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Networks are pervasive for complex systems modeling, from biology to language or social
sciences, ecosystems or computer science. Detecting communities in networks is among the
main methods to reveal meaningful structural patterns for the understanding of those systems.
Although dozens of clustering methods have been proposed so far, sometimes including
parameters such as resolution or scaling, there is no unified framework for selecting the
method best suited to a research objective. After more than 20 years of research, scientists
still justify their methodological choice based on ad-hoc comparisons with ‘ground-truth’
or synthetic networks, making it challenging to perform comparative study between those
methods. This paper proposes a unified framework, based on easy-to-understand measures,
that enables the selection of appropriate clustering methods according to the situation. If
required, it can also be used to fine-tune their parameters by interpreting them as description
scale parameters. We demonstrate that a new family of algorithms inspired by our approach
outperforms a set of state-of-the-art community detection algorithms, by comparing them on
a benchmark dataset. We believe our approach has the potential to provide a fresh start and
a solid foundation for the development and evaluation of clustering methods across a wide
range of disciplines.

community detection | complex networks | multi-scale

Rationale

From biology to social sciences, ecosystems or computer
science, complex systems are defined as large sets of

entities interacting in a decentralized ways. Networks (or
graphs) are one of the main conceptual structures for modeling
them (1–4), where nodes {v ∈ V } represent the basic entities
and edges {e ∈ E}, defined as pairs of nodes, represent their
interactions.

This simplified representation of a complex system has the
advantage of revealing groups of densely connected nodes
called modules, from the study of which we can infer or
deduce particular characteristics or functions. A complex
system can then be conceptualized as the interactions between
these modules, an operation that de facto defines a scale
of description. The counterpart of these modules in the
conceptual representation are called clusters or communities.

This poses two legitimate questions: How to decompose
a complex system? And which are the appropriate scales
for this decomposition? The first question is a fast growing
research field per se in mathematics and computer science
with thousands publications per year. It is the art to define
clustering or community detection methods on graphs. Some
of these methods have been criticized for their inhability to
adapt to different scales of observation (5), while others include
explicitly a resolution parameter to address second question
(6, 7). There is however no unified framework to compare
clustering methods two by two and consequently to choose one
rather than the other. The lack of precise semantics in defining
what constitutes a ‘good clustering’ leads to incomparable out-
puts from different clustering methods, hindering constructive
debates on their comparative advantages and slowing down
research progress.
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Hereafter, we provide such semantics as well as an associ-
ated unified framework to compare any clustering methods on
undirected and unweighted graphs.

Types of graph clustering. For a set of vertices V (the entities),
let’s note P(V ) the subsets of V and P2(V ) ⊂ P(V ) the pairs
of elements from V . For E ⊂ P2(V ), G = (V, E) defines an
undirected graph on V .

By definition, a set C ∈ P(P(V )) such that C = {Ci|Ci ⊂
V, Ci ≠ ∅, i ∈ I} is a clustering of G with clusters Ci if and
only if

⋃
i∈I

Ci = V . It is a partitional clustering if clusters do
not overlap (∀i ̸= j ∈ I, Ci ∩ Cj = ∅), else it is an overlapping
clustering. The number of partitional clustering of a set of size
n = |V | is equal to the nth Bell number, a sequence known to
grow exponentially (8). Consequently, this definition tells us
what a clustering is, but not what a ‘good clustering’ is among
the huge number of possible clustering. Therefore we need
metrics to evaluate clustering according to our needs. The
state of the art identifies more than 70 different metrics to
evaluate the quality of a clustering (9–11), which fall into two
categories:

Intrinsic metrics aiming at finding clustering on a
graph G according to some general principles (like the
modularity of (12, 13) or the compressibility of (14));

Extrinsic metrics aiming at evaluating clustering (e.g.
the Rand index (15)) in relation to a priori known
structures or ‘ground-truth’ clustering, such as clusters
of synthetic networks (16).

