast majority
f the subject-specific information ( Van De Ville et al., 2021 ). With re-
pect to MEG data, it has been shown that data segments as short as
0 seconds contain enough information to unambiguously differentiate
ndividuals ( da Silva Castanheira et al., 2021 ). These findings pose a
hallenge on the nature of the information upon which subject differen-
iation is based. In fact, the intermittent, short-lived nature of the mo-
s Matrix; DM, differentiation matrix; EOG, electro-oculogram; FC, Functional 

y; LMCV, Linearly Constrained Minimum Variance; PC, Pearson’s Correlation 

man’s Correlation Coefficient; sFC, static Functional Connectome; SR, Success 
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A  
ents of “high differentiability ” might be generated by non-stationary
rocesses ( Deco et al., 2011 ). 

Converging evidence shows that large-scale brain activity has an
periodic, bursty component, which mainly drives static connectivity
 Zamani Esfahlani et al., 2020 ). The presence of large bursts is not ex-
ected for stationary processes, whereas it can be a manifestation of a
ynamical system operating in a near-critical regime (characterized by
 branching ratio ∼= 1), in the sense of diverging correlation lengths
 Chialvo, 2010 ). In particular, while recent evidence showed that high
xcursions can occur in the case of a stationary process ( Novelli and
azi, 2022 ), the features of the bursty activity as observed in MEG are
est explained by not-assuming stationarity ( Sorrentino et al., 2023 ).
orrowing from statistical mechanics, these scale-free bursts have been
onceptualized as “neuronal avalanches ” (Shriki et al., 2013a). Neu-
onal avalanches are fine-tuned, present across species, across temporal
nd spatial scales, and have been observed with multiple techniques
 Beggs and Plenz, 2003 ). In the human brain, neuronal avalanches
pread across gray matter regions through the white-matter bundles
inking them ( Sorrentino et al., 2021c ). Furthermore, altered avalanche
ynamics is related to clinical disability in multiple neurological dis-
ases ( Polverino et al., 2022 ; Sorrentino et al., 2021a ), demonstrating
he clinical relevance of this phenomenon. 

Here, we hypothesize that neuronal avalanches are the expression of
ubject-specific, large-scale brain processes. As a consequence, we ex-
ect individual differentiation based on avalanches to perform better as
ompared to using the entire available data (for instance, using the sFC).
o test our hypothesis, we used data from a previously published co-
ort ( Sorrentino et al., 2021c ), consisting of source-reconstructed MEG
ata from 44 healthy subjects. Each participant underwent two mag-
etoencephalography (MEG) scans, separated by a ∼1.5 minute-long
ause. We then confirmed our data in two additional datasets, where
he two MEG scans were separated by 12 hours and by one month, re-
pectively (see supplementary material 1). To identify avalanches, each
ource-reconstructed signal was z-scored (across-time) and then set to 1
f above a threshold, and to 0 otherwise. Each avalanche was defined as
tarting when at least one region was above threshold, and as finishing
hen no region showed unusually high activation. Note that the higher

he threshold, the less data is considered for differentiation. For each
valanche, the ij th entry of the transition matrix contains the probabil-
ty of region j being recruited at time t + 1, given that region i had been
ecruited at time t . We then averaged, edgewise, within each subject, all
he avalanche-specific transition matrices and we obtained, per each ses-
ion, a subject-specific avalanche transition matrix (ATM), which cap-
ures the spatio-temporal dynamics of neuronal avalanches in each in-
ividual. Then, we used the correlations between the ATMs as a metric
f similarity (between the first and the second MEG scans), and used it
o define individual differentiability (i.e., if two ATMs from one subject
esemble each other more than they resemble the ATMs from other par-
icipants, the subject is correctly differentiated). After comparing each
ndividual with all the others, we averaged the results (per subject) ob-
aining a score defined as success rate (SR), which refers to the ability
n differentiating an individual in that specific dataset. See methods for
urther details. 

First, we set out to define the optimal threshold to maximize differ-
ntiability. Under the hypothesis that the spreading of aperiodic, scale-
ree perturbations carries subject-specific information, we expect max-
mal differentiation to occur when focusing on the scale-free activity,
s opposed to taking the whole data into account. Hence, we varied
he threshold used to define a region as active. We hypothesize the SR
o peak when linear activity is discarded and scale-free activity is pre-
erved. 

