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A COMPACTNESS RESULT FOR INHOMOGENEOUS NONLINEAR

SCHRÖDINGER EQUATIONS

VAN DUONG DINH AND SAHBI KERAANI

Abstract. We establish a compactness property of the difference between nonlinear and linear
operators (or the Duhamel operator) related to the inhomogeneous nonlinear Schrödinger equation.
The proof is based on a refined profile decomposition for the equation. More precisely, we prove

that any sequence (φn)n of H1-functions which converges weakly in H1 to a function φ, the
corresponding solutions with initial data φn can be decomposed (up to a remainder term) as a
sum of the corresponding solution with initial data φ and solutions to the linear equation.

1. Introduction

In this paper, we consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger
equations (INLS) {

i∂tu+ ∆u = ν|x|−b|u|αu, (t, x) ∈ R× RN ,
u|t=0 = u0 ∈ H1(RN ),

(1.1)

where N ≥ 3, u : R × RN → C, u0 : RN → C, 0 < b < min
{

2, N2
}

, and 4−2b
N < α < 4−2b

N−2 . The

parameter ν = 1 (resp. ν = −1) corresponds to the defocusing (resp. focusing) nonlinearity. This
type of equations belongs to a class of inhomogeneous nonlinear Schrödinger equations of the form

i∂tu+ ∆u+K(x)|u|αu = 0, (t, x) ∈ R× RN . (1.2)

The equation (1.2) arises as an effective model describing the laser beam that supports stable
high-power propagation in a homogeneous bulk media in plasma. The stable high-power beam
propagation can be achieved by sending a preliminary laser beam that creates a channel with a
reduced electron density, and thus reduces the nonlinearity inside the channel (see e.g., [34, 40]).

In the last decade, there has been an increasing interest from the mathematical community
devoted to the study of (1.2). When K(x) is constant, it is the well-known nonlinear Schrödinger
equation.

When K(x) is a non-constant bounded function, the equation (1.2) has been studied in [29,
41, 42, 47]. In [42], Merle investigated the existence and non-existence of minimal mass blow-up
solutions to (1.2) with α = 4

N and K1 ≤ K(x) ≤ K2, where K1,K2 > 0 are constants. Afterwards,
Raphaël and Szeftel [47] extended the result of [42] and showed the existence, uniqueness, and
characterization of minimal mass blow-up solutions. Here by minimal mass blow-up solutions,
we mean solutions to (1.2) having the mass equal to that of the ground state, which blow up
in finite time. Later, Fibich and Wang [29] and Liu, Wang, and Wang [41] studied the stability
and instability of solitary waves for (1.2) with α ≥ 4

N and K(x) = K(εx), where ε > 0 is a small

parameter and K ∈ C4(RN ) ∩ L∞(RN ).
When K(x) = |x|b with b > 0, there are several works devoted to (1.2) (see e.g., [13, 14, 22,50]).

In [13] and [14], Chen and Guo established sharp criteria for the existence of global and blow-up
solutions. In [50], Zhu proved the existence and dynamical properties of blow-up solutions. See also
[22].

When K(x) behaves like |x|−b with b > 0, the equation (1.2) has been considered in [3,31,32,35].
In [3], De Bouard and Fukuizumi studied the stability of standing waves when α < 4−2b

N . In [31],

Fukuizumi and Ohta established the instability of standing waves when α > 4−2b
N . See also the

works [32,35] for other studies of standing waves related to this type of equation.
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2 V. D. DINH AND S. KERAANI

The equation (1.1) can be seen as a limiting equation of (1.2) with K(x) ∼ |x|−b as |x| → ∞,
which plays an important role in the analysis of (1.2). Before stating our main contributions, let us
recall some basic properties and known results related to (1.1). The equation (1.1) has the following
scaling invariance

uλ(t, x) := λ
2−b
α u(λ2t, λx), λ > 0,

that is, if u is a solution to (1.1) with initial data u|t=0 = u0, then uλ is also a solution to (1.1) with

data uλ|t=0 = λ
2−b
α u0(λ·). A straightforward computation shows ‖uλ(0)‖Ḣγx = λγ+ 2−b

α −
N
2 ‖u0‖Ḣγx ,

which implies that the above scaling leaves the Ḣγc-norm of initial data invariant, where

γc :=
N

2
− 2− b

α
. (1.3)

In the present paper, the condition 4−2b
N < α < 4−2b

N−2 with N ≥ 3 is equivalent to 0 < γc < 1, which
corresponds to the mass-supercritical and energy-subcritical range.

The local well-posedness (LWP) for (1.1) was studied by Geneoud and Stuart [32, Appendix].
By making use of the energy method developed by Cazenave [10], they proved that (1.1) is locally
well-posed for N ≥ 1, 0 < b < min{2, N}, α > 0, and α < 4−2b

N−2 if N ≥ 3. See also [19, 33] for other
LWP results based on Strichartz estimates and the contraction mapping argument. There are two
important quantities which are conserved along the flow of (1.1), namely

M(u(t)) =

ˆ
|u(t, x)|2dx = M(u0), (Mass)

E(u(t)) =
1

2

ˆ
|∇u(t, x)|2dx+

ν

α+ 2

ˆ
|x|−b|u(t, x)|α+2dx = E(u0). (Energy)

Thanks to these conservation laws, the blow-up alternative, and the small data global theory (see
[33, Theorem 1.9]), we have the following global well-posedness results:

• ν = 1;
• ν = −1 and

‖u0‖Ḣγcx < δc (1.4)

for some constant δc > 0.

In the defocusing case ν = 1, we mention the works [19] for the scattering in a weighted L2 space
Σ(RN ) := H1(RN ) ∩ L2(RN , |x|2dx) and [18] for the scattering in the energy space H1(RN ).

In the focusing case ν = −1, (1.1) has been studied in many works [7, 9, 15–17,21,25–27,43,49].
In [25], Farah showed the global existence for (1.1) with N ≥ 1 and 0 < b < min{2, N} by assuming
u0 ∈ H1(RN ) and

[E(u0)]γc [M(u0)]1−γc < [E(Q)]γc [M(Q)]1−γc , (1.5)

‖∇u0‖γcL2
x
‖u0‖1−γcL2

x
< ‖∇Q‖γcL2

x
‖Q‖1−γcL2

x
, (1.6)

where Q is the unique positive radial solution to the elliptic equation

−∆Q+Q− |x|−b|Q|αQ = 0. (1.7)

He also proved the finite time blow-up for (1.1) with u0 ∈ Σ satisfying (1.5) and

‖∇u0‖γcL2
x
‖u0‖1−γcL2

x
> ‖∇Q‖γcL2

x
‖Q‖1−γcL2

x
. (1.8)

The latter result was extended to radial data by the first author in [17]. The energy scattering
(or asymptotic completeness) for (1.1) was first established by Farah and Guzmán [26] with
0 < b < 1

2 , α = 2, N = 3, and radial data. This scattering result was later extended to dimensions
N ≥ 2 in [27]. The proofs of these results are based on the concentration/compactness and rigidity
argument introduced by Kenig and Merle [38]. Campos [7] made use of a new idea of Dodson
and Murphy [23] to give an alternative simple proof for the radial scattering results of Farah and
Guzmán. He also extends the validity of b in dimensions N ≥ 3. Note that the idea of Dodson
and Murphy is a combination of a scattering criterion of Tao [48], localized virial estimates, and
radial Sobolev embedding. Xu and Zhao [49], and the first author [20] have simultaneously showed
the energy scattering for (1.1) with 0 < b < 1, N = 2, and radial data. The proof relies on a new
approach of Arora, Dodson, and Murphy [1], which is a refined version of the one in [23]. In [8],
Campos and Cardoso studied long time dynamics such as global existence, energy scattering, and
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finite time blow-up of H1-solutions to (1.1) with data in Σ lying above the ground state threshold.
Miao, Murphy, and Zheng [43] showed a new nonlinear profile decomposition for non-radial solutions
related to (1.1). In particular, they constructed nonlinear profiles with data living far away from
the origin. This allows them to show the energy scattering of non-radial solution to (1.1) with
0 < b < 1

2 , α = 2, and N = 3. The result in [43] was extended to any dimensions N ≥ 2 and

0 < b < min
{

2, N2
}

by Cardoso, Farah, Guzmán, and Murphy [9]. Recently, the authors [21]
establish long time dynamics for (1.1) with data lying below, at, and above the ground state
threshold. See also a new paper of Murphy [44] for an alternative simple proof of the scattering
result in [43].

To state our result, let us introduce some notations. Let γ ≥ 0. A pair (q, r) is called Ḣγ-
admissible if

2

q
+
N

r
=
N

2
− γ, 2N

N − 2γ
< r <

2N

N − 2
. (1.9)

The set of all Ḣγ-admissible pairs is denoted by Aγ . When γ = 0, we denote L2 instead of Ḣ0. In
this case, the L2-admissible pair is also called Schrödinger admissible. For I ⊂ R an interval and
γ ≥ 0, we define the Strichartz norms

‖u‖S(I,Ḣγ) := sup
(q,r)∈Bγ

‖u‖Lqt (I,Lrx)

and

‖u‖S1(I,Ḣγ) := ‖ 〈∇〉u‖S(I,Ḣγ),

where we have used the convention

‖ 〈∇〉 f‖X := ‖f‖X + ‖∇f‖X .

Here Bγ is a subset of Aγ consisting of a finite number of Ḣγ-admissible pairs used in our analysis
(see the proofs of Lemmas 2.5 and 2.6). When I = R, we omit the dependence on R and simply
denote ‖u‖S(Ḣγ) and ‖u‖S1(Ḣγ). We also denote

X (I) := L∞t (I,H1
x) ∩ S(I, Ḣγc) ∩ S1(I, L2).

The main result of this paper reads as follows.

Theorem 1.1. Let N ≥ 3, 0 < b < min
{

2, N2
}

, and 4−2b
N < α < 4−2b

N−2 . Denote H := H1(RN ) if

ν = 1 and H := Hδ if ν = −1, where δ < δc with δc as in (1.4) and

Hδ :=
{
φ ∈ H1(RN ) : ‖φ‖Ḣγcx < δ

}
.

Then the mapping INLS−LS : H → Xloc(R) is compact in the sense that if (φn)n≥1 ⊂ H satisfies
φn ⇀ φ weakly in H1(RN ) as n→∞, then

un − eit∆φn → u− eit∆φ strongly in X (I) as n→∞
for all compact interval I ⊂ R, where un and u are solutions to (1.1) with initial data un|t=0 = φn
and u|t=0 = φ. Here LS and INLS are respectively the linear and nonlinear Schödinger maps related
to (1.1).

Remark 1.1. The condition on H in the case ν = −1 ensures that the solution corresponding to
(1.1) with data in H exists globally in time.

Remark 1.2. Our compactness result only holds locally in time. The locality in time is needed in
order to show that nonlinear profiles associated to the linear ones with divergent time shift are
solutions to the underlying linear equation. It is not clear to us that this compactness property can
be extended globally in time.

