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Understanding thermodynamics in liquids at the atomic level is challenging because of strong atomic inter-
actions and lack of spatial symmetry. Recent prior theoretical works have focused on describing heat capacity
of liquids in terms of phonon-like excitations but often rely on fitting factors and ad hoc assumptions. In this
work, we propose characterizing various phases in terms of instantaneous normal modes (INMs) of structural
snapshots from molecular dynamics simulations of single-element systems over wide ranges of temperature and
pressure. We use the INMs to build a mode-level microscopic description of heat capacity and demonstrate that
heat capacity of liquids can be described by a combination of both solidlike and gaslike degrees of freedom,
leading to a more unified framework to fundamentally describe heat capacity of all three phases of matter: solid,
liquid, and gas.

DOI: 10.1103/PhysRevResearch.6.013206

I. INTRODUCTION

In various applications of liquids from nuclear reactors [1]
to thermal energy storage systems [2], device performance
and efficiency are directly controlled by thermal properties
such as heat capacity. However, engineering and customiza-
tion of thermal properties of liquids are challenging due to
a general lack of microscopic understanding of the atomic
dynamics in liquids. Liquids have dynamically disordered
structures that lack spatial periodicity, yet their physical den-
sities are similar to solids. Gases are similarly disordered
but atoms are nearly free. In contrast, atoms in liquids are
strongly interacting and dynamically correlated. These com-
plexities strongly challenge accurate characterization of the
atomic degrees of freedom in liquids and the development of
microscopic theories for liquids.

Unlike liquids, solids (periodic crystals in particular) have
a rigorous, microscopic theoretical foundation to describe
atomic motion and various materials properties based on nor-
mal mode lattice dynamics [3–5]. These properties can now
be predicted with high accuracy from routine lattice dynam-
ics calculations [6,7]. In normal mode analysis, one obtains
normal mode frequencies and eigenvectors from diagonaliza-
tion of dynamcal matrices built from second derivatives of
the interatomic potential (i.e., harmonic force constants) of
a given structure. Normal mode frequencies depict local po-
tential curvatures: modes with imaginary frequencies and real
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frequencies correspond to negative and positive curvatures
of the potential, respectively, while eigenvectors describe
constituent harmonic motions. Therefore, normal modes can
indicate thermodynamic stability of a given solid phase: imag-
inary modes imply a structure is dynamically unstable, i.e.,
another underlying arrangement of atoms is favored for a
given interatomic potential [8].

Recently, there has been much interest in extending the
normal mode analysis to liquid systems where instantaneous
structures are used instead of the equilibrium lattice [9–17].
Normal mode decomposition of atomic motion has the po-
tential to be useful as the number of normal modes in the
system is equal to the number of atomic degrees of freedom,
3N = Ntotal = Ni + Nr , where N is the number of atoms, Ntotal

is the total number of normal modes, Ni is the number of imag-
inary modes, and Nr is the number of real modes. Therefore,
characterization of normal modes can provide insights into the
nature of atomic degrees of freedom in materials of interest.
From instantaneous structures, a large number of imaginary
modes are observed in the normal mode spectra of liquids and
various aspects of these imaginary modes have been used to
describe nonequilibrium processes including atomic diffusion
[12,18] and melting [19] with varying degrees of success.
Notably, prior works have attempted to relate self-diffusion
coefficients, D, of liquids to the fraction of imaginary modes
over the total number of modes [12,20,21]. Some have argued
that D is directly proportional to this fraction [12], while
others have argued for more subtle relations between D and
the fraction of “delocalized” imaginary modes [21]. How-
ever, the relationship between imaginary modes and diffusion
remains unclear [14], and these works suffer from narrow
temperature ranges that have been studied. These examples of
using normal modes in describing phase stability in solids and
nonequilibrium processes in liquids indicate that characteris-
tics and distributions of normal modes could potentially be
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(a) (b)

FIG. 1. (a) Temperature-dependent density of LJ argon from 1 K to 150 K at 1 bar, which covers all three phases: crystal (blue circles),
liquid (purple circles), and gas (red circles). Error bars which denote standard deviations from ensemble averages are smaller than the symbols.
(b) Representative pair distribution function, g(r), of crystal (1 K), liquid (90 K), and gas (120 K) LJ argon.

used as a general descriptor of structural stability and phases
beyond limited cases within solids and liquids.