Then in each category, one can find metrics for partitional
clustering or overlapping clustering. This leads to four kinds
of metrics: intrinsic or extrinsic, for clusters with or without
overlapping. Up to our knowledge (see also (9–11)), no
framework so far has been proposed for the simultaneous
evaluation of intrinsic and extrinsic metrics for partition and
overlapping clustering.

Rethinking graph clustering

Graph clustering interpreted as graph compression . To overcome
this problem, let’s start giving some semantics to clustering
methods. If we interpret a clustering as a means to describe a
complex systems at some scale, or to ‘compress’ the graph that
describes it, it’s essential to note that the typical definition
of clustering doesn’t explicitly address the edges of the
graph. Since edges play a crucial role in graph description,
representing a graph through its clusters shouldn’t disregard
the edges. Instead, it involves approximating that all elements
within a cluster are connected while assuming no connections
exist between clusters. This simplifies the network description
as a set of cliques, with some edges within cliques being falsely
observed (false positives) and some edges between cliques being
omitted (false negatives).

This approximation of a graph by a clustering can be
formalized by defining Ĉ =

(
U(C), Ξ(C)

)
the derived graph

from the clustering C using the following two functions:

U : P(P(V )) −→ P(V ), U(C) =
⋃

Ci∈C

Ci [1]

Ξ : P(P(V )) −→ P2(V ), Ξ(C) =
⋃

Ci∈C

P2(Ci) [2]

These functions satisfy the following properties:

• If C is a clustering of a graph G = (V, E) then U(C) = V ;

• ∀ E ⊂ P2(V ), Ξ(E) = E;

• ∀ C ⊂ P(P(V )), Ξ(Ξ(C)) = Ξ(C).

And for any clustering C on a graph G we can compute the
following metrics which assess the capacity of Ĉ to approximate
G:

Precision: P (Ĉ, G) = |Ξ(C)∩E|
|Ξ(C)| .

This is the probability that an edge drawn at random in Ξ(C)
actually belongs to E. It measures the ability of the clustering
C not to include non-edges of the graph G in its clusters.

Recall: R(Ĉ, G) = |Ξ(C)∩E|
|E| .

This is the probability that an edge drawn at random in E
belongs to Ξ(C). It measures the ability of the clustering C to
include edges of the graph G in its clusters.

Then for any clustering C on a graph G = (V, E), precision
and recall satisfy the following property:

P (Ĉ, G) = 1 & R(Ĉ, G) = 1
⇕

U(C) = V & Ξ(C) = E

⇕

Ĉ = G

For overlapping clustering, the set of the edges E and the set of
maximal cliques Cmc on a graph G are such that Ê = Cmc

∧
= G.

For partitional clustering, these two measures are antagonistic,
unless the graph is reduced to a set of unconnected cliques:
improving the recall decreases the precision and improving
the precision decreases the recall.

Graph clustering as a bi-objective task. The antagonistic relation
between precision and recall, as defined above, means that
describing complex systems as sets of non overlapping clusters
on networks (or as lossy compressed networks) should be
envisioned as a bi-objective approach that generally does not
have solutions optimizing both objectives at the same time.
The evaluation of these methods should thus be parameterized
by the desired trade-off between precision and recall of the
corresponding description. One of the common way to do this
parameterization is to use the F-score function:

Fs(P, R) = (1 + f(s)2).(P.R)
R + f(s)2.P

[3]

With f(s) = tan( π.s
2 ) and F1(P, R) = R.

For s = 0.5 precision and recall are of the same importance
(when you compress the graph, loosing a edge or adding one
costs as much), for s = 0, only the precision counts, whereas
for s = 1, only the recall counts.

This trade-off defines a scale of description of the system
under study: for s values close to 0, precision will be higher

2 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Gaume et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

with a greater number of smaller and denser clusters ; while for
s values close to 1, recall will be higher with a fewer number
of bigger but less dense clusters (eventually only one, with all
nodes). The scale s can be used to adjust the granularity of
our point of view on the real-world, as with the wheel of a
telescope.

