The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring

Adel Alahmadi, Altaf Alshuhail, Rowena Alma Betty, Lucky Galvez, Patrick

Solé

To cite this version:

Adel Alahmadi, Altaf Alshuhail, Rowena Alma Betty, Lucky Galvez, Patrick Solé. The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring. Mathematics , 2024, 12, pp.862. 10.3390/math12060862 . hal-04505889

HAL Id: hal-04505889

https://hal.science/hal-04505889

Submitted on 15 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Article

The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring

Adel Alahmadi ${ }^{1, *}$, Altaf Alshuhail ${ }^{1,2}$, Rowena Alma Betty ${ }^{3}$, Lucky Galvez ${ }^{3}$ © and Patrick Solé ${ }^{4}$ (D)
1 Research Group of Algebraic Structures and Applications, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ad.alshuhail@uoh.edu.sa
2 Department of Mathematics, Faculty of Science, University of Hail, Hail 55431, Saudi Arabia
3 Institute of Mathematics, University of the Philippines-Diliman, Quezon City 1101, Philippines; rabetty@math.upd.edu.ph (R.A.B.); legalvez@math.upd.edu.ph (L.G.)
4 I2M, (CNRS, University of Aix-Marseille, Centrale Marseille), 13009 Marseilles, France; sole@enst.fr
* Correspondence: analahmadi@kau.edu.sa

Citation: Alahmadi, A.; Alshuhail, A. Betty, R.A.; Galvez, L.; Solé, P. The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring. Mathematics 2024,12, 862. https:// doi.org/10.3390/math12060862

Academic Editor: Askar Tuganbaev
Received: 20 November 2023
Revised: 1 January 2024
Accepted: 5 January 2024
Published: 15 March 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https: / / creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper, we derive a mass formula for the self-orthogonal codes and self-dual codes over a non-commutative non-unitary ring, namely, $E_{p}=\left\langle a, b \mid p a=p b=0, a^{2}=a, b^{2}=b, a b=a, b a=b\right\rangle$, where $a \neq b$ and p is any odd prime. We also give a classification of self-orthogonal codes and self-dual codes over E_{p}, where $p=3,5$, and 7, in short lengths.

Keywords: non-unitary non-commutative rings; left self-dual codes; self-dual codes; mass formula

MSC: 94B05; 16D10

1. Introduction

Mass formulas serve as important tools for classifying self-dual codes over finite fields [1-5] and unitary rings [6-11]. When generating nonequivalent self-dual codes, mass formulas serve as terminating flags for the computing effort. Recently, this methodology was extended to the non-unitary ring I, in the terminology of [12], where quasi self-dual codes, a special class of self-orthogonal codes, serve as the central objects for classification [13,14]. Even more recently, a satisfying definition of self-dual codes for nonunitary non commutative rings was introduced in [15]. It is the intersection of the right dual with the left dual. Thus, a non-commutative ring leads to three types of self-dual codes: left self-dual, right self-dual and self-dual.

In the present note, we present mass formulas for self-orthogonal codes, self-dual codes, and left self-dual codes over the non-commutative non-unitary ring of order p^{2}, for p an odd prime, and type E in the classification of Fine [12]. This ring is henceforth denoted by E_{p}. We apply them to the classification of these codes when $p=3,5,7$ in short lengths. The proof techniques combine self-dual mass formula over finite field, and linear algebra over the ring E_{3} which is reminiscent of that on chain rings of depth 2 [9,10].

The content is organized in the following manner: Section 2 introduces essential preliminary concepts and notations necessary for comprehending the remainder of the paper. In Section 3, the framework of linear codes over E_{p} is established. Section 4 elaborates on the mass formulas. Section 5 is dedicated to the classification in short lengths for fixed types. Finally, Section 6 serves as the conclusion of the article

2. Preliminaries

2.1. Codes over \mathbb{F}_{p}

Let p be an odd prime number. A linear code \mathcal{C} of length n and dimension k over a finite field \mathbb{F}_{p} is an \mathbb{F}_{p}-subspace of the vector space \mathbb{F}_{p}^{n} of dimension k. Compactly, we call \mathcal{C} an $[n, k]$-code. The elements of a code are called codewords. Two codewords
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are orthogonal if their standard inner product $(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} x_{i} y_{i}$ is zero, and the vector space consisting of all vectors in \mathbb{F}_{p}^{n} that are orthogonal to every codeword in \mathcal{C} is called the dual of \mathcal{C}, denoted by \mathcal{C}^{\perp}. \mathcal{C} is said to be self-orthogonal (resp. self-dual) if $\mathcal{C} \subseteq \mathcal{C}^{\perp}$ (resp. $\mathcal{C}=\mathcal{C}^{\perp}$).

2.2. Additive Codes over $\mathbb{F}_{p^{2}}$

Let ω be a primitive element in $\mathbb{F}_{p^{2}}$, so that ω has order $r=p^{2}-1$ and $\omega^{t} \neq 1 \forall 0 \leq$ $t \leq r$. Then $\mathbb{F}_{p^{2}}=\left\{0,1, \omega, \omega^{2}, \cdots, \omega^{r-1}\right\}$. The trace map, $\operatorname{Tr}: \mathbb{F}_{p^{2}} \mapsto \mathbb{F}_{p}$, is defined by $\operatorname{Tr}(u)=u+u^{p}$. An additive code of length n over $\mathbb{F}_{p^{2}}$ is $\mathbb{F}_{p^{\prime}}$-additive subgroup of $\mathbb{F}_{p^{2}}^{n}$ containing p^{k} codewords for some integer k in the range $0 \leqslant k \leqslant 2 n$.

2.3. The Ring E_{p}

Following [12], we define a ring on two distinct generators a, b by their relations

$$
E_{p}=\left\langle a, b \mid p a=p b=0, a^{2}=a, b^{2}=b, a b=a, b a=b\right\rangle .
$$

Thus, E_{p} consists of p^{2} elements and has characteristic p. We also define a natural action of \mathbb{F}_{p} on E_{p} by the rule $r x=x r$, for all $r \in E_{p}$ and for all $x \in \mathbb{F}_{p}$.