Remark 1.3. To our knowledge, this is a first result concerning the compactness property of
the difference between the nonlinear and linear Schrödinger operators (or the Duhamel operator)
related to nonlinear Schrödinger-type equations. This phenomenon can be compared to the so
called nonlinear smoothing effect, i.e., the difference between nonlinear and linear evolutions for
the same initial data, given by the integral term in Duhamel’s formula, has higher regularity than
the initial data. The later is known to hold for various type of nonlinear dispersive PDEs (see e.g.,
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gKdV equations [4, 5], NLS [6,37], fractional NLS [24], higher-order NLS [2], and [12] for a unified
approach).

The proof of Theorem 1.1 is based on a refined nonlinear profile decomposition related to (1.1).
It is well-known that the profile decomposition plays an essential role in the study of long time
dynamics of solutions to (1.1). For instance, it is the core of the concentration-compactness and
rigidity method showing the energy scattering (see e.g., [8, 9, 26, 27, 43]). It is also an important
step to establish dynamical properties of blow-up solutions to (1.1) (see e.g., [45]). Before stating
our nonlinear profile decomposition, let us recall the following linear profile decomposition related
to (1.1) due to Farah and Guzmán [26,27].

Proposition 1.2 (Linear profile decomposition [26, Theorem 6.1] and [27, Theorem 5.1]). Let
(φn)n≥1 be a bounded sequence of H1-functions. Then for each integer J ≥ 1, there exists a
subsequence, still denoted by (φn)n≥1, and

• for each 1 ≤ j ≤ J , there exists a fixed profile ψj ∈ H1(RN );
• for each 1 ≤ j ≤ J , there exists a sequence of time shifts (tjn)n≥1 ⊂ R;
• for each 1 ≤ j ≤ J , there exists a sequence of space shifts (xjn)n≥1 ⊂ RN ;
• there exists a sequence of remainders (W J

n )n≥1 ⊂ H1(RN );

such that

φn(x) =

J∑
j=1

e−it
j
n∆ψj(x− xjn) +W J

n (x).

The time and space shifts have a pairwise divergence property, i.e., for 1 ≤ j 6= k ≤ J , we have

lim
n→∞

|tjn − tkn|+ |xjn − xkn| =∞. (1.10)

The remainder has the following asymptotic smallness property

lim
J→∞

[
lim
n→∞

‖eit∆W J
n ‖

S(Ḣγc )∩L∞t (R,L
2N

N−2 γc
x )

]
= 0, (1.11)

where γc is as in (1.3). Moreover, for fixed J ≥ 1 and γ ∈ [0, 1], we have the asymptotic Pythagorean
expansions

‖φn‖2Ḣγx =

J∑
j=1

‖ψj‖2
Ḣγx

+ ‖W J
n ‖2Ḣγx + on(1). (1.12)

Finally, we may assume either tjn ≡ 0 or tjn → ±∞, and either xjn ≡ 0 or |xjn| → ∞.

Remark 1.4. By the almost orthogonality (1.10), there exists at most one profile with zero space
and time shifts. Without loss of generality, we assume ψ1 is such a profile. That is

φn(x) = ψ1(x) +

J∑
j=2

e−it
j
n∆ψj(x− xjn) +W J

n (x) (1.13)

with |tjn|+ |xjn| → ∞ for each j = 2, · · · , J .

Now we state our result on the refined nonlinear profile decomposition for (1.1).

Theorem 1.3. Let (φn)n≥1 be a bounded sequence of H1-functions and consider the linear profile
decomposition (1.13). Denote un : (−T∗,n, T ∗,n)×RN → C and u : (−T∗, T ∗)×RN → C the maximal
solutions to (1.1) with initial data un|t=0 = φn and u|t=0 = ψ1, respectively. Let I ⊂ (−T∗, T ∗) be
a compact interval. Then for n sufficiently large, un is defined on I × RN and satisfies

lim sup
n→∞

‖un‖L∞t (I,H1
x)∩S(I,Ḣγc )∩S1(I,L2) <∞. (1.14)

Moreover, we have

un(t, x) = u(t, x) +

J∑
j=2

ei(t−t
j
n)∆ψj(x− xjn) + eit∆W J

n (x) + rn(t, x) (1.15)
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with

lim
n→∞

‖rn‖L∞t (I,H1
x)∩S(I,Ḣγc )∩S1(I,L2) = 0. (1.16)

In addition, for fixed J ≥ 2 and γ ∈ [0, 1], we have for every t ∈ I,

‖un(t)‖2
Ḣγx

= ‖u(t)‖2
Ḣγx

+

J∑
j=2

‖ψj‖2
Ḣγx

+ ‖W J
n ‖2Ḣγx + εn(t) (1.17)

with

lim
n→∞

εn(t) = 0 (1.18)

uniformly in t ∈ I.

To emphasize our contribution, let us recall the known nonlinear profile decomposition related
to (1.1) due to Cardoso, Farah, Guzmán, and Murphy [9] (see also an earlier result of Farah
and Guzmán [27]). Let (φn)n≥1 be a bounded sequence of H1-functions with the linear profile
decomposition (1.13). We define the nonlinear profiles vjn : Ijn × RN → C associated to ψj , tjn, and
xjn as follows:

• If xjn ≡ 0 and tjn → −∞, then we take vj the maximal lifespan solution to (1.1) that scatters to
eit∆ψj as t→∞.

• If xjn ≡ 0 and tjn →∞, then we take vj the maximal lifespan solution to (1.1) that scatters to
eit∆ψj as t→ −∞.

In both cases, we set vjn(t) := vj(t − tjn). On the other hand, if |xjn| → ∞, then we take vjn the

global scattering solution to (1.1) satisfying vjn
∣∣
t=0

= e−it
j
n∆ψj(x− xjn). Such a solution exists due

to [9, Proposition 3.2]. Let I ⊂ (−T∗, T ∗) be a compact interval, where u : (−T∗, T ∗)× RN → C is
the maximal solution to (1.1) with initial data u|t=0 = ψ1. It was proved (see e.g., [27, Section 6]
and [9, Section 3]) that for n sufficiently large, un is defined on I × RN and satisfies

lim sup
n→∞

‖un‖S(I,Ḣγc )∩S1(I,L2) <∞. (1.19)

Moreover, we have

un(t, x) = u(t, x) +

J∑
j=2

vjn(t, x) + r̃n(t, x) (1.20)

with

lim
n→∞

‖r̃n‖S(I,Ḣγc ) = 0. (1.21)

Comparing to the nonlinear profile decomposition (1.19) – (1.21), our nonlinear profile decomposition
(1.14) – (1.18) contains the following refinements:

• The boundedness of ‖un‖L∞t (I,H1
x) for n sufficiently large. This boundedness is not available in

(1.19) as the endpoint (∞, 2) is not included in the definition of S(I, L2).
• All nonlinear profiles except the first one are solutions to the underlying linear equation instead

of the general ones vjn as in [9]. Here we show that nonlinear profiles associated with the
divergent space shift can be chosen to be the linear solutions. This improvement comes from
the observation that the nonlinearity effect vanishes at spatial infinity.

• The remainder term is small for n sufficiently large not only in S(I, Ḣγc)-norm but also in
L∞t (I,H1

x) and H1-Strichartz norms. As a result, we prove the Pythagorean expansion of the

Ḣγ-norm of un(t) with a remainder term being small uniformly in time.

Based on this refined nonlinear profile decomposition, we are able to show the compactness
property of solutions to (1.1) given in Theorem 1.1.

This paper is organized as follows. In Section 2, we give some preliminary results which are
needed in the sequel, including: dispersive, Strichartz, and local smoothing estimates; nonlinear
estimates, the local well-posedness, and the stability results. Section 3 is devoted to a proof of the
refined profile decomposition given in Theorem 1.3. Finally, Theorem 1.1 will be proved in Section
4.
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2. Preliminary

In this section, we present some preliminary results which are useful in our proofs. Let us start
with the following dispersive estimates.

Lemma 2.1 (Dispersive estimates [10]). For r ∈ [2,∞], we have

‖eit∆f‖Lrx . |t|
−N2 (1− 2

r )‖f‖Lr′x , t 6= 0 (2.1)

for all f ∈ Lr′(RN ).

A pair (q, r) is called Ḣ−γ-admissible if

2

q
+
N

r
=
N

2
+ γ,

2N

N − 2γ
< r <

2N

N − 2
.

The set of all Ḣ−γ-admissible pairs is denoted by A−γ . We also define the dual Strichartz norms

‖u‖S′(I,Ḣ−γ) := inf
(q,r)∈A−γ

‖u‖
Lq
′
t (I,Lr′x )

When I = R, we simply use ‖u‖S′(Ḣ−γ) instead of ‖u‖S′(R,Ḣ−γ).

We have the following Strichartz estimates (see e.g., [10, 30,36]).

Proposition 2.2 (Strichartz estimates [10,30,36]). Let γ ≥ 0. We have

‖eit∆f‖S(Ḣγ) ≤ C‖f‖Ḣγx .
In addition, for any interval I ⊂ R containing 0, there exists a constant C > 0 independent of I
such that ∥∥∥∥ˆ t

0

ei(t−s)∆F (s)ds

∥∥∥∥
S(I,Ḣγ)

≤ C‖F‖S′(I,Ḣ−γ).

Moreover, the above estimates still hold with L∞t (R, L
2N

N−2γ
x )- and L∞t (I, L

2N
N−2γ
x )-norms in place of

S(Ḣγ)- and S(I, Ḣγ)-norms, respectively.