In this work, we extend normal mode analysis to gas phases
of single-element systems and find that equal number of real
and imaginary modes implies a gas phase using molecular
dynamics simulations and lattice dynamics calculations. We
propose that atomic dynamics in liquids can be interpreted
as an interpolation between solidlike (Ni = 0) and gaslike
(Ni = Ntotal/2) motions as evident from their respective nor-
mal mode spectra. From these, we define instability factors,
IF and IFalt, to characterize the material phase, solid (IF ∼ 0),
liquid (0 � IF < 1), and gas (IF = 1). We further use these
instability factor descriptors to build a model for the constant
volume-specific heat ranging from solid through liquid to
gas phases and test this interpretation against independently
calculated specific heat values for a number of systems. Our
work, therefore, paves the way towards describing all classical
phases of matter under a unified, microscopic framework.

This paper is organized as follows: In Sec. II A we first look
at normal mode distributions of argon at 1 bar from solid to
gas and introduce instability factors to characterize phases of
matter. In Sec. II B we perform lattice dynamics calculations
on various single-element systems (argon, iron, and silicon)
with constant volumes and obtain their respective instability
factors. In Sec. II C a heat capacity model using instability
factors is developed and compared against independently cal-
culated constant volume specific heats of the single-element
systems. In Sec. III we make a connection between instan-
taneous normal mode spectra and velocity autocorrelation
function spectra through instability factors and discuss im-
plications of our work in the context of prior instantaneous
normal mode works. Finally, a summary is given in Sec. IV.

II. SIMULATION DETAILS AND RESULTS

A. Normal modes of argon at 1 bar from solid to gas

We first perform molecular dynamics (MD) simulations of
argon (1372 atoms) using a Lennard-Jones potential [22–24]
and large-scale atomic/molecular massively parallel simulator
(LAMMPS) [25] to generate equilibrated atomic structures
from 1 to 150 K under NPT (constant number of atoms,
pressure, and temperature) ensemble at 1 bar. Total system

volume is allowed to change. Periodic boundary conditions
are applied. For each temperature, structures were equilibrated
for 1 ns to ensure thermal equilibrium before data collection
of another 1 ns with a time step of 1 ps. Ten snapshots
distributed evenly within this 1 ns were then used for lat-
tice dynamics calculations (GULP [7]), and normal mode
spectra were averaged over these 10 snapshots. Resulting
temperature-dependent densities are shown in Fig. 1(a). We
observe discontinuities between 80 and 90 K and 110 and
120 K, marking the phase transitions from crystal to liquid and
liquid to gas phases, consistent with prior studies. Represen-
tative pair distribution functions, g(r) = 1

4πNnr2

∑
i, j〈δ(r −

|ri − r j |)〉, for crystal (1 K), liquid (90 K), and gas (120 K)
argon are shown in Fig. 1(b). Here N is the number of atoms,
n is the number density, ri is the atomic position of the ith
atom, and the angled bracket denotes an ensemble average.
As expected for crystals, we see sharp face-centered cubic
peaks. Broadened peaks and valleys are observed for the liq-
uid phase, and the pair distribution function eventually damps
out to unity with increasing distance. These peaks and valleys
disappear for the gas systems, indicating loss of structural
correlation except for weak pile-up at the contact distance.

From the snapshot structures of various phases, we per-
form lattice dynamics calculations to obtain normal mode
frequencies (ωn) and eigenvectors (en) from �-point dynami-
cal matrices (D) as

ω2
n · en = D · en, (1)

where subscript n denotes a mode number from 1 to 3N (N =
1372) and dynamical matrices are related to the potential
(U ) by

Dαβ,i j = 1√
mimj

∂2U

∂uα,i∂uβ, j
, (2)

where mi is the mass of atom i and Greek subscripts denote
Cartesian directions. Resulting representative normal mode
densities of states, INM(ω), for LJ argon in crystal (1 K),
liquid (90 K), and gas (120 K) phases are shown in Fig. 2(a).
For crystalline argon, all normal modes are real at low temper-
atures, and the density of states has sharp kinks, representing
van Hove singularities typically observed near the Brillouin
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(a) (b)

