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Abstract

Networks are pervasive for complex systems modeling, from biology to
language or social sciences, ecosystems or computer science. Detecting com-
munities in networks is among the main methods to reveal meaningful struc-
tural patterns for the understanding of those systems. Although dozens of
clustering methods have been proposed so far, sometimes including parame-
ters such as resolution or scaling, there is no unified framework for selecting
the method best suited to a research objective. After more than 20 years of
research, scientists still justify their methodological choice based on ad-hoc
comparisons with ‘ground-truth’ or synthetic networks, making it challenging
to perform comparative study between those methods. This paper proposes
a unified framework, based on easy-to-understand measures, that enables the
selection of appropriate clustering methods according to the situation. If re-
quired, it can also be used to fine-tune their parameters by interpreting them
as description scale parameters. We demonstrate that a new family of algo-
rithms inspired by our approach outperforms a set of state-of-the-art com-
munity detection algorithms, by comparing them on a benchmark dataset.
We believe our approach has the potential to provide a fresh start and a solid
foundation for the development and evaluation of clustering methods across
a wide range of disciplines.
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1 Rationale

From biology to social sciences, ecosystems or computer science, complex
systems are defined as large sets of entities interacting in a decentralized
ways. Networks (or graphs) are one of the main conceptual structures for
modeling them [22, 9, 3, 20], where nodes {v ∈ V } represent the basic entities
and edges {e ∈ E}, defined as pairs of nodes, represent their interactions.

This simplified representation of a complex system has the advantage of
revealing groups of densely connected nodes called modules, from the study of
which we can infer or deduce particular characteristics or functions. A com-
plex system can then be conceptualized as the interactions between these
modules, an operation that de facto defines a scale of description. The coun-
terpart of these modules in the conceptual representation are called clusters
or communities.

This poses two legitimate questions: How to decompose a complex sys-
tem? And which are the appropriate scales for this decomposition? The first
question is a fast growing research field per se in mathematics and computer
science with thousands publications per year. It is the art to define clus-
tering or community detection methods on graphs. Some of these methods
have been criticized for their inhability to adapt to different scales of obser-
vation [6], while others include explicitly a resolution parameter to address
second question [5, 13]. There is however no unified framework to compare
clustering methods two by two and consequently to choose one rather than
the other. The lack of precise semantics in defining what constitutes a ‘good
clustering’ leads to incomparable outputs from different clustering methods,
hindering constructive debates on their comparative advantages and slowing
down research progress.

Hereafter, we provide such semantics as well as an associated unified
framework to compare any clustering methods on undirected and unweighted
graphs.

Types of graph clustering

For a set of vertices V (the entities), let’s note P(V ) the subsets of V and
P2(V ) ⊂ P(V ) the pairs of elements from V . For E ⊂ P2(V ), G = (V, E)
defines an undirected graph on V .

By definition, a set C ∈ P(P(V )) such that C = {Ci|Ci ⊂ V, Ci ̸= ∅, i ∈ I}
is a clustering of G with clusters Ci if and only if ⋃

i∈I Ci = V . It is a
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partitional clustering if clusters do not overlap (∀i ̸= j ∈ I, Ci ∩ Cj = ∅), else
it is an overlapping clustering. The number of partitional clustering of a set
of size n = |V | is equal to the nth Bell number, a sequence known to grow
exponentially [11]. Consequently, this definition tells us what a clustering
is, but not what a ‘good clustering’ is among the huge number of possible
clustering. Therefore we need metrics to evaluate clustering according to
our needs. The state of the art identifies more than 70 different metrics to
evaluate the quality of a clustering [23, 4, 7], which fall into two categories:

Intrinsic metrics aiming at finding clustering on a graph G accord-
ing to some general principles (like the modularity of [16, 17] or the
compressibility of [19]);

Extrinsic metrics aiming at evaluating clustering (e.g. the Rand
index [18]) in relation to a priori known structures or ‘ground-truth’
clustering, such as clusters of synthetic networks [12].