Lemma 2.3 (Local smoothing estimate [11]). Let ψ ∈ C∞0 (RN ). Then for all f ∈ L2(RN ) and
R > 0, ¨

R×RN
|[|∇| 12 eit∆f ](x)|2ψ(x/R)dxdt . R‖f‖2L2

x
. (2.2)

Corollary 2.4. Let γ ∈ (0, 1), (q, r) ∈ Aγ , and φ ∈ H1(RN ). Let I ⊂ R be a compact interval and
R > 0. We have

‖∇eit∆φ‖L2
t (I,L

2
x(|x|≤R)) . |I|

1
3 ( 1

2−
1
q )R

1
3 (N+2

2 −
N
r )‖eit∆φ‖

1
3

Lqt (I,L
r
x)
‖∇φ‖

2
3

L2
x
. (2.3)

Proof. We follow an idea of Killip and Visan [39, Lemma 2.5]. Let χ ∈ C∞0 (RN ) be such that
χ(ξ) = 1 for |ξ| ≤ 1 and supp(χ) ⊂

{
x ∈ RN : |x| ≤ 2

}
. For M > 0 to be chosen later, we denote

χM (ξ) = χ(M−1ξ). By Hölder’s inequality and Bernstein’s inequality, we have

‖∇eit∆χM (D)φ‖L2
t (I,L

2
x(|x|≤R)) = ‖eit∆|∇|χM (D)φ‖L2

t (I,L
2
x(|x|≤R))

. |I|
1
2−

1
qR

N
2 −

N
r ‖eit∆|∇|χM (D)φ‖Lqt (I,Lrx)

= |I|
1
2−

1
qR

N
2 −

N
r M‖eit∆χ̃M (D)φ‖Lqt (I,Lrx)

. |I|
1
2−

1
qR

N
2 −

N
r M‖eit∆φ‖Lqt (I,Lrx), (2.4)

where χM (D) is the Fourier multiplier by χM (ξ), i.e.,

̂χM (D)f(ξ) = χM (ξ)f̂(ξ)

and χ̃M (ξ) = χ̃(M−1ξ) with χ̃(ξ) = |ξ|χ(ξ). Here we have q, r > 2 as (q, r) ∈ Aγ with γ > 0.
On the other hand, we use the local smoothing estimate (2.2) to get

‖∇eit∆(1− χM (D))φ‖L2
t (I,L

2
x(|x|≤R)) = ‖|∇| 12 eit∆|∇|− 1

2 (1− χM (D))∇φ‖L2
t (I,L

2
x(|x|≤R))

. R
1
2 ‖|∇|− 1

2 (1− χM (D))∇φ‖L2
x

.M−
1
2R

1
2 ‖∇φ‖L2

x
. (2.5)



A COMPACTNESS RESULT FOR INLS 7

Optimizing (2.4) and (2.5) with

M = |I|−
2
3 ( 1

2−
1
q )R

1
3−

2
3 (N2 −

N
r )‖∇φ‖

2
3

L2
x
‖eit∆φ‖−

2
3

Lqt (I,L
r
x)
,

we obtain (2.3). �

We also need the following nonlinear estimates due to [33, Lemma 4.1] and [7, Lemma 2.5].

Lemma 2.5 ([33, Lemma 4.1]). Let N ≥ 3, 0 < b < min
{

2, N2
}

, and 4−2b
N < α < 4−2b

N−2 . Then

there exists θ ∈ (0, α) sufficiently small so that

‖|x|−b|u|αv‖S′(Ḣ− γc ) . ‖u‖
θ
L∞t H

1
x
‖u‖α−θ

S(Ḣγc )
‖v‖S(Ḣγc ).

When b = 0, we can take θ = 0 in the above estimate.

Proof. The proof of this result is given in [33, Lemam 4.1]. However, for our later purposes, we
recall some details. Let θ > 0 be a small parameter. We denote

â =
2α(α+ 2− θ)

4− 2b− (N − 2)α
, r̂ =

Nα(α+ 2− θ)
α(N − b)− θ(2− b)

,

ã =
2α(α+ 2− θ)

α(N(α+ 1− θ)− 2 + 2b)− (4− 2b)(1− θ)
, m± =

Nα

2− b∓Nαθ
.

We see that (â, r̂) ∈ Aγc and (ã, r̂) ∈ A− γc provided that θ > 0 is taken sufficiently small. By
Hölder’s inequality, we have

‖|x|−b|u|αv‖Lr̂′x ≤ ‖|x|
−b‖Lγx(A)‖|u|αv‖Lρx ,

where A is either the unit ball B1 or Bc1 = RN\B1. To make ‖|x|−b‖Lγx(A) <∞, we take

1

γ
=

b

N
± θ2,

where the plus sign is for A = B1 and the minus sign is for A = Bc1. It follows that

1

ρ
=

1

r̂′
− 1

γ
=

(Nα+ bα+N + 3b)α− θ(Nα+ bα+ b− 2)

Nα(α+ 2− θ)
∓ θ2.

By Hölder’s inequality with the fact that

1

ρ
=

θ

m±
+
α+ 1− θ

r̂
,

we have

‖|x|−b|u|αv‖Lr̂′x . ‖u‖
θ

L
m±
x

‖u‖α−θ
Lr̂x
‖v‖Lr̂x .

As
1

ã′
=
α+ 1− θ

â
,

we infer that

‖|x|−b|u|αv‖Lã′t Lr̂′x . ‖u‖
θ

L∞t L
m±
x

‖u‖α−θ
LâtL

r̂
x
‖v‖LâtLr̂x

. ‖u‖θL∞t H1
x
‖u‖α−θ

LâtL
r̂
x
‖v‖LâtLr̂x .

Here in the second line, we have used the Sobolev embedding as 2 < m± <
2N
N−2 for 4−2b

N < α < 4−2b
N−2

provided that θ > 0 is chosen sufficiently small. The proof is complete. �

Lemma 2.6 ([7, 33]). Let N ≥ 3, 0 < b < min
{

2, N2
}

, and 4−2b
N < α < 4−2b

N−2 . Then there exists

θ ∈ (0, α) sufficiently small so that

‖|x|−b|u|αv‖S′(L2) . ‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣγc )
‖v‖S(L2),

‖∇(|x|−b|u|αu)‖S′(L2) . ‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣγc )
‖∇u‖S(L2),

‖|x|−b−1|u|αv‖S′(L2) . ‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣγc )
‖∇v‖S(L2).

Note that if b = 0, we can take θ = 0 in the above estimates.
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Proof. These estimates were essentially proved in [33, Lemma 4.2] and [7, Lemma 2.5]. However,

the proofs presented in [33] and [7] used the dual pair of the end-point
(

2, 2N
N−2

)
which is excluded

in our definition of L2-admissible pair. Thus we need a different argument. Let θ > 0 be a small
parameter. We denote

q′ =
4

2 + θ
, r′ =

2N

N + 2− θ
,

a =
4α(α+ 1− θ)

4− 2b− (N − 2)α+ θα
, r =

2Nα(α+ 1− θ)
(N + 2− 2b)α− θ(4− 2b+ α)

,

q =
4α(α+ 1− θ)

α(Nα− 2 + 2b)− θ(Nα− 4 + 2b− α)
, m± =

Nα

2− b∓Nαθ
.

Here (q′, r′) is the dual pair of
(

4
2−θ ,

2N
N−2+θ

)
∈ A0. We can readily check that (q, r) ∈ A0 and

(a, r) ∈ Aγc provided that θ > 0 is taken sufficiently small.
For the first two estimates, it suffices to show the second one since the first is treated in a similar

manner. We observe that

∇(|x|−b|u|αu) = |x|−b∇(|u|αu)− b x
|x|
|x|−b

(
|x|−1|u|αu

)
(2.6)

and
‖|x|−bf‖Lr′x (A) ≤ ‖|x|

−b‖Lr1x (A)‖f‖Lr2x ,
where A stands for either B1 or Bc1. To ensure ‖|x|−b‖Lr1x (A) <∞, we take

1

r1
=

b

N
± θ2,

where the plus sign is for A = B1 and the minus one is for A = Bc1. It follows that

1

r2
=

1

r′
− 1

r1
=
N + 2− 2b− θ

2N
∓ θ2.

As 1
N < N+2−2b

2N < 1 for 0 < b < N
2 , we choose θ > 0 sufficiently small so that 1 < r2 < N which

allows us to use the Hardy’s inequality (see e.g., [46])

‖|x|−1f‖Lr2x ≤
r2

N − r2
‖∇f‖Lr2x .

Applying the above inequality to f = |u|αu and using (2.6), we see that

‖∇(|x|−b|u|αu)‖Lr′x . ‖∇(|u|αu)‖Lr2x .
By Hölder’s inequality and the fact that

1

r2
=

θ

m±
+
α+ 1− θ

r
,

we have
‖∇(|x|−b|u|αu)‖Lr′x . ‖u‖

θ

L
m±
x

‖u‖α−θ
Lrx
‖∇u‖Lrx .

By Hölder’s inequality in time with
1

q′
=
α− θ
a

+
1

q
,

we get

‖∇(|x|−b|u|αu)‖
Lq
′
t L

r′
x
. ‖u‖θ

L∞t L
m±
x

‖u‖α−θ
LatL

r
x
‖∇u‖LqtLrx

. ‖u‖θL∞t H1
x
‖u‖α−θ

LatL
r
x
‖∇u‖LqtLrx

which proves the second estimate.
Let us show the last one. We have

‖|x|−b−1|u|αv‖Lr′x (A) ≤ ‖|x|
−b−1‖Lp1x (A)‖|u|αv‖Lp2x ,

where A is either B1 or Bc1. In order to make ‖|x|−b−1‖Lp1x (A) <∞, we take

1

p1
=
b+ 1

N
± θ2,
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where the plus sign is for A = B1 and the minus sign is for A = Bc1. We see that

1

p2
=

1

r′
− 1

p1
=
N − 2b− θ

2N
∓ θ2.

By Hölder’s inequality and the fact that

1

p2
=

θ

m±
+
α− θ
r

+
1

r3
,

1

r3
=

1

r
− 1

N
,

we have

‖|x|−b−1|u|αv‖Lr′x . ‖u‖
θ

L
m±
x

‖u‖α−θ
Lrx
‖v‖Lr3x

. ‖u‖θ
L
m±
x

‖u‖α−θ
Lrx
‖∇v‖Lrx .

Using Hölder’s inequality in time, we get

‖|x|−b−1|u|αv‖
Lq
′
t L

r′
x
. ‖u‖θ

L∞t L
m±
x

‖u‖α−θ
LatL

r
x
‖∇v‖LqtLrx

. ‖u‖θL∞t H1
x
‖u‖α−θ

LatL
r
x
‖∇v‖LqtLrx .

The proof is complete. �

Using Proposition 2.2, Lemma 2.5, and Lemma 2.6, we have the following result local well-
posedness result.

Proposition 2.7 (Local well-posedness [33]). Let N ≥ 3, 0 < b < min
{

2, N2
}

, and 4−2b
N < α <

4−2b
N−2 . Let u0 ∈ H1(RN ). Then there exist T∗, T

∗ ∈ (0,∞], and a unique local solution to (1.1)
satisfying

u ∈ C((−T∗, T ∗), H1(RN )) ∩ Lqloc(−T∗, T ∗),W 1,r(RN ))

for any (q, r) ∈ A0. If T ∗ <∞ (resp. T∗ <∞), then

lim
t↗T∗

‖∇u(t)‖L2
x

=∞
(

resp. lim
t↘−T∗

‖∇u(t)‖L2
x

=∞
)
.

We also recall the following stability result which is needed in the sequel.

Lemma 2.8 (Short time perturbation). Let N ≥ 3, 0 < b < min
{

2, N2
}

, ν ∈ {±1}, and
4−2b
N < α < 4−2b

N−2 . Let 0 ∈ I ⊆ R and ũ : I × RN → C be a solution to

i∂tũ+ ∆ũ− ν|x|−b|ũ|αũ = e

with ũ|t=0 = ũ0 satisfying

‖ũ‖L∞t (I,H1
x) ≤M

for some positive constant M > 0. Let u0 ∈ H1 be such that

‖u0 − ũ0‖H1
x
≤M ′

for some M ′ > 0. Assume the smallness conditions

‖ũ‖S(I,Ḣγc ) ≤ ε0,

‖eit∆(u0 − ũ0)‖S(I,Ḣγc ) ≤ ε,
‖ 〈∇〉 e‖S′(I,L2) + ‖e‖S′(I,Ḣ− γc ) ≤ ε,

for some 0 < ε ≤ ε0, where ε0 = ε0(M,M ′) > 0 is a small constant. Then there exists a unique
solution u : I × RN → C to (1.1) with u|t=0 = u0 satisfying

‖u− ũ‖S(I,Ḣγc ) . ε,

‖u− ũ‖L∞t (I,H1
x)∩S1(I,L2) .M

′,

‖u‖L∞t (I,H1
x)∩S(I,Ḣγc )∩S1(I,L2) ≤ C(M,M ′).

