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Abstract: In this paper, we derive a mass formula for the self-orthogonal codes and self-dual codes over
a non-commutative non-unitary ring, namely, Ep =

〈
a, b | pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b

〉
,

where a ̸= b and p is any odd prime. We also give a classification of self-orthogonal codes and
self-dual codes over Ep, where p = 3, 5, and 7, in short lengths.

Keywords: non-unitary non-commutative rings; left self-dual codes; self-dual codes; mass formula
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1. Introduction

Mass formulas serve as important tools for classifying self-dual codes over finite
fields [1–5] and unitary rings [6–11]. When generating nonequivalent self-dual codes,
mass formulas serve as terminating flags for the computing effort. Recently, this method-
ology was extended to the non-unitary ring I, in the terminology of [12], where quasi
self-dual codes, a special class of self-orthogonal codes, serve as the central objects for
classification [13,14]. Even more recently, a satisfying definition of self-dual codes for non-
unitary non commutative rings was introduced in [15]. It is the intersection of the right
dual with the left dual. Thus, a non-commutative ring leads to three types of self-dual
codes: left self-dual, right self-dual and self-dual.

In the present note, we present mass formulas for self-orthogonal codes, self-dual
codes, and left self-dual codes over the non-commutative non-unitary ring of order p2, for
p an odd prime, and type E in the classification of Fine [12]. This ring is henceforth denoted
by Ep. We apply them to the classification of these codes when p = 3, 5, 7 in short lengths.
The proof techniques combine self-dual mass formula over finite field, and linear algebra
over the ring E3 which is reminiscent of that on chain rings of depth 2 [9,10].

The content is organized in the following manner: Section 2 introduces essential
preliminary concepts and notations necessary for comprehending the remainder of the
paper. In Section 3, the framework of linear codes over Ep is established. Section 4 elaborates
on the mass formulas. Section 5 is dedicated to the classification in short lengths for fixed
types. Finally, Section 6 serves as the conclusion of the article

2. Preliminaries
2.1. Codes over Fp

Let p be an odd prime number. A linear code C of length n and dimension k over
a finite field Fp is an Fp-subspace of the vector space Fn

p of dimension k. Compactly,
we call C an [n, k]-code. The elements of a code are called codewords. Two codewords
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x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are orthogonal if their standard inner prod-

uct (x, y) =
n
∑

i=1
xiyi is zero, and the vector space consisting of all vectors in Fn

p that are

orthogonal to every codeword in C is called the dual of C, denoted by C⊥. C is said to be
self-orthogonal (resp. self-dual) if C ⊆ C⊥ (resp. C = C⊥).

2.2. Additive Codes over Fp2

Let ω be a primitive element in Fp2 , so that ω has order r = p2 − 1 and ωt ̸= 1 ∀ 0 ≤
t ≤ r. Then Fp2 = {0, 1, ω, ω2, · · · , ωr−1}. The trace map, Tr : Fp2 7→ Fp, is defined by
Tr(u) = u + up. An additive code of length n over Fp2 is Fp-additive subgroup of Fn

p2

containing pk codewords for some integer k in the range 0 ⩽ k ⩽ 2n.

2.3. The Ring Ep

Following [12], we define a ring on two distinct generators a, b by their relations

Ep =
〈

a, b | pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b
〉

.

Thus , Ep consists of p2 elements and has characteristic p. We also define a natural action of
Fp on Ep by the rule rx = xr, for all r ∈ Ep and for all x ∈ Fp.

Lemma 1. The ring Ep does not contain a unity element.

Proof. Assume, by contradiction, that there is a unique element e in Ep such that eu = ue =
u for every 0 ̸= u ∈ Ep. Since Ep is generated by a and b, e can be written as

e = ai + bj, for some 0 ≤ i, j ≤ p − 1.

Choose u = a. By assumption,

(ai + bj)a = a(ai + bj) = a,

which implies e = a. Also, choose u = a + b. Then

a(a + b) = a2 + ab = a + a = 2a ̸= a + b.

So a is not the unity of Ep, which leads to an inconsistency. Therefore, Ep is a non-unital ring.

