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LUBIN-TATE GENERALIZATIONS OF THE p-ADIC
FOURIER TRANSFORM

by

Laurent Berger

Abstract. — Fresnel and de Mathan proved that the p-adic Fourier transform is surjective.
We reinterpret their result in terms of analytic boundaries, and extend it beyond the cy-
clotomic case. We also give some applications of their result to Schneider and Teitelbaum’s
p-adic Fourier theory, in particular to generalized Mahler expansions and to the geometry
of the character variety.

Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
The p-adic Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Analytic boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
p-adic Fourier theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
The character variety. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. Construction of analytic boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1. p-adic holomorphic functions and analytic boundaries . . . . . . . . . . . . 5
1.2. LT-like power series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Construction of auxilliary functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Applications to p-adic Fourier theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1. p-adic Fourier theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. The Peano map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. The character variety. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2020 Mathematics Subject Classification. — 11S; 12J; 13J; 14G; 30G; 46S.
Key words and phrases. — p-adic Fourier transform; p-adic Fourier theory; Mahler expansion; Lubin-
Tate group; character variety; analytic boundary.

This research is partially supported by the ANR project ANR-19-CE40-0015 COLOSS.
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Introduction

The p-adic Fourier transform. — Let Cp be the completion of an algebraic closure
of Qp, and let Γ = {γ ∈ Cp such that γpn = 1 for some n > 0} be the set of roots of unity
of p-power order. Let c0(Γ,Cp) be the set of sequences {zγ}γ∈Γ with zγ ∈ Cp and such
that zγ → 0 (namely: for every ε > 0, the set of γ such that |zγ| > ε is finite) and let
C0(Zp,Cp) be the space of continuous functions Zp → Cp. For every γ ∈ Γ, the function
a 7→ γa belongs to C0(Zp,Cp).

Definition. — The Fourier transform of z ∈ c0(Γ,Cp) is the function F(z) : Zp → Cp

given by a 7→ ∑
γ∈Γ zγ · γa.

Fresnel and de Mathan proved (see [FdM74, FdM75, FdM78]) the following result.

Theorem. — The Fourier transform F : c0(Γ,Cp) → C0(Zp,Cp) is surjective, and
moreover F : c0(Γ,Cp)/ kerF → C0(Zp,Cp) is an isometry.

Because of the appearance of roots of unity, the p-adic Fourier transform can be seen as
a cyclotomic construction. In this paper, we generalize the definition of the Fourier trans-
form as well as Fresnel and de Mathan’s theorem beyond the cyclotomic case. We then
give a mostly independent application of their theorem to Schneider and Teitelbaum’s
p-adic Fourier theory [ST01].

Analytic boundaries. — For the first generalization, consider the dual of the p-adic
Fourier transform. The dual of c0(Γ,Cp) is `∞(Γ,Cp), the set of bounded sequences. The
dual of C0(Zp,Cp) is isomorphic to E+

Cp
= Cp ⊗OCp

OCp [[X]] (via the Amice transform
that sends a measure µ to Aµ(X) = ∑

n>0 µ(a 7→
(
a
n

)
) ·Xn).

The dual of the Fourier transform is hence a map F ′ : E+
Cp
→ `∞(Γ,Cp). It is easy

to see that this map is given by f(X) 7→ {f(γ − 1)}γ∈Γ. Fresnel and de Mathan’s
theorem is then equivalent to the claim that F ′ is an isometry on its image, namely that
‖f‖D = supγ∈Γ |f(γ − 1)| where D = mCp is the p-adic open unit disk.

Definition. — A subset A = {an}n>1 ⊂ D is an analytic boundary if |an| → 1 as
n→ +∞ and if for every f ∈ E+

Cp
we have ‖f‖D = ‖f‖A := supn>1 |f(an)|.

Fresnel and de Mathan’s theorem is then equivalent to the claim that {γ− 1, γ ∈ Γ} is
an analytic boundary. We prove that the same holds if A is the set of torsion points of a
Lubin-Tate formal group attached to a finite extension of Qp, and even more generally if
A is the set of iterated roots of a certain class of power series, that we call Lubin-Tate-like
(LT-like) power series. Let q be a power of p.
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Definition. — An LT-like power series (of Weierstrass deg q) is a power series P (X) =∑
n>1 pnX

n ∈ OCp [[X]] with 0 < valp(p1) 6 1, pq ∈ O×Cp
and P (X) ≡ pqX

q mod p1.

If P (X) is as above, let Λ(P ) = {z ∈ D such that P ◦n(z) = 0 for some n > 0}. The
following result is theorem 1.2.2.

Theorem A. — If P is LT-like, then Λ(P ) is an analytic boundary.