(2.7)

Proof. The proof is essentially given in [27, Lemma 4.12]. However, the version stated in [27, Lemma
4.12] does not provide enough information for our purpose. Thus we give some details. Let us start
with the following observation.
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Observation 2.1. If ‖ũ‖S(I,Ḣγc ) ≤ ε0 with ε0 > 0 sufficiently small, then

‖ũ‖S1(I,L2) .M. (2.8)

Proof of Observation 2.1. By Duhamel formula, we have

ũ(t) = eit∆ũ0 − i
ˆ t

0

ei(t−s)∆(ν|x|−b|ũ(s)|αũ(s) + e(s))ds.

By Strichartz estimates and Lemma 2.6, we have

‖ũ‖S1(I,L2) . ‖ũ0‖H1
x

+ ‖ 〈∇〉 (|x|−b|ũ|αũ)‖S′(I,L2) + ‖ 〈∇〉 e‖S′(I,L2)

. ‖ũ0‖H1
x

+ ‖ũ‖θL∞t (I,H1
x)‖ũ‖

α−θ
S(I,Ḣγc )

‖ũ‖S1(I,L2) + ‖ 〈∇〉 e‖S′(I,L2)

. ‖ũ‖L∞t (I,H1
x) + ‖ũ‖θL∞t (I,H1

x)‖ũ‖
α−θ
S(I,Ḣγc )

‖ũ‖S1(I,L2) + ‖ 〈∇〉 e‖S′(I,L2)

≤ CM + Cε+Mθ‖ũ‖α−θ
S(I,Ḣγc )

‖ũ‖S1(I,L2).

If ‖ũ‖S(I,Ḣγc ) ≤ ε0 with ε0 > 0 sufficiently small, then we get ‖ũ‖S1(I,L2) ≤ 2C(M + ε). �

Without loss of generality, we assume that 0 = inf I. We will prove the existence of a solution to
the following Cauchy problem{

i∂tw + ∆w = −H(x, ũ, w)− e,
w|t=0 = w0 := u0 − ũ0,

(2.9)

where H(x, ũ, w) := ν|x|−b(G(ũ+ w)−G(ũ)) with

G(z) := |z|αz. (2.10)

To this end, we will show that the functional

Φ(w)(t) := eit∆w0 + i

ˆ t

0

ei(t−s)∆(H(x, ũ, w) + e)(s)ds

is a contraction mapping on

Y :=
{
w ∈ C(I,H1) ∩ S(I, Ḣγc) ∩ S1(I, L2) : ‖w‖S(I,Ḣγc ) ≤ ρ, ‖w‖L∞t (I,H1

x)∩S1(I,L2) ≤ K
}

equipped with the distance

d(u, v) := ‖u− v‖S(I,L2) + ‖u− v‖S(I,Ḣγc ),

where ρ ∼ ε and K ∼M ′ will be chosen later. By Strichartz estimates, we have

‖Φ(w)‖S(I,Ḣγc ) . ‖e
it∆w0‖S(I,Ḣγc ) + ‖H(·, ũ, w)‖S′(I,Ḣ− γc ) + ‖e‖S′(I,Ḣ− γc ),

‖Φ(w)‖L∞t (I,L2
x)∩S(I,L2) . ‖w0‖L2

x
+ ‖H(·, ũ, w)‖S′(I,L2) + ‖e‖S′(I,L2),

and

‖∇Φ(w)‖L∞t (I,L2
x)∩S(I,L2) . ‖∇w0‖L2

x
+ ‖∇H(·, ũ, w)‖S′(I,L2) + ‖∇e‖S′(I,L2).

Using the fact that
|G(ũ+ w)−G(ũ)| . (|ũ|α + |w|α)|w|,

we infer from Lemma 2.5 and Lemma 2.6 that

‖H(·, ũ, w)‖S′(I,Ḣ− γc ) .
(
‖ũ‖θL∞t (I,H1

x)‖ũ‖
α−θ
S(I,Ḣγc )

+ ‖w‖θL∞t (I,H1
x)‖w‖

α−θ
S(I,Ḣγc )

)
‖w‖S(I,Ḣγc ),

‖H(·, ũ, w)‖S′(I,L2) .
(
‖ũ‖θL∞t (I,H1

x)‖ũ‖
α−θ
S(I,Ḣγc )

+ ‖w‖θL∞t (I,H1
x)‖w‖

α−θ
S(I,Ḣγc )

)
‖w‖S(I,L2).

We also have (see e.g., [27])

|∇(G(ũ+ w)−G(ũ))| . (|ũ|α + |w|α)|∇w|+
{

|w|α|∇ũ| if 0 < α ≤ 1,
(|ũ|α−1 + |w|α−1)|w||∇ũ| if α > 1.

By Lemma 2.6, we have

‖∇H(·, ũ, w)‖S′(I,L2) .
(
‖ũ‖θL∞t (I,H1

x)‖ũ‖
α−θ
S(I,Ḣγc )

+ ‖w‖θL∞t (I,H1
x)‖w‖

α−θ
S(I,Ḣγc )

)
‖∇w‖S(I,L2) + E,

where
E = ‖w‖θL∞t (I,H1

x)‖w‖
α−θ
S(I,Ḣγc )

‖∇ũ‖S(I,L2) if 0 < α ≤ 1
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and

E =
(
‖ũ‖θL∞t (I,H1

x)‖ũ‖
α−1−θ
S(I,Ḣγc )

+ ‖w‖θL∞t (I,H1
x)‖w‖

α−1−θ
S(I,Ḣγc )

)
‖w‖S(I,Ḣγc )‖∇ũ‖S(I,L2) if α > 1.

It follows that for w ∈ Y , we have from (2.8) that

‖H(·, ũ, w)‖S′(I,Ḣγc ) . (Mθεα−θ0 +Kθρα−θ)ρ,

‖H(·, ũ, w)‖S′(I,L2) . (Mθεα−θ0 +Kθρα−θ)K,

and

‖∇H(·, ũ, w)‖S′(I,L2) . (Mθεα−θ0 +Kθρα−θ)K

+

{
Kθρα−θM if 0 < α ≤ 1,

(Mθεα−1−θ
0 +Kθρα−1−θ)ρM if α > 1.

Thus there exists C > 0 such that

‖Φ(w)‖S(I,Ḣγc ) ≤ Cε+ C(Mθεα−θ0 +Kθρα−θ)ρ,

‖Φ(w)‖L∞t (I,L2
x)∩S(I,L2) ≤ C‖w0‖L2

x
+ Cε+ C(Mθεα−θ0 +Kθρα−θ)K,

and

‖∇Φ(w)‖L∞t (I,L2
x)∩S(I,L2) ≤ C‖∇w0‖L2

x
+ Cε+ C(Mθεα−θ0 +Kθρα−θ)K

+

{
CKθρα−θM if 0 < α ≤ 1,

C(Mθεα−1−θ
0 +Kθρα−1−θ)ρM if α > 1.

It follows that

‖Φ(w)‖S(I,Ḣγc ) ≤ Cε+ C(Mθεα−θ0 +Kθρα−θ)ρ,

‖Φ(w)‖L∞t (I,H1
x)∩S1(I,L2) ≤ CM ′ + Cε+ C(Mθεα−θ0 +Kθρα−θ)K

+

{
CKθρα−θM if 0 < α ≤ 1,

C(Mθεα−1−θ
0 +Kθρα−1−θ)ρM if α > 1.

By taking ρ = 2Cε and K = 2CM ′, we see that

‖Φ(w)‖S(I,Ḣγc ) ≤ Cε+ C(Mθεα−θ0 + (2CM ′)θ(2Cε)α−θ)2Cε

and

‖Φ(w)‖L∞t (I,H1
x)∩S1(I,L2) ≤ CM ′ + Cε+ C(Mθεα−θ0 + (2CM ′)θ(2Cε)α−θ)2CM ′

+

{
C(2CM ′)θ(2Cε)α−θM if 0 < α ≤ 1,

C(Mθεα−1−θ
0 + (2CM ′)θ(2Cε)α−1−θ)ρM if α > 1.

By choosing ε0 = ε0(M,M ′) > 0 sufficiently small, we have for all 0 < ε ≤ ε0,

‖Φ(w)‖S(I,Ḣγc ) ≤ ρ, ‖Φ(w)‖L∞t (I,H1
x)∩S1(I,L2) ≤ K

or Φ maps Y into itself. By the same argument, we prove as well that Φ is a contraction on Y .
Thus the fixed point theorem implies that there exists a unique solution w on I × RN satisfying

‖w‖S(I,Ḣγc ) . ε, ‖w‖L∞t (I,H1
x)∩S1(I,L2) .M

′.

Finally, we see that u = ũ+ w is a solution to (1.1) satisfying (2.7) (see also (2.8)). The proof is
complete. �

By an iteration argument as in [27, Lemma 4.14], we have the following long time perturbation
result.

Lemma 2.9 (Long time perturbation [27, Lemma 4.14]). Let N ≥ 3, 0 < b < min
{

2, N2
}

, and
4−2b
N < α < 4−2b

N−2 . Let 0 ∈ I ⊆ R and ũ : I × RN → C be a solution to

i∂tũ+ ∆ũ+ |x|−b|ũ|αũ = e

with ũ|t=0 = ũ0 satisfying

‖ũ‖L∞t (I,H1
x) ≤M, ‖ũ‖S(I,Ḣγc ) ≤ L
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for some constants M,L > 0. Let u0 ∈ H1 be such that

‖u0 − ũ0‖H1
x
≤M ′, ‖eit∆(u0 − ũ0)‖S(I,Ḣγc ) ≤ ε

for some constant M ′ > 0 and some 0 < ε < ε1 = ε1(M,M ′, L). Suppose that

‖ 〈∇〉 e‖S′(I,L2) + ‖e‖S′(I,Ḣ− γc ) ≤ ε.

Then there exists a unique solution u : I × RN → C to (1.1) with u|t=0 = u0 satisfying

‖u− ũ‖S(I,Ḣγc ) ≤ C(M,M ′, L)ε,

‖u− ũ‖L∞t (I,H1
x)∩S1(I,L2) ≤ C(M,M ′, L)M ′,

‖u‖L∞t (I,H1
x)∩S(I,Ḣγc )∩S1(I,L2) ≤ C(M,M ′, L).

(2.11)

We also need the following property due to [28, Lemma 5.3].