From the ring representation of Ep and Lemma 1, Ep is a non-commutative ring
without multiplicative identity. Moreover, Ep contains a unique maximal ideal

Jp = {exy | exy = ax + by with x + y ≡ 0 (mod p) where 0 ⩽ x, y < p } = ⟨e = a − b⟩.

Thus, we can write Ep as

Ep =
{

cxy = ax + ey | x, y ∈ Fp
}

. (1)

Define the reduction map modulo Jp as α : Ep 7→ Ep/Jp ∼= Fp by α(ax + ey) = x where
0 ⩽ x < p. This map can be extended in the natural way from En

p to Fn
p.

3. Codes over Ep

A linear code C of length n over Ep, or simply an Ep-code, is a one-sided Ep-
submodule of En

p . We denote the (Hamming) weight of x ∈ En
p by wt(x) and adapt

the notation
[< 0, 1 >, · · ·,< i, Ai >, · · ·,< n, An >],

where Ai is the number of codewords of Hamming weight i, for the weight distribu-
tion of a code over Ep as in Magma [16]. The inner product between two vectors x =
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(x1, . . . , xn), y = (y1, . . . , yn) ∈ En
p is defined as (x, y) =

n
∑

i=1
xiyi. For an Ep-code C, the

right dual of C, defined as

C⊥R = {y ∈ En
p | ∀ x ∈ C, (x, y) = 0},

is a right module of En
p , while the left dual of C, defined as

C⊥L = {y ∈ En
p | ∀ x ∈ C, (y, x) = 0},

is a left module of En
p . The two-sided dual of C is C⊥ = C⊥R ∩ C⊥L . The code C is said to

be self-orthogonal if every a codeword in C is orthogonal to every codeword in C, that is,
C ⊆ C⊥. If C = C⊥R (resp. C = C⊥L ) then C is right self-dual (RSD) (resp. left self-dual
(LSD)). If C = C⊥, then C is self-dual (SD).

Using the map ϕ : Ep 7→ Fp2 defined as

ϕ(0) = 0, ϕ(a) = ω, and ϕ(b) = −ω + 1, (2)

we can attach to an Ep-code C an additive Fp2-code ϕ(C) = {(ϕ(c1), ϕ(c2), . . . , ϕ(c)n) |
(c1, c2, . . . , cn) ∈ C}. It can be easily seen that Tr(ϕ(u)) = α(u) for all u ∈ Ep.

Lemma 2.

(i) For any positive integer n, there exist a self-orthogonal code over Ep of length n.
(ii) For any odd prime p, there is a left self-orthogonal code (C ⊆ C⊥L) over Ep.

Proof.

(i) Consider Jp as linear code over Ep of length 1. To prove the self-orthogonality of Jp,
for all (ai + bj), (ai′ + bj′) ∈ Jp, we have that

(ai + bj, ai′ + bj′) = a((i′ + j′)i) + b((i′ + j′)j),

(ai′ + bj′, ai + bj) = a((i + j)i′) + b((i + j)j′).

Since (ai + bj), (ai′ + bj′) ∈ Jp, it follows that, i + j ≡ 0 and i′ + j′ ≡ 0 (mod p).
Then, Jp ⊆ J⊥R

p ∩ J⊥L
p = J⊥p . Taking the direct sum of n copies of this code yields a

self-orthogonal code of any length n.
(ii) Let p be a prime and let 1p denote the all-one codeword of length p. The repetition

code of length p is then defined by Rp = {u(1p)| u ∈ Ep}. Clearly Rp is a linear code
over Ep. Since Ep has characteristic p, then we have that Rp ⊆ Rp

⊥L .

Let C be linear code over Ep. We define the residue code of C as

res(C) = {x ∈ Fn
p| ∃ y ∈ Fn

p such that ax + ey ∈ C}.

and the torsion code of C as

tor(C) = {y ∈ Fn
p| ey ∈ C}.

From Equation (2), we have res(C) = Tr(ϕ(C)) and tor(C) is the subfield subcode of ϕ(C)
defined by ϕ(C) ∩ Fn

p. Let αC be the restriction of α to C. We have that e tor(C) = Ker αC ,
and that res(C) = Im αC . Let dim(res(C)) = k1 and k2 = dim(tor(C))− k1. We say that C
is linear code of type {k1, k2}. It can be seen that C is free as an Ep-module if and only if
res(C) = tor(C). By the first isomorphism theorem applied to αC we have |C| = p2k1+k2 .