To illustrate the change in perspective of the proposed
framework, we consider a toy graph Gtoy, all its possible
partitions and their respective precision and recall scores (cf.
Fig. 1). Some of these partitions have the properties that
no other partition exist that both increases the precision and
the recall. These special partitions are called Pareto front
– or Pareto optimal solutions, noted P os(Gtoy). To select
a particular partition clustering from the Pareto front, we
need to specify our priorities in terms of precision and recall,
essentially determining a scale of description represented by a
value s. This decision hinges on defining what constitutes a
‘good clustering’. Only after deciding on a description scale
can we compare two clusterings and assess the performance of
different clustering methods.

Fig. 1. The set of all the 21 147 partitional clustering of Gtoy in the
precision (P) / recall (R) space. The Pareto front is highlighted in red.

Understanding complex systems necessitates comparing
various scales of organization. Typically, a fundamental scale
is chosen for measuring basic entity properties, alongside a
separate scale for describing interactions between these entities.
For example, the study of living systems can focus on the
higher order structures (modules) built from different types
of basic entities such as the genes, the cells, the organs, the
individuals, etc. Each description is complementary but offers
distinct insights. Thus, analyzing complex systems involves
both subjective decisions (regarding the choice of the basic
entities and scale of interaction description) ; and an objective
methodology (determining the optimal system division to
unveil modules at the chosen scale). If clustering methods are
viewed as tools for defining these structures, establishing a
description scale precedes the selection of clustering methods.
Consequently, the approach outlined in this paper offers a
unified framework for comparing clustering methods within a
chosen interaction description scale.

Results

New clustering methods based on Fs optimization. We have shown
so far that it is possible to propose a conceptual framework
for comparing any type of clustering. Let’s now show that it
can also be used to define a family of new clustering methods,

hereafter noted nP nB clustering, that outperform existing
ones.

Given an undirected and unweighted graph G = (V, E)
and a desired description scale sp, the trivial clustering
C = {{i}| i ∈ V } where each vertice is assigned to its own
cluster is a partitional clustering. Then ∀s ∈ [0, 1] its Fs score
Fs(P (Ĉ, G), R(Ĉ, G)) = 0 since its recall R(Ĉ, G) = 0.

We can then improve this trivial clustering by an agglom-
eration process that reviews each edge of G only once and
merges the clusters of their vertices if this operation does
not decrease Fsp (P (Ĉ, G), R(Ĉ, G)) (cf. Sect. A algorithm 1
nP nBsp for pseudo-code).

The order in which edges are traversed is essential. The
proposed algorithm involves choosing an ordering function
on E derived from a similarity measure Sim(G, x, y) on
the vertices of G. Edges {x, y} ∈ E are then reviewed by
descending order of Sim(G, x, y).

The intuition is as follows: since graph classification aims
to group vertices sharing certain structural properties, pairs
of vertices that are most similar should be considered first in
the clustering process.

The quality of the process strongly depends on the choice
of the Sim similarity measure, and there is no guarantee of
obtaining an optimal approximation Ĉ of G relatively to Fsp .
However, few trials are sufficient to find similarity measures
such that the associated partitional clustering outperforms
state-of-the-art partitional clustering methods.

We tested 84 state-of-the-art similarities (18). One of the
best scalable metrics was CosP which has been chosen in the
subsequent application (cf. Sect. A ):

CosP (G = (V, E), x, y)
=

Cosinus

(−−−−−−−−−−−−−−−−→
(P 2

G(x⇝x),P 2
G(x⇝y)),

−−−−−−−−−−−−−−−−→
(P 2

G(y⇝x),P 2
G(y⇝y))

)
This approach can be generalized to define families of

overlapping clustering nP nB
sp
so (cf. Sect. B and algorithm

2) where sp defines the desired scale of description and so

defines the desired amount of overlapping.

Clustering methods comparison. In the following, we will distin-
guish the use of Eq. 3 as the function Fs to be optimized
for the family nP nBs using the variable name s, and its
use as the function Fσ in the context of the selection of the
description scale using the variable name σ to evaluate the
various clustering methods. Note that the metric Fσ=0.5 gives
equal importance to precision and recall (Eq. 3) ; and can be
interpreted as a ‘middle point of view’. It has both homogeneity
and completeness, two fundamental properties for metrics
intending compare clusterings (19). On contrary, precision
has only homogeneity property –it is the archetypal metric of
homogeneity– and recall has only completness property –it is
the archetypal metric of completness.

