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ABSTRACT. Based on recent works of Dodson-Murphy [12] and Arora-Dodson-
Murphy [3], we give a unified approach for the energy scattering with radi-
ally symmetric initial data for nonlinear Schrédinger equations and nonlinear
Choquard equations in any dimensions N > 2. We also discuss its applications
for other Schrodinger-type equations.

1. Introduction. We first consider the Cauchy problem for the focusing intercrit-
ical nonlinear Schrédinger equation
iOu+Au = —|ul®u, (t,r) € RxRY,
u(0,z) = uo(x),
where u: R x RY — C, ug : RN — C and o, < o < o* with
4 . {4 if N >3,
ot =

_ N-2
N’ oo ifN=12

(NLS)

Qy 1=

It is well-known that the equation (NLS) is locally well-posed in H' (see e.g. [6]).
Moreover, local solutions satisfy the conservation of mass and energy

M(u(t)) = / lu(t, 2)[2dz = M (uo), (Mass)

Bu(t)) = % / Vu(t, 2)[2dz — O%rz / lu(t, 2)|*2dz = E(u),  (Energy)

for all ¢ in the existence time. The equation (NLS) also enjoys the following scaling
invariance

up(t,z) == )\%u()\Qt, Az), A>0.
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Note that this scaling leaves the H7-norm of the initial data invariant, i.e.

N 2
lux(O)ll e = lluoll e ve =5 = = (1.1)
In this paper, we are interested in the asymptotic completeness or energy scat-

tering for (NLS).

Definition 1.1 (Energy scattering). A global solution v € C(R, H') to (NLS) is
said to be scattering in H' forward in time (resp. backward in time) if there exists
uy € H' (resp. u_ € H') such that

. _itA _ . _itA _
t_1}+moo||u(t) e"uy|lgr =0 (resp. t_l}r_nooHu(t) e u_|| g 0).

The energy scattering for small data can be proved easily using Strichartz es-
timates and the contraction mapping argument (see e.g. [6]). More precisely, it
is known that there exists § > 0 sufficiently small such that if ||uo| g1 < J, then
the corresponding solution to (NLS) exists globally in time and scatters in H' in
both directions. A natural question is: What happens for large data? A simple
observation is that there exists a global but non-scattering solution to (NLS) of
the form u(t,x) = e®*Q(z), where @ is the ground state, i.e. the unique positive,
radially symmetric, radially decreasing solution to the elliptic equation

~AQ+Q-QIQ=0. (1.2)
Note that the existence of radial solution to (1.2) was proved by Weinstein [39] and
the uniqueness of positive radial solution was proved by Coffman [9] and Kwong
[27].

Holmer-Roudenko [22] proved the energy scattering with radially symmetric ini-
tial data for the focusing cubic nonlinear Schrédinger equation in dimension three.
More precisely, they proved the following result.

Theorem 1.2 ([22]). Let N = 3 and a = 2. Let ug € H' be radially symmetric
and satisfy

E(uo)M(uo) < E@Q)M(Q),  [[Vuol|z2luoll> < [VQz2[IQllz>-
Then the corresponding solution to (NLS) exists globally in time and scatters in H*

in both directions.

We note that the global existence for data below the ground state goes back to
the work of Stubbe [34]. Theorem 1.2 was later extended to the non-radial case by
Duyckaerts-Holmer-Roudenko [14] and to the general case by Cazenave-Fang-Xie
[7], Akahori-Nawa [1] and Guevara [18].

Theorem 1.3 ([1, 7, 14, 18]). Let N > 1, a, < a < o* and ug € H' satisfy

E(uo)[M (u)]™ < E(Q)[M(Q)]7, (1.3)
Vol 2lluollZe < [IVQI L2 [IQIIZ5 (1.4)
where o, := 1;3“ = 47]5,12:2)0‘. Then the corresponding solution to (NLS) exists

globally in time and scatters in H' in both directions.

We next consider the Cauchy problem for the focusing intercritical nonlinear
Choquard equation

{ 10w+ Au — (L, * |ulP)|u[P~%u, (t,z) € R x RV,

u(0,2) = wup(z), (NLC)
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where v : R x RY = C, up:RY - C, N >1,p>2and p, <p < p* with

+2 14+ 222 if N >3,
po=14+ 1, pra= g N (1.5)
N 00 it N=1,2.
Here I, is the Riesz potential defined by
—y

A) r(*)

I = Aly) = ——— 0 1.6

’Y(I) |$|N—'y7 (’Y) F(%) 7_‘_%277 I# ( )

with 0 < v < N and I' is the Gamma function.
It was known (see [4, 29]) that the equation (NLC) is locally well-posed in H?!.
Moreover, the following conservation laws hold:

M(u(t)) = / lu(t, z)|>dx = M (ug), (Mass)

B(u) = 5 [ IVutto)fde = oo [(L = )t 0)lutt,2)Pds = E(?o) |
Energy

The equation (NLC) is also invariant under the scaling
+2
up(t,x) := )\Z?P*Uu()\zt, Az), A>0.
Note that this scaling leaves the HY-norm of the initial data invariant, i.e.
N v+ 2
[ur(O)[ gve = lluollgre, Ve = 5 m (L.7)

As for (NLS), the energy scattering for (NLC) with small data can be proved by
using Strichartz estimates and the fixed point argument. Moreover, the equation
(NLC) admits a global but non-scattering solution u(t,z) = ¢®Q(z), where Q is a
ground state related to the elliptic equation

—AQ+Q — (I, *[QM|QP~*Q = 0. (1.8)

Recall that a non-zero, non-negative H! function to (1.8) is called a ground state
related to (1.8) if it minimizes the Weinstein’s functional

W(f) = [IVFIP DT Y20« / (L * |f1P)|fPde,

that is,
W(Q) =inf {W(f) : feH"\{0}}.