If P (X) = (1 + X)p − 1, then Λ(P ) = {γ − 1, γ ∈ Γ}, and theorem A implies the
result of Fresnel and de Mathan. The proof of theorem A is very similar to Fresnel and
de Mathan’s proof of their result.

p-adic Fourier theory. — For the second generalization, let F be a finite extension
of Qp of degree d, with ring of integers OF . Let Xtor denote the set of finite order
characters (OF ,+) → (C×p ,×). Given z ∈ c0(Xtor,Cp), its Fourier transform is the
function F(z) : OF → Cp defined by a 7→ ∑

g∈Xtor zg · g(a). It is easy to see (theorem
2.1.1) that Fresnel and de Mathan’s theorem implies that F : c0(Xtor,Cp)→ C0(OF ,Cp)
is surjective. We give an application of this observation to p-adic Fourier theory.

Let e be the ramification index of F , let π be a uniformizer of OF , and let q =
cardOF/π. Let LT be the Lubin-Tate formal OF -module attached to π, let X be a
coordinate on LT, and let logLT(X) be the logarithm of LT. For n > 0, let Pn(Y ) ∈ F [Y ]
be the polynomial defined by exp(Y · logLT(X)) = ∑

n>0 Pn(Y )Xn.
When F = Qp and LT = Gm, we have Pn(Y ) =

(
Y
n

)
. The family {

(
Y
n

)
}n>0 forms a

Mahler basis of Zp. In addition, by a theorem of Amice [Ami64], every locally analytic
function Zp → Cp can be written as x 7→ ∑

n>0 cn
(
x
n

)
where {cn}n>0 is a sequence of Cp

such that there exists r > 1 satisfying |cn| · rn → 0.
In their work [ST01] on p-adic Fourier theory, Schneider and Teitelbaum generalized

this last result to F 6= Qp. They proved the existence of an element Ω ∈ OCp , with
valp(Ω) = 1/(p − 1) − 1/e(q − 1), such that Pn(aΩ) ∈ OCp for all a ∈ OF . The power
series G(X) = exp(Ω · logLT(X))− 1 therefore belongs to HomOCp

(LT,Gm). One of the
main results of p-adic Fourier theory is the following (prop 4.5 and theo 4.7 of [ST01]).

Theorem. — If {cm}m>0 is a sequence of Cp such that there exists r > 1 satisfying
|cm| · rm → 0, then a 7→ ∑

m>0 cmPm(aΩ) is a locally F -analytic function OF → Cp.
Conversely, every locally F -analytic function OF → Cp has a unique such expansion.

If we only ask that cm → 0, then a 7→ ∑
m>0 cmPm(aΩ) is a continuous function OF →

Cp. We therefore get a map c0(N,Cp) → C0(OF ,Cp), whose image contains all locally
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F -analytic functions. If F = Qp, this map is an isomorphism. In general, Fresnel and de
Mathan’s theorem and some computations in p-adic Fourier theory imply that the map
is surjective, and noninjective if F 6= Qp. Using the fact that every element of C0(Zp,Cp)
can be written in one and only one way as x 7→ ∑

n>0 λn
(
x
n

)
where λ ∈ c0(N,Cp), we

reformulate this result using the following definition.

Definition. — The Peano map T : C0(Zp,Cp)→ C0(OF ,Cp) is the map given by

T :
x 7→∑

n>0
λn

(
x

n

) 7→
a 7→∑

n>0
λnPn(aΩ)

 .
Theorem B. — The Peano map T : C0(Zp,Cp) → C0(OF ,Cp) is surjective, and non-
injective if F 6= Qp.

This is coro 2.2.1. By Schneider and Teitelbaum’s theorem recalled above,
T : C la(Zp,Cp) → CF-la(OF ,Cp) is an isomorphism. So one can think of T as some
Peano-like map: a surjective noninjective limit of isomorphisms, from a 1-dimensional
object to a d-dimensional object.

The character variety. — The rigid analytic p-adic open unit disk B is a parameter
space for characters (Zp,+)→ (C×p ,×): if K is a closed subfield of Cp, a point z ∈ B(K)
corresponds to the character ηz : a 7→ (1 + z)a and all K-valued continuous characters
are of this form. In particular, all continuous characters are locally analytic.

If F is a finite extension of Qp of degree d, then OF ' Zd
p and Bd is then a parameter

space for characters (OF ,+) → (C×p ,×). Schneider and Teitelbaum have constructed
in [ST01] a 1-dimensional rigid analytic group variety X ⊂ Bd over F , called the char-
acter variety, whose closed points in an extension K/F parameterize locally F -analytic
characters OF → K×. They show that over Cp, the variety X becomes isomorphic to B.

Let ObCp
(Bd) denote the ring of bounded functions on Bd defined over Cp, and likewise

for ObCp
(X). We have ObCp

(X) ' E+
Cp

and ObCp
(Bd) is likewise isomorphic to the ring of

bounded functions in d variables. The restriction-to-X map resX : ObCp
(Bd) → ObCp

(X)
is injective by [BSX20]. By p-adic Fourier theory, ObCp

(X) is the dual of C0(Zp,Cp),
ObCp

(Bd) is the dual of C0(OF ,Cp), and resX is the dual of the Peano map T .
Theorem B now implies the following result (theorem 2.3.1).