We now show how we can compare the performance of
the proposed nP nB clustering family and several hitherto
incommensurable state-of-the-art algorithms: Louvain (20),
Infomap (14) , Starling (21), and Spectral Graph Cluster-
ing (7) – for which we consider several resolutions– applied on
a real-world network Gem = (Vem, Eem) (22).

Gaume et al. PNAS — April 4, 2024 — vol. XXX — no. XX — 3
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This network Gem describes e-mail data from a large
research institution composed of a set Vem of employees. This
is a standard benchmark with |Vem| = 1, 005, |Eem| = 16, 064.
The graph contains an undirected edge {i, j} if employee i
and employee j have exchanged at least one e-mail either
way. The dataset (available at https://snap.stanford.edu/data/
email-Eu-core.html) on which Gem is build, also contains the
list of the 42 departments of the research institute that are
often considered as a ‘ground-truth’ partition CDep on Gem.

We add to this clusterings comparison the Oracle method
metDep returning the ‘ground-truth’ partition CDep itself and
the omniscient overlapping clustering method metE returning
the edges of graph itself (C = E ⊂ P2(V )).

For nP nB clustering, we consider two families: the
partitional clustering family nP nBsp , returning partitional
clustering based on the optimization of Fsp and the overlapping
clustering nP nB

sp
so , returning overlapping clustering based on

gluantly extending the clusters produced by nP nBsp through
the optimization of Fso .

Spectral Graph Clustering (SGC, (7)) methods require to
specify the number κ of clusters. Our comparison includes the
SGC partitional clustering for κ = 24 (SGC24) and κ = 54
(SGC54). We select these two values because at scale σ = 0.5,
which is a natural entry point to compare clustering given the
two properties of homogeneity and completeness of Fσ=0.5, (i)
SGC24 is the one with the best extrinsic score relatively to
CDep and (ii) SGC54 is the one with the best intrinsic score ;
i.e. ∀κ ∈ N, 0 < κ ≤ |Vem|:

(i) F0.5(RDep
κ , P Dep

κ ) < F0.5(RDep
24 , P Dep

24 ) with RDep
κ =

R(SGCκ

∧
, CDep)
∧

and
P Dep

κ = P (SGCκ

∧
, CDep)
∧

;

(ii) F0.5(Rem
κ , P em

κ ) < F0.5(Rem
54 , P em

54 ) with Rem
κ =

R(SGCκ

∧
, Gem) and

P em
κ = P (SGCκ

∧
, Gem) ;

Fig. 2 displays the performances of each clustering
method according to the scale of description σ ∈ [0, 1].
A key result is that the family of overlapping clusterings
{nP nB

sp=σ
so=0.15}σ∈[0 1] outperforms all other methods when

their scale parameter sp is set to coincide with the desired
scale of description σ. This result holds if we restrict ourselves
to partitional clustering. For a given scale of description
σ, nP nBsp=σ outperforms the other partitional clustering
methods tested. Removing those two families of clustering
methods from the comparison, none of the methods tested
outperforms the others for all scales of description σ.

Fig. 3 displays methods applied to Gem on the precision-
recall plane. It highlights the trade-off made by each clustering
methods in terms of precision and recall. Several lessons can
be drawn from this visualization:
First: Non parameterized methods like Louvain, Infomap or
Starling differ in the trade-offs they make.
Second: Parameterized methods SGC perform less well on
both dimensions than the family nP nB:

• Both precision and recall of nP nB0.50 are greater than
these of SGCκ=54;

Fig. 2. Performance Fσ(P (̂∗, Gem), R(̂∗, Gem)) of clustering methods as derived

graphs ∗̂ = ̂met(Gem) according to the description scale σ.

• Both precision and recall of nP nB0.70 are greater than
these of SGCκ=24.