Then in each category, one can find metrics for partitional clustering
or overlapping clustering. This leads to four kinds of metrics: intrinsic or
extrinsic, for clusters with or without overlapping. Up to our knowledge (see
also [23, 4, 7]), no framework so far has been proposed for the simultaneous
evaluation of intrinsic and extrinsic metrics for partition and overlapping
clustering.

2 Rethinking graph clustering

Graph clustering interpreted as graph compression

To overcome this problem, let’s start giving some semantics to clustering
methods. If we interpret a clustering as a means to describe a complex sys-
tems at some scale, or to ‘compress’ the graph that describes it, it’s essential
to note that the typical definition of clustering doesn’t explicitly address the
edges of the graph. Since edges play a crucial role in graph description, rep-
resenting a graph through its clusters shouldn’t disregard the edges. Instead,
it involves approximating that all elements within a cluster are connected
while assuming no connections exist between clusters. This simplifies the
network description as a set of cliques, with some edges within cliques be-
ing falsely observed (false positives) and some edges between cliques being
omitted (false negatives).
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This approximation of a graph by a clustering can be formalized by defin-
ing Ĉ =

(
U(C), Ξ(C)

)
the derived graph from the clustering C using the

following two functions:

U : P(P(V )) −→ P(V ), U(C) =
⋃

Ci∈C
Ci (1)

Ξ : P(P(V )) −→ P2(V ), Ξ(C) =
⋃

Ci∈C
P2(Ci) (2)

These functions satisfy the following properties:

• If C is a clustering of a graph G = (V, E) then U(C) = V ;

• ∀ E ⊂ P2(V ), Ξ(E) = E;

• ∀ C ⊂ P(P(V )), Ξ(Ξ(C)) = Ξ(C).

And for any clustering C on a graph G we can compute the following metrics
which assess the capacity of Ĉ to approximate G:

Precision: P (Ĉ, G) = |Ξ(C)∩E|
|Ξ(C)| . This is the probability that an edge drawn

at random in Ξ(C) actually belongs to E. It measures the ability of the
clustering C not to include non-edges of the graph G in its clusters.

Recall: R(Ĉ, G) = |Ξ(C)∩E|
|E| . This is the probability that an edge drawn at

random in E belongs to Ξ(C). It measures the ability of the clustering C to
include edges of the graph G in its clusters.

Then for any clustering C on a graph G = (V, E), precision and recall satisfy
the following property:

P (Ĉ, G) = 1 & R(Ĉ, G) = 1
⇕

U(C) = V & Ξ(C) = E

⇕
Ĉ = G

For overlapping clustering, the set of maximal cliques Cmc on a graph G is
such that Cmc

∧
= G and ∑

Ci∈Ccm

|Ci| ⩽ |E| (it lossless compresses the graph

G, see[10]). For partitional clustering, these two measures are antagonistic,
unless the graph is reduced to a set of unconnected cliques: improving the
recall decreases the precision and improving the precision decreases the recall.
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Graph clustering as a bi-objective task

The antagonistic relation between precision and recall, as defined above,
means that describing complex systems as sets of non overlapping clusters
on networks (or as lossy compressed networks) should be envisioned as a
bi-objective approach that generally does not have solutions optimizing both
objectives at the same time. The evaluation of these methods should thus
be parameterized by the desired trade-off between precision and recall of the
corresponding description. One of the common way to do this parameteriza-
tion is to use the F-score function:

Fs(P, R) = (1 + f(s)2).(P.R)
R + f(s)2.P

(3)

With f(s) = tan(π.s
2 ) and F1(P, R) = R.

For s = 0.5 precision and recall are of the same importance (when you
compress the graph, loosing a edge or adding one costs as much), for s = 0,
only the precision counts, whereas for s = 1, only the recall counts.

This trade-off defines a scale of description of the system under study: for
s values close to 0, precision will be higher with a greater number of smaller
and denser clusters ; while for s values close to 1, recall will be higher with
a fewer number of bigger but less dense clusters (eventually only one, with
all nodes). The scale s can be used to adjust the granularity of our point of
view on the real-world, as with the wheel of a telescope.