The existence of positive solutions along with the regularity and radial symmetric
solutions to (1.8) were studied by Moroz-Schaftingen [30]. The uniqueness of posi-
tive solutions to (1.2) is still an open problem except for p = 2,7 =2 and N = 3,4,5
(see [28, 26, 4]) and for p > 2 close to 2 and N = 3 (see [40]).

The large data energy scattering for (NLC) was established recently by Arora-
Roudenko [4]. More precisely, we have the following result.

Theorem 1.4 ([4]). Let N>1,0<~y < N, p>2andp. <p < p*. Let ug € H!
satisfy

E(uo)[M(uo)]” < E(@Q)[M(Q)]" (1.9)

and
[Vuolr2lluoll 75 < V@[22 IQNIFE, (1.10)
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o l=ye . a2 (N-2)(p—1)
where o, = T NG 2

exists globally in time and scatters in H' in both directions.

Then the corresponding solution to (NLC)

The proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4 are based on the
concentration-compactness-rigidity argument of Kenig-Merle [25]. It is done by
three main steps: scattering criteria, construction of the critical solution and rigidity
argument.

Step 1: Scattering criteria. Thanks to Strichartz estimates, one proves that
if u is a global solution to (NLS) or (NLC) satisfying

Sup [[u®)llm < 00, sz o) < o, (1.11)

then u scatters in H' in both directions. Here

||UHS(17H%) ‘= Ssup ||U||L<1(I,LT)7
(¢,r)€S,

where S, is the set of H7 admissible pairs, i.e.

2 N N
,+7:7_7
q T 2
and
2N 2N\
2N grg(TQ it N >3,
2 2 :
1<r<((H > it N =2,
= <r<oo if N=1.
=

We have used the notation a™ for a fixed number slightly greater than a, a~ for a
fixed number slightly smaller than a and

1 1 1

a  at  (at)*

Step 2: Construction of the critical solution. Denote

E(ug)[M(ug)]?s < & }
As = e H': { - -
° {uo [Vuollr2lluoll7s < [IVQIlL2[QII7%

and

dc :==sup{d >0 : if ug € As, then the solution satisfies (1.11)}.
By the small data scattering, one knows that d, > 0. If §. > E(Q)[M(Q)]%, then
it is done. Assuming that d. < E(Q)[M(Q)]°¢, one will derive a contradiction. By

the definition of J., there exists a sequence of solutions u,, to (NLS) or (NLC) with
initial data u! satisfying
B(up)[M (up))™ Nebe,  [IVupllzzlupli7s < [VQIlL2|QIIT:

for which (1.11) does not hold for all n > 1. In particular, [|un|gg, gy = oo for
all n > 1.

Applying the profile decomposition to (u,)n>1, We can construct a critical so-
lution, denoted by wu., that lies exactly at the threshold d.. Moreover, the critical
solution satisfies |[ucl| g, g-e) = 00 and

K:={uc(t) : t€]0,00)}

is a precompact set in H'.
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Step 3: Rigidity argument. Using localized virial estimates, we show that
such a critical solution is identically zero which is a contradiction.

Recently, Dodson-Murphy [12], Arora-Dodson-Murphy [3] and Arora [2] gave
alternative simple proofs for the large data scattering with radially symmetric initial
data that avoids the concentration-compactness-rigidity argument. See also [13] for
a new proof of scattering for (NLS) with general data that avoids the concentration-
compactness-rigidity argument.

In the case N > 3, the proofs of these results are based on the following two
main ingredients. The first ingredient is the scattering criterion of Tao [36].

Lemma 1.5 (Scattering criterion [36]). Suppose u is a radially symmetric global
solution to (NLS) or (NLC) satisfying

sup ||lu(t)]| g < A
teR

for some constant A > 0. Then there exist ¢ = ¢(A) > 0 sufficiently small and
R = R(A) > 0 sufficiently large such that if

lim / lu(t, z)|?dx < ¢,
t—o0 lz|<R

then u scatters in H' forward in time.

This scattering criterion was proved in [36] (see also [12]) for the focusing cubic
NLS in three dimensions. It was later extended to (NLS) and (NLC) by Arora [2].
However, the proof presented in [2] contains a flaw. More precisely, the author in
[2] used the following inhomogeneous Strichartz estimate

t
’ / ei(t_T)AF(T)dT

0

which is not clear to hold for all 0 < s < 1. In fact, to our knowledge, the best known
inhomogeneous Strichartz estimates were proved independently by Foschi [17] and
Vilela [38]. According to their results, the estimate (1.12) holds true provided that

(1.12)

2 12) S I
L™N=2s (IXRN)

2N
L2(I,LN+2(1=5) )

are %—acceptable7 ie.