Lemma 1. The ring E_{p} does not contain a unity element.
Proof. Assume, by contradiction, that there is a unique element e in E_{p} such that $e u=u e=$ u for every $0 \neq u \in E_{p}$. Since E_{p} is generated by a and b, e can be written as

$$
e=a i+b j, \text { for some } 0 \leq i, j \leq p-1
$$

Choose $u=a$. By assumption,

$$
(a i+b j) a=a(a i+b j)=a,
$$

which implies $e=a$. Also, choose $u=a+b$. Then

$$
a(a+b)=a^{2}+a b=a+a=2 a \neq a+b
$$

So a is not the unity of E_{p}, which leads to an inconsistency. Therefore, E_{p} is a non-unital ring.
From the ring representation of E_{p} and Lemma $1, E_{p}$ is a non-commutative ring without multiplicative identity. Moreover, E_{p} contains a unique maximal ideal

$$
J_{p}=\left\{e_{x y} \mid e_{x y}=a x+b y \text { with } x+y \equiv 0(\bmod p) \text { where } 0 \leqslant x, y<p\right\}=\langle e=a-b\rangle
$$

Thus, we can write E_{p} as

$$
\begin{equation*}
E_{p}=\left\{c_{x y}=a x+e y \mid x, y \in \mathbb{F}_{p}\right\} . \tag{1}
\end{equation*}
$$

Define the reduction map modulo J_{p} as $\alpha: E_{p} \mapsto E_{p} / J_{p} \cong \mathbb{F}_{p}$ by $\alpha(a x+e y)=x$ where $0 \leqslant x<p$. This map can be extended in the natural way from E_{p}^{n} to \mathbb{F}_{p}^{n}.

3. Codes over E_{p}

A linear code \mathcal{C} of length n over E_{p}, or simply an E_{p}-code, is a one-sided $E_{p^{-}}$ submodule of E_{p}^{n}. We denote the (Hamming) weight of $\mathbf{x} \in E_{p}^{n}$ by $w t(\mathbf{x})$ and adapt the notation

$$
\left[<0,1>, \cdots,<i, A_{i}>, \cdots,<n, A_{n}>\right]
$$

where A_{i} is the number of codewords of Hamming weight i, for the weight distribution of a code over E_{p} as in Magma [16]. The inner product between two vectors $\mathbf{x}=$
$\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in E_{p}^{n}$ is defined as $(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} x_{i} y_{i}$. For an E_{p}-code C, the right dual of \mathcal{C}, defined as

$$
\mathcal{C}^{\perp_{R}}=\left\{\mathbf{y} \in E_{p}^{n} \mid \forall \mathbf{x} \in \mathcal{C},(\mathbf{x}, \mathbf{y})=0\right\}
$$

is a right module of E_{p}^{n}, while the left dual of \mathcal{C}, defined as

$$
\mathcal{C}^{\perp_{L}}=\left\{\mathbf{y} \in E_{p}^{n} \mid \forall \mathbf{x} \in \mathcal{C},(\mathbf{y}, \mathbf{x})=0\right\}
$$

is a left module of E_{p}^{n}. The two-sided dual of \mathcal{C} is $\mathcal{C}^{\perp}=\mathcal{C}^{\perp_{R}} \cap \mathcal{C}^{\perp_{L}}$. The code \mathcal{C} is said to be self-orthogonal if every a codeword in \mathcal{C} is orthogonal to every codeword in \mathcal{C}, that is, $\mathcal{C} \subseteq \mathcal{C}^{\perp}$. If $\mathcal{C}=\mathcal{C}^{\perp_{R}}$ (resp. $\mathcal{C}=\mathcal{C}^{\perp_{L}}$) then \mathcal{C} is right self-dual (RSD) (resp. left self-dual (LSD)). If $\mathcal{C}=\mathcal{C}^{\perp}$, then \mathcal{C} is self-dual (SD).

Using the $\operatorname{map} \phi: E_{p} \mapsto \mathbb{F}_{p^{2}}$ defined as

$$
\begin{equation*}
\phi(0)=0, \phi(a)=\omega, \text { and } \phi(b)=-\omega+1 \tag{2}
\end{equation*}
$$

we can attach to an E_{p}-code \mathcal{C} an additive $\mathbb{F}_{p^{2}}$-code $\phi(\mathcal{C})=\left\{\left(\phi\left(c_{1}\right), \phi\left(c_{2}\right), \ldots, \phi(c)_{n}\right) \mid\right.$ $\left.\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathcal{C}\right\}$. It can be easily seen that $\operatorname{Tr}(\phi(u))=\alpha(u)$ for all $u \in E_{p}$.

Lemma 2.

(i) For any positive integer n, there exist a self-orthogonal code over E_{p} of length n.
(ii) For any odd prime p, there is a left self-orthogonal code $\left(\mathcal{C} \subseteq \mathcal{C}^{\perp_{L}}\right)$ over E_{p}.

Proof.

(i) Consider J_{p} as linear code over E_{p} of length 1 . To prove the self-orthogonality of J_{p}, for all $(a i+b j),\left(a i^{\prime}+b j^{\prime}\right) \in J_{p}$, we have that

$$
\begin{aligned}
& \left(a i+b j, a i^{\prime}+b j^{\prime}\right)=a\left(\left(i^{\prime}+j^{\prime}\right) i\right)+b\left(\left(i^{\prime}+j^{\prime}\right) j\right) \\
& \left(a i^{\prime}+b j^{\prime}, a i+b j\right)=a\left((i+j) i^{\prime}\right)+b\left((i+j) j^{\prime}\right)
\end{aligned}
$$

Since $(a i+b j),\left(a i^{\prime}+b j^{\prime}\right) \in J_{p}$, it follows that, $i+j \equiv 0$ and $i^{\prime}+j^{\prime} \equiv 0(\bmod p)$. Then, $J_{p} \subseteq J_{p}^{\perp_{R}} \cap J_{p}^{\perp_{L}}=J_{p}^{\perp}$. Taking the direct sum of n copies of this code yields a self-orthogonal code of any length n.
(ii) Let p be a prime and let $\mathbf{1}_{p}$ denote the all-one codeword of length p. The repetition code of length p is then defined by $R_{p}=\left\{u\left(\mathbf{1}_{p}\right) \mid u \in E_{p}\right\}$. Clearly R_{p} is a linear code over E_{p}. Since E_{p} has characteristic p, then we have that $R_{p} \subseteq R_{p}{ }^{{ }^{L}}$.

Let \mathcal{C} be linear code over E_{p}. We define the residue code of \mathcal{C} as

$$
\operatorname{res}(\mathcal{C})=\left\{\mathbf{x} \in \mathbb{F}_{p}^{n} \mid \exists \mathbf{y} \in \mathbb{F}_{p}^{n} \text { such that } a \mathbf{x}+e \mathbf{y} \in \mathcal{C}\right\}
$$

and the torsion code of \mathcal{C} as

$$
\boldsymbol{\operatorname { t o r }}(\mathcal{C})=\left\{\mathbf{y} \in \mathbb{F}_{p}^{n} \mid e \mathbf{y} \in \mathcal{C}\right\}
$$

From Equation (2), we have $\operatorname{res}(\mathcal{C})=\operatorname{Tr}(\phi(\mathcal{C}))$ and $\boldsymbol{\operatorname { t o r }}(\mathcal{C})$ is the subfield subcode of $\phi(\mathcal{C})$ defined by $\phi(\mathcal{C}) \cap \mathbb{F}_{p}^{n}$. Let $\alpha_{\mathcal{C}}$ be the restriction of α to \mathcal{C}. We have that $e \operatorname{tor}(\mathcal{C})=\operatorname{Ker} \alpha_{\mathcal{C}}$, and that $\operatorname{res}(\mathcal{C})=\operatorname{Im} \alpha_{\mathcal{C}}$. Let $\operatorname{dim}(\operatorname{res}(\mathcal{C}))=k_{1}$ and $k_{2}=\operatorname{dim}(\boldsymbol{\operatorname { t o r }}(\mathcal{C}))-k_{1}$. We say that \mathcal{C} is linear code of type $\left\{k_{1}, k_{2}\right\}$. It can be seen that \mathcal{C} is free as an E_{p}-module if and only if $\operatorname{res}(\mathcal{C})=\boldsymbol{\operatorname { t o r }}(\mathcal{C})$. By the first isomorphism theorem applied to $\alpha_{\mathcal{C}}$ we have $|\mathcal{C}|=p^{2 k_{1}+k_{2}}$.

