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Abstract

Synucleinopathies-related disorders such as Lewy body dementia (LBD) and

isolated/idiopathic REM sleep behavior disorder (iRBD) have been associated

with neuroinflammation. In this study, we examined whether the human

leukocyte antigen (HLA) locus plays a role in iRBD and LBD. In iRBD,

HLA-DRB1*11:01 was the only allele passing FDR correction (OR = 1.57, 95%

CI = 1.27–1.93, p = 2.70e-05). We also discovered associations between iRBD

and HLA-DRB1 70D (OR = 1.26, 95%CI = 1.12–1.41, p = 8.76e-05), 70Q

(OR = 0.81, 95%CI = 0.72–0.91, p = 3.65e-04) and 71R (OR = 1.21, 95%

CI = 1.08–1.35, p = 1.35e-03). Position 71 (pomnibus = 0.00102) and 70

(pomnibus = 0.00125) were associated with iRBD. Our results suggest that the

HLA locus may have different roles across synucleinopathies.

Introduction

Isolated/idiopathic REM sleep behavior disorder (iRBD)

is a prodromal synucleinopathy characterized by enact-

ment of dreams, vocalization, and absence of muscle ato-

nia during REM sleep.1 iRBD is one of the strongest

predictors for certain neurodegenerative disorders, as

approximately 80% of patients will convert to Parkinson’s

disease (PD), Lewy body dementia (LBD), or multiple

system atrophy (MSA) after 10–15 years on average fol-

lowing iRBD diagnosis.2

Previous evidence has shown that iRBD and synuclei-

nopathies share a partial genetic overlap.3 While particu-

lar loci (SNCA, GBA, and TMEM175) were shared

between these traits, distinct loci such as LRRK2 and

MAPT for PD and APOE LBD were also identified.3 Fur-

thermore, while the SNCA locus is essential in PD, LBD,

and iRBD, the association with SNCA is driven by differ-

ent variants for the different traits.3 Similar phenomenon

occurs in the SCARB2 locus, where different variants are

associated with PD or RBD.3 Understanding the shared

genes and pathways and the genetic differences will lead

to better characterization of these disorders. For instance,

microglial activation, a form of neuroinflammation, was

found in all these disorders.4,5 However, the immune sys-

tem’s role in their pathophysiology is poorly understood.

Recently, a fine-mapping study of the human leukocyte

antigen (HLA) locus in PD demonstrated a strong associ-

ation of HLA-DRB1 amino acids 11 V, 13H, and 33H

with reduced PD risk.6 Located on chromosome 6, the

HLA locus is a highly polymorphic region with compli-

cated linkage patterns. HLA plays an essential role in the

adaptive immune system by presenting antigens to

T cells.

Since the role of the HLA locus is unknown in iRBD

and LBD, this study aims to examine whether HLA vari-

ants may affect the risk for these disorders. We analyzed

the association of different HLA alleles, haplotypes, and

amino acids in two cohorts of iRBD and LBD patients.

Methods

Study population

iRBD and LBD cohorts from two previous genome-wide

association studies (GWAS) were included in this analysis

(Table 1).3,7 iRBD patients were diagnosed according to

the International Classification of Sleep Disorders (2nd or

3rd Edition) with video polysomnography. LBD was diag-

nosed according to consensus criteria, as described

elsewhere.7 The LBD cohort was not screened for iRBD.

The iRBD cohort is composed of 1072 patients and 9505

controls with genotyping data from the OmniExpress

GWAS chip (Illumina Inc.). The control group includes

six publicly available cohorts: controls from the Interna-

tional Parkinson’s Disease Genomics Consortium

(IPDGC) NeuroX dataset (dbGap phs000918.v1.p1),

National Institute of Neurological Disorders and Stroke

(NINDS) Genome-Wide genotyping in Parkinson’s Dis-

ease (dbGap phs000089.v4.p2), NeuroGenetics Research

Consortium (NGRC) (dbGap phs000196.v3.p1), Parkin-

son’s Progression Markers Initiative (PPMI), and Vance

(dbGap phs000394).

The LBD cohort consisted of 2604 patients and 4032

controls with whole-genome sequencing data as described

elsewhere.7 Study participants signed informed consent

forms and the Institutional Review Board at McGill Uni-

versity approved the study protocol.

Quality control

We performed standard GWAS quality control steps for

both cohorts using PLINK v1.90. We excluded variants

that were heterozygosity outliers (|F| > 0.15), sample call

rate outliers (<0.95) and samples failing sex checks were

also excluded. We determined genetic ancestry by merg-

ing samples with HapMap3 and clustering with principal

components analysis (PCA). We only selected samples of

European ancestry. A relatedness check was performed
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with GCTA to remove third-degree relatives or closer

ones. Then, we performed several variant-level filtrations,

such as removing call rate outliers (<0.95) and variants

with significantly different missingness between cases and

controls (p < 0.0001). We also excluded variants that

failed PLINK –test-mishap (p < 0.0001) and deviated

from Hardy–Weinberg equilibrium (p < 0.0001) in

controls.