To illustrate the change in perspective of the proposed framework, we
consider a toy graph Gtoy, all its possible partitions and their respective
precision and recall scores (cf. Fig. 1). Some of these partitions have the
properties that no other partition exist that both increases the precision and
the recall. These special partitions are called Pareto front – or Pareto optimal
solutions, noted Pos(Gtoy). To select a particular partition clustering from
the Pareto front, we need to specify our priorities in terms of precision and
recall, essentially determining a scale of description represented by a value s.
This decision hinges on defining what constitutes a ‘good clustering’. Only
after deciding on a description scale can we compare two clusterings and
assess the performance of different clustering methods.

Understanding complex systems necessitates comparing various scales of
organization. Typically, a fundamental scale is chosen for measuring basic
entity properties, alongside a separate scale for describing interactions be-
tween these entities. For example, the study of living systems can focus
on the higher order structures (modules) built from different types of basic
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Figure 1: The set of all the 21 147 partitional clustering of Gtoy in
the precision (P) / recall (R) space. The Pareto front is highlighted
in red.

entities such as the genes, the cells, the organs, the individuals, etc. Each
description is complementary but offers distinct insights. Thus, analyzing
complex systems involves both subjective decisions (regarding the choice of
the basic entities and scale of interaction description) ; and an objective
methodology (determining the optimal system division to unveil modules at
the chosen scale). If clustering methods are viewed as tools for defining these
structures, establishing a description scale precedes the selection of clustering
methods. Consequently, the approach outlined in this paper offers a uni-
fied framework for comparing clustering methods within a chosen interaction
description scale.

3 Results

New clustering methods based on Fs optimization

We have shown so far that it is possible to propose a conceptual framework
for comparing any type of clustering. Let’s now show that it can also be
used to define a family of new clustering methods, hereafter noted nPnB
clustering, that outperform existing ones.

Given an undirected and unweighted graph G = (V, E) and a desired
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description scale sp, the trivial clustering C = {{i}| i ∈ V } where each vertice
is assigned to its own cluster is a partitional clustering. Then ∀s ∈ [0, 1] its
Fs score Fs(P (Ĉ, G), R(Ĉ, G)) = 0 since its recall R(Ĉ, G) = 0.

We can then improve this trivial clustering by an agglomeration process
that reviews each edge of G only once and merges the clusters of their ver-
tices if this operation does not decrease Fsp(P (Ĉ, G), R(Ĉ, G)) (cf. Sect. 4
algorithm 1 nPnBsp for pseudo-code).

The order in which edges are traversed is essential. The proposed algo-
rithm involves choosing an ordering function on E derived from a similarity
measure Sim(G, x, y) on the vertices of G. Edges {x, y} ∈ E are then re-
viewed by descending order of Sim(G, x, y).

The intuition is as follows: since graph classification aims to group vertices
sharing certain structural properties, pairs of vertices that are most similar
should be considered first in the clustering process.

The quality of the process strongly depends on the choice of the Sim
similarity measure, and there is no guarantee of obtaining an optimal ap-
proximation Ĉ of G relatively to Fsp . However, few trials are sufficient to
find similarity measures such that the associated partitional clustering out-
performs state-of-the-art partitional clustering methods.

We tested 84 state-of-the-art similarities [15]. One of the best scalable
metrics was CosP which has been chosen in the subsequent application (cf.
Sect. 4 ):

CosP (G = (V, E), x, y)

=

Cosinus

(−−−−−−−−−−−−−−−−→
(P 2

G(x⇝x),P 2
G(x⇝y)),

−−−−−−−−−−−−−−−−→
(P 2

G(y⇝x),P 2
G(y⇝y))

)
This approach can be generalized to define families of overlapping clus-

tering nPnBsp
so

(cf. Sect. 4 and algorithm 2) where sp defines the desired
scale of description and so defines the desired amount of overlapping.