In Theorem 1, we will extend a few results from [15,17] by simply substituting codes
over Fp for binary codes in the proofs.
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Theorem 1. Suppose C is a linear code over Ep. Let k1, k2, n be non-negative integers with
k1 + k2 ≤ n. Then the following hold:

(i) Every linear code C over Ep of length n and type {k1, k2} is equivalent to a code with generator
matrix in standard form [

aIk1 aA + eB
0 eZ

]
(3)

where Ik1 is the identity matrix, the matrices A, B and Z have entries from Fp.
(ii) a res(C) ⊆ C and res(C) ⊆ tor(C).
(iii) C = a res(C)⊕ e tor(C)
(iv) C⊥R = a tor(C)⊥ ⊕ eFn

p.
(v) C⊥L = a res(C)⊥ ⊕ e res(C)⊥.
(vi) C⊥ = a tor(C)⊥ ⊕ e res(C)⊥.

If G is a k × n matrix over Ep, we denote by Ek
pG the code of length n over Ep with

generator matrix G.
Next, we make a modification on the construction of self-orthogonal codes, (left or

right) self-dual codes, and self-dual codes in [15], to be suitable for an odd prime p.

Theorem 2. If C = aC1 ⊕ eC2 is a linear code over Ep such that C1 and C2 be arbitrary linear codes
over Fp, then

(i) C is a self-orthogonal code if and only if C1 ⊆ C2 ⊆ C⊥
1 ;

(ii) C is a self-dual if and only if C1 ⊆ C2 = C⊥
1 ;

(iii) C is a left self-dual if and only if C1 = C2 = C⊥
1 ;

(iv) C is a right self-dual if and only if C = e Fn
p .

Proof. First, we will prove that C1 = res(C) and C2 = tor(C). Observe that C1 = α(a C1) ⊆
res(C). Let x ∈ res(C). Then ax + e0 ∈ C, so x ∈ C1, thus, we have res(C) = C1. Now,
eC2 ⊆ C, so by definition of torsion code, C2 is a subset of tor(C). Let y ∈ tor(C). Since the
zero vector is in C1, ey = a0 + ey ∈ C. Therefore, y ∈ C2.

(i) Let C be a self-orthogonal code. Note that C1 ⊆ C2. Suppose that z ∈ C2. Since C is
self-orthogonal, for all ax + ey ∈ C, we have

0 = (ax + ey, ez) = e(x, z).

Hence C2 ⊆ C⊥
1 . Conversely, to prove the self-orthogonality of C, for all x, x′ ∈ C1 and

for all y, y′ ∈ C2 we have

(c, c′) = (ax + ey, ax′ + ey′)

= a(x, x′) + 0(x, y′) + e(y, x′) + 0(y, y′)

= a(0) + 0 + e(0) + 0 = 0,

since C1 ⊆ C2 ⊆ C⊥
1 .

(ii) Let C be a self-dual code. Then from the preceding case, C1 ⊆ C2 ⊆ C⊥
1 . Now, let

x ∈ C⊥
1 be arbitrary. From Theorem 1 (vi), we have ex ∈ C. Hence, x ∈ tor(C) = C2.

It follows that C2 = C⊥
1 . For the converse, suppose that C1 ⊆ C2 = C⊥

1 . From the
preceding case, we have C ⊆ C⊥. Since |C| = p2k1+k2 and C2 = C⊥

1 , pk1+(n−k1) = pn.
It follows that C = C⊥.

(iii) C is left self-dual code if and only if C1 = C⊥
1 = C2, by Theorem 1 (iii) and (v).