HLA imputation

Samples passing quality control were imputed on the

Michigan Imputation Server with the four-digit multieth-

nic HLA reference panel v28 using Minimac4 and phased

with Eagle v2.4. This reference panel is composed of five

global populations (n = 20,349). Only alleles with an

imputation score (R2) above 0.8 were included. We deter-

mined HLA haplotypes using haplo.stats R package

(https://analytictools.mayo.edu/research/haplo-stats/), which

employs an Expectation–maximization (EM) algorithm.

Using the HLA Genotype Imputation with Attribute

Bagging (HIBAG) R package, we imputed HLA amino

acids from HLA alleles.9

Power calculations

We performed power calculations online for each cohort

using CaTS to compute statistical power. (https://csg.sph.

umich.edu/abecasis/gas_power_calculator/). We assumed a

prevalence of 1% for iRBD10 and LBD.11 We had enough

statistical power (>0.8) to detect an association

(p = 0.0005) with an odds ratio of 1.33 with a minor

allele frequency (MAF) of 0.15. We chose a MAF of

0.15, which correspond to the frequency of HLA-DRB1

33H, the amino acid associated with PD. However, we

had less than 80% statistical power to detect this

association.

Statistical analysis

We performed logistic regression with an additive model

on each HLA allele, haplotype and amino acid after

adjusting for age at onset, sex and the top 10 principal

components. To test which amino acid position is the

most strongly associated with disease risk, we also per-

formed an Omnibus test using the OMNIBUS_LOGISTIC

module from HLA-TAPAS.8 All rare associations (carrier

frequency <1%) were excluded. A 5% false discovery rate

(FDR) for multiple testing was applied for alleles

(n = 102), haplotypes (n = 105), and amino acids

(n = 716) separately.

Results

After HLA imputation, we examined the association of

HLA alleles, haplotypes, and amino acids. HLA-

DRB1*11:01 was the only allele passing FDR correction

(OR = 1.57, 95% CI = 1.27–1.93, p = 0.00275, Table 2).

In addition, HLA-DRB1 70D, an amino acid encoded by

DRB1*11:01, was associated with iRBD (OR = 1.26, 95%

CI = 1.12–1.41, p = 0.0209). We also found association

with 70Q (OR = 0.81, 95% CI = 0.72–0.91, p = 0.0441)

and 71R (OR = 1.21, 95% CI = 1.08–1.35, p = 0.0441).

In HLA-DRB1, positions 71 (pomnibus = 0.00102) and 70

(pomnibus = 0.00125) were the most associated with iRBD.

DRB1*11:01 also tags three haplotypes: DQA1*05:01–
DQB1*03:01–DRB1*11:01 (OR = 1.40, 95% CI = 1.16–
1.70, p = 0.0285), DQA1*05:01–DRB1*11:01 (OR = 1.41,

95% CI = 1.16–1.72, p = 0.0285), and DQB1*03:01–
DRB1*11:01 (OR = 1.36, 95% CI = 1.13–1.64, p =0.0364).
When we repeated the analysis at one-field (two-digit)

resolution, for example, treating DRB1*11:01 and 11:04

as the same, the association of DRB1*11 was not signifi-

cant (p = 0.12, Table S1), suggesting that the association

was driven solely by the DRB1*11:01 allele. For LBD, no

association was statistically significant after correction

for multiple comparisons. We also examined the associa-

tion of HLA-DRB1 33H, which was previously reported

to be associated with PD (Table S3).6 Although DRB1

33H was not associated with iRBD (p = 0.84), the MAF

frequencies in cases and controls were 0.125 vs. 0.149,

respectively. Meanwhile, the DRB1 33H allele frequency

in both LBD cases and its controls was 0.145

(Table S7). Our results suggest that DRB1 33H could be

associated with iRBD, but our study lacks the power to

detect it.

Table 1. Study population after quality control.

Variable

Isolated REM sleep behavior disorder Lewy body dementia

Patients (n = 1072) Controls (n = 9505) Patients (n = 2604) Controls (n = 4032)

Age (years), (SD) 60.54 (11.06) 63.49 (16.59) 74.36 (11.76) 72.63 (16.99)

Male, number (%) 860 (80.22) 4824 (50.75) 1656 (63.59) 1967 (48.78)

n, number; SD, standard deviation.