Theorem C. — The map resX : ObCp
(Bd)→ ObCp

(X) is an isometry on its image.
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In the isomorphism between X and B, we have ObCp
(X) ' E+

Cp
, and the set Xtor of

torsion characters (OF ,+) → (C×p ,×) corresponds to LT[π∞]. Theorem A applied to
P (X) = [π](X) implies the following result (theorem 2.3.3).

Theorem D. — If f ∈ ObCp
(X), then ‖f‖X = supκ∈Xtor |f(κ)|.

Theorem A is proved in §1 and theorems B, C and D are proved in §2.

1. Construction of analytic boundaries

The goal of this section is to state and prove theorem A.

1.1. p-adic holomorphic functions and analytic boundaries. — We recall some
standard facts about holomorphic functions on the p-adic open unit disk (for which see
[Laz62] or [Rob00]), and define analytic boundaries. Let D = mCp be the p-adic open
unit disk. Let E+

Cp
= Cp ⊗OCp

OCp [[X]] be the ring of bounded holomorphic functions on
D, and let R+

Cp
be the ring of holomorphic functions on D. If f ∈ R+

Cp
and µ > 0, we let

V (f, µ) = infn>0 valp(fn)+µn. If µ ∈ Q>0, then V (f, µ) = infz∈D,valp(z)=µ valp(f(z)). The
function µ 7→ V (f, µ) is continuous, increasing and piecewise affine. We have V (fg, µ) =
V (f, µ) + V (g, µ). If f ∈ E+

Cp
, then V (f, 0) is also defined, and V (f, 0) = − logp ‖f‖D.

We say that µ > 0 is a critical valuation if there exists i 6= j such that V (f, µ) =
valp(fi) + µi = valp(fj) + µj. Recall that f has a zero of valuation µ if and only if µ is
a critical valuation, and that the critical valuations of f , as well as the number of zeroes
of f having that valuation, can be read on the Newton polygon of f .

Divisors are defined in §4 of [Laz62]. In this paper, we only consider divisors that
are an infinite formal product ∏k>1Dk(X) where for each k, Dk(X) is a polynomial
such that Dk(0) = 1 and all the roots of Dk are of valuation µk, where {µk}k>1 is a
strictly decreasing sequence converging to 0. We then have V (Dk, µ) = 0 if µ > µk and
V (Dk, µ) = degDk · (µ− µk) if µ 6 µk.

Proposition 1.1.1. — Let ∏k>1Dk(X) be a divisor and take η > 0.
There exists f(X) ∈ R+ such that f(0) = 1, f is divisible by Dk for all k > 1, and for

all µ > 0, we have ∑k>1 V (Dk, µ) > V (f, µ) > ∑
k>1 V (Dk, µ)− η.

Proof. — This is theorem 1 of [FdM74]. See theorem 25.5 of [Esc95] for a full proof,
noting that Ab(d(0, r−)) should be A(d(0, r−)) in the statement of ibid.
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We now define analytic boundaries. Since D is a separable topological space, there are
plenty of countable sets A = {an}n>1 ⊂ D such that ‖f‖D = ‖f‖A := supn>1 |f(an)| for
all f ∈ E+

Cp
. We are interested in those sets A such that |an| → 1 as n→ +∞.

Definition 1.1.2. — We say that A = {an}n>1 ⊂ D is an analytic boundary if |an| → 1
as n→ +∞ and if for every f ∈ E+

Cp
we have ‖f‖D = ‖f‖A.

Lemma 1.1.3. — If A is an analytic boundary and h 6= 0 ∈ E+
Cp

, then A′ = A \ {a ∈ A
such that h(a) = 0} is also an analytic boundary.

Proof. — Since A′ ⊂ A, it is clear that |a′n| → 1 as n→ +∞. Moreover, ‖fh‖A = ‖fh‖A′ .
Hence if f ∈ E+

Cp
, then ‖f‖D · ‖h‖D = ‖fh‖D = ‖fh‖A = ‖fh‖A′ 6 ‖f‖A′ · ‖h‖D.

In particular, if A is an analytic boundary, then Am = {an}n>m is an analytic boundary
for all m > 1. Our definition of analytic boundary is therefore consistent with the
definition of analytic boundary for E+

Cp
given in §2 of [Bou10], except that we require in

addition that |an| → 1 as n→ +∞. The following result (theorem 8 of [Bou10]) can be
used to construct many examples of analytic boundaries.

Theorem 1.1.4. — If A ⊂ D \ {0} is such that ∑n>1 valp(an) = +∞ and |an| → 1 as
n→ +∞ and |an− am| = max(|am|, |an|) for all m 6= n, then A is an analytic boundary.

We finish with a simple result that allows us to construct more analytic boundaries.

Lemma 1.1.5. — If A ⊂ D is an analytic boundary and h(X) = ∑
i>1 hiX

i ∈ X ·
OCp [[X]] is such that infi>1 |hi| = 0 and |h(an)| → 1 as n → +∞, then h(A) is an
analytic boundary.