Clustering methods comparison

In the following, we will distinguish the use of Eq. 3 as the function Fs to
be optimized for the family nPnBs using the variable name s, and its use as
the function Fσ in the context of the selection of the description scale using
the variable name σ to evaluate the various clustering methods. Note that
the metric Fσ=0.5 gives equal importance to precision and recall (Eq. 3) ;
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and can be interpreted as a ‘middle point of view’. It has both homogeneity
and completeness, two fundamental properties for metrics intending compare
clusterings [1]. On contrary, precision has only homogeneity property –it
is the archetypal metric of homogeneity– and recall has only completness
property –it is the archetypal metric of completness.

We now show how we can compare the performance of the proposed
nPnB clustering family and several hitherto incommensurable state-of-the-
art algorithms: Louvain [2], Infomap [19] , Starling [8], and Spectral Graph
Clustering [13] – for which we consider several resolutions– applied on a
real-world network Gem = (Vem, Eem) [24].

This network Gem describes e-mail data from a large research institu-
tion composed of a set Vem of employees. This is a standard benchmark
with |Vem| = 1, 005, |Eem| = 16, 064. The graph contains an undirected
edge {i, j} if employee i and employee j have exchanged at least one e-mail
either way. The dataset (available at https://snap.stanford.edu/data/
email-Eu-core.html) on which Gem is build, also contains the list of the 42
departments of the research institute that are often considered as a ‘ground-
truth’ partition CDep on Gem.

We add to this clusterings comparison the Oracle method metDep return-
ing the ‘ground-truth’ partition CDep itself and the omniscient overlapping
clustering method metE returning the edges of graph itself (C = E ⊂ P2(V )).

For nPnB clustering, we consider two families: the partitional clustering
family nPnBsp , returning partitional clustering based on the optimization of
Fsp and the overlapping clustering nPnBsp

so
, returning overlapping clustering

based on gluantly extending the clusters produced by nPnBsp through the
optimization of Fso .

Spectral Graph Clustering (SGC, [13]) methods require to specify the
number κ of clusters. Our comparison includes the SGC partitional clustering
for κ = 24 (SGC24) and κ = 54 (SGC54). We select these two values because
at scale σ = 0.5, which is a natural entry point to compare clustering given
the two properties of homogeneity and completeness of Fσ=0.5, (i) SGC24 is
the one with the best extrinsic score relatively to CDep and (ii) SGC54 is the
one with the best intrinsic score ; i.e. ∀κ ∈ N, 0 < κ ≤ |Vem|:

(i) F0.5(RDep
κ , P Dep

κ ) < F0.5(RDep
24 , P Dep

24 ) with RDep
κ = R(SGCκ

∧
, CDep)
∧

and P Dep
κ = P (SGCκ

∧
, CDep)
∧

;

(ii) F0.5(Rem
κ , P em

κ ) < F0.5(Rem
54 , P em

54 ) with Rem
κ = R(SGCκ

∧
, Gem) and
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P em
κ = P (SGCκ

∧
, Gem) ;

Figure 2: Performance Fσ(P(∗̂, Gem), R(∗̂, Gem)) of clustering meth-
ods as derived graphs ∗̂ = ̂met(Gem) according to the description
scale σ.

Fig. 2 displays the performances of each clustering method according to
the scale of description σ ∈ [0, 1]. A key result is that the family of over-
lapping clusterings {nPnB

sp=σ
so=0.15}σ∈[0 1] outperforms all other methods when

their scale parameter sp is set to coincide with the desired scale of descrip-
tion σ. This result holds if we restrict ourselves to partitional clustering. For
a given scale of description σ, nPnBsp=σ outperforms the other partitional
clustering methods tested. Removing those two families of clustering meth-
ods from the comparison, none of the methods tested outperforms the others
for all scales of description σ.

Fig. 3 displays methods applied to Gem on the precision-recall plane. It
highlights the trade-off made by each clustering methods in terms of precision
and recall. Several lessons can be drawn from this visualization:
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Figure 3: Comparison in the precision-recall plane of the perfor-
mances of different clustering methods when applied to the e-mail
graph Gem. The Oracle methods metDep and the Omniscient meth-
ods metE are highligthed in red.