FIG. 2. (a) Representative normal mode densities of states for crystal (1 K), liquid (90 K), and gas (120 K) LJ argon. Normal mode
frequencies are multiplied by a factor of 500 for the gas phase for better visualization. (b) Instability factors proposed as a descriptor of phase
of matter as a function of temperature. Vertical dashed (crystal to liquid) and dotted lines (liquid to gas) represent phase transitions. Shaded
areas represent error limits determined from standard deviations from ensemble averages.

zone boundaries. For liquid argon, a significant number of
imaginary modes (they are shown as having negative frequen-
cies) start to appear as commonly observed in liquids. There is
weak temperature dependence (not shown here) on the num-
ber of imaginary modes observed in the liquid phase; however,
real modes dominate the density of states as measured by the
area under the curve. For argon gas, a long potential cutoff
distance on the order of half the domain size was necessary to
build dynamical matrices satisfying translational invariance,
which leads to three Goldstone modes at 0 THz similar to
solids and liquids. Corresponding normal mode density of
states for gas argon at 120 K is shown in Fig. 2(a). Interest-
ingly, we have an equal number of real and imaginary modes
for gas phases irrespective of temperature. As normal mode
analysis is typically used for solids, real modes in liquids have
been considered to derive from harmonic oscillators similar
to solids [19,26]. However, interpreting the real frequency
modes in high-temperature gases as conventional phonon har-
monic oscillators is highly questionable. Recently, our work
has explicitly shown that some of these real frequency modes
in instantaneous normal mode spectra are collisional and
translational in nature, similar to real atom gas dynamics [17].

We note that our calculations demonstrate that imaginary
modes are nearly half the modes observed at high tempera-
tures in the gas limit, while relaxed and stable solids have
only real modes. The square of the instantaneous normal mode
frequency reflects the curvature of the local potential energy
landscape (PEL) that atoms participating in the normal mode
see at that instant, i.e., the MD snapshot. PEL [27] is usually
applied to the whole system, but here we focus only on the
portion of PEL involved in the normal mode. Considering
subsystems of the PEL is not new. For instance, when a
relaxation of a glass is considered, only the atoms that are
involved in the relaxation phenomenon are taken into account
in depicting the PEL [27,28]. At low temperatures the system
is largely trapped in the valleys of the PEL with positive
curvatures, so the instantaneous normal mode frequencies are
real. In contrast, at very high temperatures the system sam-
ples configurational space with positive curvatures (valleys) as
well as the positions with negative curvatures (hills) equally.
In addition, from random matrix theory, eigenvalue distribu-

tion of symmetric sparse random matrices results in Wigner’s
semicircle law with an even number of positive and negative
eigenvalues [29]. As matrix elements for gas systems are more
randomized than those of solids and liquids, it is reasonable
that the number of positive and negative eigenvalues are equal
for dynamical matrices of high temperature gases.

To describe this transition of instantaneous normal mode
spectra from solid to gas, we propose two phenomenological
instability factors (IF and IFalt) built from the microscopic
mode characteristics as a measure of how unstable the system
is in the configurational space as

IF = Ni

Nr
, (3)

IFalt = 2Ni

Ni + Nr
. (4)

IF represents the ratio of the number of imaginary modes to
that of real modes, and IFalt is linearly related to the fraction
of the PEL with negative curvatures that the system sees. For
a relaxed solid (i.e., not near a phase transition), both insta-
bility factors are zero, while for a gas both are unity. Liquid
instability factors fall between these two limits. Therefore, the
instability factors proposed here are a measure of “gasness” in
the system. These instability factors describe phases of matter
in a continuous, normalized manner and provide an emergent
pathway to understand mode-resolved thermodynamic behav-
iors of liquid states.

Temperature-dependent instability factor values for our LJ
argon system at 1 bar are shown in Fig. 2(b). Instability
factors increase with temperature and saturate at 1 above the
liquid-gas phase transition. We do observe some imaginary
modes for solids near melting due to instability of the largely
perturbed crystalline structure. Perhaps corresponding insta-
bility factors could be used as a crystal-liquid phase transition
criterion similar to Lindemann’s melting criterion [30–32],
where the root mean square of the particle displacements from
the equilibrium positions reaches ∼10% of the interatomic
distance.