Proof. — The condition on h(X) implies that h gives rise to a surjective function D → D

(if y ∈ D, consider the Newton polygon of h(X)− y).
Hence ‖f‖D = ‖f ◦ h‖D. Now ‖f ◦ h‖D = supn>1 |f ◦ h(an)|.

1.2. LT-like power series. — We define Lubin-Tate-like (LT-like) power series. Recall
that the Weierstrass degree wideg(f) of f(X) = ∑

n>0 fnX
n ∈ OCp [[X]] is the min of the

n such that fn ∈ O×Cp
(or +∞ if there is no such n). Let q be a power of p.

Definition 1.2.1. — An LT-like power series (of wideg q) is a power series P (X) =∑
n>1 pnX

n ∈ OCp [[X]] with 0 < valp(p1) 6 1 and pq ∈ O×Cp
and P (X) ≡ pqX

q mod p1.

Note that if P is a LT-like power series, then P ′(X) is a unit of E+
Cp

. In particular, for
every z ∈ D, all the roots of P (X)− z in D are simple. If P (X) is a LT-like power series
and n > 0, let Λn = {z ∈ D such that P ◦n(z) = 0}, and let Λ(P ) = ∪n>0Λn.
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The following theorem (theorem A) is proved at the end of §1.3.

Theorem 1.2.2. — If P is LT-like, then Λ(P ) is an analytic boundary.

Remark 1.2.3. — Let π be a uniformizer of a finite extension F of Qp of degree d, and
let LT be the Lubin-Tate formal OF -module attached to π.

1. The power series P (X) = [π](X) is an LT-like power series, and Λ(P ) = LT[π∞] is
therefore an analytic boundary by theorem 1.2.2.

2. The Zp-module LT[π∞] is isomorphic to (Qp/Zp)d. If M ⊂ LT[π∞] is isomorphic
to (Qp/Zp)d−1, then there is a nonzero bounded function f(X) ∈ E+

Cp
such that

f(z) = 0 for all z ∈M . In particular, M is not an analytic boundary.

Let P be a LT-like power series, and write P (X) = X ·Q(X). For n > 1, let Qn(X) =
Q(P ◦(n−1)(X)), so that P ◦n(X) = X ·Q1(X) · · ·Qn(X). Let qn = qn−1(q−1) = widegQn

and v1 = valp(p1) and µn = v1/qn. The qn roots of Qn are all of valuation µn.
Let H0 = {0} and let Hn be the set of roots of Qn, so that Λn = H0 tH1 t . . . tHn.

Lemma 1.2.4. — Take z, z′ ∈ D.

1. If P (z) = P (z′), then valp(z − z′) > µ1.
2. If P (z) = y and P (z′) = y′ with valp(y − y′) > µn, then valp(z − z′) > µn+1.

Proof. — We prove both statements at the same time (for item (1), take y = y′). Recall
that P [i](X) = P (i)(X)/i! ∈ OCp [[X]] is the i-th Hasse derivative. We have

P (X + z)− P (z′) = (y − y′) + P ′(z)X + P [2](z)X2 + · · ·+ P [q](z)Xq + O(Xq+1).

The valuation of P ′(z) is v1, the valuation of P [q](z) is 0, and the valuation of P [i](z) is
> v1 for all 1 6 i 6 q − 1. Indeed, P [i](z) ≡

(
q
i

)
pqz

q−i mod p1 and since q is a power of
p,
(
q
i

)
is divisible by p for all 1 6 i 6 q − 1 and hence by p1.

The lemma now follows from the theory of Newton polygons.

Corollary 1.2.5. — If k > 1 and P ◦k(z) = P ◦k(z′), then valp(z − z′) > µk.

We now define a map ψ. Let ϕ : R+
Cp
→ R+

Cp
be the map defined by ϕ(f) = f ◦P . Note

that R+
Cp

is a free ϕ(R+
Cp

)-module of rank q, generated for example by 1, X, . . . , Xq−1.
Let ψ : R+

Cp
→ R+

Cp
be the map defined by ϕ◦ψ(f) = TrR+

Cp
/ϕ(R+

Cp
) f . Note that we have

ϕ(E+
Cp

) ⊂ E+
Cp

and ψ(E+
Cp

) ⊂ E+
Cp

. Beware that in the literature, ψ sometimes denotes the
map that we have defined, but divided by p1 or by q.

Lemma 1.2.6. — We have ψ(OCp [[X]]) ⊂ p1 · OCp [[X]].
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Proof. — The ϕ(OCp [[X]])-module OCp [[X]] is free of rank q, generated by 1, X, . . . , Xq−1.
A simple computation shows that mod p1, the trace of X i is zero for 1 6 i 6 q − 1. For
i = 0, it is q which is divisible by p1 since P is LT-like.

Lemma 1.2.7. — If f ∈ R+, then ψn(f)(0) = ∑
z∈Λn

f(z).

Proof. — We have ϕn ◦ ψn(f) = TrR+/ϕn(R+) f . If I is the ideal of ϕn(R+) generated by
P ◦n(X), then ϕn(R+)/I = Cp and R+/I = R+/P ◦n(X) = ∏

z∈Λn
R+/(X − z).