Lemma 2.10 ([28, Lemma 5.3]). Let ψ ∈ H1(RN ), (tn)n≥1 ⊂ R, and (xn)n≥1 ⊂ RN . If
|tn|+ |xn| → ∞ as n→∞, then

eitn∆ψ(·+ xn) ⇀ 0 weakly in H1(RN )

as n→∞. Moreover, if (ψn)n≥1 ⊂ H1(RN ) satisfies

ψn ⇀ 0, eitn∆ψn(·+ xn) ⇀ ψ weakly in H1(RN )

as n→∞ for some ψ ∈ H1(RN )\{0}, then |tn|+ |xn| → ∞ as n→∞.

3. Refined profile decomposition

This section is devoted to the proof of the refined profile decomposition given in Theorem 1.3.
Let (φn)n≥1 be a bounded sequence of H1-functions and consider the linear profile decomposition

φn(x) = ψ1(x) +

J∑
j=2

e−it
j
n∆ψj(x− xjn) +W J

n (x)

with |tjn| + |xjn| → ∞ for each j = 2, · · · , J . Keeping in mind the properties (1.11) and (1.12).
Denote un : (−T∗,n, T ∗,n)× RN → C and u : (−T∗, T ∗)× RN → C the maximal solutions to (1.1)
with initial data un|t=0 = φn and u|t=0 = ψ1, respectively.

Let I ⊂ (−T∗, T ∗) be a compact interval. We will approximate un over I × RN by

uJn(t, x) = u(t, x) +

J∑
j=2

ei(t−t
j
n)∆ψj(x− xjn) + eit∆W J

n (x).

To this end, we make use of the stability theory given in Lemma 2.9. We first have

uJn(0, x) = φn(x)

and

i∂tu
J
n + ∆uJn + |x|−b|uJn|αuJn = eJn,

where

eJn = |x|−b(G(uJn)−G(u))

with G(z) as in (2.10). We will check the following conditions:

sup
J≥2

lim sup
n→∞

‖uJn‖L∞t (I,H1
x) ≤M, (3.1)

sup
J≥2

lim sup
n→∞

‖uJn‖S(I,Ḣγc ) ≤ L, (3.2)

for some constant M,L > 0 and

‖eJn‖S′(I,L2) + ‖∇eJn‖S′(I,L2) + ‖eJn‖S′(I,Ḣ− γc ) → 0 as J, n→∞. (3.3)

Towards this goal, let us prepare some lemmas.
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Lemma 3.1. We have

sup
J≥2

lim sup
n→∞

‖uJn‖L∞t (I,H1
x) ≤ C(I,B),

where

B := sup
n≥1
‖φn‖H1

x
. (3.4)

Proof. We have for any t ∈ I and J ≥ 2,

‖uJn(t)‖2H1
x
. ‖u(t)‖2H1

x
+

∥∥∥∥∥∥
J∑
j=2

ei(t−t
j
n)∆ψj(· − xjn) + eit∆W J

n

∥∥∥∥∥∥
2

H1
x

= ‖u(t)‖2H1
x

+

∥∥∥∥∥∥
J∑
j=2

e−it
j
n∆ψj(· − xjn) +W J

n

∥∥∥∥∥∥
2

H1
x

= ‖u(t)‖2H1
x

+

J∑
j=2

‖e−it
j
n∆ψj(· − xjn)‖2H1

x
+ ‖W J

n ‖2H1
x

+ on(1).

Here we have used the pairwise divergence property (1.10) to get the second inequality. It follows
that

‖uJn‖2L∞t (I,H1
x) ≤ C(I, ‖ψ1‖H1

x
) +

J∑
j=2

‖ψj‖2H1
x

+ ‖W J
n ‖2H1

x
+ on(1)

which implies

lim sup
n→∞

‖uJn‖L∞t (I,H1
x) ≤ C(I,B)

for some constant C(I,B) depending on I and B. �

Lemma 3.2. We have

sup
J≥2

lim sup
n→∞

‖uJn‖S(I,Ḣγc ) ≤ C(I,B).

Proof. By Strichartz estimates and the pairwise divergence property, we have for any J ≥ 2,

‖uJn‖2S(I,Ḣγc )
. ‖u‖2

S(I,Ḣγc )
+

∥∥∥∥∥∥
J∑
j=2

ei(t−t
j
n)∆ψj(· − xjn) + eit∆W J

n

∥∥∥∥∥∥
2

S(I,Ḣγc )

. ‖u‖2
S(I,Ḣγc )

+

∥∥∥∥∥∥
J∑
j=2

e−it
j
n∆ψj(· − xjn) +W J

n

∥∥∥∥∥∥
2

H1
x

≤ C(I, ‖ψ1‖H1
x
) +

J∑
j=2

‖ψj‖2H1
x

+ ‖W J
n ‖2H1

x
+ on(1).

This shows that

lim sup
n→∞

‖uJn‖S(I,Ḣγc ) ≤ C(I,B).

�

Lemma 3.3. We have

‖eJn‖S′(I,L2) → 0 as J, n→∞.

Proof. Using the fact that

|G(z)−G(w)| . (|z|α + |w|α) |z − w|, (3.5)
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we have

‖eJn‖S′(I,L2) . ‖|x|−b(|uJn|α + |u|α)(uJn − u)‖S′(I,L2)

.
J∑
j=2

‖|x|−b(|uJn|α + |u|α)ei(t−t
j
n)∆ψj(· − xjn)‖S′(I,L2)

+‖|x|−b(|uJn|α + |u|α)eit∆W J
n ‖S′(I,L2). (3.6)

Observation 3.1. We have

‖|x|−b(|uJn|α + |u|α)eit∆W J
n ‖S′(I,L2) → 0 as J, n→∞.

Proof of Observation 3.1. In fact, by Lemmas 2.6, 3.1, and 3.2, we have

‖|x|−b|uJn|αeit∆W J
n ‖S′(I,L2) . ‖uJn‖θL∞t (I,H1

x)‖u
J
n‖α−θS(I,Ḣγc )

‖eit∆W J
n ‖S(I,L2)

. C(I,B)‖eit∆W J
n ‖S(I,L2).

Let (q, r) ∈ A0. As 2 < 2N
N−2 γc

< 2N
N−2 due to 4−2b

N < α < 4−2b
N−2 , we interpolate between L2 and

L
2N

N−2 γc , or L
2N

N−2 γc and L
2N
N−2 , and use Sobolev embedding to get

‖eit∆W J
n ‖Lqt (I,Lrx) . |I|

1
q ‖eit∆W J

n ‖L∞t (I,Lrx)

. |I|
1
q ‖eit∆W J

n ‖ϑL∞t (I,H1
x)‖e

it∆W J
n ‖1−ϑ

L∞t (I,L
2N

N−2 γc
x )

. |I|
1
q ‖W J

n ‖ϑH1
x
‖eit∆W J

n ‖1−ϑ
L∞t (I,L

2N
N−2 γc
x )

→ 0

as J, n→∞, where ϑ ∈ (0, 1) is a constant depending on r. It follows that

‖eit∆W J
n ‖S(I,L2) → 0 as J, n→∞.

This shows that

‖|x|−b|uJn|αeit∆W J
n ‖S′(I,L2) →∞ as J, n→∞

and similarly for ‖|x|−b|u|αeit∆W J
n ‖S′(I,L2). Thus we prove Observation 3.1. �

Observation 3.2. Let (tn)n≥1 ⊂ R and (xn)n≥1 ⊂ RN satisfy |tn|+ |xn| → ∞ as n→∞. Then
we have for any ψ ∈ H1(RN ),

‖|x|−b(|uJn|α + |u|α)ei(t−tn)∆ψ(· − xn)‖S′(I,L2) → 0 as n→∞.

Proof of Observation 3.2. To see this, we consider two cases: xn ≡ 0 and |xn| → ∞.
Case 1. xn ≡ 0. We must have |tn| → ∞. By Lemmas 2.6, 3.1, and 3.2, we have

‖|x|−b|uJn|αei(t−tn)∆ψ‖S′(I,L2) . ‖uJn‖θL∞t (I,H1
x)‖u

J
n‖α−θS(I,Ḣγc )

‖ei(t−tn)∆ψ‖S(I,L2)

. ‖ei(t−tn)∆ψ‖S(I,L2).

For (q, r) ∈ A0, we have

‖ei(t−tn)∆ψ‖Lqt (I,Lrx) . |I|
1
q ‖ei(t−tn)∆ψ‖L∞t (I,Lrx).

As I is compact, we see that |t− tn| → ∞ for each t ∈ I as n→∞ which, by dispersive estimates
(2.1), implies

‖ei(t−tn)∆ψ‖L∞t (I,Lrx) → 0 as n→∞.
Thus we get

‖|x|−b|uJn|αei(t−tn)∆ψ‖S′(I,L2) →∞ as n→∞.
Case 2. |xn| → ∞ as n→∞. Take ε > 0. We have

‖|x|−b|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,L2) = ‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2)

≤ ‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BR))

+‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BcR)),

where BR :=
{
x ∈ RN : |x| ≤ R

}
and BcR := RN\BR with R > 0 to be chosen later.
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On BcR, we split BcR = Ω1 ∪ Ω2 with

Ω1 =
{
x ∈ RN : |x| ≥ R, |x+ xn| ≤ 1

}
, Ω2 =

{
x ∈ RN : |x| ≥ R, |x+ xn| ≥ 1

}
. (3.7)

Using the same notation as in the proof of Lemma 2.6, we see that

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lr′ (A)

≤ ‖|x+ xn|−b‖Lr1x (A)‖|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lr2x (BcR)

. ‖|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lr2x (BcR),

where A is either Ω1 or Ω2 and 1
r1

= b
N ± θ

2 with the plus sign for A = Ω1 and the minus sign for
A = Ω2. By Hölder’s inequality, we have

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lr′x (BcR)

. ‖uJn(t, ·+ xn)‖θ
L
m±
x (BcR)

‖uJn(t, ·+ xn)‖α−θ
Lrx(BcR)

‖ei(t−tn)∆ψ‖Lrx(BcR)

By Hölder’s inequality in time (see again the proof of Lemma 2.6), we get

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖
Lq
′
t (I,Lr′x (BcR))

. ‖uJn(t, ·+ xn)‖θL∞t (I,H1
x)‖u

J
n(t, ·+ xn)‖α−θ

S(I,Ḣγc )
‖ei(t−tn)∆ψ‖Lqt (I,Lrx(BcR))

. ‖uJn‖θL∞t (I,H1
x)‖u

J
n‖α−θS(I,Ḣγc )

‖eit∆ψ‖Lqt (R,Lrx(BcR)).

As (q, r) ∈ A0, we see that eit∆ψ ∈ Lqt (R, Lrx), which, by the dominated convergence theorem,
yields

‖eit∆ψ‖Lqt (R,Lrx(BcR)) → 0 as R→∞.