To test our interpretation of normal modes describing
phases of matter, we propose a constant volume-specific heat
model from solid to gas of various single-element materials

013206-3



MOON, THÉBAUD, LINDSAY, AND EGAMI PHYSICAL REVIEW RESEARCH 6, 013206 (2024)

(argon, silicon, and iron) in terms of instability factors, and
compare against independently computed specific heat from
molecular dynamics energy fluctuations. These systems have
different atomic structures in the solid state: face-centered cu-
bic (argon), face-centered cubic (silicon), and body-centered
cubic structures (iron) below melting temperatures under at-
mospheric pressures. Upon melting, liquid argon and iron
atoms are closely packed with coordination numbers around
13 to 14. In comparison, silicon possesses more complex
temperature-dependent structural features. Due to formation
of metallic bonds upon melting, the coordination number of
silicon increases from 4 to 6 or more, and there also exists a
low-density liquid to high-density liquid transition, commonly
observed in other tetrahedral systems including water. Both
structural changes in silicon have been well characterized by
the Stillinger-Weber potential used here. Having the various
structural features and bond natures described above, argon,
silicon, and iron are versatile test systems for the purpose of
this study.

In real systems, anharmonicity in the interatomic potential
plays an important role in how heat carriers interact and how
much energy each heat carrier can carry. However, accounting
for anharmonicity accurately in a wide range of temperatures
is a formidable task even for simple crystals. Rather, for proof
of principle here, we focus on idealized systems with constant
density (= ρ0, equilibrated at 1 K and 1 bar) from solid to gas
where we expect lesser degrees of anharmonicity. Unphysi-
cally high temperatures on the order of the temperature of the
center of our Sun (∼1.5×107 K) are, therefore, necessary to
reach gas phases.

B. Normal modes of argon, silicon, and iron at constant
volume from solid to gas

For argon, FCC structure of 1372 atoms with a lattice
parameter of 5.269 Å (ρ0) was used as an initial input structure
for molecular dynamics simulations. Temperatures considered
were from 1 to 108 K in increments of factors of 10 (log scale)
excluding 100 K near the melting temperature. Extremely
high temperatures were necessary to reach the gas limit (CV =
1.5NkB). MD time steps were 0.1 and 0.01 fs depending
on the temperature to capture the fast atomic dynamics. For
silicon, FCC structure with 1728 atoms with lattice parameter
of 5.431 Å (ρ0) was employed. Calculations were done at
temperatures from 1 to 107 K with varying time steps of 0.5
and 0.05 fs. For iron, BCC structure with 2000 atoms with
a lattice parameter of 2.867 Å (ρ0) was studied from 1 to
106 K. Time steps of 0.1 and 0.01 fs were used. Interatomic
interactions are described by Lennard-Jones (argon) [22–24],
Stillinger-Weber (silicon) [33], and modified Johnson poten-
tials (iron) [34,35]. At each temperature, all systems were
equilibrated for 5×106 time steps in the canonical ensemble
(NVT) prior to data recording of another 5×106 time steps
under the same ensemble. Relativistic corrections were not
needed at high temperatures due to relatively heavy masses of
our systems. Ten MD snapshot structures are used to compute
normal modes. As demonstrated by pair distribution functions
above melting temperatures for ρ0 systems shown in the Ap-
pendix Sec. 1, we have various liquid and gas phases.

The same procedures were additionally applied to struc-
tures at different densities to characterize the sensitivity of
density and anharmonicity: 0.9ρ0 and 0.8ρ0 for argon, 1.1ρ0

for silicon, and 0.9ρ0 for iron. Due to a large relative increase
in coordination numbers from 4 to 6 and above upon melting
for silicon, reducing density to 0.9ρ0 and 0.8ρ0 led to segrega-
tion of atoms and large empty space in the simulation domains
for some liquid temperatures. Thus, we instead chose a more
dense ρ = 1.1ρ0 for silicon.