In Theorem 1, we will extend a few results from [15,17] by simply substituting codes over \mathbb{F}_{p} for binary codes in the proofs.

Theorem 1. Suppose \mathcal{C} is a linear code over E_{p}. Let k_{1}, k_{2}, n be non-negative integers with $k_{1}+k_{2} \leq n$. Then the following hold:
(i) Every linear code \mathcal{C} over E_{p} of length n and type $\left\{k_{1}, k_{2}\right\}$ is equivalent to a code with generator matrix in standard form

$$
\left[\begin{array}{cc}
a I_{k_{1}} & a A+e B \tag{3}\\
0 & e Z
\end{array}\right]
$$

where $I_{k_{1}}$ is the identity matrix, the matrices A, B and Z have entries from \mathbb{F}_{p}.
(ii) $\quad \operatorname{ares}(\mathcal{C}) \subseteq \mathcal{C}$ and $\operatorname{res}(\mathcal{C}) \subseteq \operatorname{tor}(\mathcal{C})$.
(iii) $\mathcal{C}=\operatorname{ares}(\mathcal{C}) \oplus \operatorname{etor}(\mathcal{C})$
(iv) $\mathcal{C}^{\perp_{R}}=\boldsymbol{\operatorname { t o r }}(\mathcal{C})^{\perp} \oplus e \mathbb{F}_{p}^{n}$.
(v) $\mathcal{C}^{\perp_{L}}=\operatorname{ares}(\mathcal{C})^{\perp} \oplus \operatorname{eres}(\mathcal{C})^{\perp}$.
(vi) $\mathcal{C}^{\perp}=\operatorname{ator}(\mathcal{C})^{\perp} \oplus \operatorname{eres}(\mathcal{C})^{\perp}$.

If G is a $k \times n$ matrix over E_{p}, we denote by $E_{p}^{k} G$ the code of length n over E_{p} with generator matrix G.

Next, we make a modification on the construction of self-orthogonal codes, (left or right) self-dual codes, and self-dual codes in [15], to be suitable for an odd prime p.

Theorem 2. If $\mathcal{C}=a \mathcal{C}_{1} \oplus e \mathcal{C}_{2}$ is a linear code over E_{p} such that \mathcal{C}_{1} and \mathcal{C}_{2} be arbitrary linear codes over \mathbb{F}_{p}, then
(i) \mathcal{C} is a self-orthogonal code if and only if $\mathcal{C}_{1} \subseteq \mathcal{C}_{2} \subseteq \mathcal{C}_{1}^{\perp}$;
(ii) \mathcal{C} is a self-dual if and only if $\mathcal{C}_{1} \subseteq \mathcal{C}_{2}=\mathcal{C}_{1}^{\perp}$;
(iii) \mathcal{C} is a left self-dual if and only if $\mathcal{C}_{1}=\mathcal{C}_{2}=\mathcal{C}_{1}^{\perp}$;
(iv) \mathcal{C} is a right self-dual if and only if $\mathcal{C}=e \mathbb{F}_{p}^{n}$.

Proof. First, we will prove that $\mathcal{C}_{1}=\operatorname{res}(\mathcal{C})$ and $\mathcal{C}_{2}=\operatorname{tor}(\mathcal{C})$. Observe that $\mathcal{C}_{1}=\alpha\left(a \mathcal{C}_{1}\right) \subseteq$ $\operatorname{res}(\mathcal{C})$. Let $\mathbf{x} \in \operatorname{res}(\mathcal{C})$. Then $a \mathbf{x}+e 0 \in \mathcal{C}$, so $\mathbf{x} \in \mathcal{C}_{1}$, thus, we have res $(\mathcal{C})=\mathcal{C}_{1}$. Now, $e \mathcal{C}_{2} \subseteq \mathcal{C}$, so by definition of torsion code, \mathcal{C}_{2} is a subset of $\boldsymbol{\operatorname { t o r }}(\mathcal{C})$. Let $\mathbf{y} \in \boldsymbol{\operatorname { t o r }}(\mathcal{C})$. Since the zero vector is in $\mathcal{C}_{1}, e \mathbf{y}=a \mathbf{0}+e \mathbf{y} \in \mathcal{C}$. Therefore, $\mathbf{y} \in \mathcal{C}_{2}$.
(i) Let \mathcal{C} be a self-orthogonal code. Note that $\mathcal{C}_{1} \subseteq \mathcal{C}_{2}$. Suppose that $\mathbf{z} \in \mathcal{C}_{2}$. Since \mathcal{C} is self-orthogonal, for all $a \mathbf{x}+e \mathbf{y} \in \mathcal{C}$, we have

$$
0=(a \mathbf{x}+e \mathbf{y}, e \mathbf{z})=e(\mathbf{x}, \mathbf{z})
$$

Hence $\mathcal{C}_{2} \subseteq \mathcal{C}_{1}^{\perp}$. Conversely, to prove the self-orthogonality of \mathcal{C}, for all $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}_{1}$ and for all $\mathbf{y}, \mathbf{y}^{\prime} \in \mathcal{C}_{2}$ we have

$$
\begin{aligned}
\left(\mathbf{c}, \mathbf{c}^{\prime}\right) & =\left(a \mathbf{x}+e \mathbf{y}, a \mathbf{x}^{\prime}+e \mathbf{y}^{\prime}\right) \\
& =a\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+0\left(\mathbf{x}, \mathbf{y}^{\prime}\right)+e\left(\mathbf{y}, \mathbf{x}^{\prime}\right)+0\left(\mathbf{y}, \mathbf{y}^{\prime}\right) \\
& =a(0)+0+e(0)+0=0
\end{aligned}
$$