This shows that for R0 > 0 sufficiently large, we have

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BcR0
)) <

ε

2

for all n ≥ 1.
Next, for x ∈ BR0

, as |xn| → ∞, we have |x+ xn| ≥ |xn| − |x| ≥ |xn|2 for n sufficiently large. It
follows from Lemma 2.6 that

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BR0
))

. |xn|−b‖|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2)

. |xn|−b‖uJn(t, ·+ xn)‖α
S(I,Ḣγc )

‖ei(t−tn)∆ψ‖S(I,L2)

. |xn|−b‖uJn‖αS(I,Ḣγc )
‖eit∆ψ‖S(L2) → 0

as n→∞. Thus there exists n0 > 0 sufficiently large such that for all n ≥ n0,

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BR0
)) <

ε

2
.

We obtain for all n ≥ n0,

‖|x|−b|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,L2) < ε

which shows that

‖|x|−b|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,L2) → 0 as n→∞.
Therefore, in both cases, we have

‖|x|−b|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,L2) → 0 as n→∞

and similarly for ‖|x|−b|u|αei(t−tn)∆ψ(· − xn)‖S′(I,L2). Thus Observation 3.2 is proved. �

Collecting (3.6), Observations 3.1, and 3.2, we finish the proof of Lemma 3.3. �

Lemma 3.4. We have

‖∇eJn‖S′(I,L2) → 0 as J, n→∞.
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Proof. Using the fact

|∇(|x|−b(G(z)−G(w)))| . |x|−b|∇(G(z)−G(w))|+ |x|−b−1|G(z)−G(w)|

we have

‖∇eJn‖S′(I,L2) . ‖|x|−b|∇(G(uJn)−G(u))|‖S′(I,L2) + ‖|x|−b−1|G(uJn)−G(u)|‖S′(I,L2)

=: (I) + (II). (3.8)

Term (I). Let us first treat the term (I). From the fact that

|∇(G(z)−G(w))| . |z|α|∇(z − w)|+
{

|∇w||z − w|α if 0 < α ≤ 1,
(|z|α−1 + |w|α−1)|∇w||z − w| if α > 1,

we have

(I) . ‖|x|−b|uJn|α|∇(uJn − u)|‖S′(I,L2)

+

{
‖|x|−b|∇u||uJn − u|α‖S′(I,L2) if 0 < α ≤ 1

‖|x|−b(|uJn|α−1 + |u|α−1)|∇u||uJn − u|‖S′(I,L2) if α > 1

=: (a) +

{
(b1) if 0 < α ≤ 1,
(b2) if α > 1.

For the term (b1), we have

‖|x|−b|∇u||uJn − u|α‖S′(I,L2) .
J∑
j=2

‖|x|−b|∇u||ei(t−t
j
n)∆ψj(· − xjn)|α‖S′(I,L2)

+‖|x|−b|∇u||eit∆W J
n |α‖S′(I,L2).

By Lemma 2.6, we have

‖|x|−b|∇u||eit∆W J
n |α‖S′(I,L2) . ‖eit∆W J

n ‖θL∞t (I,H1
x)‖e

it∆W J
n ‖α−θS(I,Ḣγc )

‖∇u‖S(I,L2)

. C(I,B)‖eit∆W J
n ‖α−θS(I,Ḣγc )

→ 0 as J, n→∞.

Observation 3.3. Let (tn)n≥1 ⊂ R and (xn)n≥1 ⊂ RN satisfy |tn|+ |xn| → ∞ as n→∞. Then
we have for any ψ ∈ H1(RN ),

‖|x|−b|∇u||ei(t−tn)∆ψ(· − xn)|α‖S′(I,L2) → 0 as n→∞.

Proof of Observation 3.3. The proof follows by the same argument as in the proof of Observation
3.2. In the case xn ≡ 0, we use Lemma 2.6 to have

‖|x|−b|∇u||ei(t−tn)∆ψ|α‖S′(I,L2) . ‖ei(t−tn)∆ψ‖θL∞t (I,H1
x)‖e

i(t−tn)∆ψ‖α−θ
S(I,Ḣγc )

‖∇u‖S(I,L2)

. ‖ei(t−tn)∆ψ‖α−θ
S(I,Ḣγc )

→ 0 as n→∞.

In the case |xn| → ∞, we estimate

‖|x|−b|∇u||ei(t−tn)∆ψ(· − xn)|α‖S′(I,L2) = ‖|x+ xn|−b|∇u(t, ·+ xn)||ei(t−tn)∆ψ|α‖S′(I,L2)

≤ ‖|x+ xn|−b|∇u(t, ·+ xn)||ei(t−tn)∆ψ|α‖S′(I,L2(BR))

+‖|x+ xn|−b|∇u(t, ·+ xn)||ei(t−tn)∆ψ|α‖S′(I,L2(BcR)).

On BcR, we estimate as in the proof of Lemma 2.6 and have

‖|x+ xn|−b|∇u(t, ·+ xn)||ei(t−tn)∆ψ|α‖S′(I,L2(BcR))

. ‖ei(t−tn)∆ψ‖θL∞t (I,H1
x)‖e

i(t−tn)∆ψ‖α−θ
Lat (I,Lrx(BcR))

‖∇u‖S(I,L2)

. ‖eit∆ψ‖Lat (R,Lrx(BcR)) → 0 as R→∞,

where a and r are as in the proof of Lemma 2.6. On BR with R fixed, we can use the decay of
|x|−b for |x| large. We omit the details. �
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The term (b2) is treated in a similar manner. More precisely, we have

‖|x|−b(|uJn|α−1 + |u|α−1)|∇u||uJn − u|‖S′(I,L2)

.
N∑
j=2

‖|x|−b(|uJn|α−1 + |u|α−1)|∇u||ei(t−t
j
n)∆ψj(· − xjn)|‖S′(I,L2)

+ ‖|x|−b(|uJn|α−1 + |u|α−1)|∇u||eit∆W J
n |‖S′(I,L2).

As α > 1, by Lemma 2.6, we see that

‖|x|−b|uJn|α−1|∇u||eit∆W J
n |‖S′(I,L2) . ‖uJn‖θL∞t (I,H1

x)‖u
J
n‖α−1−θ

S(I,Ḣγc )
‖eit∆W J

n ‖S(I,Ḣγc )‖∇u‖S(I,L2)

. C(I,B)‖eit∆W J
n ‖S(I,Ḣγc ) → 0 as J, n→∞.

A similar estimate goes for ‖|x|−b|u|α−1|∇u||eit∆W J
n |‖S′(I,L2). The terms

‖|x|−b(|uJn|α−1 + |u|α−1)|∇u||ei(t−t
j
n)∆ψj(· − xjn)|‖S′(I,L2)

are treated as in Observation 3.3.
Thus we have proved that

(b1), (b2)→ 0 as J, n→∞. (3.9)

For the term (a), we have

(a) .
J∑
j=2

‖|x|−b|uJn|α|∇ei(t−t
j
n)∆ψj(· − xjn)|‖S′(I,L2) + ‖|x|−b|uJn|α|∇eit∆W J

n |‖S′(I,L2)

.
J∑
j=2

‖|x|−b|uJn|α|∇ei(t−t
j
n)∆ψj(· − xjn)|‖S′(I,L2)

+

J∑
j=2

‖|x|−b|ei(t−t
j
n)∆ψj(· − xjn)|α|∇eit∆W J

n |‖S′(I,L2)

+‖|x|−b|u|α|∇eit∆W J
n |‖S′(I,L2) + ‖|x|−b|eit∆W J

n |α|∇eit∆W J
n |‖S′(I,L2). (3.10)

Observation 3.4. Let (tn)n≥1 ⊂ R and (xn)n≥1 ⊂ RN satisfy |tn|+ |xn| → ∞ as n→∞. Then
we have for any ψ ∈ H1,

‖|x|−b|uJn|α∇ei(t−tn)∆ψ(· − xn)‖S′(I,L2) → 0 as n→∞.

Proof of Observation 3.4. This result follows from the same arguments as in the proof Observation
3.2 using ∇eit∆ψ ∈ S(I, L2). In particular,

‖∇eit∆ψ‖Lqt (R,Lrx(BcR)) → 0 as R→∞.

We omit the details. �

Observation 3.5. Let (tn)n≥1 ⊂ R and (xn)n≥1 ⊂ RN satisfy |tn|+ |xn| → ∞ as n→∞. Then
we have for any ψ ∈ H1,

‖|x|−b|ei(t−tn)∆ψ(· − xn)|α|∇eit∆W J
n |‖S′(I,L2) → 0 as n→∞.

Proof of Observation 3.5. As in the proof of Observation 3.2, we consider two cases: xn ≡ 0 and
|xn| → ∞.

Case 1. xn ≡ 0. We have |tn| → ∞. By Lemma 2.6 and the fact that

sup
J≥2

sup
n≥1
‖∇eit∆W J

n ‖S(I,L2) ≤ B,

we have

‖|x|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n |‖S′(I,L2)

. ‖ei(t−tn)∆ψ‖θL∞t (I,H1
x)‖e

i(t−tn)∆ψ‖α−θ
S(I,Ḣγc )

‖∇eit∆W J
n ‖S(I,L2)

. C(B)‖ei(t−tn)∆ψ‖α−θ
S(I,Ḣγc )

,
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where B is as in (3.4). By the same argument as in the proof of Observation 3.2 using dispersive
estimates (2.1), we have

‖ei(t−tn)∆ψ‖S(I,Ḣγc ) → 0 as n→∞.

Note that for each (q, r) ∈ Aγc , we have r ∈
(

6
3−2 γc

, 6
)
⊂ (2, 6).

Case 2. |xn| → ∞ as n→∞. Take ε > 0. We have

‖|x|−b|ei(t−tn)∆ψ(· − xn)|α|∇eit∆W J
n |‖S′(I,L2)

= ‖|x+ xn|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n (·+ xn)|‖S′(I,L2)

≤ ‖|x+ xn|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n (·+ xn)|‖S′(I,L2(BR))

+‖|x+ xn|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n (·+ xn)|‖S′(I,L2(BcR)).

Estimating as in the proof of Observation 3.2 (see also the proof of Lemma 2.6), we see that

‖|x+ xn|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n (·+ xn)|‖S′(I,L2(BcR))

. ‖ei(t−tn)∆ψ‖θL∞t (I,H1
x)‖e

i(t−tn)∆ψ‖α−θ
Lat (I,Lrx(BcR))

‖∇eit∆W J
n ‖S(I,L2)

. ‖eit∆ψ‖Lat (R,Lrx(BcR)) → 0 as R→∞.

Here we have used the fact that eit∆ψ ∈ Lat (R, Lrx) as (a, r) ∈ Aγc . Thus there exists R0 > 0
sufficiently large such that

‖|x+ xn|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n (·+ xn)|‖S′(I,L2(BcR0

)) <
ε

2

for all n ≥ 1.
Next, for x ∈ BR0 , we have |x+ xn|−b . |xn|−b for n sufficiently large. It follows that

‖|x+ xn|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n (·+ xn)|‖S′(I,L2(BR0

))

. |xn|−b‖ei(t−tn)∆ψ‖α
S(I,Ḣγc )

‖∇eit∆W J
n ‖S(I,L2)

. |xn|−b‖eit∆ψ‖αS(Ḣγc )
→ 0 as n→∞.