Resulting instantaneous normal mode densities of states
for all ρ0 systems beyond the melting temperatures (liquids
and gases) are shown in Fig. 3. Lightest blue shades represent
lowest temperatures, and the shades become progressively red
with increase in temperature. Similar trends are observed for
these constant density systems as observed in the LJ argon at
1 bar (see Fig. 2). At the lowest temperatures, INM(ω) for
all systems are dominated by real modes as measured by the
areas under the curves. As temperature is increased, imaginary
mode populations become more prominent, and eventually
real and imaginary mode populations become approximately
equal. We expect more size effects in INM(ω) compared to
our constant pressure argon systems at low frequencies ω �
1 THz as the model size is fixed. However, low-frequency
modes constitute a small portion of the overall mode popula-
tion and should not generally affect our results. Corresponding
instability factors were subsequently calculated for all sys-
tems, and temperature-dependent values are described in the
Appendix Sec. 2. With these instability factors, we build a heat
capacity model next.

C. Specific heat model using instability factors

For canonical ensembles in equilibrium, statistical me-
chanics dictates that specific heat is related to energy
fluctuations by

CV = 〈E2〉 − 〈E〉2

kBT 2
, (5)

where angled brackets represent ensemble averages.
Temperature-dependent specific heats of all systems studied
in this work are shown in Fig. 4. Melting temperatures
are denoted by the red horizontal lines on the x axis. For
molecular dynamics simulations, which are classical, specific
heats for solids even at low temperatures are 3NkB as observed
in the figure. We observe clear transitions to the gas limit
as we increase the temperature. From these specific heats,
comparisons are made against instability factors for various
liquid and gas systems as shown in Figs. 5(a) and 5(c).
Despite different spectral shapes and features among argon,
silicon, and iron systems as demonstrated in Fig. 3, strong
correlations between instability factors and heat capacities
with small spread are evident irrespective of the system, and
specific heats approach 1.5NkB, expected for gas systems
around an instability factor equal to unity.

From these correlations between the specific heats and the
instability factors, we develop a specific heat model based on
the instability factors. We approximate the total energy as the
linear combination of those in solidlike (first term) and gaslike
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(a)

(b)

(c)

FIG. 3. Instantaneous normal mode density of states [INM(ω)]
of (a) argon from 103 to 108 K, (b) silicon from 5×103 to 107 K,
and (c) iron from 5×103 to 106 K. All systems were evaluated at
ρ0. Each INM(ω) is normalized such that the integral over the entire
frequency range is unity. Lightest blue and darkest red represent
lowest and highest temperatures, respectively. Negative frequency
means imaginary frequency. At low temperatures, modes with real
frequency dominate the spectra. As temperature increases, we ob-
serve that imaginary mode populations become more significant.

(second term) states,

E = (1 − x)(3NkBT ) + x
(

3
2 NkBT

)
, (6)

where x is either IF [Eq. (3)] or IFalt [Eq. (4)]. The corre-
sponding constant volume heat capacity for solids, liquids,
and gases under the classical and harmonic approximations

(a)

(b)

(c)

FIG. 4. Temperature-dependent constant volume heat capacity
of (a) argon, (b) silicon, and (c) iron with different densities using
Eq. (5). Different marker colors represent different densities. Brown
dash lines and black dash-dot lines represent Dulong-Petit limits and
gas limits for monatomic systems, respectively. Tc → l marked by red
lines mean crystal to liquid melting temperatures.

is then simply

CV ≡ dE

dT

∣∣∣∣
V

= (1 − x)(3NkB) + x

(
3

2
NkB

)

− dx

dT

(
3

2
NkBT

)
. (7)

The last term in Eq. (7) originates from the fact that instability
factors are also temperature dependent.
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(a)

(c) (d)

(b)

FIG. 5. (a), (c) Heat capacity calculated from molecular dynamics plotted against instability factors, IF and IFalt , for various constant
volume materials. Transition to CV = 1.5NkB (dot-dash line) is observed near instability factors at unity. (b), (d) Predicted constant volume
heat capacity from instability factors [Eq. (7)], compared to heat capacity from molecular dynamics [Eq. (5)]. Dashed black lines represent
one to one correspondence. Good agreement is generally shown within ∼5% of error for CV,IF .