1684 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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Discussion

This study shows an association between DRB1*11:01,
DRB1 70D, 70Q, and 71R on iRBD. We also identified

HLA-DRB1 positions 71 and 70 via an omnibus test,

which suggests that residues at those positions explain a

large amount of variance. HLA-DRB1 position 70–74 is a

strong risk factor for rheumatoid arthritis and is referred

to as a “shared epitope” (SE).12 The SE, in combination

with DRB1 11 V, was associated with a protective effect

for PD.13 The SE is composed of 70 Q/R and 71 K/R,

which are important antigen-binding grooves. Additional

studies examining how the SE mediates risk for iRBD will

be necessary.

In addition, DRB1 33H, a variant also associated with

PD, was not significantly associated with iRBD or LBD.

However, the difference in carrier frequency between

iRBD cases and controls for DRB1 33H, similar to that

seen in PD, suggests that our study may lack the power

to detect this association in iRBD. A recent study has sug-

gested a shared mechanism between PD, AD, amyo-

trophic lateral sclerosis and HLA-DRB1*04, harboring the

33H amino acid change.14 This subtype was associated

with decreased neurofibrillary tangles in post-mortem

brains. It also binds to a K311 acetylated Tau PHF6

sequence.14 These results exemplify the possibility of dif-

ferent HLA types with specific genetic variants that may

affect the binding of substrates relevant for neurodegener-

ative disorders and activating inflammatory response.

We could not replicate the association of a previous

study of HLA antigens with 25 iRBD cases. This study

showed a significant association between iRBD and

DQB1*05 and DQB1*06.15 The most likely explanation

for the discrepancy is that the previous study lacked the

power to detect an actual effect. Another study has sug-

gested that HLA-DR expression was associated with

iRBD.16 Fine-mapping and colocalization studies for these

findings will be required once larger datasets of iRBD

become available. Whether the mechanism underlying the

associations with PD and iRBD is through functional

effects of specific amino acid changes or due to different

expressions of HLA genes in various brain tissues is still

to be determined.

Although the immune system’s involvement is still elu-

sive, some potential mechanisms of effect may exist. The

varying effects of HLA between RBD and PD could be

associated with changing T-cell responses during disease

progression. One study showed that alpha-synuclein-

specific T-cell responses are high before the development

of PD motor symptoms and decline after.17

Another possibility is that the varying effects between

iRBD and PD originate from the brain-first or body-first

hypothesis.18 This model hypothesizes that in brain-first

PD, alpha-synuclein originates from the brain and spreads

to the peripheral autonomic nervous system. In body-first

PD, pathology originates in the gut and spreads to the

brain. RBD-positive and negative PD cases were associ-

ated with gut-first and brain-first, respectively. HLA

alleles may induce a different immune response to brain-

first and body-first diseases. Additional mechanisms,

which have not been discovered, may be responsible for

the association.

Our study has several limitations. First, future replica-

tion studies with larger cohorts would be needed to

increase statistical power since we do not have a replica-

tion cohort. Note that we used the most extensive avail-

able cohorts for iRBD and LBD.3,7 Although the LBD

cohort was composed of Parkinson’s disease with demen-

tia (PDD) and dementia with Lewy bodies (DLB)

patients, PDD represents only 145 out of 2604 LBD cases.

The PDD samples may likely have a minimal effect on

the results. Due to the polygenicity of the HLA locus, var-

ious populations have different HLA allele frequencies.

This study was done only on samples with European

ancestry, and multiancestry analysis could provide more

refined evidence on the role of HLA in synucleinopathies.

Table 2. HLA association in isolated REM sleep behavior disorder.

MAF in cases MAF in controls OR 95% CI p p (FDR)

Alleles

HLA-DRB1*11:01 0.0726 0.0472 1.57 1.27–1.93 2.70e-05 2.75e-03

Amino acids

HLA-DRB1 70D 0.505 0.444 1.26 1.12–1.41 8.76e-05 2.09e-02

HLA-DRB1 70Q 0.440 0.503 0.81 0.72–0.91 3.65e-04 4.41e-02

HLA-DRB1 71R 0.545 0.496 1.21 1.08–1.35 1.35e-03 4.41e-02

Haplotype

DQA1*05:01–DQB1*03:01–DRB1*11:01 0.0924 0.0657 1.40 1.16–1.70 5.17e-04 2.85e-02

DQA1*05:01–DRB1*11:01 0.0933 0.0652 1.41 1.16–1.72 5.43e-04 2.85e-02

DQB1*03:01–DRB1*11:01 0.0989 0.0707 1.36 1.13–1.64 1.04e-03 3.64e-02

CI, confidence interval; FDR, false discovery rate for each group; MAF, minor allele frequency; OR, odds ratio; p, p-value.
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The cohorts used in the study were also not matched for

age and sex. However, we adjusted for these variables in

the analysis.

To conclude, we found an alternative HLA association

of iRBD compared with PD and LBD. More experimental

evidence is necessary to characterize the genetic landscape

of synucleinopathies and the immune system’s role.
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