Hence there exists n0 > 0 sufficiently large such that for all n ≥ n0,

‖|x+ xn|−b|ei(t−tn)∆ψ|α|∇eit∆W J
n (·+ xn)|‖S′(I,L2(BR0

)) <
ε

2
.

We obtain for all n ≥ n0,

‖|x|−b|ei(t−tn)∆ψ(· − xn)|α∇eit∆W J
n ‖S′(I,L2) < ε

or

‖|x|−b|ei(t−tn)∆ψ(· − xn)|α∇eit∆W J
n ‖S′(I,L2) → 0 as n→∞.

The proof of Observation 3.5 is complete. �

Observation 3.6. We have

‖|x|−b|eit∆W J
n |α|∇eit∆W J

n |‖S′(I,L2) → 0 as J, n→∞.

Proof of Observation 3.6. It follows directly from Lemma 2.6 and the fact that ‖eit∆W J
n ‖S(Ḣγc ) → 0

as J, n→∞. �

Observation 3.7. Let ϕ ∈ C∞0 (R× RN ). We have

‖|x|−b|ϕ|α|∇eit∆W J
n |‖S′(I,L2) → 0 as J, n→∞.

Proof of Observation 3.7. Without a loss of generality, we assume that supp(ϕ) ⊂ K ×BR, where
K is a compact interval of R with a non-empty intersection with I and BR is the ball center at the
origin and of radius R. Let (q′, r′) be as in the proof of Lemma 2.6. We have

‖|x|−b|ϕ|α|∇eit∆W J
n |‖S′(I,L2) ≤ ‖|x|−b|ϕ|α|∇eit∆W J

n |‖Lq′t (I,Lr′x )

≤ ‖|x|−b‖Lr1x (BR)‖|ϕ|α|∇eit∆W J
n |‖Lq′t (I∩K,Lr2x (BR))

,
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where
1

r1
=

b

N
+ θ2,

1

r2
=

1

r′
− 1

r1
=
N + 2− 2b− θ

2N
− θ2

with θ > 0 sufficiently small. By Hölder’s inequality, we have

‖|x|−b|ϕ|α|∇eit∆W J
n |‖S′(I,L2) . ‖ϕ‖αLαδt (I∩K,Lαµx (BR))‖∇e

it∆W J
n ‖L2

t (I∩K,L2
x(BR))

. ‖∇eit∆W J
n ‖L2

t (I∩K,L2
x(BR)),

where

δ :=
4

θ
, µ :=

2N

2− 2b− θ − 2Nθ2
.

Let (a, r) ∈ Aγc be as in the proof of Lemma 2.6. By (2.3), we have

‖∇eit∆W J
n ‖L2

t (I∩K,L2
x(BR)) . |I|

1
3 ( 1

2−
1
a )R

1
3 (N+2

2 −
N
r )‖eit∆W J

n ‖
1
3

Lat (I,Lrx)
‖∇W J

n ‖
2
3

L2

. C(|I|, R,B)‖eit∆W J
n ‖S(Ḣγc ) → 0 as J, n→∞

which proves Observation 3.7. �

It follows from Observations 3.4–3.7 and (3.10), we have

(a)→ 0 as J, n→∞. (3.11)

Combining (3.9) and (3.11), we have

(I)→ 0 as J, n→∞. (3.12)

Term (II). Let us now estimate the term (II). By (3.5), we have

(II) .
J∑
j=2

‖|x|−b−1(|uJn|α + |u|α)ei(t−t
j
n)∆ψj(· − xjn)‖S′(I,L2)

+‖|x|−b−1(|uJn|α + |u|α)eit∆W J
n ‖S′(I,L2) (3.13)

Observation 3.8. Let (tn)n≥1 ⊂ R and (xn)n≥1 ⊂ RN satisfy |tn|+ |xn| → ∞ as n→∞. Then
we have for any ψ ∈ H1,

‖|x|−b−1(|uJn|α + |u|α)ei(t−tn)∆ψ(· − xn)‖S′(I,L2) → 0 as n→∞.

Proof of Observation 3.8. As in the proof of Observation 3.2, we consider two cases: xn ≡ 0 and
|xn| → ∞.

Case 1. xn ≡ 0. By Lemmas 2.6, (3.1), and (3.2), we have

‖|x|−b−1|uJn|αei(t−tn)∆ψ‖S′(I,L2) . ‖uJn‖θL∞t (I,H1
x)‖u

J
n‖α−θS(I,Ḣγc )

‖∇ei(t−tn)∆ψ‖S(I,L2)

. ‖∇ei(t−tn)∆ψ‖S(I,L2).

Since t ∈ I and |tn| → ∞, we have |t− tn| → ∞ as n→∞. From dispersive estimates (2.1) and
Sobolev embedding, we infer that

‖∇ei(t−tn)∆ψ‖S(I,L2) → 0 as n→∞.
Case 2. |xn| → ∞. We proceed as in the proof of Observation 3.2. Let ε > 0. We have

‖|x|−b−1|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,L2) = ‖|x+ xn|−b−1|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2)

≤ ‖|x+ xn|−b−1|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BR))

+‖|x+ xn|−b−1|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BcR)),

where R > 0 to be chosen later.
On BcR, we have

‖|x+ xn|−b−1|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖
Lq
′
t (I,Lr′x (BcR))

. ‖uJn(t, ·+ xn)‖θL∞t (I,H1
x)‖u

J
n(t, ·+ xn)‖α−θ

S(I,Ḣγc )
‖∇ei(t−tn)∆ψ‖Lqt (I,Lrx(BcR))

. ‖uJn‖θL∞t (I,H1
x)‖u

J
n‖α−θS(I,Ḣγc )

‖∇eit∆ψ‖Lqt (R,Lrx(BcR)),
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where the exponents q′, r′, q, and r are as in the proof of Lemma 2.6. Since (q, r) ∈ A0, we see that

‖∇eit∆ψ‖Lqt (R,Lrx(BcR)) → 0 as R→∞.

Thus there exists R0 > 0 sufficiently large such that

‖|x+ xn|−b−1|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BcR0
)) <

ε

2

for all n ≥ 1.
On BR0 , we have

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2(BcR0
))

. |xn|−b−1‖|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,L2)

. |xn|−b−1‖uJn(t, ·+ xn)‖α
S(I,Ḣγc )

‖ei(t−tn)∆ψ‖S(I,L2)

. |xn|−b−1‖uJn‖αS(I,Ḣγc )
‖eit∆ψ‖S(L2) → 0

as n→∞.
Collecting the above cases, we prove that

‖|x|−b−1|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,L2) → 0 as n→∞.

A similar argument goes for ‖|x|−b−1|u|αei(t−tn)∆ψ(· − xn)‖S′(I,L2) and the proof is complete. �

Observation 3.9. Let (tn)n≥1 ⊂ R and (xn)n≥1 ⊂ RN satisfy |tn|+ |xn| → ∞ as n→∞. Then
we have for any ψ ∈ H1,

‖|x|−b−1|ei(t−tn)∆ψ(· − xn)|α|eit∆W J
n |‖S′(I,L2) → 0 as n→∞.

Proof of Observation 3.9. The proof is similar to that of Observation 3.5 using Lemma 2.6. We
thus omit the details. �

Observation 3.10. Let ϕ ∈ C∞0 (R× RN ). We have

‖|x|−b−1|ϕ|α|eit∆W J
n |‖S′(I,L2) → 0 as J, n→∞.

Proof of Observation 3.10. As in the proof of Observation 3.7, we can assume that supp(ϕ) ⊂
K ×BR, where K is a compact interval of R with a non-empty intersection with I and BR is the
ball center at the origin and of radius R. Let (q′, r′) be as in the proof of Lemma 2.6. We have

‖|x|−b−1|ϕ|α|eit∆W J
n |‖S′(I,L2) ≤ ‖|x|−b−1|ϕ|α|eit∆W J

n |‖Lq′t (I,Lr′x )

≤ ‖|x|−b−1‖Lp1x (BR)‖|ϕ|α|eit∆W J
n |‖Lq′t (I∩K,Lp2x (BR))

,

where
1

p1
=
b+ 1

N
+ θ2,

1

p2
=

1

r′
− 1

p1
=
N − 2b− θ

2N
− θ2

with θ > 0 sufficiently small. By Hölder’s inequality and Sobolev embedding, we have

‖|x|−b−1|ϕ|α|eit∆W J
n |‖S′(I,L2) . ‖ϕ‖αLαδt (I∩K,Lαµx (BR))‖e

it∆W J
n ‖

L2
t (I∩K,L

2N
N−2
x (BR))

. ‖∇eit∆W J
n ‖L2

t (I∩K,L2
x(BR)),

where δ and µ are as in the proof of Observation 3.7. Arguing as in the proof of Observation 3.7,
we have

‖∇eit∆W J
n ‖L2

t (I∩K,L2
x(BR)) . |I|

1
3 ( 1

2−
1
a )R

1
3 (N+2

2 −
N
r )‖eit∆W J

n ‖
1
3

Lat (I,Lrx)
‖∇W J

n ‖
2
3

L2

. C(|I|, R,B)‖eit∆W J
n ‖S(Ḣγc ) → 0 as J, n→∞.

This shows that

‖|x|−b−1|ϕ|α|eit∆W J
n |‖S′(I,L2) . C(|I|, R,B)‖ϕ‖αLαδt (I∩K,Lαµx (BR))‖e

it∆W J
n ‖S(Ḣγc ) → 0

as J, n→∞. The proof is complete. �
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Using (3.13) and Observations 3.8, (3.9), and (3.10), we prove that

(II)→ 0 as J, n→∞. (3.14)

Finally, the proof of Lemma 3.4 is complete by combining (3.8), (3.12), and (3.14). �

Lemma 3.5. We have
‖eJn‖S′(I,Ḣ− γc ) → 0 as J, n→∞.

Proof. By (3.5), we have

‖eJn‖S′(I,Ḣ− γc ) . ‖|x|
−b(|uJn|α + |u|α)(uJn − u)‖S′(I,Ḣ− γc )

.
J∑
j=2

‖|x|−b(|uJn|α + |u|α)ei(t−t
j
n)∆ψj(· − xjn)‖S′(I,Ḣ− γc )

+‖|x|−b(|uJn|α + |u|α)eit∆W J
n ‖S′(I,Ḣ− γc ). (3.15)

Observation 3.11. We have

‖|x|−b(|uJn|α + |u|α)eit∆W J
n ‖S′(I,Ḣ− γc ) → 0 as J, n→∞.

Proof of Observation 3.11. By Lemma 2.5, 3.1, and (3.2), we have

‖|x|−b|uJn|αeit∆W J
n ‖S′(I,Ḣ− γc ) . ‖u

J
n‖θL∞t (I,H1

x)‖u
J
n‖α−θS(I,Ḣγc )

‖eit∆W J
n ‖S(I,Ḣγc )

. C(I,B)‖eit∆W J
n ‖S(I,Ḣγc ) → 0 as J, n→∞.