Instability factor derivatives at each T were found from ad-
ditional instability factors calculated at adjacent temperatures
(0.9T and 1.1T ), i.e., numerical derivatives. Resulting one-
to-one comparisons between heat capacities from molecular
dynamics [Eq. (5)] and from our proposed model [Eq. (7] for
liquids and gases are demonstrated in Figs. 5(b) and 5(d).
CV,IFalt tends to underestimate CV,MD. In other words, IFalt

overestimates the “gasness” in these materials. CV,IF shows a
better agreement within 5% of discrepancy against CV,MD. In
using IFalt, it is intrinsically assumed that imaginary modes
are solely responsible for “gasness” in the system and real
modes are solidlike. However, in our recent work [17], we
have shown that both real and imaginary modes can depict
gaslike collisional and translational atomic motion, suggest-
ing that IF may be physically a better choice. Therefore,
we focus on IF in subsequent discussions. Agreement be-
tween CV,IF and CV,MD within 5% error for various liquid
and gas systems gives supporting evidence for our interpre-
tations of normal modes in solid, liquid, and gas phases from
a unified perspective via microscopically defined instability
factors.

We anticipate two possible sources of error when
comparing the specific heat values. The first one is the
theory itself, i.e., IF does not represent “gasness” correctly.

The other source of error is neglecting anharmonicity in
potential interactions that are included in MD simulations.
We have shown that at high enough temperatures, thermal
atomic motion is large enough that there are imaginary
instantaneous modes in solids (see Figs. 2 and 8) and specific
heat can also deviate from the Dulong-Petit law, CV = 3NkB,
as shown in Fig. 4, because thermally vibrating atoms can
also sample anharmonic potential energy landscape. The
combination of these on heat capacities merits further studies.
However, these effects do not appear to have a large influence
on the agreement between our model and independently
calculated constant volume heat capacity, as shown in Fig. 5.
To minimize the effect of volume expansion and contraction
on the potential interactions, we have focused our discussion
primarily to systems with constant density at ρ0. We have also
computed specific heat and IF for densities slightly different
from ρ0 to examine the sensitivity of volume variations near
ρ0 via instability factors determined by microscopic modal
behaviors as shown in Fig. 5. It is apparent that small changes
in density do not affect the agreement. We note that our work
does not assume Debye or Gaussian densities of states that are
often used in the literature [16,36,37]. Rather, we examined
the actual INM(ω) from realistic potentials and made
connections to specific heats directly. Direct comparison
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(a) (b) (c)

(f)(e)(d)

(i)(h)(g)

FIG. 6. Decomposition of spectral velocity autocorrelation function, VACF(ω), at select temperatures of (a)–(c) argon from 103 to 108 K,
(d)–(f) silicon from 5×103 to 107 K, and (g)–(i) iron from 5×103 to 106 K. All systems were evaluated at ρ0. Black curves represent spectra
of gaslike degrees of freedom, VACFgas(ω), from instability factor and orange curves represent spectra of solidlike degrees of freedom,
VACFsolid (ω), obtained from subtraction of VACF(ω) by the black curves.

with experiments is challenging as most heat capacity
measurements are done under constant pressure conditions,
thus with varying density. Further, it is expected that anhar-
monicity will be important near melting and glass transition
temperatures. Pressure and volume dependence and the role of
anharmonicity in heat capacity merit further investigations.

III. DISCUSSION

In addition to INM(ω), velocity autocorrelation function
[VACF(ω)] is another useful theoretical tool that yields 3N
through integrating over frequency. The VACF(ω) describes
the phonon density of states for solids under harmonic approx-
imations and is equivalent to INM(ω) [5] as demonstrated in
the Appendix Sec. 4 for crystalline silicon at 1 K. VACF(ω)
can also describe nonphononic dynamics as VACF(ω = 0)
represents the self-diffusion coefficient in the system. In our
normalization, D = kBT

12mN VACF(ω = 0) where D and m repre-
sent self-diffusion coefficient and atomic mass, respectively.
However, the relationship between INM(ω) and VACF(ω)
is not obvious. In INM(ω), curvatures of the potential en-
ergy landscape are described through normal modes based on
snapshot structures, and we propose to characterize phases of
matter in terms of the averaged distribution of normal modes,

i.e., IF. On the other hand, VACF(ω) captures time-dependent
atomic dynamics more directly. In this work, we attempt to
make a connection between INM(ω) and VACF(ω) through
our instability factors. In the case of a gas (IF = 1 for our
analysis), VACF(ω) is Lorentzian with a peak given by D
and integral describing all 3N atomic degrees of freedom,
with no phonon quasiparticles. For a relaxed solid (IF = 0),
VACF(ω) strictly describes phonon density of states, with no
free diffusing atoms. Motivated by this contrast, we partition
VACF(ω) into a gaslike portion, VACFgas(ω), with negligi-
ble attractive potential interactions and a solidlike portion,
VACFsolid(ω), with strong potential interactions. We assume
that VACFgas(ω) has a Lorentzian line shape with the height
determined by the diffusion coefficient. Furthermore, its width
is chosen such that