(iv) C is right self-dual code if and only if C1 = C⊥
2 (by Theorem 1 (iii) and (iv)). Equiv-

alently, we have C⊥
1 = (C⊥

2 )⊥ = C2 = Fn
p if and only if C1 = {0} if and only if

C = e Fn
p.
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4. Computation of the Mass Formula

At the start, we define the notion of equivalence of codes. Two codes C and C ′

over Ep are monomially equivalent if there is an n × n monomial matrix M (with exactly
one entry ∈ {1,−1} in each row and column and all other entries are zero) such that
C ′ = {cM : c ∈ C}. The monomial automorphism group Aut(C) of code C consists of all
M such that C = CM. Let Mn be the signed symmetric group of order |Mn| = 2nn!. The
number of codes equivalent to a code C of length n is

|Mn|
|Aut(C)| .

The mass formula for self-orthogonal codes is given by

∑
C

|Mn|
|Aut(C)| ,

where the sum runs through all inequivalent self-orthogonal codes C over Ep of length n.
We apply a similar approach to that used for the computation of a mass formula in [7].

Let C1 be a code over Fp of length n with dimension k1 and generator matrix[
Ik1 A

]
, (4)

and C2 be a code over Fp of length n with dimension k1 + k2 and generator matrix[
Ik1 A
0 Z

]
, (5)

where A ∈ Mk1×(n−k1)
(Fp), and Z ∈ Mk2×(n−k1)

(Fp) is of full row rank. Observe that
C1 ⊆ C2, and the code with generator matrix (3) has residue code C1 and torsion code C2.

We need the following lemmas to count the number free self-orthogonal Ep-codes.

Lemma 3. If C is a free Ep-code of length n, then the matrix B in Theorem 1 (i) is unique.

Proof. Suppose C is a free code and there exist B1, B2 ∈ Mk1×(n−k1)
(Fp) such that

Ek1
p [aIk1 aA + eB1] = Ek1

p [aIk1 aA + eB2]. (6)

Then aA + eB1 = aA + eB2. Hence, B1 = B2.

For the remainder of this section, assume that C1 ⊆ C⊥
1 . Then

Ik1 + AAT = 0, (7)

and

ZAT = 0. (8)

It follows from (7) that A is of full row rank.

Lemma 4. The map fA defined by

fA : Mk1×m(Fp) → Mk1×k1(Fp)

X 7→ AXT

is a surjective linear map.

Proof. Note that fA is a linear map by properties of matrix. To prove the surjective
condition, choose an arbitrary matrix G in Mk1×k1(Fp). Consider the matrix −GT A in
Mk1×m(Fp). We have
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fA(−GT A) = A(−GT A)T = −AATG = Ik1(G) = G.

Now, let us consider the sets

X = {C | C be a self-orthogonal Ep-code, with res(C) = C1 = tor(C)},

X′ = {C ′ | C ′ be a self-orthogonal Ep-code, with res(C ′) = C1, tor(C ′) = C2}.

Lemma 5. If C ′ ∈ X′, then |{C ∈ X | C ⊆ C ′}| = pk1k2 .

Proof. By Theorem 1 (i), C ′ has a generator matrix (3). Consider the map

µ : Mk1×k2(Fp) → {C ∈ X | C ⊆ C ′}

M 7→ Ek1
p [a Ik1 aA + e(B + MZ)].

Clearly, µ is well defined. Now, we will show that µ is bijective. Suppose M1, M2 ∈
Mk1×k2(Fp) such that µ(M1) = µ(M2). Then aA + e(B + M1Z) = aA + e(B + M2Z). Since
Z is of full row rank, we conclude M1 = M2, which shows that µ is injective. Now, suppose
that C ∈ X such that C ⊆ C ′. By Theorem 1 (i), C = Ek1

p [a Ik1 aA + eF], for some matrix F.
The inclusion C ⊆ C ′ implies that

aA + eF = aA + e(B + MZ)

for some matrix M of size k1 × k2. So F = B + MZ, which shows that µ is surjective, and
hence, µ is bijective. Therefore,

|{C ∈ X | C ⊆ C ′}| = |Mk1×k2(Fp)| = pk1k2 .

Lemma 6. If C ∈ X, then there is a unique code C ′ ∈ X′, such that C ⊆ C ′.