Then, we compared the results obtained with our approach (i.e., the
TM) with three alternative approaches ( Fig. 1 A). First, we performed
ifferentiation analysis based on connectivity defined as the pairwise
pearman’s correlation coefficients (SC) on the whole dataset (FC full
ataset). The same procedure was also repeated using pairwise Mutual
2 
nformation (see supplementary materials 2). Given the hypothesis that
nformation-carrying interactions occur on the large-scale during neural
valanches, we reasoned that differentiation should be worse using SC
s compared to ATM, despite the fact that SC exploits the whole data
hile the ATMs are only based on a few locations and time points (i.e.,

he specific moments when an avalanche has recruited specific regions).
hen, we selected the moments when neuronal avalanches were occur-
ing, and concatenated the corresponding z-scored time series (i.e., be-
ore binarization) (FC when avalanches). Based on this (small) part of
he original data, we performed differentiation analysis. In this case, we
xpect worse differentiability as compared to the ATM, but comparable
o the SC based on the whole signal. Finally, we have repeated the same
rocedure, this time by randomly selecting intervals of the z-scored time
eries where no avalanche was occurring, and concatenated them to ob-
ain avalanche-free data of the same length as the total length of all the
valanches (FC when no avalanches). We expect the lowest differenti-
tion in this case (in fact, according to our hypothesis, we would have
xcluded the most informative parts of the signal from our analysis). We
epeated this procedure 1000 times, hence providing a null-distribution
epresenting the SRs to be expected when selecting random segments of
he data, under the null hypothesis that avalanches do not carry most of
he subject-specific information. An overview of the procedure is pro-
ided in Fig. 1 B. 

. Methods 

.1. Cohort, data acquisition, preprocessing, source-reconstruction, 

valanches estimation 

Methods for the description of the cohorts and the data ac-
uisition, preprocessing, source-reconstruction, avalanches estimation
nd avalanche transition matrices have been described in detail in
iparoti et al. (2021) , Pesoli et al. (2022) , and Sorrentino et al. (2021c) .
n short, we recruited 58 young adults (male 32 / female 26, mean age
 SD was 30.72 ± 11.58), right-handed and native Italian speakers with
o major internal, neurological or psychiatric illnesses and no use of
rugs or medication that could interfere with MEG/MRI signals. The
tudy complied with the Declaration of Helsinki and was approved by
he local Ethics Committee. All participants gave written informed con-
ent. 3D T1-weighted brain volumes were acquired at 1.5 Tesla (Signa,
E Healthcare) after the MEG recording ( Sorrentino et al., 2021c ). The
EG registration was divided in two eyes-closed segments of 3:30 min-

tes each, separated by a ∼1.5-minute-long break. 
For supplementary analyses (supplementary materials 1), two more

atasets including MEG recordings that took place several hours/days
part were taken into consideration. Dataset 1 included twenty-three
ale participants (mean age ± SD, 25.14 ± 2.53 years), who performed

he first session of recording at 9 a.m., and the second session at 9 p.m. of
he same day. Dataset 2 included twenty-six female participants (mean
ge ± SD, 26.6 ± 5.1 years). In this case, the first and the second MEG
essions took place 28 ± 1.5 days apart. Acquisition methods, prepro-
essing pipelines and data analysis were the same for all three datasets.

To identify the position of the head, four anatomical points and
our position coils were digitized. Electrocardiogram (ECG) and electro-
culogram (EOG) signals were also recorded. After an anti-aliasing filter,
EG signals were acquired at 1024 Hz, then a fourth order Butterworth

IR band-pass filter in the 0.5-48 Hz was applied. Noisy channels were
dentified and removed manually, Principal Component Analysis (PCA)
nd supervised Independent Component Analysis (ICA) were used to re-
ove environmental noise and physiological artifacts from the ECG (one

omponent) and the EOG (zero component), respectively. The whole
leaning procedure was performed by an expert rater, who excluded 14
articipants, as the signals were too noisy. Hence, 44 subjects were se-
ected for further analysis. The time series of neuronal activity were re-
onstructed in 116 regions of interests (ROIs), based on the Automated
natomical Labeling (AAL) atlas, using the Linearly Constrained Min-
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Fig. 1. Pipeline overview (A) Data selection. Blue lines represent z-scored source-reconstructed time-series. In green, the data points that are above threshold. The 