Last: The ‘ground-truth’ clustering CDep has poor preci-
sion/recall scores, which calls into question its relevance as a
‘ground-truth’ reference.

Fig. 3. Comparison in the precision-recall plane of the performances of different
clustering methods when applied to the e-mail graph Gem. The Oracle methods
metDep and the Omniscient methods metE are highligthed in red.

Table 1 compares, at scale of description σ = 0.5, methods
intrinsically against the original graph Gem, and extrinsically
against the derived graph CDep

∧
from the ‘ground-truth’ CDep.

Intrinsically: The best result –both best precision and
recall– is obtained with nP nB0.5

0.15 and the best Fσ=0.5 score
for partitional clustering is not obtained with metDep but with

4 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Gaume et al.
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nP nB0.5. This could be understood by the fact that nP nB0.5

is optimizing F0.5 (s the optimized scale by nP nBs is equal
to the description scale σ used for evaluation).
Extrinsically: The omniscient method strikingly presents
the worst Fσ=0.5 score, which again calls into question the
relevance of CDep as a ‘ground-truth’ reference: research
departments of a research institution are apparently not the
right structures to explain patterns in e-mail exchanges among
its employees. Defining a proper ‘ground-truth’ reference is
a difficult task. Expert often disagree with each other even
when their judgements are based on the same protocol (23).
Clearly defining the desired scale of description and measuring
quality with the Fσ function can help to define ‘ground-truth’
in a more consensual way in the future.

Table 1. Intrinsic and extrinsic scores of clustering methods:
Each row gives the precision, recall and Fσ=0.5 score for the graphs
derived from the clustering of Gem against both the original graph
Gem and the ‘ground-truth’ departments clustering. Best scores are
highlighted in red.

Intrinsic Extrinsic

Scores ×100 Gem CDep

∧

Omniscient metE 100,100,100 34,23,27
Oracle metDep 23,34,27 100,100,100

SGC54 36,30,33 56,31,40
SGC24 22,43,30 46,60,52
Louvain 10,63,17 18,80,30
Infomap 13,60,21 22,70,33
Starling 26,45,33 51,61,56
nP nB0.50 41,35,(38) 59,34,43
nP nB0.50

0.15 (41,63),49 40,42,41

Prior to this work, it was impossible to compute Table 1
due to the lack of a framework for comparing partitional
and overlapping clusterings to both the original graph and a
‘ground-truth’ clustering. This is a key result of the existence
of a unified graph clustering framework.

Conclusion

We have proposed a general framework to compare different
clustering algorithms that where previously incommensurable.
This unified framework naturally includes the notion of
description scale found in many clustering algorithms in the
form of a resolution or granularity parameter. Evaluation in
this framework is based on meaningful metrics, the precision
and the recall, widely used in science and therefore easily
understandable by most users of real-world graphs. This
framework is effective in the sense that it provides inspiration
for new clustering algorithms that both outperform existing
ones in the precision/recall dimensions and make sense when
applied on real-world graph. It also makes it possible to
assess the relevance of ‘ground-truth’ references that are
sometimes proposed when studying complex networks. Further
development of this framework could take into account
the directionality of certain networks, edge weights where
appropriate, and their temporal dimension.
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A. The Families nPnB: binary classifier of node Pairs by node Blocks

A. Similarity between edges ends for the agglomerative strategy of nP nBsp . The Algorithm 1 nP nBsp describes our method
to find a partitional clustering C such that the graph Ĉ best approximates the graph G relatively to Fsp (P (Ĉ, G), R(Ĉ, G)),
where sp defines the desired scale of description. In algorithm 1, Sim(G, x, y) is a similarity between nodes which serves as an
agglomerative strategy on the edges {x, y} ∈ E to merge two clusters C1 such that x ∈ C1 and C2 such that y ∈ C2 if it is
not decreasing Fsp (P (Ĉ, G), R(Ĉ, G)) (Line2). We tested 84 state-of-the-art similarities (18). The best results (in decreasing
performances) were obtained with the three similarities Cm, Confluence and CosP :

Cm(G = (V, E), x, y) = Max
(
{0} ∪ {|C| such x, y ∈ C ∈ Cliques of G}

)

Confluence(G = (V, E), x, y) =


0 if x = y,
P 3

Gx,y (x⇝y)− dGx,y (y)
2(|E|−1)

P 3
Gx,y (x⇝y)+ dGx,y (y)

2(|E|−1)

otherwise.