Proposition 1.2.8. — If f ∈ R+ then valp(ψn(f)(0)) > V (f, µn+1) + (n− 1) · v1.

Proof. — Since V (∑i>0 fiX
i, µn+1) = infi>0 V (fiX i, µn+1), it is enough to prove the claim

for f(X) = X i. Write Qn+1(X) = αn+1(Xqn+1 + p1Rn+1(X)) for some αn+1 ∈ O×Cp
and

Rn+1 ∈ OCp [[X]] and write i = sqn+1 + r with 0 6 r 6 qn+1 − 1. We have

X i = Xsqn+1+r = (α−1
n+1 ·Qn+1(X)− p1Rn+1(X))sXr =

s∑
k=0

Qn+1(X)kps−k1 Fk(X),

for some Fk(X) ∈ OCp [[X]], 0 6 k 6 s. Since Qn+1 = ϕn(Q1) and ψn(Fk)(0) ∈ pn1OCp by
lemma 1.2.6, we have (ψnX i)(0) ∈ ps+n1 OCp . Hence

valp(ψn(X i)(0)) > sqn+1µn+1+n·v1 = iµn+1−rµn+1+n·v1 > V (X i, µn+1)+(n−1)·v1.

1.3. Construction of auxilliary functions. — The proof of theorem 1.2.2 rests on
the construction of certain elements ofR+ satisying precise growth conditions. The proofs
in this § are very similar to those of Fresnel and de Mathan.

Definition 1.3.1. — We say that f ∈ R+ is of P -order 1− if V (f, µn) + n · v1 → +∞
as n→ +∞.

Remark 1.3.2. — The infinite product X · ∏n>1Qn(X)/p1 converges to a function
logP (X) ∈ R+ that satisfies: {V (f, µn) + n · v1}n>1 is bounded below. Hence a func-
tion of P -order 1− grows just slightly less fast than logP (X).

Proposition 1.3.3. — If f is of P -order 1−, then ∑
z∈Λn

f(z)→ 0 as n→ +∞.

Proof. — This follows from lemma 1.2.7 and prop 1.2.8.

Corollary 1.3.4. — If f is of P -order 1− and if f(z) → 0 for z ∈ Λ(P ), then for all
i > 0, we have ∑z∈Λ(P ) z

if(z) = 0.

Proof. — If i > 0, then X if(X) is also of P -order 1−. The result then follows from prop
1.3.3 applied to X if(X) since ∑z∈Λ(P ) z

if(z) = limn→+∞
∑
z∈Λn

zif(z).
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Proposition 1.3.5. — Take n > 1 and 0 6 λ 6 1.
There exists Bn ⊂ Hn such that cardBn = bλqnc, and such that for all z ∈ Hn and

1 6 k 6 n− 1, we have card{z′ ∈ Bn such that P ◦k(z) = P ◦k(z′)} > bλqkc.

Proof. — For every y ∈ Hn−1, there are q elements z ∈ Hn such that P (z) = y. For each
y ∈ Hn−1, choose bλqc of those z, and let B(1) ⊂ Hn denote all the z chosen this way.
Suppose that 2 6 k 6 n − 1 and that we have constructed a set B(k−1) ⊂ Hn. For each
y ∈ Hn−k, there are qk elements z ∈ Hn such that P ◦k(z) = y. For each y ∈ Hn−k, choose
bλqkc of them, including all those of B(k−1). This is possible as qbλqk−1c 6 bλqkc. There
are q − 1 elements in H1 so that cardB(n−1) = (q − 1)bλqn−1c 6 bλqnc. We can now add
some elements of Hn to B(n−1) to get a set Bn satisfying the conditions of the prop.

Let λ and Bn be as in prop 1.3.5 and let Dn(X) = ∏
ω∈Bn

(1−X/ω).

Lemma 1.3.6. — For n > 1 and z ∈ Hn \Bn, we have valp(Dn(z)) > (n− 1)λv1 − µ1.

Proof. — Let Wk = {z′ ∈ Bn such that P ◦k(z) = P ◦k(z′)} and let wk = cardWk. Note
that w0 = 0 since z /∈ Bn. If P ◦k(z) = P ◦k(z′), then valp(z−z′) > µk by coro 1.2.5. Since
Bn = (W1 \W0) t . . . t (Wn \Wn−1), we have

valp(Dn(z)) >
n∑
k=1

(wk − wk−1)(µk − µn) =
n−1∑
k=1

wk(µk − µk+1) > (n − 1)λv1 − µ1,

since wk > λqk − 1 for 0 6 k 6 n− 1 and µk − µk+1 = v1/q
k.

Theorem 1.3.7. — For all ε > 0 and m > 1, there exists fε,m ∈ R+ such that

1. fε,m(0) = −1 and fε,m(z) = 0 for all z ∈ Λm \ {0};
2. fε,m is of P -order 1−;
3. fε,m(z)→ 0 for z ∈ Λ(P );
4. valp(fε,m(z)) > −ε for all z ∈ Λ(P ).