transitions between these points are the base to compute the ATM. The segments of the data when avalanches are occurring are surrounded by red rectangles. All 

these segments are concatenated, and the Spearman’s correlation is computed in the “FC when avalanches ” case. Segments without avalanches are surrounded by 

blue rectangles. These constitute the vast majority of the data. These segments are concatenated multiple times, each time with a random selection of them, until the 

same length of the “avalanche ” segment is reached ( “FC when no avalanches ”). The pipeline analysis also includes FC matrix computed on the whole recording ( “FC 

full data ”), that is not shown in the figure. (B) Construction of the differentiation matrices, containing the Spearman’s correlation coefficient between the connectivity 

matrix of the first and the second acquisitions. For subject i , the success rate is defined as the number of participants that are less similar to subject i as compared to 

subject i itself. The success rate refers to the average of the success rates across subjects. 
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mum Variance (LCMV) beamformer algorithm, and the native struc-
ural MRIs. The sources were reconstructed for the centroids of each
OI ( Hillebrand et al., 2016 ). Finally, we considered a total of 90 ROIs

or the AAL atlas, since we excluded the cerebellum because of its lower
eliability in MEG ( Andersen et al., 2020 ). All the preprocessing steps
nd the source reconstruction were made using the Fieldtrip toolbox
 Oostenveld et al., 2010 ). To study the dynamics of brain activity, we
stimated “neuronal avalanches ” from the source-reconstructed time se-
ies. Firstly, the time series of each ROI was discretized calculating the
-score, as in: 

 ( 𝑡 ) = 

𝑥 ( 𝑡 ) − 𝜇

𝜎
(1)

here x is the signal, 𝜇 is the mean of the signal over time, and 𝜎 is its
tandard deviation. 

Then, we identified positive and negative excursions beyond a
hreshold, as: 

 𝑡 ( 𝑡 ) = 

{ 

1 if 𝑎𝑏𝑠 
(
𝑋 𝑖 ( 𝑡 ) 

)
> 𝑇 ℎ𝑟𝑒𝑠 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(2)

The value of the threshold was varied between 1.5 and 3.5, to spot
he value that maximized differentiation. A neuronal avalanche be-
ins when, in a sequence of contiguous time bins, at least one ROI
s active (i.e., above threshold), and ends when all ROIs are inactive
 Sorrentino et al., 2021a ). The branching parameter was geometrically
veraged across avalanches and subjects. In fact, systems operating at
riticality typically display a branching ratio ∼1. In detail, the branch-
ng ratio was calculated as the geometrically averaged (over all the time
ins) ratio of the number of events (activations) between the subsequent
ime bin (descendants) and that in the current time bin (ancestors) and
hen averaging it over all the avalanches, as: 

𝑖 = 

𝑁 𝑏𝑖𝑛 −1 ∏
𝑗=1 

( 

𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 ( 𝑗 + 1 ) 
𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 ( 𝑗 ) 

) 

1 
𝑁 𝑏𝑖𝑛 −1 

(3)
3 
= 

𝑁 𝑎𝑣𝑎𝑙 ∏
𝑖 =1 

(
𝜎𝑖 
) 1 
𝑁 𝑎𝑣𝑎𝑙 (4) 

here 𝜎i is the branching parameter of the i-th avalanche in the subject,
 bin is the total amount of bins in the i-th avalanche, N aval is the total
umber of avalanches in the dataset. To allow a better characterization
f the statistical properties of the avalanches, we also report in Supple-
entary materials 3 and 4, the number of avalanches at each threshold,

he exponents of the distribution of the sizes of the avalanches (where
he size is defined as the number of active regions), and that of the du-
ations. The results shown are derived when considering all avalanches.
owever, we repeated the analysis taking into account only avalanches

onger than 5 time bins, as well as only avalanches longer than 20 time
ins (this further reduced the selected datapoints), and the results were
nchanged (see supplementary material 5). Then, for each avalanche n,
he transition matrix AvalATM (n) was defined as: 