CosP (G = (V, E), x, y) = Cosinus
(−−−−−−−−−−−−−−−−→
(P 2

G(x⇝x), P 2
G(x⇝y)),

−−−−−−−−−−−−−−−−→
(P 2

G(y⇝x), P 2
G(y⇝y))

)
Where: Gx,y =

(
V,

{
e ∈ E such e ̸= {x, y}

})
; dG(x) = |{y ∈ V/{x, y} ∈ E}|; and P ϖ

G (x⇝y) is the probability that a
random walker wandering on the graph G through its edges, reaches the node y after ϖ steps starting from the node x.

For roughly equivalent performances, the worst-case time complexity of CosP , Confluence and Cm (respectively O(2|E|),
O(3|E|) and O(3

|V |−2
3 ), (24)) favors CosP . In order to place ourselves in the worst-case scenario of dealing with large graphs,

the results in this paper are based on the CosP similarity both for algorithm 1 (partitional clustering) and 2 (overlapping
clustering). Note that different edges {x1, y1} ∈ E and {x2, y2} ∈ E might happen to have the exact same Sim value
(Sim(G, x1, y1) = Sim(G, x2, y2)), making the process non-deterministic in general, because of its sensitivity on the order in
which the edges with identical Sim values are processed ((Line1) and (Line2) respectively in algorithms 1 and 2). To avoid
such non-deterministic process, we can sort edges by first comparing their Sim values and then using the lexicographic order
on the words x1 y1 and x2 y2 (with x1 < y1 and x2 < y2) when Sim values are strictly identical.

B. nP nB
sp
so defining overlapping clustering . The Algorithm 2 nP nB

sp
so describes our method to find an overlapping clustering

C such that |C| ⩽ |V | and the graph Ĉ best approximates the graph G, where sp defines the desired scale of description and
so defines the desired amount of overlap. It is based on gluantly extending the clusters of Csp = nP nBsp (G) through the
optimization of Fso (P (Csp

∧
, G), R(Csp

∧
, G)).

Let Csp = nP nBsp (G) and Csp
so = nP nB

sp
so (G). With algorithms 1 and 2, it is then clear that for any graph G = (V, E):

• ∀ sp, so ∈ [0, 1], Ξ(Csp ) ⊆ Ξ(Csp
so ) (Because Line1 & Line3 in Algo. 2). This has the direct consequence:

∀ sp, so ∈ [0, 1], R(Csp

∧
, G) ⩽ R(Csp

so

∧
, G)

• ∀ sp, so ∈ [0, 1], |Csp
so | ⩽ |Csp | ⩽ |V | (Because Csp is a partition of V and Line4 & Line5 in Algo. 2).
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Algorithm 1 Cp = nP nBsp (G): To find Partitional Clustering
Input:

G = (V, E) ▶ An undirected graph
sp ∈ [0, 1] ▶ For optimizing Fsp (P (Ĉp, G), R(Ĉp, G)) with Blocks without overlaps

Output:
Cp ▶ A Partitional Clustering of G

1: X ↢
{

{i, j} ∈ E such i ̸= j
}

2: for i ∈ V do ▶ Initialization
3: modi ↢ {i} ▶ One node per cluster
4: Mi ↢ i ▶ node i is in cluster i

5: Υ↢ ∅; T P ↢ 0; F P ↢ 0; F N ↢ |E|; F score↢ 0

6: While Υ ̸= X do
7: {i, j}↢ arg max

{x,y}∈X−Υ
Sim(G, x, y) ▶ Strategy based on Sim of edges(Line1)