1

3N

∫
VACFgas(ω) dω = IF. (8)

VACFsolid(ω) is then determined by subtracting VACF(ω) by
VACFgas(ω),

1

3N

∫
VACFsolid(ω) dω = 1 − IF. (9)
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(a)

(b)

(c)

FIG. 7. Pair distribution function, g(r), of (a) argon from 103 to
108 K, (b) silicon from 5×103 to 107 K, and (c) iron from 5×103 to
106 K. All systems were evaluated at ρ0. Lightest blue and darkest
red curves represent lowest and highest temperatures, respectively.
Well-defined peaks and valleys in g(r) progressively disappear as
temperature increases highlighting transition from liquid states at
lower T to gas states at higher temperatures.

The calculated VACF(ω) and corresponding gaslike and solid-
like decompositions for all systems at select low, intermediate,
and high temperatures are shown in Fig. 6. If the “gasness”
in the system is severely overpredicted, hence affecting the
Lorenzian line width, VACFsolid(ω) will be negative over a

wide range of frequencies, which is unphysical. The results
here satisfy this test, suggesting the soundness of this decom-
position and the reasonableness of the choice of IF as a bridge
between INM(ω) and VACF(ω).

Prior works have attempted to relate self-diffusion coef-
ficients, D, of liquids to the fraction of imaginary modes
over the total number of modes, Ni + Nr , similar to our IFalt

[12,20,21]. Some have proposed that D is linearly propor-
tional to this fraction [12] while others have suggested subtler
relations between D and the fraction of “delocalized” imagi-
nary modes [21]. However, INM(ω) for our high-temperature
liquid and gas systems challenges these ideas: (1) we see a
dramatic slowing of how fast the density of states changes
with temperature, as evident in Fig. 3(a), where tempera-
ture increases evenly by a factor of 10 but self-diffusion
coefficients at these temperatures continue to increase with
temperature as shown in the Appendix Sec. 3. (2) Nearly all
imaginary modes in gas states at high temperatures are local-
ized as confirmed by their inverse participation ratios [17].

More recently, Zaccone and Baggioli reported a linear
power law at low frequencies in INM(ω) [16] and suggested
that imaginary modes are important in describing heat capac-
ity in liquids [37]. However, their work relies on empirical
model fitting, leading to difficulties in understanding the
nature of the heat carriers in liquids. Schirmacher et al. em-
phasized the importance of relative shapes of real and negative
eigenvalue distributions of the dynamical matrices in under-
standing the nature of vibrational modes in liquids and how
they become more symmetric with increase in temperature in
liquids above glass transition temperatures [15]. Rather than
characterizing specific shapes of certain instantaneous normal
mode spectra, we focus on understanding the demographics of
total number of atomic degrees of freedom in liquids: solidlike
or gaslike. We have thus introduced a microscopically derived
function describing “gasness” of a system designated as insta-
bility factors.

IV. CONCLUDING REMARKS

In summary, we have addressed thermodynamics of liquids
in the context of both solid and gas phases. We propose to
characterize the effective heat carriers in liquids via micro-
scopically derived instability factors describing “gasness” in
instantaneous normal mode spectra. In our approach we inter-
pret instantaneous normal modes reflecting the local curvature
of the potential energy landscape, rather than considering the
instantaneous normal modes with real frequencies equivalent
to harmonic oscillators in solids as is often done in the lit-
erature. We provide evidence in support of our proposal by
good agreement between predicted specific heat values with
those calculated from molecular dynamics. Our work provides
insights into the long-standing problem of thermodynamics
of liquids and suggests pathways to a unified frame-
work in studying thermodynamics of solid, liquid, and gas
phases.