First: Non parameterized methods like Louvain, Infomap or Starling differ
in the trade-offs they make.
Second: Parameterized methods SGC perform less well on both dimensions
than the family nPnB:

• Both precision and recall of nPnB0.50 are greater than these of SGCκ=54;

• Both precision and recall of nPnB0.70 are greater than these of SGCκ=24.

Last: The ‘ground-truth’ clustering CDep has poor precision/recall scores,
which calls into question its relevance as a ‘ground-truth’ reference.
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Table 1: Intrinsic and extrinsic scores of clustering methods: Each
row gives the precision, recall and Fσ=0.5 score for the graphs derived from
the clustering of Gem against both the original graph Gem and the ‘ground-
truth’ departments clustering. Best scores are highlighted in red.

Intrinsic Extrinsic
Scores ×100 Gem CDep

∧

Omniscient metE 100,100,100 34,23,27
Oracle metDep 23,34,27 100,100,100
SGC54 36,30,33 56,31,40
SGC24 22,43,30 46,60,52
Louvain 10,63,17 18,80,30
Infomap 13,60,21 22,70,33
Starling 26,45,33 51,61,56
nPnB0.50 41,35,(38) 59,34,43
nPnB0.50

0.15 (41,63),49 40,42,41

Table 1 compares, at scale of description σ = 0.5, methods intrinsically
against the original graph Gem, and extrinsically against the derived graph
CDep

∧
from the ‘ground-truth’ CDep.

Intrinsically: The best result –both best precision and recall– is obtained
with nPnB0.5

0.15 and the best Fσ=0.5 score for partitional clustering is not
obtained with metDep but with nPnB0.5. This could be understood by the
fact that nPnB0.5 is optimizing F0.5 (s the optimized scale by nPnBs is equal
to the description scale σ used for evaluation).
Extrinsically: The omniscient method strikingly presents the worst Fσ=0.5
score, which again calls into question the relevance of CDep as a ‘ground-truth’
reference: research departments of a research institution are apparently not
the right structures to explain patterns in e-mail exchanges among its em-
ployees. Defining a proper ‘ground-truth’ reference is a difficult task. Expert
often disagree with each other even when their judgements are based on
the same protocol [14]. Clearly defining the desired scale of description and
measuring quality with the Fσ function can help to define ‘ground-truth’ in
a more consensual way in the future.

Prior to this work it was impossible to compute Table 1 due to the lack of
a framework for comparing partitional and overlapping clusterings to both
the original graph and a ‘ground-truth’ clustering. This is a key result of the
existence of a unified graph clustering framework.
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4 Conclusion

We have proposed a general framework to compare different clustering al-
gorithms that where previously incommensurable. This unified framework
naturally includes the notion of description scale found in many clustering al-
gorithms in the form of a resolution or granularity parameter. Evaluation in
this framework is based on meaningful metrics, the precision and the recall,
widely used in science and therefore easily understandable by most users of
real-world graphs. This framework is effective in the sense that it provides in-
spiration for new clustering algorithms that both outperform existing ones in
the precision/recall dimensions and make sense when applied on real-world
graph. It also makes it possible to assess the relevance of ‘ground-truth’
references that are sometimes proposed when studying complex networks.
Further development of this framework could take into account the direction-
ality of certain networks, edge weights where appropriate, and their temporal
dimension.
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ANNEX

The Families nPnB: binary classifier of node Pairs
by node Blocks

Similarity between edges ends for the agglomerative
strategy of nPnBsp

The Algorithm 1 nPnBsp describes our method to find a partitional clus-
tering C such that the graph Ĉ best approximates the graph G relatively
to Fsp(P (Ĉ, G), R(Ĉ, G)), where sp defines the desired scale of description.
In algorithm 1, Sim(G, x, y) is a similarity between nodes which serves as
an agglomerative strategy on the edges {x, y} ∈ E to merge two clusters
C1 such that x ∈ C1 and C2 such that y ∈ C2 if it is not decreasing
Fsp(P (Ĉ, G), R(Ĉ, G)) (Line2). We tested 84 state-of-the-art similarities [15].
The best results (in decreasing performances) were obtained with the three
similarities Cm, Confluence and CosP :

Cm(G = (V, E), x, y) = Max
(
{0} ∪ {|C| such x, y ∈ C ∈ Cliques of G}

)

Confluence(G = (V, E), x, y) =


0 if x = y,
P 3

Gx,y (x⇝y)− dGx,y (y)
2(|E|−1)

P 3
Gx,y (x⇝y)+ dGx,y (y)

2(|E|−1)
otherwise.