8: Υ↢ Υ ∪ {{i, j}}

9: if Mi ̸= Mj then ▶ modi and modj have not yet been merged together

10: newT P ↢ T P ; newF P ↢ F P ; newF N ↢ F N
11: for u ∈ modi do
12: for v ∈ modj do
13: if {u, v} ∈ E then
14: newT P ↢ newT P + 1
15: newF N ↢ newF N − 1
16: else
17: newF P ↢ newF P + 1

18: newF score↢
(1+(f(sp)2).newT P

(1+(f(sp)2).newT P +f(sp)2.newF N+newF P

19: if F score ⩽ newF score then ▶ (Line2)
20: modi ↢ modi ∪ modj ▶ modj merge with modi in modi

21: modj ↢ ∅ ▶ modj is removed

22: for k ∈ V do ▶ Updating the membership list
23: if Mk = j ▶ node k was in modj

24: Mk ↢ i ▶ node k is now in modi

25: T P ↢ newT P ; F P ↢ newF P ; F N ↢ newF N
26: F score↢ newF score

27: Cp ↢ ∅

28: for i ∈ V do
29: if modi ̸= ∅ ▶ modi is alive
30: Cp ↢ Cp

⋃ {
modi

}
31: Return Cp
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Algorithm 2 Co = nP nB
sp
so (G = (V, E)): To find Clustering allowing overlaps such |Co| ⩽ |V |

Input:
G = (V, E) ▶ An undirected graph

sp ∈ [0, 1] ▶ For optimizing Fsp (P (Cp

∧
, G), R(Cp

∧
, G)) with Blocks without overlaps

so ∈ [0, 1] ▶ For gluantly exend, in Co, the clusters of Cp by optimizing Fso (P (Cp

∧
, G), R(Cp

∧
, G))

Output:
Co ▶ A Clustering of G with Blocks allowing overlaps

1: Cp ↢ nP nBsp (G) ▶ Partitional Clustering optimizing Fsp (P (Cp

∧
, G), R(Cp

∧
, G))

2: X ↢
{

{i, j} ∈ E such i ̸= j
}

3: for modIi ∈ Cp do ▶ Initialization
4: modOi ↢ modIi ▶ modOi of Co is equal to modIi of Cp (Line1)
5: for j ∈ modIi do
6: Mi ↢ j ▶ node j is in cluster i of Cp

7: Υ↢ ∅; T P ↢ |Ξ(Cp)
⋂

E|; F P ↢ |Ξ(Cp)
⋂

E|; F N ↢ |Ξ(C)
⋂

E|
8: F score↢ (1+f(so)2).T P

(1+f(so)2).T P +f(so)2.F N+F P

9: While Υ ̸= X do
10: {i, j}↢ arg max

{x,y}∈X−Υ
Sim(G, x, y) ▶ Strategy based on Sim of edges (Line2)

11: Υ↢ Υ ∪ {{i, j}}
12: if Mi ̸= Mj then ▶ i and j are not in a same cluster of Cp

13: for (x1, x2) ∈
{

(i, j), (j, i)
}

do
14: if x1 /∈ modOx2 then ▶ x1 is not already added to modOx2 of Co

15: newT P ↢ T P ; newF P ↢ F P ; newF N ↢ F N
16: for u ∈ modOx2 do
17: if {x1, u} ∈ E then
18: newT P ↢ newT P + 1
19: newF N ↢ newF N − 1
20: else
21: newF P ↢ newF P + 1

22: newF score↢
(1+f(so)2).newT P

(1+f(so)2).newT P +f(so)2.newF N+newF P

23: if F score ⩽ newF score then
24: modOx2 ↢ modOx2

⋃
{x1} ▶ ⇒ modIx2 ⊊ modOx2 (Line3)

25: T P ↢ newT P ; F P ↢ newF P ; F N ↢ newF N
26: F score↢ newF score

27: Co ↢ ∅
28: for modIi ∈ Cp do
29: if

(
∄j such modOi ⊊ modOj

)
then ▶ (Line4)

30: Co ↢ Co

⋃ {
modOi

}
▶ (Line5)

31: Return Co
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