1 N N 1 N N
1SQar7m7n§007 7<7_*, — <= - (113)
q 2 r m 2 n
satisfying
2 N N
- +—=N———— (1.14)
qg m r n
and
N-2 r N
<-< . 1.15
N ~n~ N-2 ( )
It is easy to check that the last inequality in (1.13) requires s < %, and the second

2
inequality in (1.15) requires s < ¥ A2V=1 <,

The second ingredient is the evacuation of the potential energy.
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Lemma 1.6 (Energy evacuation (NLS) [12, 2]). There exist a sequence of times
t, — oo and a sequence of radii R, — oo such that

lim [u(ty, z)|* 2dr = 0.

n—oo |2|<Rn
Lemma 1.7 (Energy evacuation (NLC) [2]). There exist a sequence of times t,, —
oo and a sequence of radit R,, — 0o such that

2Np
lim |u(ty, )| ¥+ dz = 0.

The proofs of these energy evacuations are based on the coercivity property of
global solutions below the ground state and localized Morawetz estimates using the
radial Sobolev embedding.

In the case N = 2, the scattering criterion of Tao is not sufficient to show the
energy scattering due to the logarithmic divergence of an integral appearing in using
dispersive estimates. To overcome this difficulty, Arora-Dodson-Murphy [3] made
use of the space-time estimate

T 12
/ / lu(t, z)|* 2dedt <TP, f:=max{ =, ——
0 JR2 3 a+2

to show the global space-time bound

||uHL2(¥(R><R2) < 0

which implies the scattering.

The purpose of this paper is to give a unified proof for the energy scattering
with radially symmetric initial data for both (NLS) and (NLC) in any dimensions
N > 2. Let us give a brief description of the proof for (NLS), the one for (NLC) is
similar. The proof is divided into three steps.

Step 1: Scattering criteria. Using a suitable inhomogeneous Strichartz esti-
mate, we prove that if u is a global solution to (NLS) satisfying ||ul| o g, a1y < 00,
then there exists 6 > 0 such that if

||ei(t_T)Au(T)”L’“([T,oo),LT) <9 (1.16)
for some T > 0, then u scatters in H' forward in time, where
2a(a +2)
4— (N -2)a’
Step 2: Localized Morawetz estimates. By using some variational analysis,
we prove that under the assumptions (1.3) and (1.4), the corresponding solution

to (NLS) exists globally in time, and there exist v = v(ug,Q) > 0 and Ry =
Ro(ug, Q) > 0 such that for any R > Ry,

k= ri=oa-+ 2.

H(xru(t)) > vlxrut)| 42 (1.17)
for all ¢t € R. Here
Na
= 2 +2
H(u) == [|Vullz. — m”ﬂ Tate

is nothing but the virial functional
2

d 2
e llzu®)z. = 8H (u(t))
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and yr(z) = x(z/R) with x € C§°(RY) satisfying 0 < x < 1 and

_ b faf <1/2,
X(x)_{o it |z > 1.

Using the coercivity property (1.17), localized Morawetz estimates and the radial
Sobolev embedding, we prove that the solution to (NLS) satisfies for any time
interval I C R,

1 2
H||eF2,dt < |1)° = — . 1.18
[l i, gmmn {3 b
Step 3: Energy scattering. By Step 1, it suffices to find T > 0 so that (1.16)
holds. To this end, let ¢ > 0 be a small parameter. For T' > £77, we use the
Duhamel formula to write

6i(t7T)Au(T) — eitAUO + Fi(t) + Fx(t),

where

() =i /I =8y () [Cu(s)ds, Fy(t) =i /J =8y () [u(s)ds

with I := [T — e ?,T] and J :=[0,T — 7).

Thanks to Strichartz estimates, the linear part can be made small by taking
T > ¢ 7 sufficiently large. Combining Strichartz estimates, (1.18) and the radial
Sobolev embedding, the term F; becomes small by taking a suitable value of o.
Finally, to treat the term F5, we make use of dispersive estimates and the space-
time estimate (1.18). We refer the reader to Section 3 for more details.

Comparing to previous works [12, 3, 2], the main contributions of the paper are
the followings:

e We give a unified simple proof for the radial data energy scattering for both
(NLS) and (NLC) in any dimensions N > 2. In particular, we give the proof
of the energy scattering with radially symmetric initial data for (NLC) in two
dimensions which, to our knowledge, is new.

e We have fixed some flaws in the proofs of [2].

e Finally, we discuss some possible extensions of this method for other Schrédinger-
type equations.

This paper is organized as follows. In Section 2, we recall some Strichartz esti-
mates which are needed in the sequel. In Section 3, we prove the energy scattering
for nonlinear Schrodinger equations with radial data. The proof of the radial data
energy scattering for Choquard equations will be given in Section 4. Finally, we
discuss some possible extensions of the radial Sobolev-Morawetz method to other
Schrodinger-type equations in Section 5.