CosP (G = (V, E), x, y) =

Cosinus
(−−−−−−−−−−−−−−−−→
(P 2

G(x⇝x), P 2
G(x⇝y)),

−−−−−−−−−−−−−−−→
(P 2

G(y⇝x), P 2
G(y⇝y))

)
Where: Gx,y =

(
V,

{
e ∈ E such e ̸= {x, y}

})
; dG(x) = |{y ∈ V/{x, y} ∈

E}|; and P ϖ
G (x⇝y) is the probability that a random walker wandering

on the graph G through its edges, reaches the node y after ϖ steps
starting from the node x.

For roughly equivalent performances, the worst-case time complexity of CosP ,
Confluence and Cm (respectively O(2|E|), O(3|E|) and O(3

|V |−2
3 ), [21]) fa-

vors CosP . In order to place ourselves in the worst-case scenario of dealing
with large graphs, the results in this paper are based on the CosP similarity
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both for algorithm 1 (partitional clustering) and 2 (overlapping clustering).
Note that different edges {x1, y1} ∈ E and {x2, y2} ∈ E might happen to
have the exact same Sim value (Sim(G, x1, y1) = Sim(G, x2, y2)), making
the process non-deterministic in general, because of its sensitivity on the or-
der in which the edges with identical Sim values are processed ((Line1) and
(Line2) respectively in algorithms 1 and 2). To avoid such non-deterministic
process, we can sort edges by first comparing their Sim values and then us-
ing the lexicographic order on the words x1 y1 and x2 y2 (with x1 < y1 and
x2 < y2) when Sim values are strictly identical.

nPnBsp
so defining overlapping clustering

The Algorithm 2 nPnBsp
so

describes our method to find an overlapping clus-
tering C such that |C| ⩽ |V | and the graph Ĉ best approximates the graph
G, where sp defines the desired scale of description and so defines the de-
sired amount of overlap. It is based on gluantly extending the clusters of
Csp = nPnBsp(G) through the optimization of Fso(P (Csp

∧
, G), R(Csp

∧
, G)).

Let Csp = nPnBsp(G) and Csp
so

= nPnBsp
so

(G). With algorithms 1 and 2,
it is then clear that for any graph G = (V, E):

• ∀ sp, so ∈ [0, 1], Ξ(Csp) ⊆ Ξ(Csp
so

) (Because Line1 & Line3 in Algo. 2).
This has the direct consequence:

∀ sp, so ∈ [0, 1], R(Csp

∧
, G) ⩽ R(Csp

so

∧
, G)

• ∀ sp, so ∈ [0, 1], |Csp
so

| ⩽ |Csp | ⩽ |V | (Because Csp is a partition of V and
Line4 & Line5 in Algo. 2).
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Algorithm 1 Cp = nPnBsp(G): To find Partitional Clustering
Input:

G = (V, E) ▶ An undirected graph
sp ∈ [0, 1] ▶ For optimizing Fsp(P (Ĉp, G), R(Ĉp, G)) with Blocks without overlaps

Output:
Cp ▶ A Partitional Clustering of G

1: X ↢
{
{i, j} ∈ E such i ̸= j

}
2: for i ∈ V do ▶ Initialization
3: modi ↢ {i} ▶ One node per cluster
4: Mi ↢ i ▶ node i is in cluster i

5: Υ↢ ∅; TP ↢ 0; FP ↢ 0; FN ↢ |E|; Fscore↢ 0
6: While Υ ̸= X do
7: {i, j} ↢ arg max

{x,y}∈X−Υ
Sim(G, x, y) ▶ Strategy based on Sim of

edges(Line1)