In addition to conventional solid, liquid, and gas phases,
we expect that our work could also be useful in studying
thermodynamics and thermal properties of nonconventional
materials including liquid crystals and solid ionic conductors.
There have been many recent research interests in thermoelec-
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(a) (b)

FIG. 8. Temperature-dependent instability factors for all ρ0 systems. Yellow circles, blue squares, and pink crosses are for argon, silicon,
and iron, respectively.

tric power generators in certain solid ionic conductors dubbed
“phonon-liquid, electron crystal” where atoms at sublattice
sites are fixed while others are diffusing [38–40]. This leads to
desirable low heat capacity and nonelectronic thermal conduc-
tivity, but the origin of these is not yet clear. It is possible that
our work helps identify the mechanism behind these complex
phenomena.
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APPENDIX

1. Pair distribution functions for ρ0 systems

To demonstrate that we are sampling different liquid and
gas states, we examine pair distribution functions (PDFs),
g(r), of all ρ0 systems shown in Fig. 7. As we increase the
temperature, we observe progressive disappearance of well-
defined peaks and valleys in the g(r), highlighting a transition
from liquid to dense gas states. The first distance point at
which g(r) becomes finite also decreases with increase in
temperature as the distance at which potential energy ∼kBT
becomes smaller, as expected. Thus, effective atomic diam-
eters are getting smaller with increase in temperature, and
the packing factor, the fraction of volume occupied by atoms,
becomes smaller. Thus, the system makes a gradual transi-
tion from a liquidlike state to a gaslike state. At the same
time, the repulsive part of the interatomic potential, U (r),
becomes increasingly important. The compressibility factor,
Z = pV

NkBT , which is a measure of ideal gasness, is around 1.05
for the highest temperatures for all systems, confirming that

our systems are indeed in gas states despite the high number
density.

2. Size effects in normal modes and instability
factors for ρ0 systems

We have done lattice dynamics calculations on small sys-
tems consisting of ∼600 atoms and larger systems of ∼8000
atoms at select temperatures for which we did not observe
qualitative differences in the spectral distributions between
the small (600) and large (8000) systems. We expect slight
size effects at low frequencies below a few THz; however,
low frequency modes constitute a small portion of the overall
mode population and should not generally affect our results. In
addition, specific heat does not have strong size effects when
normalized by number of atoms, so calculations on systems
with ∼2000 atoms are sufficient here.

Temperature dependence of instability parameters are
shown in Fig. 8. We observe a clear slowdown in increase in
instability factors with temperature around IF = 1. Instability
factors are slightly above 1 at high temperatures. We believe
that this is due to relatively small system domain sizes. To ad-

FIG. 9. Temperature-dependent self-diffusion coefficients, D, for
all ρ0 systems. Yellow circles, blue squares, and pink crosses are for
argon, silicon, and iron, respectively. Monotonic increase in D with
increase in temperature is observed.
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FIG. 10. Phonon density of states for crystalline silicon at 1 K.
Nearly identical spectra between INM(ω) and VACF(ω) are seen, as
expected.

equately test this issue, we would need to do lattice dynamics
calculations on much bigger systems of N = 104 to N = 106

atoms; however, diagonalizing such large 3N by 3N matrices
is challenging.

3. Diffusion coefficients and instability factors for NVT systems

Temperature-dependent self-diffusion coefficients, D, for
all ρ0 systems were calculated by

D = lim
t→∞

1

6t
〈[ri(t ) − ri(0)]2〉 (A1)

where t is time and ri(t ) is the time-dependent position of
atom i. As shown in Fig. 9, we observe a continuous increase
in D for all systems with increase in temperature. Error bars
are smaller than the symbol sizes.

4. INM(ω) and VACF(ω) equivalence for solids

Instantaneous normal mode and velocity autocorrelation
spectra for solids are known to be equivalent under harmonic
approximations and are both used to obtain phonon density of
states of solids. An example of this equivalence is shown in
Fig. 10 for crystalline silicon at 1 K with the Stillinger-Weber
potential treating the entire domain as a unit cell and consid-
ering the �-point only. In this work, we make connections
between these seemingly different spectra in liquids and gases
via instability factors characterizing the nature of the atomic
degrees of freedom.
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