𝑣𝑎𝑙𝐴𝑇 𝑀 𝑖,𝑗 ( 𝑛 ) = 𝑃 ( 𝑋 𝑗 ( 𝑡 + δ𝑡 ) > 𝑇 ℎ𝑟𝑒𝑠 |𝑋 𝑗 ( 𝑡 ) > 𝑇 ℎ𝑟𝑒𝑠 ) (5)

here the element ( i, j ) represents the probability that region j is active
t time t + ẟ, given that region i was active at time t , where ẟ∼3ms. The
TMs were averaged per participant (i.e., across avalanches), as 

𝑇 𝑀 𝑖𝑗 = 

1 
𝑁𝑎𝑣𝑎𝑙 

𝑁𝑎𝑣𝑎𝑙 ∑
𝑛 =1 

𝐴𝑣𝑎𝑙𝐴𝑇 𝑀 𝑖𝑗 ( 𝑛 ) (6)

 and finally symmetrized. The introduction of a time-lag makes it un-
ikely that our results can be explained trivially by field spread (i.e., the
act that multiple sources are detected simultaneously by multiple sen-
ors, generating spurious zero-lags correlations in the recorded signals).
lease also refer to ( Sorrentino et al., 2021c ), for extensive analysis on
eld spread on ATMs in this dataset. For comparison, besides the ATM,
lso sFC was computed based on both Pearson’s and Spearman’s corre-
ation coefficient. 
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.2. Fingerprint analysis 

Fingerprinting analysis was performed similarly to Romano et al.
2022) , Sorrentino et al. (2021b) , and Troisi Lopez et al. (2023) . In
hort, for each subject, for each of the two acquisitions, an adjacency
atrix was built (either for the ATM or the ones based on the sFC).
ence, each participant had two matrices, each referring to one of the

wo acquisitions. Hence, a differentiation matrix was built ( Fig. 1 , panel
), with rows and columns referring to the first and the second acquisi-
ions for each participant, respectively. The differentiation matrix (DM)
as defined, based on the Pearson’s correlations between the adjacency
atrices (AM, which in turn were based on either the ATMs or on sFC)
erived from the first and the second scans, as: 

𝑀 

(
𝑎 1 , 𝑏 2 

)
= 

∑(
𝑡𝑟𝑖𝑙 

(
𝐴𝑀 

(
𝑎 1 
))

− 

⟨
𝑡𝑟𝑖𝑙 

(
𝐴𝑀 

(
𝑎 1 
))⟩)

( 𝑡𝑟𝑖𝑙 
(
𝐴𝑀 

(
𝑏 2 
))
− <√ ∑(

𝑡𝑟𝑖𝑙 ( 𝐴𝑀 

(
𝑎 1 ) 

)
− 

⟨
𝑡𝑟𝑖𝑙 

(
𝐴𝑀 

(
𝑎 1 
))⟩)2 ∑(

𝑡𝑟𝑖𝑙 
(
𝐴𝑀 

(
𝑏 2 
))

here 𝑎 1 denotes the first scan for subject a, and 𝑏 2 indicates the sec-
nd scan for subject b, “tril ” extracts the lower triangular part of the
djacency matrix, and “< > ” indicates the average. Furthermore, we
sed the Mantel test to demonstrate the robustness of the correlations
 Glerean, 2014 ). 

Hence, the main diagonal contains the similarity between each sub-
ect with themselves between the first and the second acquisition. The
ff-diagonal elements contain the similarities of each subject with every
ther subject. Hence, if the value of a subject on the main diagonal is the
ighest, that subject is correctly differentiated. To obtain the individual
uccess rate, referring to how much an individual is differentiated, we
rst calculated the number of times that the similarity between two AMs
f the same individual was higher than the similarity between the AMs
f that given individual with the ones of each other subjects; then we
ivided the results by the number of individuals in the dataset, as in: 

 𝑅 𝑎 = 

1 
𝑁 𝑆𝑢𝑏𝑗 − 1 

[
𝑁 𝑆𝑢𝑏𝑗 − 𝑅 

(
𝐷 𝑀 𝑎,𝑎 

)]
(8)

here R indicates the rank of the elements in position (a,a) along col-
mn a. The average of the individual success rates was defined as the
uccess rate (SR), which refers to the whole population, and was used
s a readout in our analysis, defined as: 

 𝑅 = 

1 
𝑁 𝑆 𝑢𝑏𝑗 

𝑁 𝑆𝑢𝑏𝑗 ∑
𝑎 =1 

𝑆 𝑅 ( 𝑎 ) (9)

Furthermore, the 95% confidence intervals were calculated using the
ootstrapping method. Specifically, we performed 1000 random sub-
ampling equal to 90% of the full sample (40 out of 44) and calculated
he 95% confidence intervals within the range 2.5 - 97.5 percentiles. 