since $\mathcal{C}_{1} \subseteq \mathcal{C}_{2} \subseteq \mathcal{C}_{1}^{\perp}$.
(ii) Let \mathcal{C} be a self-dual code. Then from the preceding case, $\mathcal{C}_{1} \subseteq \mathcal{C}_{2} \subseteq \mathcal{C}_{1}^{\perp}$. Now, let $\mathbf{x} \in \mathcal{C}_{1}^{\perp}$ be arbitrary. From Theorem 1 (vi), we have $e \mathbf{x} \in \mathcal{C}$. Hence, $\mathbf{x} \in \boldsymbol{\operatorname { t o r }}(\mathcal{C})=\mathcal{C}_{2}$. It follows that $\mathcal{C}_{2}=\mathcal{C}_{1}^{\perp}$. For the converse, suppose that $\mathcal{C}_{1} \subseteq \mathcal{C}_{2}=\mathcal{C}_{1}^{\perp}$. From the preceding case, we have $\mathcal{C} \subseteq \mathcal{C}^{\perp}$. Since $|\mathcal{C}|=p^{2 k_{1}+k_{2}}$ and $\mathcal{C}_{2}=\mathcal{C}_{1}^{\perp}, p^{k_{1}+\left(n-k_{1}\right)}=p^{n}$. It follows that $\mathcal{C}=\mathcal{C}^{\perp}$.
(iii) \mathcal{C} is left self-dual code if and only if $\mathcal{C}_{1}=\mathcal{C}_{1}^{\perp}=\mathcal{C}_{2}$, by Theorem 1 (iii) and (v).
(iv) \mathcal{C} is right self-dual code if and only if $\mathcal{C}_{1}=\mathcal{C}_{2}^{\perp}$ (by Theorem 1 (iii) and (iv)). Equivalently, we have $\mathcal{C}_{1}^{\perp}=\left(\mathcal{C}_{2}^{\perp}\right)^{\perp}=\mathcal{C}_{2}=\mathbb{F}_{p}^{n}$ if and only if $\mathcal{C}_{1}=\{0\}$ if and only if $\mathcal{C}=e \mathbb{F}_{p}^{n}$.

4. Computation of the Mass Formula

At the start, we define the notion of equivalence of codes. Two codes \mathcal{C} and \mathcal{C}^{\prime} over E_{p} are monomially equivalent if there is an $n \times n$ monomial matrix M (with exactly one entry $\in\{1,-1\}$ in each row and column and all other entries are zero) such that $\mathcal{C}^{\prime}=\{c M: c \in \mathcal{C}\}$. The monomial automorphism group Aut (\mathcal{C}) of code \mathcal{C} consists of all M such that $\mathcal{C}=\mathcal{C} M$. Let M_{n} be the signed symmetric group of order $\left|M_{n}\right|=2^{n} n!$. The number of codes equivalent to a code \mathcal{C} of length n is

$$
\frac{\left|M_{n}\right|}{|A u t(\mathcal{C})|} .
$$

The mass formula for self-orthogonal codes is given by

$$
\sum_{\mathcal{C}} \frac{\left|M_{n}\right|}{|\operatorname{Aut}(\mathcal{C})|}
$$

where the sum runs through all inequivalent self-orthogonal codes \mathcal{C} over E_{p} of length n.
We apply a similar approach to that used for the computation of a mass formula in [7]. Let C_{1} be a code over \mathbb{F}_{p} of length n with dimension k_{1} and generator matrix

$$
\left[\begin{array}{ll}
I_{k_{1}} & A \tag{4}
\end{array}\right],
$$

and C_{2} be a code over \mathbb{F}_{p} of length n with dimension $k_{1}+k_{2}$ and generator matrix

$$
\left[\begin{array}{cc}
I_{k_{1}} & A \tag{5}\\
0 & Z
\end{array}\right]
$$

where $A \in M_{k_{1} \times\left(n-k_{1}\right)}\left(\mathbb{F}_{p}\right)$, and $Z \in M_{k_{2} \times\left(n-k_{1}\right)}\left(\mathbb{F}_{p}\right)$ is of full row rank. Observe that $C_{1} \subseteq C_{2}$, and the code with generator matrix (3) has residue code C_{1} and torsion code C_{2}. We need the following lemmas to count the number free self-orthogonal E_{p}-codes.

Lemma 3. If \mathcal{C} is a free E_{p}-code of length n, then the matrix B in Theorem 1 (i) is unique.
Proof. Suppose \mathcal{C} is a free code and there exist $B_{1}, B_{2} \in M_{k_{1} \times\left(n-k_{1}\right)}\left(\mathbb{F}_{p}\right)$ such that

$$
\begin{equation*}
E_{p}^{k_{1}}\left[a I_{k_{1}} a A+e B_{1}\right]=E_{p}^{k_{1}}\left[a I_{k_{1}} a A+e B_{2}\right] \tag{6}
\end{equation*}
$$

Then $a A+e B_{1}=a A+e B_{2}$. Hence, $B_{1}=B_{2}$.
For the remainder of this section, assume that $C_{1} \subseteq C_{1}^{\perp}$. Then

$$
\begin{equation*}
I_{k_{1}}+A A^{T}=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
Z A^{T}=0 \tag{8}
\end{equation*}
$$

It follows from (7) that A is of full row rank.
Lemma 4. The map f_{A} defined by

$$
\begin{gathered}
f_{A}: M_{k_{1} \times m}\left(\mathbb{F}_{p}\right) \rightarrow M_{k_{1} \times k_{1}}\left(\mathbb{F}_{p}\right) \\
X \mapsto A X^{T}
\end{gathered}
$$

is a surjective linear map.
Proof. Note that f_{A} is a linear map by properties of matrix. To prove the surjective condition, choose an arbitrary matrix G in $M_{k_{1} \times k_{1}}\left(\mathbb{F}_{p}\right)$. Consider the matrix $-G^{T} A$ in $M_{k_{1} \times m}\left(\mathbb{F}_{p}\right)$. We have

$$
f_{A}\left(-G^{T} A\right)=A\left(-G^{T} A\right)^{T}=-A A^{T} G=I_{k_{1}}(G)=G
$$

Now, let us consider the sets

$$
\begin{aligned}
\mathbf{X} & =\left\{\mathcal{C} \mid \mathcal{C} \text { be a self-orthogonal } E_{p} \text {-code, with } \boldsymbol{\operatorname { r e s }}(\mathcal{C})=C_{1}=\boldsymbol{\operatorname { t o r }}(\mathcal{C})\right\} \\
\mathbf{X}^{\prime} & =\left\{\mathcal{C}^{\prime} \mid \mathcal{C}^{\prime} \text { be a self-orthogonal } E_{p} \text {-code, with } \boldsymbol{\operatorname { r e s }}\left(\mathcal{C}^{\prime}\right)=C_{1}, \boldsymbol{\operatorname { t o r }}\left(\mathcal{C}^{\prime}\right)=C_{2}\right\} .
\end{aligned}
$$