2. Strichartz estimates. Let e’*2 be the propagator for the free Schrodinger
equation i0;u + Au = 0. We have from the explicit formula

. e—y|?
A fa) = F [T f)ay
the standard dispersive estimate

i _N
e fllzee < 117 = (| £llze-
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By interpolating this inequality with the L2-isometry [e®® f||z> = ||f||z2, we have
the following dispersive estimates: for any r € [2, o0,

; _N(1_2
e fllor S [H~F 0= 1)

L (2'1)

where (r, ') is the Holder’s conjugate pair.
Let I C R be an interval and ¢, r € [1,00]. We define the mixed norm

lullLacr,ry = (/ (/ u(t,ac)|’”dx> dt)
1 \JR¥N

with a usual modification when either ¢ or r are infinity. When g = r, we use the
notation LI(I x RY) instead of L4(I,L9).

Definition 2.1. A pair (g, r) is said to be Schrodinger admissible if

rE[Q QN] itN >3,

e 2 N_N
r € [2,00) it N =2, PR
r € [2,00] if N =1,

Proposition 1 (Strichartz estimates [6, 24]). Let N > 1 and I C R be an interval.

There exists a constant C > 0 independent of I such that the following estimates
hold:

e (Homogeneous estimates)

1€ fllLacr.ory < C|Ifllre

for any f € L? and any Schridinger admissible pair (q,r).
o (Inhomogeneous estimates)

¢
‘ / A P(s)ds

; < CF || g 1,07y
for any F e L™ (I, L") and any Schridinger admissible pairs (q,r), (m,n).

La(I,L")

We also have the following inhomogeneous Strichartz estimates for non Schrédinger
admissible pairs.

Lemma 2.2 ([8]). Let N > 1, I C R be an interval. Let (q,r) be a Schrédinger
admissible pair with v > 2. Fiz k > % and define m by

1 1 2
=== 2.2
o m T (2.2)

Then there exists C' > 0, depending only on N,r and k, such that
t
‘ / AP (s)ds

o < C”F”L’"’(I,L"'/) (2-3)
for any F e L™ (I,L"").

Lk(I,L7)

We refer the reader to [8, Lemma 2.1] for the proof of this result.

3. Nonlinear Schrédinger equations.



RADIAL SOBOLEV-MORAWETZ APPROACH 9

3.1. Small data theory. We have the following nonlinear estimates which follow
directly from Holder’s inequality.

Lemma 3.1 (Nonlinear estimates). Let N > 1, a, < a < a* and I C R. Denote

4(a+2) Lok 2a(a+ 2) 2a(a+ 2)
=——" ri=a« = m:= .
1 Na ’ 1— (N —2)a’ Na2+ (N —2)a—4
(3.1)
Then the following estimates hold:
|||u|au||Lm’(I,Lr’) < |‘U||%k+(11,y)7 (3.2)
V) ()l Lo 1,2y S Nl e, H{V) wllLagr,zr)- (3.3)

Remark 1. Let ¢,k and m be as in (3.1). It is easy to check that (q,r) is a
Schrodinger admissible pair. Moreover, k,m and ¢ satisfy (2.2), hence (2.3) holds
for such choice of exponents.

Lemma 3.2 (Small data global well-posedness). Let N > 1 and o, < o < . Let
T > 0 be such that uw(T) € H'. Then there exists 6 > 0 such that if

=2 (T | L (17, 400). ) < 6,
then there exists a unique global solution to (NLS) with initial data u(T) satisfying

1wl k(17 4-00), L7y < QHei(t_T)Au<T)HL’C([T,Jroo),L““)

and
(V) ull La ([, 100), ) < 2C|u(T) || 111
Here k,q and r are as in (3.1).

Proof. Since the proof is nowadays standard, we only sketch it. Let g,r, k and m
be as in (3.1). By Remark 1, (2.3) and Lemma 3.1, it is easy to show that the
functional

B(u(t)) := " DAYT) +1 /t e =8y (s)|“u(s)ds
is a contraction on (X, d), where '
X ={u : |lullpe(r 100y, <M, V) ull La(ir,400),07) < L}
equipped with the distance
d(u,v) = [Ju = vl i (7, 400), L) + 1t = VIl Lo (7, 400),17)

with L = 2C||u(T)||gr and M = 2||ei(t*T)Au(T)||Lk([T7+oo)7Lr,-) sufficiently small.
O

Lemma 3.3 (Small data scattering). Let N > 1 and o, < a < a*. Suppose that u
is a global solution to (NLS) satisfying

[ull oo (v, H1) < 00
Then there exists 0 > 0 such that if
e D2 u(T) | Lk (1,400, L7) < 6

for some T > 0, where k and r are as in (3.1), then u scatters in H' forward in
time.
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Proof. Let 6 > 0 be as in Lemma 3.2. It follows from Lemma 3.2 that the solution
satisfies