Finally, to assess the effect size and to compare the performance of
he ATM approach with respect to the sFCs approach, we calculated, for
ach method, the ratio between the SR and the amount of information
sed to calculate the respective SR. Hence, we computed two parame-
ers SR/time and SR/bit. The former divides the SR by the amount of
ime (in seconds) required by each approach. The latter divides the SR
y the amount of data (bit) required by each approach, calculated by
ultiplying the number of recording frames (temporal component) for

he number of regions considered (spatial component). It must be no-
iced that while sFCs approaches use the whole connectome, hence 90
rain regions per frame, ATMs only include the active regions at each
ifferent frame. The two parameters were compared between the ATM
nd the three sFCs using the Wilcoxon signed rank test, and the p-values
ere corrected by false discovery rate ( Benjamini & Hochberg, 1995 ). 

Finally, the resiliency to noise of the ATMs was compared to that of
he FCs in Supplementary material 6. 

. Results 

In this paper, we set out to quantify individual differentiability us-
ng the success rate (SR), defined as the average individual success
4 
( 𝐴𝑀 

(
𝑏 2 ) 

)
> ) 

𝑖𝑙 
(
𝐴𝑀 

(
𝑏 2 
))⟩)2 (7)

ates (which captures the extent to which an individual is differenti-
ted within a specific dataset). We have explored the SR as a function
f the threshold used to binarize the time-series. This was done under
he hypothesis that avalanches define the most “informative ” moments
ith respect to subject-specific activities. If this were not the case, dif-

erentiation should drop as the threshold grows, provided that a higher
hreshold discards more data (note that a z-score of 2.8 discards ∼99% of
 z-score distribution). Our results show that the maximal SR is obtained
ith a threshold equal to z > |2.8| ( Fig 2 A, green line). The differenti-
tion rate improves as the threshold grows from |1.5| to |2.8|, despite
he fact that less data is being taken into account, and this in accordance
ith the hypothesis that subject differentiation is based on the spatio-

emporal dynamics of neuronal avalanches (which would be, in turn,
he main driver of functional connectivity). 

Then, for each threshold, we selected from the original z-scored time
eries the timepoints when avalanches had been occurring (see Fig. 1 ,
anel A). Based on these time points, we have computed the adjacency
atrices using the sFC and used these, instead of the ATMs, to perform

ubject differentiation. In other words, we are now using data from the
ime interval in which avalanches were occurring, but we are not se-
ecting the specific regions that were recruited by each avalanche (as
e consider all the regions instead). Using this approach, we show that

he SR is lower using the sFC as compared to using the ATMs ( Fig. 2 ,
anel A, the red line indicates, for each threshold, the SR based on the
FC, while the green line denotes the SR obtained using the ATMs). This
ight be compatible with the idea that large-scale interactions occur at

ntermittent time-points and in specific brain regions. 
Then, for each threshold, we have randomly selected a number of

imepoints equal to the lengths of all the avalanches occurring in that
iven recording, but this time choosing among the moments when no
valanche was occurring. Based on this choice, we have again observed
he individual differentiation. We show that, despite the fact that we
onsider the same amount of data, the differentiation is worse if neu-
onal avalanches are excluded from the analysis ( Fig. 2 A, blue line).
inally, even the differentiation success rate based on the full record-
ngs ( Fig. 2 A, yellow line, which is independent from the thresholds),
isplays a lower value with respect to the ATMs. For each approach,
5% confidence intervals within the 2.5 - 97.5 range were computed
see supplementary materials 7), and the success rate of the ATMs was
bove the upper confidence interval of the analyses based on sFCs. 