A similar estimate goes for ‖|x|−b|u|αeit∆W J
n ‖S′(I,Ḣ− γc ). �

Observation 3.12. Let (tn)n≥1 ⊂ R and (xn)n≥1 ⊂ RN satisfy |tn|+ |xn| → ∞ as n→∞. Then
for any ψ ∈ H1,

‖|x|−b(|uJ |α + |u|α)ei(t−tn)∆ψ(· − xn)‖S′(I,Ḣγc ) → 0 as n→∞.
Proof of Observation 3.12. The proof of this result follows from the same argument as in Observa-
tion 3.2. In the case xn ≡ 0, hence |tn| → ∞, we have

‖|x|−b|uJn|αei(t−tn)∆ψ‖S′(I,Ḣ− γc ) . ‖u
J
n‖θL∞t (I,H1

x)‖u
J
n‖α−θS(I,Ḣγc )

‖ei(t−tn)∆ψ‖S(I,Ḣγc )

. C(I,B)‖ei(t−tn)∆ψ‖S(I,Ḣγc ).

By Sobolev embedding and the fact that |t − tn| → ∞ for each t ∈ I as n → ∞, we infer from
dispersive estimates (2.1) that

‖ei(t−tn)∆ψ‖S(I,Ḣγc ) → 0 as n→∞.

In the case |xn| → ∞, we take ε > 0 and estimate

‖|x|−b|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,Ḣ− γc ) = ‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,Ḣ− γc )

≤ ‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,Ḣ− γc (BR))

+‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,Ḣ− γc (BcR))

for some R > 0 to be chosen later.
On BcR, using the same notation as in the proof of Lemma 2.5, we have

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lr̂′x (A)

≤ ‖|x+ xn|−b‖Lγx(A)‖|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lρx(BcR)

. ‖|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lρx(BcR),

where A is either Ω1 or Ω2 (see (3.7)) and 1
γ = b

N ± θ
2 with the plus sign for A = Ω1 and the minus

sign for A = Ω2. By Hölder’s inequality, we have

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖Lr̂′x (BcR)

. ‖uJn(t, ·+ xn)‖θL∞t (I,H1
x)‖u

J
n(t, ·+ xn)‖α−θ

S(I,Ḣγc )
‖ei(t−tn)∆ψ‖Lât (I,Lr̂x(BcR))

. ‖uJn‖θL∞t (I,H1
x)‖u

J
n‖α−θS(I,Ḣγc )

‖eit∆ψ‖Lât (R,Lr̂x(BcR)).
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Since (â, r̂) ∈ Aγc , we have eit∆ψ ∈ Lât (R, Lr̂x), which, by the dominated convergence theorem,
implies

‖eit∆ψ‖Lât (R,Lr̂x(BcR)) → 0 as R→∞.
Thus there exists R0 > 0 sufficiently large such that

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,Ḣ− γc (BcR0
)) <

ε

2
for all n ≥ 1.

On BR0 , we make use of the fact that |x+ xn|−b . |xn|−b for n sufficiently large to get

‖|x+ xn|−b|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,Ḣ− γc (BR0
))

. |xn|−b‖|uJn(t, ·+ xn)|αei(t−tn)∆ψ‖S′(I,Ḣ− γc )

. |xn|−b‖uJn(t, ·+ xn)‖α
S(I,Ḣγc )

‖ei(t−tn)∆ψ‖S(I,Ḣγc )

. |xn|−b‖uJn‖αS(I,Ḣγc )
‖eit∆ψ‖S(Ḣγc ) → 0 as n→∞.

Thus we prove that there exists n0 > 0 sufficiently large such that for all n ≥ n0,

‖|x|−b|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,Ḣ− γc ) < ε

hence
‖|x|−b|uJn|αei(t−tn)∆ψ(· − xn)‖S′(I,Ḣ− γc ) → 0 as n→∞.

Collecting the above two cases, we prove Observation 3.12. �

Finally, Lemma 3.5 follows directly from (3.15), Observations (3.11), and (3.12). �

From Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5, we infer from the stability theory Lemma 2.9 that for n
sufficiently large, un is defined on I × RN and satisfies

lim sup
n→∞

‖un‖L∞t (I,H1
x)∩S(I,Ḣγc )∩S1(I,L2) <∞

and
un(t, x) = uJn(t, x) + rJn(t, x)

with

‖rJn‖L∞t (I,H1
x)∩S(I,Ḣγc )∩S1(I,L2) → 0 as J, n→∞.

Since

rJn(t, x) = un(t, x)− uJn(t, x) =
(
un(t, x)− eit∆φn(x)

)
−
(
u(t, x)− eit∆ψ1(x)

)
, (3.16)

we see that rJn is independent of J , hence rJn = rn with

‖rn‖L∞t (I,H1
x)∩S(I,Ḣγc )∩S1(I,L2) → 0 as n→∞. (3.17)

Let γ ∈ [0, 1] and fix J ≥ 2 and t ∈ I. As ‖rn‖L∞t (I,H1
x) → 0 as n→∞, we have

‖un(t)‖2
Ḣγx

=

∥∥∥∥∥∥u(t) +

J∑
j=2

ei(t−t
j
n)∆ψj(· − xjn) + eit∆W J

n

∥∥∥∥∥∥
2

Ḣγx

+ on(t)

= ‖u(t)‖2
Ḣγx

+

∥∥∥∥∥∥
J∑
j=2

ei(t−t
j
n)∆ψj(· − xjn) + eit∆W J

n

∥∥∥∥∥∥
2

Ḣγx

+ on(t)

+

J∑
j=2

〈
u(t), ei(t−t

j
n)∆ψj(· − xjn)

〉
+
〈
u(t), eit∆W J

n

〉
= ‖u(t)‖2

Ḣγx
+

J∑
j=2

‖ψj‖2
Ḣγx

+ ‖W J
n ‖2Ḣγx + on(t)

+

J∑
j=2

〈
u(t), ei(t−t

j
n)∆ψj(· − xjn)

〉
+
〈
u(t), eit∆W J

n

〉
, (3.18)
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where 〈·, ·〉 stands for the scalar product in Ḣγ(RN ). Since |tjn|+ |xjn| → ∞, it follows from Lemma
2.10 that for each j ∈ {2, · · · , J},〈

u(t), ei(t−t
j
n)∆ψj(· − xjn)

〉
→ 0 as n→∞.

Here we note that the time t is fixed. Similarly, as W J
n ⇀ 0 weakly in H1 as J, n→∞, we have〈

u(t), eit∆W J
n

〉
→ 0 as J, n→∞. Thus for ε > 0, there exist J1, n1 ∈ N sufficiently large such that

for n ≥ n1, ∣∣∣‖un(t)‖2
Ḣγx
− ‖u(t)‖2

Ḣγx
−

J1∑
j=2

‖ψj‖2
Ḣγx
− ‖W J1

n ‖2Ḣγx
∣∣∣ < ε

2
.

It follows that∣∣∣‖un(t)‖2
Ḣγx
− ‖u(t)‖2

Ḣγx
−

J∑
j=2

‖ψj‖2
Ḣγx
− ‖W J

n ‖2Ḣγx −
J1∑

j=J+1

‖ψj‖2
Ḣγx

+ ‖W J
n ‖2Ḣγx − ‖W

J1
n ‖2Ḣγx

∣∣∣ < ε

2
.

As

W J
n (x) =

J1∑
j=J+1

e−it
j
n∆ψj(x− xjn) +W J1

n (x),

we see that

‖W J
n ‖2Ḣγx =

J1∑
j=J+1

‖ψj‖2
Ḣγx

+ ‖W J1
n ‖2Ḣγx + on(1).

Thus there exists n2 ∈ N sufficiently large such that for all n ≥ n2, we have∣∣∣‖W J
n ‖2Ḣγx −

J1∑
j=J+1

‖ψj‖2
Ḣγx
− ‖W J1

n ‖2Ḣγx
∣∣∣ < ε

2
.

It follows that for n ≥ max{n1, n2}, we have∣∣∣‖un(t)‖2
Ḣγx
− ‖u(t)‖2

Ḣγx
−

J∑
j=2

‖ψj‖2
Ḣγx
− ‖W J

n ‖2Ḣγx
∣∣∣ < ε.

Therefore, for each J ≥ 2, t ∈ I, and γ ∈ [0, 1], we have

‖un(t)‖2
Ḣγx

= ‖u(t)‖2
Ḣγx

+

J∑
j=2

‖ψj‖2
Ḣγx

+ ‖W J
n ‖2Ḣγx + εn(t). (3.19)

Finally we will show that the Pythagorean expansion (3.19) is uniformly in t ∈ I, that is,

lim
n→∞

εn(t) = 0

uniformly in t ∈ I. From (3.17) and (3.18), it suffices to show that if ϕ ∈ C(I,H1) and ψn converges
weakly to zero in H1(RN ), then

lim
n→∞

〈
ϕ(t), eit∆ψn

〉
= 0 (3.20)

uniformly in t ∈ I. Assume by contradiction that (3.20) does not hold. Then there exist C > 0 and
tn ∈ I such that, up to extraction,

|
〈
ϕ(tn), eitn∆ψn

〉
| ≥ C > 0.

Since I is compact, passing to a subsequence if necessary, one can assume that tn → β ∈ I and

|
〈
ϕ(tn), eitn∆ψn

〉
| = |

〈
e−itn∆ϕ(tn), ψn

〉
| ≥ C > 0.

As e−itn∆ϕ(tn)→ e−iβ∆ϕ(β) and ψn ⇀ 0 weakly in H1(RN ), we get〈
e−itn∆ϕ(tn), ψn

〉
→ 0 as n→ 0

which is a contradiction. The proof of Theorem 1.3 is now complete.
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4. Compactness property

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Let (φn)n≥1 ⊂ H satisfy φn ⇀ φ weakly in H1(RN ). Denote un : R×RN →
C and u : R× RN → C the global solutions to (1.1) with initial data un|t=0 = φn and u|t=0 = φ,
respectively. Note that our assumptions on H ensures that these solutions exist globally in time.

Since (φn)n≥1 is bounded in H1(RN ), we have: for each integer J ≥ 2, there exists a subsequence,
still denoted by (φn)n≥1, such that

φn(x) = ψ1(x) +

J∑
j=2

e−it
j
n∆ψj(x− xjn) +W J

n (x)

with |tjn|+ |xjn| → ∞ for each j = 2, · · · , J and the properties (1.11), (1.12). Thanks to Lemma
2.10 and the fact that W J

n ⇀ 0 weakly in H1(RN ), we see that φn ⇀ ψ1 weakly in H1(RN ). By
the uniqueness of weak convergence, we have ψ1 ≡ φ.

Let I ⊂ R be a compact interval. It follows from (3.16) that

(un(t)− eit∆φn)− (u(t)− eit∆φ) = rn(t)

which, by (3.17), implies

un − eit∆φn → u− eit∆φ strongly in L∞t (I,H1
x) ∩ S(I, Ḣγc) ∩ S1(I, L2)

as n→∞.
As the limit does not depend on the choice of subsequence of (φn)n≥1, the above convergence

holds for the whole sequence. The proof is complete. �
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