Lemma 5. If $\mathcal{C}^{\prime} \in \mathbf{X}^{\prime}$, then $\left|\left\{\mathcal{C} \in \mathbf{X} \mid \mathcal{C} \subseteq \mathcal{C}^{\prime}\right\}\right|=p^{k_{1} k_{2}}$.
Proof. By Theorem 1 (i), \mathcal{C}^{\prime} has a generator matrix (3). Consider the map

$$
\begin{aligned}
& \mu: M_{k_{1} \times k_{2}}\left(\mathbb{F}_{p}\right) \rightarrow\left\{\mathcal{C} \in \mathbf{X} \mid \mathcal{C} \subseteq \mathcal{C}^{\prime}\right\} \\
& M \mapsto E_{p}^{k_{1}}\left[a I_{k_{1}} a A+e(B+M Z)\right] .
\end{aligned}
$$

Clearly, μ is well defined. Now, we will show that μ is bijective. Suppose $M_{1}, M_{2} \in$ $M_{k_{1} \times k_{2}}\left(\mathbb{F}_{p}\right)$ such that $\mu\left(M_{1}\right)=\mu\left(M_{2}\right)$. Then $a A+e\left(B+M_{1} Z\right)=a A+e\left(B+M_{2} Z\right)$. Since Z is of full row rank, we conclude $M_{1}=M_{2}$, which shows that μ is injective. Now, suppose that $\mathcal{C} \in \mathbf{X}$ such that $\mathcal{C} \subseteq \mathcal{C}^{\prime}$. By Theorem 1 (i), $\mathcal{C}=E_{p}^{k_{1}}\left[a I_{k_{1}} a A+e F\right]$, for some matrix F. The inclusion $\mathcal{C} \subseteq \mathcal{C}^{\prime}$ implies that

$$
a A+e F=a A+e(B+M Z)
$$

for some matrix M of size $k_{1} \times k_{2}$. So $F=B+M Z$, which shows that μ is surjective, and hence, μ is bijective. Therefore,

$$
\left|\left\{\mathcal{C} \in \mathbf{X} \mid \mathcal{C} \subseteq \mathcal{C}^{\prime}\right\}\right|=\left|M_{k_{1} \times k_{2}}\left(\mathbb{F}_{p}\right)\right|=p^{k_{1} k_{2}}
$$

Lemma 6. If $\mathcal{C} \in \mathbf{X}$, then there is a unique code $\mathcal{C}^{\prime} \in \mathbf{X}^{\prime}$, such that $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.
Proof. By Theorem 1 (i) and Lemma $3, \mathcal{C}$ has a generator matrix $\left[a I_{k_{1}} a A+e B\right]$ for some unique matrix B. Then the code \mathcal{C}_{0}^{\prime} with a generator matrix

$$
\left[\begin{array}{cc}
a I_{k_{1}} & a A+e B \tag{9}\\
0 & e Z
\end{array}\right]
$$

satisfies $\boldsymbol{\operatorname { r e s }}\left(\mathcal{C}_{0}^{\prime}\right)=C_{1}$, and $\boldsymbol{\operatorname { t o r }}\left(\mathcal{C}_{0}^{\prime}\right)=C_{2}$. Since $\mathcal{C} \in \mathbf{X}$, (8) implies that \mathcal{C}_{0}^{\prime} is a self-orthogonal code, hence $\mathcal{C}_{0}^{\prime} \in \mathbf{X}^{\prime}$. Now, suppose that $\mathcal{C}^{\prime} \in \mathbf{X}^{\prime}$ and $\mathcal{C} \subseteq \mathcal{C}^{\prime}$. By Theorem 1 (i), we have that $E_{p}^{k_{2}}[0 \mathrm{eZ}] \subseteq \mathcal{C}^{\prime}$. This, together with $\mathcal{C} \subseteq \mathcal{C}^{\prime}$ forces $\mathcal{C}_{0}^{\prime} \subseteq \mathcal{C}^{\prime}$. Since $\left|\mathcal{C}_{0}^{\prime}\right|=\left|\mathcal{C}^{\prime}\right|$, we have $\mathcal{C}_{0}^{\prime}=\mathcal{C}^{\prime}$ 。

Let $\sigma_{p}\left(n, k_{1}\right)$ be the number of self-orthogonal codes of length n and dimension k_{1} over \mathbb{F}_{p}, which is found in [18-20].

In [21], the number of subspaces of dimension k contained in an n-dimensional vector space over \mathbb{F}_{p} is given by the Gaussian coefficient $\left[\begin{array}{l}j \\ i\end{array}\right]_{p}$ for $i \leqslant j$, where

$$
\left[\begin{array}{c}
j \\
i
\end{array}\right]_{p}=\frac{\left(p^{j}-1\right)\left(p^{j}-p\right) \ldots\left(p^{j}-p^{i-1}\right)}{\left(p^{i}-1\right)\left(p^{i}-p\right) \ldots\left(p^{i}-p^{i-1}\right)} .
$$

Let $\sigma_{E_{p}}\left(n, k_{1}, k_{2}\right)$ be the number of distinct self-orthogonal codes over E_{p} of length n. Mass formulas are useful for finding all inequivalent codes of given length. Our goal now is to compute $\sigma_{E_{p}}\left(n, k_{1}, k_{2}\right)$.

Theorem 3. For all codes of length n with type $\left\{k_{1}, 0\right\}$, the number of free self-orthogonal codes over E_{p} is

$$
\begin{equation*}
\sigma_{E_{p}}\left(n, k_{1}, 0\right)=\sigma_{p}\left(n, k_{1}\right) p^{k_{1}\left(n-2 k_{1}\right)} \tag{10}
\end{equation*}
$$

Proof. We may assume without loss of generality that C_{1} is a code with generator matrix (4). If \mathcal{C} is a self-orthogonal code of length n over E_{p} of type $\left\{k_{1}, 0\right\}$, then by setting $C_{1}=$ $\operatorname{res}(\mathcal{C})=\boldsymbol{\operatorname { t o r }}(\mathcal{C}), C_{1}$ satisfies Theorem $2(\mathrm{i})$. We have $\sigma_{p}\left(n, k_{1}\right)$ codes C_{1}, which is the number of self-orthogonal codes over \mathbb{F}_{p}. By Theorem 1 (i), \mathcal{C} has generator matrix $\left[a I_{k_{1}} a A+e B\right]$. Finally, we have

$$
a^{2} I_{k_{1}}+a^{2} A A^{T}+a e A B^{T}+e a B A^{T}+e^{2} B B^{T}=0,
$$

so,

$$
a\left(I_{k_{1}}+A A^{T}\right)+e\left(B A^{T}\right)=0
$$

Since $C_{1} \subseteq C_{1}^{\perp}$, then $I_{k_{1}}+A A^{T}=0$. Now, we have find the number of the matrix B which satisfies $A B^{T}=0$. Setting $m=n-k_{1}$ in the linear map f_{A} in Lemma 4,

$$
\begin{equation*}
\left|\left\{B \in M_{k_{1} \times n-k_{1}}\left(\mathbb{F}_{p}\right) \mid A B^{T}=0\right\}\right|=\left|\operatorname{Ker} f_{A}\right|=\frac{\left|M_{k_{1} \times n-k_{1}}\left(\mathbb{F}_{p}\right)\right|}{\left|\operatorname{Im} f_{A}\right|}=\frac{p^{k_{1}\left(n-k_{1}\right)}}{p^{k_{1}^{2}}} \tag{11}
\end{equation*}
$$