In Fig. 2 B, we report the SR based on ATM (green), on sFC based on
valanches (red), on sFC based on the whole data (yellow), and on the
000 instances of the sFC computed in moments when no avalanches
ere occurring (blue distribution), using a threshold equal to z > |2.8|.
his shows that, using sFC, the best estimates are obtained from the
oments when avalanches are occurring, and this is unlikely to be ob-

ained given a random selection ( P < 0.001). In Fig. 2 C, we reported
he similarities between the ATMs based on the first (rows) and sec-
nd (columns) acquisitions. Higher values on the main diagonal denote
uccessful differentiation. The number of non-differentiated individuals
i.e., the subjects that are not differentiated against all the others) corre-
ponds to sixteen for ATM, FC when avalanches, FC when no avalanches,
hile it corresponds to seventeen for FC on the whole recording. How-

ver, the fractional differentiation shows that even when an individual is
ot completely differentiated, ATMs outperform the other approaches,
ven though they only use both very short time windows and reduced
patial information (i.e., only the region recruited in each avalanche are
ncluded in the computation of the ATMs). Furthermore, the Mantel test
erformed on the differentiation matrices confirmed 99% of the signif-
cance values. 
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Fig. 2. Differentiation analysis (A) Success rate as a function of the threshold defining avalanches. The green, red, blue, and yellow lines refer to the ATM, the 

FC when there are avalanches, the FC in moments when no avalanches are present, and FC on the whole recording. (B) for the threshold set to z = |2.8| (i.e., the 

threshold corresponding to the best success rate), the green, red, and yellow lines correspond to the SR obtained using ATM, FC computed only in moments when 

there were avalanches, FC computed on the whole dataset, respectively. The distribution in blue refers to 1000 SRs obtained for 1000 random selections of moments 

when no avalanche was present, each one of the same length of the moments with avalanches. (C) Differentiation matrix, containing the Spearman’s correlation 

coefficient between the matrices belonging to first and second acquisitions. The main diagonal contains the similarities of each subject with itself. (D) The histograms 

and corresponding distributions refer to the values of the correlation between the first and second acquisitions for each individual. The green, red, and yellow 

distributions refer to the similarities between the ATMs, the FC based on moments when avalanches are present, and the FC on the whole recording (that graphically 

overlaps the FC when no avalanche is present), respectively. 

 

t  

c  

o  

w  

m  

w  

s  

l  

t  

i  

H  

t  

t  

a  

n  

c  

t  

v  

o  

(
 

o  

i  

d  

s  
Then, we moved on to compare the similarities (correlation) between
he adjacency matrices based on the sFCs (when avalanches were oc-
urring) and those based on the ATMs. Fig. 2 D shows the distribution
f the correlations for the ATMs (green), for the sFCs computed on the
hole data (yellow, dotted edges), and for the sFCs computed on the
oments when avalanches were occurring (red). The distribution of FC
hen avalanches were not occurring overlaps with the distribution of

FCs computed on the whole data. It is easy to see that the ATMs show
ower correlation values, as compared to sFC. The Kolmogorov Smirnov
est confirmed that the ATMs differ from the sFCs (p < 0,0001), which
n turn are not statistically different between themselves (p = 0.98).
owever, as shown, higher auto-correlations do not translate into bet-

er differentiability, as this feature also depends on the similarity be-
5 
ween different individuals (i.e., the correlations with other individu-
ls). In this case, the results suggest that high auto-correlation may be
ot driven by subject-specific information. Specifically, the higher auto-
orrelation values (obtained with FC) may be determined by features
hat are shared among participants. Hence, despite higher correlation
alues, subject differentiation does not improve. Finally, the SR based
n the mutual information computed on the whole data is equal to 0.76
supplementary material 2). 

Furthermore, as estimation of the effect size of the differentiation
utcomes, we calculated the ratio between the SR and the amount of
nformation used for each approach/metric. Fig. 3 A, shows the SR/time
ifference between ATMs and the sFCs analyses. ATMs SR/time re-
ulted to be significantly higher than sFCs when avalanches (z = 2.3,
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Fig. 3. Performance comparison. Violin plot of the comparison of ATM performance vs FC approaches. (A) Comparison of the SR/time parameter, that corresponds 

to the successful differentiation divided by the amount of time (in seconds) considered for each given approach. (B) Comparison of the SR/bit parameter, that 

corresponds to the successful differentiation divided by the amount of data (i.e. the frames considered in each approach multiplied by brain region included in each 

analysis). ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001 after false discovery rate correction. 
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FDR = 0.026), sFCs when no avalanches (z = 2.02, pFDR = 0.043),
nd sFCs total (z = 5.78, pFDR < 0.001). Furthermore, Fig. 3 B dis-
lays the comparison when also the spatial component is kept into con-
ideration. ATMs SR/bit resulted to be significantly higher than sFCs
hen avalanches (z = 5.78, pFDR < 0.001), sFCs when no avalanches