Proof. — Let δ1 = · · · = δm = 0 and for n > m + 1, take δn = q−`(n) where `(n) is the
smallest integer > 1 such that q−`(n) 6 ε/2n. We assume that ε < 1, so that δn < 1 for
all n. We can also replace m by a larger value, so that `(n) 6 n − 1 for all n > m + 1.
In particular, bδnqnc = δnqn for all n.

Let λk = 1−δk. Take Bk as in prop 1.3.5 with λ = λk and letDk(X) = ∏
ω∈Bk

(1−X/ω).
Let f ∈ R+ be −1 times the function provided by prop 1.1.1 with η = ε/2. Since Bk = Hk

for 1 6 k 6 m, this function satisfies (1).
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We have V (Dk, µn) = 0 if k > n, so that V (f, µn) >
∑n
k=1 V (Dk, µn) − ε/2. Since

V (Dk, µn) = bk(µn − µk) where bk = cardBk, we have

V (f, µn) + n · v1 > v1 ·
n∑
k=1

δk + (b1 + · · ·+ bn)µn − ε/2 > v1 ·
n∑
k=1

δk − ε/2.

Since∑n
k=1 δk → +∞ as n→ +∞, f satisfies (2). Write f(X) = Dn(X)fn(X). If z ∈ Bn,

then f(z) = 0, while if z ∈ Hn \ Bn, then valp(f(z)) = valp(fn(z)) + valp(Dn(z)), and
valp(fn(z)) > V (fn, µn) = V (f, µn) since V (Dn, µn) = 0. We have bk = (1− δk)qk, so

V (f, µn) >
n−1∑
k=1

(1− δk)qk(µn − µk)− ε/2

> µ1 − µn − (n− 1)v1 +
n−1∑
k=1

δk(v1 − qkµn)− ε/2

By lemma 1.3.6, we have valp(Dn(z)) > (n− 1)(1− δn)v1 − µ1, so that

valp(f(z)) > −µn + δnv1 − nδnv1 +
n−1∑
k=1

δk(v1 − qkµn)− ε/2.

We have v1−qkµn > v1 ·(1−1/q) and nδnv1 6 ε/2 and −µn+δnv1 > 0 and∑n
k=1 δk → +∞

as n→ +∞, so that f satisfies (3) and (4).

We can now prove theorem 1.2.2.

Proof of theorem 1.2.2. — Let Λ′m = Λ(P )\Λm. We prove that Λ′m is an analytic bound-
ary for all m > 1. By coro 1.3.4, the function provided by theorem 1.3.7 has the property
that ∑z∈Λ′

m
zifε,m(z) = 0 for all i > 1 and ∑z∈Λ′

m
fε,m(z) = 1.

Take h(X) = ∑
i>0 hiX

i ∈ E+
Cp

. We have
∑
z∈Λ′

m

fε,m(z)h(z) =
∑
i>0

hi
∑
z∈Λ′

m

fε,m(z)zi = h0.

Hence valp(h0) > infz∈Λ′
m

valp(h(z)) − ε. This holds for all ε > 0, so that valp(h0) >

infz∈Λ′
m

valp(h(z)).
Applying the same reasoning to (h(X)− h0)/X and to m1 > m gives us

valp(h1) > inf
z∈Λ′

m1

valp(h(z))− µm1 > inf
z∈Λ′

m

valp(h(z))− µm1 .

This holds for all m1 > m, so that valp(h1) > infz∈Λ′
m

valp(h(z)). We repeat this, and we
get that valp(hi) > infz∈Λ′

m
valp(h(z)) for all i > 0, so that ‖h‖D 6 supz∈Λ′

m
|h(z)|.
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2. Applications to p-adic Fourier theory

In this section, we give an application of the surjectivity of the p-adic Fourier transform
to p-adic Fourier theory and the geometry of the character variety.

2.1. p-adic Fourier theory. — Let F be a finite extension of Qp of degree d, with
ring of integers OF . We first extend the Fourier transform to OF . Let Xtor denote the
set of finite order characters (OF ,+) → (C×p ,×). Given z ∈ c0(Xtor,Cp), its Fourier
transform is the function F(z) : OF → Cp defined by a 7→ ∑

g∈Xtor zg · g(a).

Theorem 2.1.1. — The map F : c0(Xtor,Cp)→ C0(OF ,Cp) is surjective.

Proof. — If we choose a basis a1, . . . , ad of OF over Zp, then there are linear forms
c1, . . . , cd : OF → Zp (the dual basis of the ai’s) such that every a ∈ OF can be written
as a = ∑d

i=1 ci(a) · ai. Every finite order character OF → C×p is then of the form
a 7→ γ

c1(a)
1 · · · γcd(a)

d with γ1, . . . , γd ∈ Γ. We therefore have

c0(Xtor,Cp) = c0(Γ,Cp)⊗̂ · · · ⊗̂c0(Γ,Cp).