Example 1. We consider the case $n=3$, and $p=3$. In Table 1, we give the list of inequivalent selforthogonal codes over the ring E_{3} of type $\{1,0\}$. Using the mass formula in Theorem 3, we have the following computations:

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{1}{\left|\operatorname{Aut}\left(\mathcal{C}_{i}\right)\right|}=\frac{1}{12}+\frac{1}{6}=\frac{4 \cdot 3^{1(3-2)}}{48}=\frac{\sigma_{E_{3}}(3,1,0)}{2^{3} \cdot 3!} \tag{12}
\end{equation*}
$$

In the next theorem, we give the number of self-orthogonal codes over E_{p}.
Theorem 4. The number of self-orthogonal codes over E_{p} of length n with type $\left\{k_{1}, k_{2}\right\}$ is given by

$$
\sigma_{E_{p}}\left(n, k_{1}, k_{2}\right)=\sigma_{p}\left(n, k_{1}\right)\left[\begin{array}{c}
n-2 k_{1} \tag{13}\\
k_{2}
\end{array}\right]_{p} p^{k_{1}\left(n-2 k_{1}-k_{2}\right)} .
$$

Proof. We may assume without loss of generality that C_{1} and C_{2} are codes with generator matrices (4) and (5), respectively. Let \mathcal{C} be a self-orthogonal code of length n over E_{p} of type $\left\{k_{1}, k_{2}\right\}$. By setting $C_{1}=\operatorname{res}(\mathcal{C})$ and $C_{2}=\operatorname{tor}(\mathcal{C}), C_{1}$ and C_{2} satisfy Theorem 2 (i). Then, there are $\sigma_{p}\left(n, k_{1}\right)$ self-orthogonal codes C_{1} and we have $\left[\begin{array}{c}n-2 k_{1} \\ k_{2}\end{array}\right]_{p} \operatorname{codes} C_{2}$ such that $C_{1} \subseteq C_{2} \subseteq C_{1}^{\perp}$. Now, we have to compute $\left|\mathbf{X}^{\prime}\right|$. By Lemmas 5 and 6 , we have

$$
\begin{aligned}
p^{k_{1} k_{2}}\left|\mathbf{X}^{\prime}\right| & =\sum_{\mathcal{C}^{\prime} \in \mathbf{X}^{\prime}}\left|\left\{\mathcal{C} \in \mathbf{X} \mid \mathcal{C} \subseteq \mathcal{C}^{\prime}\right\}\right| \\
& =\sum_{\mathcal{C} \in \mathbf{X}}\left|\left\{\mathcal{C}^{\prime} \in \mathbf{X}^{\prime} \mid \mathcal{C} \subseteq \mathcal{C}^{\prime}\right\}\right| \\
& =\sum_{\mathcal{C} \in \mathbf{X}} 1 \\
& =|\mathbf{X}|
\end{aligned}
$$

From Theorem 3, we have that $|\mathbf{X}|=p^{k_{1}\left(n-2 k_{1}\right)}$. Therefore, $\left|\mathbf{X}^{\prime}\right|=p^{k_{1}\left(n-2 k_{1}-k_{2}\right)}$.
Remark 1. Let \mathcal{C} be an E_{p}-code of length n and of type $\{0, m\}$, where $m \leq n$. Then \mathcal{C} will be a self-orthogonal code. Furthermore, if $m=n$, then \mathcal{C} will be self-dual.

The following results derive the mass formula for the SD codes and the LSD codes over E_{p}, respectively.

Theorem 5. For a given integer $n \geq 2$ we have the identity

$$
\sum_{\mathcal{C}} \frac{1}{|\operatorname{Aut}(\mathcal{C})|}=\frac{\sigma_{p}(n, k)}{2^{n} n!}
$$

where \mathcal{C} runs over distinct representatives of equivalence classes under monomial action of SD E_{p}-codes of length n and type $\{k, n-2 k\}$.

Proof. From Theorem 2 (ii), the number of SD E_{p}-codes depends on the number of selforthogonal codes over \mathbb{F}_{p}, and $\boldsymbol{\operatorname { t o r }}(\mathcal{C})=\operatorname{res}(\mathcal{C})^{\perp}$.

Example 2. We consider the case $n=3$, and $p=3$. In Table 1, we give the list of inequivalent self- orthogonal codes over E_{3} of type $\{1,1\}$. Using the mass formula in Theorem 5, we make the following computations,

$$
\begin{equation*}
\sum_{i=1} \frac{1}{\left|\operatorname{Aut}\left(\mathcal{C}_{i}\right)\right|}=\frac{1}{12}=\frac{\sigma_{E_{3}}(3,1,1)}{48}=\frac{\sigma_{3}(3,1)}{48} . \tag{14}
\end{equation*}
$$

Corollary 1. For a given even integer $n \geq 2$, we have the identity

$$
\sum_{\mathcal{C}} \frac{1}{|A u t(\mathcal{C})|}=\frac{\sigma_{p}(n, n / 2)}{2^{n} n!}
$$

where \mathcal{C} runs over distinct representatives of equivalence classes under monomial action of left SD E_{p}-codes of length n and type $\{n / 2,0\}$.

Proof. From Theorem 2 (iii), the number of left self-dual E_{p}-codes depends on the number of self-dual codes over \mathbb{F}_{p}, with $\boldsymbol{\operatorname { t o r }}(\mathcal{C})=\operatorname{res}(\mathcal{C})$. Thus, the result follows.

Proposition 1. For all codes \mathcal{C} of length n, there is a unique right self-dual E_{p}-code.
Proof. The result follows from Theorem 2 (iv), where $\mathcal{C}=e \mathbb{F}_{p}^{n}$ is the unique code.
Table 1. Self-orthogonal codes of length $n \leq 4$ over E_{3}.