z = 5.78, pFDR < 0.001), and sFCs total (z = 5.78, pFDR < 0.001) 
Success rate of differentiation was also analyzed using both supple-

entary datasets 1 (two recordings 12 occurred hours apart) and dataset
 (two recordings occurred ∼28 days apart). With regard to the dataset
, the success rates were 0.675 for the ATMs, 0.67 for FC full dataset,
.662 for FC when avalanches, and peak equal to 0.664 for the FC when
o aval distribution. Concerning dataset 2, the success rates were 0702
ith ATM, 0.682 for FC full dataset, 0.66 for FC when avalanches, and
 peak equal to 0.66 FC when no avalanches. Again, the success rates
btained with ATMs were higher than the ones based on functional con-
ectivity (see supplementary material 1). 

. Discussion 

In this manuscript, we test the role of aperiodic, scale-free, higher-
rder activations related to brain dynamics (i.e., neuronal avalanches)
n individual differentiation. Avalanches are defined as occurring when
egions deviate from their baseline activity, which is defined, in turn, on
he standardized score of the regional signal. In other words, we select
he moments and locations (regions) which show unexpected levels of
ctivity (given the baseline, linear activity of each region), thereby fo-
using on higher-order activity. In particular, we verified that neuronal
valanches were characterized by a branching ratio = 1, which is a hall-
ark of a branching process operating at criticality. The analyses of the

xponents of the sizes and duration of the avalanches are reported in
he supplementary materials 4. In fact, neuronal avalanches are well-
efined objects, whose properties have been predicted by mean-field
heory, and empirically verified in human data ( Shriki et al., 2013b ).
ur results appear in line with the literature about avalanches in MEG
ata in humans. 

Then, we use the recently described avalanche transition ma-
rix (ATM) to capture the spatio-temporal structure of avalanches
 Sorrentino et al., 2021c ). The avalanche-specific transition matrix con-
6 
ains, in the ij th position, the probability that region j will show un-
sual high activity after region i did. In other words, the transition
atrix contains the probability that a “wave ” of higher-order activa-

ions would propagate from i to j . Averaging across avalanche-specific
ransition matrices, we obtained one subject- and session- specific ATM
nd utilized the similarity between session-specific ATMs to perform in-
ividual differentiation. We show that fingerprint analysis performed
n ATMs improves performance as compared to using matrices based
n the correlation coefficient, despite the fact that significantly more
ata is considered in the latter case. We have replicated the results
sing Pearson’s correlation instead of Spearman’s, and the results are
onfirmed (not shown). In fact, by construction, avalanches only se-
ect the rare, fat-tailed part of the regional activity, and entirely dis-
ard the vast majority of data points. However, these few, scattered mo-
ents and locations are the ones carrying most subject-specific informa-

ion. Indeed, we assessed the informativeness of the time-points taken
nto account (SR/time and SR/bit), which highlighted the relevance
f the avalanches toward differentiation, as compared to techniques
hat do not select datapoint in space and time.This might talk to the
onverging evidence showing that aperiodic, scale-free dynamics con-
eys physiologically meaningful and subject-specific activity ( Beggs and
lenz, 2003 ; Rucco et al., 2020 ; Shriki et al., 2013a; Sorrentino et al.,
021a ; Zamani Esfahlani et al., 2020 ). Accordingly, the spreading of
euronal avalanches, at the individual level, is related to the individ-
al structure of white-matter bundles ( Sorrentino et al., 2021c ). This
uggests the idea that an input received by a region (from the rest
f the brain) might affect the local processes, provoking an “unusual ”
ctivation ( Rabuffo et al., 2021 ). While purely speculative, one could
rame this within the “communication through coherence ” hypothesis,
hereby the incoming inputs would “entrain ” local neuronal popula-

ions, momentarily favoring their synchronization, and resulting in a
ignal amplitude that would have not been generated in the absence
f the incoming signal ( Fries, 2015 ). As said, once such perturbation
s generated, it spreads preferentially across the white-matter bundles.
ecently, a mechanistic, mean-field based model of the brain dynam-