HU||Lk([T,+oo),Lr) < 2H6i(t7T)Au(T)||Lk([T,+oo),LT)a
V) ull Loz, 400),7) < 20| u(T) | 12
Now let 0 < 7 < t < 400. By Strichartz estimates, we see that
t
/ e u(s)|“u(s)ds

S V) ()l L (7,9,
S ez ey, | (V) vl agry,my = 0

e ut) — e~ Bu(r) s = \

H1

as 7,t — +o0. This shows that (e~"2u(t)), is a Cauchy sequence in H' as t — oo.
Thus the limit

o0 )
Uy = ug + z/ e u(s)[Yu(s)ds
t
exists in H'. By the same reasoning as above, we prove as well that
u(t) — e Bup |z — 0
as t — +o00. The proof is complete. O

3.2. Variational analysis. We recall some properties of the ground state @ related
o (1.2). The ground state @ optimizes the sharp Gagliardo-Nirenberg inequality

a+2 % 747“\; o
[fllZase < CoptIVFII3 1112
that is
2 Na 4—(N—-2)c
Copt = |Q|7a72 + [[IVQI 3 Q12 *

Recall that @ satisfies the following Pohozaev’s identities

4— (N -2)a 4— (N —-2)a
P S 2 _ = ' A= a+2
QI = T 1Y@l = g Q.
It follows that
~ Na-4 2  Na-4 2
B(@) = S IV = g Il
and
2(a+2) o\ —Na=t
Copt = Na (IvVQllc=lIRQl7s) = -

Lemma 3.4 (Coercivity I [2]). Let N > 1, a, < a < o* and ug € H' satisfy
(1.3) and (1.4). It follows that the corresponding solution exists globally in time.
Moreover, there exists p = p(ug, Q) > 0 such that

[Vu(@)ll2lu®)]7e < (1= 2p)[IVQI 2 1QI75 (3.4)
for allt € R.

The proof of this result follows from the sharp Gagliardo-Nirenberg inequality
and the continuity argument. We refer the reader to [2, Lemma 3.1] for a detailed
proof.
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Lemma 3.5 (Coercivity II [2]). Let N > 1 and o, < o < a*. Let p be as in (3.4).
There exists Ry = Ro(p, ||uol|rz) > 0 such that for any R > Ry,

IV Oxru(®) |2 Ixru®IZ: < (1= p)IVQI L2 (1Q 75 (3.5)
for all t € R, where xr(z) = x(z/R) with x € C§°(RY) satisfying 0 < x <1,
_f 1 el =1)2,
o ={ o sl (3.6)
In particular, there exists 6 = 6(p) > 0 such that for any R > Ry,
N « (o3
IV (xru(®)|l72 — mHXRU( 3522 > dllxru(t)|72 (3.7)

for allt € R.

For the proof of this result, we refer the reader to [2, Lemma 3.2].
We also have the following Morawetz identity.

Lemma 3.6 (Morawetz identity). Let N > 1 and 0 < a < o*. Let p : RN — R
be a sufficiently smooth and decaying function. Let u be a H' solution to (NLS).
Define

M,(t) =2 / Voo - Tm(a(t) Vu(t))de
Then
% /AQ@\u )2dz + 4 Z /a?kae (0;a(t)Opult))da

]kl

/A<p|u ()|* T2 da.
Let ¢ : [0,00) — [0,2] be a smooth function satisfying

2 i 0<r<1,
C(T):{ 0 if r>2 (38)

We define the function 6 : [0, 00) — [0, 00) by

//g )dzds.

Given R > 0, we define a radial function

or(r) = or(r) := R*0(r/R), r=|z|. (3.9)
It is easy to check that

a—|—2

¢r(r)

2>¢h(r) >0, 2-
r

>0, 2N —Agpg(z)>0, Vr>0, VzrecRY.

Lemma 3.7 (Morawetz estimate). Let N > 2 and a, < a < o*. Let ug € H* be
radially symmetric satisfying (1.3) and (1.4). Then the corresponding solution to
(NLS) satisfies for any time interval I C R,

/, (|22 dt < Cluo, QIIP, 5:m{§w_f)a+2} (3.10)

for some constant C(ug, Q) > 0 depending only on uy and Q.
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Proof. Let p = p(ug, @) be as in (3.4), and R = R(p, ||uo|/z2) be as in Lemma 3.5.
We define ¢p as in (3.9). By the Cauchy-Schwarz inequality and (3.4), we see that

[Mor, (0] S IVerllze u®) L2 Vu)|z2 < R (3.11)
for all ¢ € R. Here the implicit constant depends only on ug and ). By Lemma 3.6,

/A2g03|u )|?dx + 4 Z / kQDRRe (0;4(t)Oku(t))dx

Lk 1

(t)|* 2 dx

a+2

= w(t)]? x—& w(®) 22 dx
—8(/@@ V) = o /M| ()2 )