Proof. By Theorem 1 (i) and Lemma 3, C has a generator matrix [aIk1 aA + eB] for some
unique matrix B. Then the code C ′

0 with a generator matrix[
aIk1 aA + eB

0 eZ

]
(9)

satisfies res(C ′
0) = C1, and tor(C ′

0) = C2. Since C ∈ X, (8) implies that C ′
0 is a self-orthogonal

code, hence C ′
0 ∈ X′. Now, suppose that C ′ ∈ X′ and C ⊆ C ′. By Theorem 1 (i), we have

that Ek2
p [0 eZ] ⊆ C ′. This, together with C ⊆ C ′ forces C ′

0 ⊆ C ′. Since |C ′
0| = |C ′|, we have

C ′
0 = C ′.

Let σp(n, k1) be the number of self-orthogonal codes of length n and dimension k1
over Fp, which is found in [18–20].

In [21], the number of subspaces of dimension k contained in an n-dimensional vector

space over Fp is given by the Gaussian coefficient
[

j
i

]
p

for i ⩽ j, where

[
j
i

]
p
=

(pj − 1)(pj − p) . . . (pj − pi−1)

(pi − 1)(pi − p) . . . (pi − pi−1)
.

Let σEp(n, k1, k2) be the number of distinct self-orthogonal codes over Ep of length n.
Mass formulas are useful for finding all inequivalent codes of given length. Our goal now
is to compute σEp(n, k1, k2).
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Theorem 3. For all codes of length n with type {k1, 0}, the number of free self-orthogonal codes
over Ep is

σEp(n, k1, 0) = σp(n, k1)pk1(n−2k1). (10)

Proof. We may assume without loss of generality that C1 is a code with generator matrix (4).
If C is a self-orthogonal code of length n over Ep of type {k1, 0}, then by setting C1 =
res(C) = tor(C), C1 satisfies Theorem 2 (i). We have σp(n, k1) codes C1, which is the number
of self-orthogonal codes over Fp. By Theorem 1 (i), C has generator matrix [a Ik1 aA + eB].
Finally, we have

a2 Ik1 + a2 AAT + aeABT + eaBAT + e2BBT = 0,

so,
a(Ik1 + AAT) + e(BAT) = 0.

Since C1 ⊆ C⊥
1 , then Ik1 + AAT = 0. Now, we have find the number of the matrix B which

satisfies ABT = 0. Setting m = n − k1 in the linear map fA in Lemma 4,

|{B ∈ Mk1×n−k1(Fp) | ABT = 0 }| = |Ker fA| =
|Mk1×n−k1(Fp)|

|Im fA|
=

pk1(n−k1)

pk2
1

. (11)

Example 1. We consider the case n = 3, and p = 3. In Table 1, we give the list of inequivalent self-
orthogonal codes over the ring E3 of type {1, 0}. Using the mass formula in Theorem 3, we have the
following computations:

3

∑
i=1

1
|Aut(Ci)|

=
1
12

+
1
6
=

4 · 31(3−2)

48
=

σE3(3, 1, 0)
23 · 3!

. (12)

In the next theorem, we give the number of self-orthogonal codes over Ep.

Theorem 4. The number of self-orthogonal codes over Ep of length n with type {k1, k2} is given by

σEp(n, k1, k2) = σp(n, k1)

[
n − 2k1

k2

]
p

pk1(n−2k1−k2). (13)

Proof. We may assume without loss of generality that C1 and C2 are codes with generator
matrices (4) and (5), respectively. Let C be a self-orthogonal code of length n over Ep of type
{k1, k2}. By setting C1 = res(C) and C2 = tor(C), C1 and C2 satisfy Theorem 2 (i). Then,

there are σp(n, k1) self-orthogonal codes C1 and we have
[

n − 2k1
k2

]
p

codes C2 such that

C1 ⊆ C2 ⊆ C⊥
1 . Now, we have to compute |X′|. By Lemmas 5 and 6 , we have

pk1k2 |X′| = ∑
C ′∈X′

|{C ∈ X|C ⊆ C ′}|

= ∑
C∈X

|{C ′ ∈ X′|C ⊆ C ′}|

= ∑
C∈X

1

= |X|.

From Theorem 3, we have that |X| = pk1(n−2k1). Therefore, |X′| = pk1(n−2k1−k2).

Remark 1. Let C be an Ep-code of length n and of type {0, m}, where m ≤ n. Then C will be a
self-orthogonal code. Furthermore, if m = n, then C will be self-dual.
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The following results derive the mass formula for the SD codes and the LSD codes
over Ep, respectively.