Likewise, the decomposition OF = Zp · a1 ⊕ · · · ⊕ Zp · ad gives us an isomorphism

C0(OF ,Cp) = C0(Zp,Cp)⊗̂ · · · ⊗̂C0(Zp,Cp).

The theorem now follows from the surjectivity (see [FdM74, FdM75, FdM78]) of the
Fourier transform c0(Γ,Cp)→ C0(Zp,Cp).

We now turn to p-adic Fourier theory. Let e be the ramification index of F , let π
be a uniformizer of OF , and let q = cardOF/π. Let LT be the Lubin-Tate formal OF -
module attached to π, let X be a coordinate on LT and let logLT(X) be the logarithm
of LT. Recall (see §3 and §4 of [ST01] for what follows) that HomOCp

(LT,Gm) 6= {0}.
Choosing a generator of this group gives a power series G(X) ∈ X · OCp [[X]] such that
G(X) = Ω ·X + · · · , where Ω ∈ OCp with valp(Ω) = 1/(p− 1)− 1/e(q− 1). In particular,
1 +G(X) = exp(Ω · logLT(X)) = ∑

n>0 Pn(Ω)Xn where Pn(Y ) ∈ F [Y ] is a polynomial of
degree n such that Pn(Ω · OF ) ⊂ OCp .

When F = Qp and LT = Gm, we have Ω = 1 and Pn(Y ) =
(
Y
n

)
. The family {

(
Y
n

)
}n>0

forms a Mahler basis of Zp. In addition, by a theorem of Amice (see [Ami64]), every
locally analytic function Zp → Cp can be written as x 7→ ∑

n>0 cn
(
x
n

)
where {cn}n>0 is a

sequence of Cp such that there exists r > 1 satisfying |cn| · rn → 0.
One of the main results of p-adic Fourier theory is the following generalization of

Amice’s theorem (prop 4.5 and theo 4.7 of [ST01]).
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Theorem 2.1.2. — If {cm}m>0 is a sequence of Cp such that there exists r > 1 satisfying
|cm| · rm → 0, then a 7→ ∑

m>0 cmPm(aΩ) is a locally F -analytic function OF → Cp.
Conversely, every locally F -analytic function OF → Cp has a unique such expansion.

If z ∈ D, then (see §3 of [ST01]) the map κz : OF → Cp given by

κz(a) = 1 +G([a](z)) =
∑
n>0

Pn(aΩ)zn

is a locally F -analytic character (OF ,+) → (C×p ,×), and every such character is of this
form for a unique z ∈ D. Furthermore, κz is of finite order if and only if z ∈ LT[π∞]
(hence the set Xtor of torsion characters (OF ,+)→ (C×p ,×) corresponds to LT[π∞]).

Definition 2.1.3. — Let F : c0(LT[π∞],Cp) → C0(OF ,Cp) be the map given by
F(λ)(a) = ∑

ω∈LT[π∞] λω · κω(a).

Proposition 2.1.4. — The map F : c0(LT[π∞],Cp)→ C0(OF ,Cp) is surjective.

Proof. — Since Xtor = {κω, ω ∈ LT[π∞]}, this follows from theorem 2.1.1.

Theorem 2.1.5. — The map c0(N,Cp) → C0(OF ,Cp) given by c 7→ ∑
m>0 cmPm(·Ω)

is surjective.

Proof. — Take f ∈ C0(OF ,Cp). By prop 2.1.4, we can write f = ∑
ω∈LT[π∞] λωκω. We

have κω(a) = ∑
n>0 Pn(aΩ)ωn. This implies the corollary, with cm = ∑

ω∈LT[π∞] λωω
m.

Proposition 2.1.6. — If F 6= Qp, the map c0(N,Cp)→ C0(OF ,Cp) is not injective.

Proof. — If the map was injective, it would be a topological isomorphism by the open
mapping theorem. For n > 0, we have

IdπnOF
(a) = q−n ·

∑
[πn](ω)=0

κω(a) =
∑
k>0

ck,nPk(aΩ)

with ck,n = q−n
∑

[πn](ω)=0 ω
k (and no other choice if the map is injective).

Take P (X) = [π](X) and let ψ be as in §1.2. By lemma 1.2.7, we have ck,n =
q−n · ψn(Xk)(0). By lemma 2.1.7 below, we have supk>0 |ψn(Xk)(0)| = |πn|, so that
supk>0 |ck,n| = |(π/q)n| is unbounded as n→ +∞ if valp(q) > valp(π).

Lemma 2.1.7. — We have supk>0 |ψn(Xk)(0)| = |πn|

Proof. — Since ψ(OCp [[X]]) ⊂ π · OCp [[X]] by lemma 1.2.6, we have one inequality. Con-
versely, ψn(f ◦ P ◦(n−1)) = πn−1ψ(f), and if f(X) = P (X)/X, then ψ(f)(0) = π.
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2.2. The Peano map. — Recall that every element of C0(Zp,Cp) can be written in
one and only one way as x 7→ ∑

n>0 λn
(
x
n

)
where λn ∈ Cp and λn → 0.