Length	Type	Generator Matrices	$\|A u t(\mathcal{C})\|$	Weight Distribution	$\begin{aligned} & \text { RSD } \\ & \text { Code } \end{aligned}$	LSD Code	$\begin{gathered} \text { SD } \\ \text { Code } \end{gathered}$
1	\{0,1\}	(e)	2	[$<0,1>,<1,2\rangle$]	\checkmark		\checkmark
2	$\begin{aligned} & \{0,1\} \\ & \{0,2\} \end{aligned}$	$\left(\begin{array}{cc} e & 0 \end{array}\right)$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & {[<0,1>,<1,2>]} \\ & {[<0,1>,<1,4>,<2,4>]} \end{aligned}$	\checkmark		\checkmark
3	$\begin{aligned} & \{1,0\} \\ & \{0,1\} \\ & \{0,2\} \\ & \{0,3\} \\ & \{1,1\} \end{aligned}$	$\begin{aligned} & \left(\begin{array}{lll} a & a & a \end{array}\right) \\ & \left(\begin{array}{ccc} a & c_{11} & c_{12} \end{array}\right) \\ & \left(\begin{array}{lll} e & 0 & 0 \end{array}\right) \\ & \left(\begin{array}{lll} e & 0 & 0 \\ 0 & e & 0 \end{array}\right) \\ & \left(\begin{array}{ccc} a & e I_{3} & a \\ 0 & 2 e & e \end{array}\right) \end{aligned}$	$\begin{gathered} 12 \\ 6 \\ 16 \\ 16 \\ 48 \end{gathered}$ 12	$\begin{aligned} & {[<0,1>,<3,8>]} \\ & {[<0,1>,<3,8>]} \\ & {[<0,1>,<1,2>]} \\ & {[<0,1>,<1,4>,<2,4>]} \\ & {[<0,1>,<1,6>,<2,12>,<3,8>]} \\ & [<0,1\rangle,<2,6>,<3,20>] \end{aligned}$	\checkmark		\checkmark \checkmark

Table 1. Cont.

5. Classification

We classify self-orthogonal codes and self-dual codes of length $n \leq 4$ with given residue of dimension $k_{1}=0,1,2$, where $p=3,5$. Also, we classify self-orthogonal codes and self-dual codes of length $n \leq 3$ with given residue of dimension $k_{1}=0,1$, where $p=7$ using the building method discussed in Theorem 2. To carry out the the classification, we represent codes over E_{p} by their associated additive codes over $\mathbb{F}_{p^{2}}$ under the mapping ϕ defined in (2), and considered the action of the group of monomial matrices (with 1 and -1 as nonzero entries) to directly calculate the automorphism group. These calculations are performed using MAGMA [16]. See Tables 1-3 for a summary of our results for $p=3,5,7$, respectively.

Table 2. Self-orthogonal codes of length $n \leq 4$ over E_{5}.

Length	Type	Generator Matrices	$\|A u t(\mathcal{C})\|$	Weight Distribution	$\begin{aligned} & \text { RSD } \\ & \text { Code } \end{aligned}$	$\begin{aligned} & \text { LSD } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \text { SD } \\ \text { Code } \end{gathered}$
1	\{0,1\}	(e)	2	[$<0,1\rangle,<1,4\rangle$]	\checkmark		\checkmark
2	\{0,1\}	(e 0)	4	[$<0,1\rangle,<1,4\rangle$]			
	\{0,2\}	$e I_{2}$	8	[$<0,1>,<1,8\rangle,<2,16>$]	\checkmark		\checkmark
	\{1,0\}	$\left(\begin{array}{cc}a & 2 a\end{array}\right)$	4	[$<0,1>,<2,24\rangle$]		\checkmark	\checkmark
3	\{0,1\}	$\left(\begin{array}{ccc}e & 0 & 0\end{array}\right)$	16	[$\langle 0,1\rangle,\langle 1,4\rangle$]			
	\{0,2\}	$\left(\begin{array}{ll}e I_{2} & 0\end{array}\right)$	16	[$<0,1\rangle,<1,8\rangle,<2,16>$]			
		e_{3}	48	[$<0,1>,<1,12\rangle,<2,48>,<3,64>$]	\checkmark		\checkmark
	\{1,0\}		8				
		$\left(\begin{array}{lll}a & 2 a & e\end{array}\right)$	2	$[<0,1>,<2,4>,<3,20>]$			
	\{1, 1\}	$\left(\begin{array}{ccc}a & 0 & 2 a \\ 0 & e & 0\end{array}\right)$	8	[$<0,1\rangle,<1,4\rangle,<2,24\rangle,<3,96>$]			\checkmark
4	\{1,0\}	$\left(\begin{array}{cccc}a & 2 a & 0 & 0\end{array}\right)$	32	[$<0,1>,<2,24>$]			
		$\left(\begin{array}{llll} a & a & 2 a & 2 a \end{array}\right)$	16				
		$\left(\begin{array}{llll}a & 2 a & e & 0\end{array}\right)$	4	[$<0,1\rangle,<2,4\rangle,<3,20\rangle$]			
		$\left(\begin{array}{llll}a & 2 a & e & e\end{array}\right)$	4	[$<0,1\rangle,<2,4\rangle,<3,20\rangle$]			
		$\left(\begin{array}{llll}a & c_{11} & c_{21} & c_{21}\end{array}\right)$	4	[$<0,1\rangle,<4,24\rangle$]			
		$\left(\begin{array}{llll}a & c_{14} & c_{22} & c_{21}\end{array}\right)$	2	$[<0,1>,<4,24>]$			
		$\left(\begin{array}{llll}a & c_{12} & c_{22} & c_{22}\end{array}\right)$	4	$[<0,1>,<4,24>]$			
		$\left(\begin{array}{llll}a & c_{13} & 2 a & c_{21}\end{array}\right)$	4	$[<0,1\rangle,<4,24>]$			
		$\left(\begin{array}{cccc}a & c_{11} & 2 a & c_{22}\end{array}\right)$	4	[$<0,1>,<4,24>$]			
		$\left(\begin{array}{cccc}a & 2 a & e & 2 e\end{array}\right)$	4	[$<0,1\rangle,<2,4\rangle,<4,20\rangle$]			
	\{2, 0 \}	$\left(\begin{array}{cccc}a & 0 & 2 a & 0 \\ 0 & a & 0 & 2 a\end{array}\right)$	32	[<0, 1>, <2, 48>, <4, 576>]		\checkmark	\checkmark

Table 3. Self-orthogonal codes of length $n \leq 3$ over E_{7}.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Length \& Type \& Generator Matrices \& $|A u t(\mathcal{C})|$ \& Weight Distribution \& $$
\begin{aligned}
& \text { RSD } \\
& \text { Code }
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline \text { LSD } \\
& \text { Code }
\end{aligned}
$$ \& $$
\begin{gathered}
\hline \text { SD } \\
\text { Code }
\end{gathered}
$$

\hline 1 \& $\{0,1\}$ \& (e) \& 2 \& [$<0,1>,<1,6>$] \& \checkmark \& \& \checkmark

\hline 2 \& $$
\begin{aligned}
& \{0,1\} \\
& \{0,2\}
\end{aligned}
$$ \& $$
\begin{gathered}
(e 0) \\
e I_{2}
\end{gathered}
$$ \& $$
\begin{aligned}
& 4 \\
& 8
\end{aligned}
$$ \& $$
\begin{aligned}
& {[<0,1>,<1,6>]} \\
& {[<0,1>,<1,12>,<2,36>]}
\end{aligned}
$$ \& \checkmark \& \& \checkmark