cs showed that avalanche-like activity might be generated when re-
ions are realistically coupled ( Porta and Copelli, 2019 ). In conclusion,
ur data show that ATMs provide a mathematically and physiologically
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ooted, yet straight-forward way to describe subject-specific fast dynam-
cs. However, it is important to stress that our analysis is not compre-
ensive in terms of aperiodic activities in the brain. In particular, recent
orks focused specifically on the aperiodic part of the activities as cap-

ured by the 1/f slope of the power-spectra, which is also relevant to
ehaviour and related to the biological features of individuals (e.g., to
he age) ( Cellier et al., 2021 ; Donoghue et al., 2020 ). In fact, evidence
how that these features also convey individual features, in health and
iseased population ( da Silva Castanheira et al., 2021 ), and allow sub-
ect differentiation ( Demuru and Fraschini, 2020 ). However, the rela-
ionship between neuronal avalanches and the 1/f activities remains an
pen question that will require further investigations. 

The correlation values between the sFC-based adjacency matrix from
he two sessions were generally significantly higher than those obtained
sing the ATMs. This is somewhat unsurprising, considering that the for-
er exploits the whole dataset, while the latter limits itself to a few data
oints. However, the sFCs are outperformed by the ATMs in terms of
ndividual differentiation. Hence, one might interpret that the sFCs cap-
ure features that are shared by the whole dataset, while the ATMs focus
ore specifically on subject-specific dynamics. Furthermore, the ATMs
o not consider zero-lag associations, hence correcting for field spread,
hile SC is biased in that sense ( Sorrentino et al., 2021c ). Connectiv-

ty metrics that do not correct for signal leakage tend to outperform, in
erms of fingerprinting, those who do. This is interpreted as an effect
f the contribution of signal leakage to differentiation, provided that
he geometry of the head shapes the field-spread, and that this carries
ubject-specific information, although not neurophysiological in nature
 Demuru et al., 2017 ). In this sense, the higher similarities obtained by
he SC might not be due to similar patterns of activity but, rather, by
imilar structural features. In conclusion, ATMs are effective in selecting
he locations and moments where higher-order perturbations spread,
hich might be directly related to subject-specific neurophysiological
echanisms. In fact, when sFCs is performed on the data segments that

ontain the neuronal avalanches, the performance remains fairly high,
onfirming that the avalanches indeed represent the moments where
ubject-specific dynamics is manifesting itself. Accordingly, when sub-
ect differentiation is analyzed based on moments when the avalanches
re not occurring, the most informative part of the signal is lost, and
he performance never reaches the levels observed when avalanches are
ncluded. Finally, we show in supplementary materials 6 that subject-
ifferentiation based on the ATMs is resilient against high levels of noise.

The fact that the results are confirmed in the supplementary datasets,
n which recordings are carried out several hours/days apart, confirmed
hat it is unlikely that the results observed in the main analysis driven by
nvironmental noise or, in general, from the conditions in which the ac-
uisitions took place. Finally, our results will need further validation in
ther datasets. In particular, the cohort we present here is middle-sized,
s compared to publicly available datasets. Further studies should also
nvestigate the possible relationship between ATMs characteristics and
emographic or behavioral aspects of the sample. Finally, when inter-
reting the results, a possible limitation may be related to the choice
f using the AAL atlas. Indeed, one should take into account that the
AL has been developed using volumetric data from a single subject,
hich might lead to errors when applied to more subjects ( Tzourio-
azoyer et al., 2002 ). Therefore, the individual differentiability may

e biased. On the other hand, one needs to consider that the AAL and
he MEG have comparable resolutions. Further studies should investi-
ate the differentiability performance using different brain parcellations
 Eickhoff et al., 2018 ). 

In conclusion, the ATMs appear as a straight-forward, yet principled
ay to select the data that convey subject-specific, large-scale spatio-

emporal dynamics. This opens new venues to characterize subject-
pecific brain dynamics in health and disease, and provides new ob-
ervables to tune subject-specific brain models. Furthermore, it corrob-
rates the idea that large-scale interactions are of higher order (i.e., non-
xpected by a linear process), and should be treated as such when pro-
7 
essing brain signals. The ATM is a useful tool to quantify such higher-
rder large-scale dynamics. Finally, task-based studies might be ana-
yzed using ATMs, in order to identify the role of specific regions and/or
dges in specific behavioral functions. 
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