Theorem 5. For a given integer n ≥ 2 we have the identity

∑
C

1
|Aut(C)| =

σp(n, k)
2nn!

,

where C runs over distinct representatives of equivalence classes under monomial action of SD
Ep-codes of length n and type {k, n − 2k}.

Proof. From Theorem 2 (ii), the number of SD Ep-codes depends on the number of self-
orthogonal codes over Fp, and tor(C) = res(C)⊥.

Example 2. We consider the case n = 3, and p = 3. In Table 1, we give the list of inequivalent
self- orthogonal codes over E3 of type {1, 1}. Using the mass formula in Theorem 5, we make the
following computations,

∑
i=1

1
|Aut(Ci)|

=
1

12
=

σE3(3, 1, 1)
48

=
σ3(3, 1)

48
. (14)

Corollary 1. For a given even integer n ≥ 2, we have the identity

∑
C

1
|Aut(C)| =

σp(n, n/2)
2nn!

,

where C runs over distinct representatives of equivalence classes under monomial action of left SD
Ep-codes of length n and type {n/2, 0}.

Proof. From Theorem 2 (iii), the number of left self-dual Ep-codes depends on the number
of self-dual codes over Fp, with tor(C) = res(C). Thus, the result follows.

Proposition 1. For all codes C of length n, there is a unique right self-dual Ep- code.

Proof. The result follows from Theorem 2 (iv), where C = e Fn
p is the unique code.

Table 1. Self-orthogonal codes of length n ≤ 4 over E3.

Length Type Generator Matrices |Aut(C)| Weight Distribution RSD
Code

LSD
Code

SD
Code

1 {0, 1} (e) 2 [<0, 1>, <1, 2>] ✓ ✓

2 {0, 1}
(

e 0
)

4 [<0, 1>, <1, 2>]
{0, 2} eI2 8 [<0, 1>, <1, 4>, <2, 4>] ✓ ✓

3 {1, 0}
(

a a a
)

12 [<0, 1>, <3, 8>](
a c11 c12

)
6 [<0, 1>, <3, 8>]

{0, 1}
(

e 0 0
)

16 [<0, 1>, <1, 2>]

{0, 2}
(

e 0 0
0 e 0

)
16 [<0, 1>, <1, 4>, <2, 4>]

{0, 3} eI3 48 [<0, 1>, <1, 6>, <2, 12>, <3, 8>] ✓ ✓

{1, 1}
(

a a a
0 2e e

)
12 [<0, 1>, <2, 6>, <3, 20>] ✓
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Table 1. Cont.

Length Type Generator Matrices |Aut(C)| Weight Distribution RSD
Code

LSD
Code

SD
Code

4 {1, 0}
(

a a a 0
)

24 [<0, 1>, <3, 8>](
a c11 c12 0

)
12 [<0, 1>, <3, 8>](

a a a e
)

12 [<0, 1>, <3, 8>](
a c11 c12 e

)
6 [<0, 1>, <3, 2>, <4, 6>]

{2, 0}
(

a 0 2a 2a
0 a 2a a

)
48 [<0, 1>, <3, 32>, <4, 48>] ✓

{0, 1}
(

e 0 0 0
)

96 [<0, 1>, <1, 2>]

{0, 2}
(

e 0 0 0
0 e 0 0

)
64 [<0, 1>, <1, 4>, <2, 4>]

{0, 3}

 e 0 0 0
0 e 0 0
0 0 e 0

 96 [<0, 1>, <1, 6>, <2, 12>, <3, 8>]

{0, 4} e I4 384 [<0, 1>, <1, 8>, <2, 24>, <3, 32>,
<4, 16>]

✓ ✓

5. Classification

We classify self-orthogonal codes and self-dual codes of length n ≤ 4 with given
residue of dimension k1 = 0, 1, 2, where p = 3, 5. Also, we classify self-orthogonal codes
and self-dual codes of length n ≤ 3 with given residue of dimension k1 = 0, 1, where p = 7
using the building method discussed in Theorem 2. To carry out the the classification, we
represent codes over Ep by their associated additive codes over Fp2 under the mapping ϕ
defined in (2), and considered the action of the group of monomial matrices (with 1 and −1
as nonzero entries) to directly calculate the automorphism group. These calculations
are performed using MAGMA [16]. See Tables 1–3 for a summary of our results for
p = 3, 5, 7, respectively.