/A280R|“ t)[*da + 4 Z / 2o rRe(9;u(t)Opu(t))dx

jk=1 |z|>R

2
a / Apglu(t)|*2da.
|z|>R

a2

Since ||A%2pr||r~ < R™2, the conservation of mass implies

/ A2 glu(t) Pdz
Since wu is radial, we use the fact

0%, = (531@ _ xjf”k) d, + xjxk 92

<R2

r r3

to get

N
Z 2 RO IO = PR|Opul” > 0
jk=1

which implies
N

Y / O orRe(0;u(1)dyu(t))dx > 0.
jk=1 |z|>R
Moreover, since ||Apg|Le~ S 1, we have from the radial Sobolev embedding (see
e.g. [35]): for N > 2,

Silglxlelf(w)l SCN)|Ifller, Y € Hpg, (3.12)
that

/I RIU(t)IC‘”de < M) l1Fes (a5 ry )72
xT|>

o _ <
Ol llu®lz- SR

N-1Da
2

We thus have

d 2 Na u a+2 T
dtMW(wzs( /@m(m o g /|ng' (1)t d)

+O(R2+R 777
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Now let xg be as in Lemma 3.5. We have

/ IV (xpu(t) 2z = / EIVu(t) 2z - / XrACR) () Pdz

- / Vu(t)de — / (1 - \3)[Vu(t) Pdz
|z|<R R/2<|z|<R

- / A G)|u(t) Pdz

[hruorrae= [ o= [ g g,
|z|<R R/2<|z|<R

It follows that
Na

u 2 xr - —————— U a+2 v
/z|<R|v Wl 2+ 2) /|x<R| (t)|*=d

= [ Ve - g2 [ s

s A= BIVuOPd + [ xeAG)lu(oPds
R/2<|z|<R
Na / 9 9
—_— 1 — x%&)|u(t)|*2dx.
2(a+2) R/2<\m|<R( i)
Thanks to the fact that 0 < xg < 1, |A(xgr)||z=~ < R~2 and the radial Sobolev
embedding, we get

Nao
Vu(t de—i/ u(t)|*T2dx
/MSR| e — ey o

Na _ (i
= /|V(XRU(t))|2de T 3012 / Ixru(t)[**2dz + O (R +R ) :
We thus obtain
iM (t) > 8 [ |IV(xru®))||2 — &”XRU( ez, )+ (R _’_R_ilm) .
dt- v = L2 9o+ 2) Lo+

By Lemma 3.5 and (3.11), there exists 6 = d(p) > 0 such that for any R > Ry,

e} d 7(N Da
88|l xru(t)]|F47, < dtMng(t)‘i‘O(R +R 7)

which implies for any time interval I C R,

a+2 7(N 1)04
80 [ [ Ixgu(t)|*2dwdt < sup|M,,(t)| + O (R +R ) 1.
I tel

It follows from the definition of xg and (3.11) that

// |u(t, x)‘a+2dxdt <R+ (R LR (N— 1)a) 1l
lz|<R/2

On the other hand, by radial Sobolev embeddings,

N-1la
2

/|>R/2 Ju(t, 2)|*"2de < ( sup IU(tw)“) lu(®)[3: < R~

|| >R/2
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We thus get

(N—1)a

//|u(t,x)|a+2dxdt§R+(R*2+R* z )|I|§R+R*"\I\,
I

where

7o min {2, 202

2
Taking R = |1 |1+%, we get for |I| sufficiently large,

[ 1)

where § is as in (3.10). In the case |I| is sufficiently small, it follows from Sobolev
embeddings and (3.4) that

)
/I (e85t < / lu(t)|22dt < |1) < |11

since 8 < 1. This proves (3.10) and the proof is complete. O

Sihdt S 1|77 =17,

Lemma 3.8. Let N > 2, o, < a < o and up € H' be radially symmetric
satisfying (1.3) and (1.4). Then the corresponding solution to (NLS) satisfies

ltlin_:lgof |u(t)||potr2 = 0. (3.13)

Proof. Assume by contradiction that (3.13) does not hold. Then there exist tg > 0
and ¢ > 0 such that

[u(®)l|Le+> = @
for all ¢ > to. This implies in particular that for every I C [tg, +00),
JARCIEy ]
which contradicts (3.10) for |I| large since § < 1. O

Corollary 1. Let N > 2, a, < a < o* and ug € H' be radially symmetric
satisfying (1.3) and (1.4). Then there exists t,, — 400 such that the corresponding
solution to (NLS) satisfies for any R > 0,

lim |u(ty,, z)|[>dx = 0. (3.14)

n—oo ‘-:ClSR
Proof. By (3.13), there exists t,, — 400 such that
Tim_[fu(t,)]| sz = 0.

Let R > 0. By Holder’s inequality, we see that

a¥e EEsd
/ [u(tn, z)|2de < / dx / |u(ty, z)|*2dx
lz|<R lz|<R lz|<R

Na ai“
< Re+2 (/ |u(tn,x)|a+2dx> -0

as n — oo. O
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3.3. Scattering below the ground state.

Proposition 2. Let N > 2, o, < o < o* and vy € H' be radially symmetric
satisfying (1.3) and (1.4). Then for € > 0 sufficiently small, there exists T =
T(e,ug, Q) sufficiently large such that the corresponding solution to (NLS) satisfies
DAY (T (7 4o0y,m) S € (3.15)

for some p >0, where k and r are as in (3.1).

e

Proof. We will consider separately two cases: N > 3 and N = 2.
Case 1. N > 3.