8: Υ↢ Υ ∪ {{i, j}}

9: if Mi ̸= Mj then ▶ modi and modj have not yet been merged
together

10: newTP ↢ TP ; newFP ↢ FP ; newFN ↢ FN
11: for u ∈ modi do
12: for v ∈ modj do
13: if {u, v} ∈ E then
14: newTP ↢ newTP + 1
15: newFN ↢ newFN − 1
16: else
17: newFP ↢ newFP + 1

18: newFscore↢
(1+(f(sp)2).newTP

(1+(f(sp)2).newTP+f(sp)2.newFN+newFP

19: if Fscore ⩽ newFscore then ▶ (Line2)
20: modi ↢ modi ∪ modj ▶ modj merge with modi in modi

21: modj ↢ ∅ ▶ modj is removed

22: for k ∈ V do ▶ Updating the membership list
23: if Mk = j ▶ node k was in modj

24: Mk ↢ i ▶ node k is now in modi

25: TP ↢ newTP ; FP ↢ newFP ; FN ↢ newFN
26: Fscore↢ newFscore

27: Cp ↢ ∅

28: for i ∈ V do
29: if modi ̸= ∅ ▶ modi is alive
30: Cp ↢ Cp

⋃ {
modi

}
31: Return Cp
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Algorithm 2 Co = nPnBsp
so

(G = (V, E)): To find Clustering allowing over-
laps such |Co| ⩽ |V |

Input:
G = (V, E) ▶ An undirected graph

sp ∈ [0, 1] ▶ For optimizing Fsp(P (Cp

∧
, G), R(Cp

∧
, G)) with Blocks without overlaps

so ∈ [0, 1] ▶ For gluantly exend, in Co, the clusters of Cp by optimizing Fso(P (Cp

∧
, G), R(Cp

∧
, G))

Output:
Co ▶ A Clustering of G with Blocks allowing overlaps

1: Cp ↢ nPnBsp(G) ▶ Partitional Clustering optimizing

Fsp(P (Cp

∧
, G), R(Cp

∧
, G))

2: X ↢
{
{i, j} ∈ E such i ̸= j

}
3: for modIi ∈ Cp do ▶ Initialization
4: modOi ↢ modIi ▶ modOi of Co is equal to modIi of Cp (Line1)
5: for j ∈ modIi do
6: Mi ↢ j ▶ node j is in cluster i of Cp

7: Υ↢ ∅; TP ↢ |Ξ(Cp) ⋂
E|; FP ↢ |Ξ(Cp) ⋂

E|; FN ↢ |Ξ(C) ⋂
E|

8: Fscore↢ (1+f(so)2).T P
(1+f(so)2).T P +f(so)2.F N+F P

9: While Υ ̸= X do
10: {i, j} ↢ arg max

{x,y}∈X−Υ
Sim(G, x, y) ▶ Strategy based on Sim of

edges (Line2)
11: Υ↢ Υ ∪ {{i, j}}
12: if Mi ̸= Mj then ▶ i and j are not in a same cluster of Cp

13: for (x1, x2) ∈
{
(i, j), (j, i)

}
do

14: if x1 /∈ modOx2 then ▶ x1 is not already added to modOx2

of Co

15: newTP ↢ TP ; newFP ↢ FP ; newFN ↢ FN
16: for u ∈ modOx2 do
17: if {x1, u} ∈ E then
18: newTP ↢ newTP + 1
19: newFN ↢ newFN − 1
20: else
21: newFP ↢ newFP + 1

22: newFscore↢
(1+f(so)2).newTP

(1+f(so)2).newTP+f(so)2.newFN+newFP

23: if Fscore ⩽ newFscore then
24: modOx2 ↢ modOx2

⋃ {x1} ▶⇒ modIx2 ⊊ modOx2 (Line3)
25: TP ↢ newTP ; FP ↢ newFP ; FN ↢ newFN
26: Fscore↢ newFscore

27: Co ↢ ∅
28: for modIi ∈ Cp do
29: if

(
∄j such modOi ⊊ modOj

)
then ▶ (Line4)

30: Co ↢ Co
⋃ {

modOi
}
▶ (Line5)

31: Return Co
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