Table 2. Self-orthogonal codes of length n ≤ 4 over E5.

Length Type Generator Matrices |Aut(C)| Weight Distribution RSD
Code

LSD
Code

SD
Code

1 {0, 1} (e) 2 [<0, 1>, <1, 4>] ✓ ✓

2 {0, 1} (e 0) 4 [<0, 1>, <1, 4>]
{0, 2} eI2 8 [<0, 1>, <1, 8>, <2, 16>] ✓ ✓
{1, 0}

(
a 2a

)
4 [<0, 1>, <2, 24>] ✓ ✓

3 {0, 1}
(

e 0 0
)

16 [<0, 1>, <1, 4>]
{0, 2}

(
eI2 0

)
16 [<0, 1>, <1, 8>, <2, 16>]

{0, 3} eI3 48 [<0, 1>, <1, 12>, <2, 48>, <3, 64>] ✓ ✓
{1, 0}

(
a 2a 0

)
8 [<0, 1>, <2, 24>](

a 2a e
)

2 [<0, 1>, <2, 4>, <3, 20>]

{1, 1}
(

a 0 2a
0 e 0

)
8 [<0, 1>, <1, 4>, <2, 24>, <3, 96>] ✓

4 {1, 0}
(

a 2a 0 0
)

32 [<0, 1>, <2, 24>](
a a 2a 2a

)
16 [<0, 1>, <4, 24>](

a 2a e 0
)

4 [<0, 1>, <2, 4>, <3, 20>](
a 2a e e

)
4 [<0, 1>, <2, 4>, <3, 20>](

a c11 c21 c21
)

4 [<0, 1>, <4, 24>](
a c14 c22 c21

)
2 [<0, 1>, <4, 24>](

a c12 c22 c22
)

4 [<0, 1>, <4, 24>](
a c13 2a c21

)
4 [<0, 1>, <4, 24>](

a c11 2a c22
)

4 [<0, 1>, <4, 24>](
a 2a e 2e

)
4 [<0, 1>, <2, 4>, <4, 20>]

{2, 0}
(

a 0 2a 0
0 a 0 2a

)
32 [<0, 1>, <2, 48>, <4, 576>] ✓ ✓
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Table 3. Self-orthogonal codes of length n ≤ 3 over E7.

Length Type Generator Matrices |Aut(C)| Weight Distribution RSD
Code

LSD
Code

SD
Code

1 {0, 1} (e) 2 [<0, 1>, <1, 6>] ✓ ✓

2 {0, 1} (e 0) 4 [<0, 1>, <1, 6>]
{0, 2} eI2 8 [<0, 1>, <1, 12>, <2, 36>] ✓ ✓

3 {0, 1}
(

e 0 0
)

16 [<0, 1>, <1, 6>]

{0, 2}
(

e 0 0
0 e 0

)
16 [<0, 1>, <1, 12>, <2, 36>]

{0, 3} eI3 48 [<0, 1>, <1, 18>, <2, 108>, <3, 216>] ✓ ✓
{1, 0}

(
a 2a 3a

)
6 [<0, 1>, <3, 48>](

2a b c35
)

2 [<0, 1>, <3, 48>](
4a 6b c53

)
2 [<0, 1>, <3, 48>]

{1, 1}
(

a 2a 3a
0 e 4e

)
6 [<0, 1>, <2, 18>, <3, 324>] ✓

6. Conclusions and Open Problems

In this paper, we have given a mass formula to classify certain self-orthogonal codes
over the non-unitary non-commutative ring Ep, with p an odd prime. Particularly, we
were considering the two main cases of classification self-orthogonal codes, and SD codes
under monomial action. In the previous section, concrete classifications in short lengths
are given. Extension of these results to higher lengths would require more programming
or more computing power. Similar theoretical and experimental questions remain open
for other non-unitary non-commutative rings in the Rhagavandran list [12,22] in an odd
characteristic.
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