Let T > 0 be a large parameter depending on ¢, ug and @ to be chosen later. For
T > 77 with some o > 0 to be chosen later, we use the Duhamel formula to write

T
i(E=T)A (T _ it / i(t—s)A a
e u e"“ug + 1 e w(s)|%u(s)ds
(1) = eoug+i u(s)|"us) 16
Bug + Fy(t) + Fy(t),
where

Fi(t):=i / B u(s)|“u(s)ds, Fy(t) :=i /J e ) (s)|%u(s)ds

I
with I := [T —e 9, T] and J :=[0,T — e~ 7].
Step 1. Estimate the linear part. By Strichartz estimates, Sobolev embeddings,
(1.3) and (1.4),

e uoll r.Lry S NV uol|pr@.rty S loll e S lluollas < Cluo, Q) < oo,
where
B 2Na(a+2)
~ Na2 +4(N —1)a -8’
Note that (k,1) is a Schrodinger admissible pair. By the monotone convergence, we
may find 7" > 77 so that

(3.17)

e Aol Lk (17 4 00).27) S € (3.18)
Step 2. Estimate F;. By Remark 1, (2.3), (3.2) and Sobolev embedding, we have

1B 2 pooy. ) S MLl g gy S Ml 1oy S T lull LY

Loo(I,L7)"
_4-(N-2)a
We estimate ||ul|(s,r) as follows. Fix R = max {8_2_”,5 N -Da }7 we have

from (3.14) (by enlarging T if necessary) that

/ (T, 7)[2dz < 2.
|z|<R

/ r(@)u(T, 2)2dz < 2.

By the definition of g,

Using the fact that

& [xnt@lutt.o)ds

= ’2/VXR(:U) -Im(u(t, ) Vu(t, z))dx

< 2||Vxrllz a2 [Vu®) |2 < BT
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for all ¢t € R, we have for any t € I,
T
d
[ xa@lutt.o)Pds = [ xw(@luro)de - [ (d / xR<x>|u<s,x>|2dx) ds
t

< /XR(x)|u(T, 2)Pds + CR™(T — 1)
<O+ CR e <2062
for some constant C' = C(ug, @) > 0. This shows that

Ixrullpo(1,2) Se,

where we have used the fact x% < xp since 0 < xyg < 1. By Hélder’s inequality,
the radial Sobolev embedding and the fact ||u||zec®, m1) < C(uo, @),

lulleo .2y < lIxrullzoe(1,my + 11 = XR)Ull Lo (1,7

4-(N-2)a _Na__
< 2(at2) 2(a+2)
= ||XRUHL°°(I,L2) HXRU||LOO(17LJ\?§2)

o 2
A = xr)ull ;5 pooy (1= XR)ull 1 12

4—(N—2)o _ (N—Da 4—(N—2)o
55 2(@¥2) 4+ R 20+ gg 2(a+2)

It follows that

(a+1)o  (A—(N=2)a)(a+1) _ o 4=(N-2)a
IF | Lr(To0y r) S€7 F € Fat2) :g(a“)[ tt 2 ]

By the definition of k, we see that
(a+1)(A—(N-2)a)(a=a)
I EU Lk (1, 400),27) S € 2alat2) . (3.19)

Step 3. Estimate F,. We estimate

12l Lk (1, 400),27) < ||F2||ik<[T,+oo),Lz)||F2||;(9[T7+00)7Ln)
where [ is as in (3.17), 6 € (0,1) and n > r satisfy
1 6 1-6
+

roo 1 n
Using the fact (k,1) is a Schrodinger admissible pair and
Fg(t) _ ei(t—T+sfa)Au(T _ g_") _ eitAuO7

Strichartz estimates imply

|2l Lk (17, 400),21) S 1-

On the other hand, by the dispersive estimates (2.1) and Sobolev embeddings with
the fact that |u||pe g, g1y < C(uo, @), we have for any ¢ > T,

I1Fo(t)]|n < /J (t = 5) T2 [Ju(s)|u(s)|| pr ds
T—e= 7
— [ - E D)
0

St-T+e7) 20-2)H

/ 2N N2y
n(a+1)e{2,N_2, 5 1 - 1>0.

a+1
Ln' (a+1) dS

provided
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It follows that

A
A~

12| L (7, 400), 27

provided

‘We thus obtain
| Ball oo,y S e FO7R) 1200, (3.20)

The above estimate holds true provided
2N N 2 1
! 1 2, —— —(1-=)=-1-= .
n>r, n(a+)e{,N_2], 2( n) k>0

We will choose a suitable n satisfying the above conditions. By the choice of r and
k, the above conditions become

n 2Na(a+2)
(3.21)

~—n a+2’

el 1 1 1—oz’N+2—(N—2)a7 1 (N-2)(a*+3a)—4
n 2 2N

In the case a > 1, we take % =0orn=oc.