\hline 3 \& $$
\begin{aligned}
& \{0,1\} \\
& \{0,2\} \\
& \{0,3\} \\
& \{1,0\} \\
& \{1,1\}
\end{aligned}
$$ \& $$
\begin{aligned}
& \left(\begin{array}{ccc}
e & 0 & 0 \\
e & 0 & 0 \\
0 & e & 0
\end{array}\right) \\
& \left(\begin{array}{ccc}
a & 2 a & 3 a
\end{array}\right) \\
& \left(\begin{array}{ccc}
2 a & b & c_{35}
\end{array}\right) \\
& \left(\begin{array}{ccc}
4 a & 6 b & c_{53}
\end{array}\right) \\
& \left(\begin{array}{ccc}
a & 2 a & 3 a \\
0 & e & 4 e
\end{array}\right)
\end{aligned}
$$ \& $$
\begin{gathered}
16 \\
16 \\
48 \\
6 \\
2 \\
2 \\
6
\end{gathered}
$$ \& $$
\begin{aligned}
& {[<0,1>,<1,6>]} \\
& {[<0,1>,<1,12>,<2,36>]} \\
& {[<0,1>,<1,18>,<2,108>,<3,216>]} \\
& {[<0,1>,<3,48>]} \\
& {[<0,1>,<3,48>]} \\
& {[<0,1>,<3,48>]} \\
& {[<0,1>,<2,18>,<3,324>]}
\end{aligned}
$$ \& \checkmark \& \& \checkmark

\checkmark

\hline
\end{tabular}

6. Conclusions and Open Problems

In this paper, we have given a mass formula to classify certain self-orthogonal codes over the non-unitary non-commutative ring E_{p}, with p an odd prime. Particularly, we were considering the two main cases of classification self-orthogonal codes, and SD codes under monomial action. In the previous section, concrete classifications in short lengths are given. Extension of these results to higher lengths would require more programming or more computing power. Similar theoretical and experimental questions remain open for other non-unitary non-commutative rings in the Rhagavandran list [12,22] in an odd characteristic.

Author Contributions: Conceptualization, A.A. (Adel Alahmadi), R.A.B., L.G. and P.S.; methodology, A.A. (Adel Alahmadi), R.A.B., L.G. and P.S.; validation, A.A. (Adel Alahmadi), A.A. (Altaf Alshuhail), R.A.B., L.G. and P.S.; investigation, A.A. (Adel Alahmadi), A.A. (Altaf Alshuhail), R.A.B., L.G. and P.S.; resources, A.A. (Adel Alahmadi); writing-original draft preparation, A.A. (Adel Alahmadi), A.A. (Altaf Alshuhail) and P.S.; writing-review and editing, R.A.B. and L.G.; supervision, A.A. (Adel Alahmadi) and P.S. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, under grant no. (KEP.-PhD: 99-130-1443).

Data Availability Statement: Data are available upon request to the corresponding author.
Acknowledgments: The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (KEP.-PhD: 99-130-1443).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Conway, J.H.; Pless, V. On the enumeration of self-dual codes. J. Comb. Theory Ser. A 1980, 28, 26-53. [CrossRef]
2. Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, MA, USA, 2003.
3. Leon, J.S.; Pless, V.; Sloane, N.J.A. Self-dual codes over GF(5). J. Comb. Theory Ser. A 1982, 32, 178-194. [CrossRef]
4. Mallows, C.L.; Pless, V.; Sloane, N.J.A. Self-dual codes over GF(3). SIAM J. Appl. Math. 1976, 31, 649-666. [CrossRef]
5. Rains, E.M.; Sloane, N.J.A. Self-dual codes, Chapter 3. In Handbook of Coding Theory, I; Pless, V.S., Hufman, W.C., Eds.; Elsevier: North Holland, The Netherlands, 1998.
6. Balmaceda, J.M.; Betty, R.A.; Nemenzo, F. Mass formula for self-dual codes over $\mathbb{Z}_{p^{2}}$. Discret. Math. 2008, 308, 2984-3002. [CrossRef]
7. Betty, R.A.; Munemasa, A. Mass formula for self-orthogonal codes over $\mathbb{Z}_{p^{2}}$. J. Comb. Inf. Syst. Sci. 2009, 34, 51-66.
8. Choi, W.-H. Mass formula of self-dual codes over galois rings $\operatorname{GR}\left(p^{2}, 2\right)$. Korean J. Math. 2016, 24, 751-764. [CrossRef]
9. Gaborit, P. Mass formulas for self-dual codes over \mathbb{Z}_{4} and $\mathbf{F}_{q}+u \mathbf{F}_{q}$ rings. IEEE Trans. Inf. Theory 1996, 42, 1222-1228. [CrossRef]
10. Dougherty, S.T.; Gaborit, P.; Harada, M.; Solé, P. Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. IEEE Trans. Inf. Theory 1999, 45, 32-45. [CrossRef]
11. Fields, J.; Gaborit, P.; Leon, J.; Pless, V. All self-dual \mathbb{Z}_{4} codes of length 15 or less are known. IEEE Trans. Inf. Theory 1998, 44, 311-322. [CrossRef]
12. Fine, B. Classification of finite rings of order p^{2}. Math. Mag. 1993, 66, 248-252. [CrossRef]
13. Alahmadi, A.; Alshuhail, A.; Betty, R.A.; Galvez, L.; Solé, P. Mass formula for self-orthogonal and self-dual codes over non-unital rings of order four. Mathematics 2023, 11, 4736. [CrossRef]
14. Alahmadi, A.; Altassan, A.; Basaffar, W.; Bonnecaze, A.; Shoaib, H.; Solé, P. Quasi type IV codes over a non-unital ring. Appl. Algebra Eng. Commun. Comput. 2021, 32, 217-228. [CrossRef]
15. Alahmadi, A.; Melaibari, A.; Solé, P. Duality of codes over non-unital rings of order four. IEEE Access 2023, 11, 53120-53133. [CrossRef]
16. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235-265. [CrossRef]
17. Alahmadi, A.; Altassan, A.; Basaffar, W.; Shoaib, H.; Bonnecaze, A. ; Solé, P. Type IV codes over a non-unital ring. J. Algebra Its Appl. 2022, 21, 2250142. [CrossRef]
18. Kim, K.H.; Park, Y.H. The mass formula of self-orthogonal codes over GF(q). Korean J. Math. 2017, 25, 201-209.
19. Pless, V. Number of isotropic subspaces in a finite geometry. Atti Della Accad. Naz. Dei Lincei-Rend.-Cl. Sci.-Fis.-Mat. Nat. 1965, 39, 418-421.
20. Pless, V. On the uniqueness of the golay codes. J. Comb. Theory 1968, 5, 215-228. [CrossRef]
21. Van Lint, J.; Wilson, R. A Course in Combinatorics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001.
22. Raghavendran, R. A class of finite rings. Compos. Math. 1970, 22, 49-57.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