Let T : C0(Zp,Cp)→ C0(OF ,Cp) be the map given by

T :
x 7→∑

n>0
λn

(
x

n

) 7→
a 7→∑

n>0
λnPn(aΩ)

 .
We can now prove theorem B.

Corollary 2.2.1. — The map T : C0(Zp,Cp) → C0(OF ,Cp) is surjective, and nonin-
jective if F 6= Qp.

Proof. — This follows from theorem 2.1.5 and prop 2.1.6.

We identify the dual of the Cp-Banach space C0(Zp,Cp) with E+
Cp

via the Amice trans-
form. Let Λ(OF ) denote the space Cp ⊗OCp

OCp [[OF ]] of Cp-valued measures on OF , so
that Λ(OF ) is the dual of C0(OF ,Cp) (and note that Λ(Zp) ' E+

Cp
). If a1, . . . , ad is a

basis of OF over Zp, the ring Λ(OF ) is isomorphic to Cp ⊗OCp
OCp [[X1, . . . , Xd]] where

Xi = δai
− δ0 (note that δ0 = 1). There is an algebra homomorphism Λ(OF )→ E+

Cp
that

sends δb − 1 to G([b](X)), and by lemma 1.15 of [BSX20], this map is injective.

Proposition 2.2.2. — The dual map T ′ : Λ(OF )→ E+
Cp

is the above inclusion.

Proof. — Take b ∈ OF . We have T ′(δb)(x 7→
(
x
n

)
) = δb(a 7→ Pn(aΩ)) = Pn(bΩ) so that

the image of δb in E+
Cp

is ∑n>0 Pn(bΩ)Xn = 1 +G([b](X)).

Proposition 2.2.3. — The image of T ′ : Λ(OF )→ E+
Cp

is closed in E+
Cp

.

Proof. — Since T is surjective, and C0(OF ,Cp) is a Cp-Banach space of countable type,
T ′ has closed image by prop 2.2.4 below (the closed range theorem).

Proposition 2.2.4. — If T : X → Y is a continuous map of Cp-Banach spaces, and if
Y is of countable type and im(T ) is closed in Y , then im(T ′) is closed in X ′.

Proof. — The result follows from theorem 3.1, (ii) and (i), of [HNA05], given the re-
marks on page 202 of ibid.

Corollary 2.2.5. — The map T ′ : Λ(OF )→ E+
Cp

is an isometry on its image.

Proof. — The map T ′ is injective, it is an algebra homomorphism, and ‖T ′(f)‖ 6 ‖f‖.
If T ′ is not an isometry, there is some f ∈ Λ(OF ) such that ‖T ′(f)‖ = C · ‖f‖ with
C < 1. We then have ‖T ′(fn)‖ 6 Cn · ‖fn‖. This contradicts the continuity of the map
(T ′)−1 : im(T ′)→ Λ(OF ) provided by prop 2.2.3 and the open mapping theorem.
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Note that T ′ is not surjective if F 6= Qp as T is not injective by prop 2.1.6. Indeed,
ker(T ) = ⊥ im(T ′) as the dual of a space of countable type separates its points.

2.3. The character variety. — Schneider and Teitelbaum have constructed in [ST01]
a 1-dimensional rigid analytic group variety X ⊂ Bd over F , called the character vari-
ety, whose closed points in an extension K/F parameterize locally F -analytic characters
OF → K×. They show that over Cp, the variety X becomes isomorphic to B. On the
level of points, the isomorphism B→ X is given by the map z 7→ κz recalled in §2.1.

The ring ObCp
(Bd) of bounded functions on Bd defined over Cp is isomorphic to Λ(OF )

and the ring ObCp
(X) of bounded functions on X defined over Cp is isomorphic to E+

Cp
.

The restriction-to-X-map resX : ObCp
(Bd) → ObCp

(X) then corresponds to the inclusion
T ′ : Λ(OF ) → E+

Cp
considered in §2.2. In particular, coro 2.2.5 implies the following

result, which is theorem C.

Theorem 2.3.1. — The map resX : ObCp
(Bd)→ ObCp

(X) is an isometry on its image.

It is possible to characterize the image of resX, see prop 3.1.8 of [AB24] for a proof of
the following result.

Proposition 2.3.2. — The image of resX is the set of power series f(X) ∈ E+
Cp

such
that {q−n · ψn(G([a](X)) · f(X))}a,n is bounded in E+

Cp
as a ∈ oF and n > 0.

We finish by stating and proving theorem D (the only result of this section on p-adic
Fourier theory that uses theorem A beyond the cyclotomic case).

Theorem 2.3.3. — If f ∈ ObCp
(X), then ‖f‖X = supκ∈Xtor |f(κ)|.

Proof. — In the isomorphism between X and B, the set Xtor of torsion characters
(OF ,+)→ (C×p ,×) corresponds to LT[π∞], and ObCp

(X) is isomorphic to E+
Cp

.
Theorem A applied to P (X) = [π](X) then implies the result.
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