In the case a < 1, which together with % <a< ﬁ imply N > 5, we take
L — 1@ or n = 2. It is not hard to check that the conditions in (3.21) are
satisfied with this choice of n.
Step 4. Conclusion. By (3.16), we get from (3.18), (3.19) and (3.20) that for

o > 0 sufficiently small, there exists = p(o) > 0 such that

€D 2T || L 17400y L7y S 7

Case 2. N = 2.

Recall that we are considering a > 2 for N = 2. In this case, the last condition
in (3.21) does not work. To overcome this difficulty, we use the space time estimate
(3.10) as follows. By the dispersive estimate and Holder’s inequality, we see that
fort > T,

1ROl 5 [ (6= a3t ds

. (a=1)(a+2) 2
< /J (b= &) () pont llu(s)] Fads
(a—1)(a+2)

< /J (t— ) () ponr ds

1 (a=1)(a+2)
SANE =) egnlllvt) per a2 )

a—1

St =9 Mg (lal5i2 me)
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We see that for t > T,

T—e~
It = 5) M) = / () s
0
1
—at1(5=T—e"7\ «
afl s=0

1
((t _T4e¢ o’ —a+1 tfoz+1) o
t—T+¢ J)_F‘T_l,
where we have used t >t — T 4+ ¢~ since T > 7. On the other hand, by (3.10),

lall$22: ey S 1T1P S T°,

Q=

where 8 = max {% T} It yields that for ¢t > T,

(a—1)B 1)5

[Fa(t)lpe S (E—T+e7)""
It follows that

1
“+oo %
(a— 1)13 PR - DL
| Foll Lk 400,000y ST & (/ (t—T+e ) = dt)

T
1
t=+oc0\ k
t=T

(a—1)8 (a=1)k 1)k

ST e ((t—T+s“’) i

e )

We thus get

a— o— 1-1L a— a?4a—4)o \ a?+2a—4
HFQHL’C([T,+OO)7LT) hS [T%EU(TI_%)} "= (T(al)ﬁa( a?ra“? e .

(3.22)
Collecting (3.16), (3.18), (3.19) and (3.22) that
a2-4
. 2(a+1)(a—o) e (a?+a—4)o \ a2+2a—4
le " DAUT) | ey ) S e T+ (:ﬂ e Loty ) .

By taking T' = ¢~% with some a > 1 to be chosen shortly (it ensures T' > £~7) and
choosing ¢ > 0 small enough, we obtain
=D A u(T) | Lo (17,400 L7) S € (3.23)
for some p > 0. The above estimate requires
2 —4 -1 2 —4
o’ +a _a(a )B>O or a< o’ 4+ .
ala+2) Q Bla+2)(a—1)
It remains to show that

a?+a—4
Bla+2)(a—1)
In the case f = 3z or a > 4, we see that (3.24) is equivalent to
202 + 2a — 10
(a+2)(a—1)

> 1. (3.24)

>0
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which is satisfied for o > 4. In the case 8 = —25 or 2 < a < 4, (3.24) is equivalent

a-+2
to )
a®—a—2
— >0
a—1)
which is also satisfied for 2 < o < 4. Therefore, (3.24) is satisfied for all a > 2, and
we can choose a > 1 so that (3.23) holds. The proof is complete. O

The proof of energy scattering for (NLS) with radial data follows immediately
from (3.3), Lemma 3.4 and Proposition 2.

4. Choquard equations.

4.1. Small data theory. Let us start with the following Hardy-Littlewood-Sobolev
inequality is useful for our purpose.

Lemma 4.1 (Hardy-Littlewood-Sobolev inequality [33]). Let N > 1,0 < v < N
and 1 < g <r < oo be such that

A
N

Then there exists C = C(N,~,q,r) > 0 such that
12y * fllze < ClIfller

forall f e L".
We also have the following nonlinear estimates.

Lemma 4.2 (Nonlinear estimates). Let N > 1,0 < v < N, p > 2, p. < p < p*
and I C R. Denote

4p 2Np
q = ) ri= )
Np-1)—~ N+~
b Ap(p—1) — 4p(p—1)
Y+2—(N=-2)(p-1) 2N(p =12+ (N =2y =2)(p—1) -y —2
(4.1)
Then the following estimates hold:
1y L)l 2l o 11y S il 22 - (4.2)
_ 2(p—1
(V) [y # [l P2l o 1oy S Tl 200 V) llaqriry- (43)

Proof. By Hoélder’s inequality and the Hardy-Littlewood-Sobolev inequality, we
have

(L s fulP) [l ™2l g g ey < Uyl oo P20l e ey

S Ml ll oo lllulP 2 ull e, Lay

< Il
where
4(p—1) 2N
a = 9 b = 9
Y+2—(N-2)(p-1) N -~
4p 2Np 2N

T - -2p-1) TN+ p-1) T Nty
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To see (4.3), it suffices to show

— 2(p—1
IV T * ) P2l 1 oy S 2000 IVl (44)

We estimate
IV Iy * [l [l =2 ull por 1,y < IV (5 [l [Pl por 7,
Iy [ulP) V([P g 1, )-
By Hoélder’s inequality and the Hardy-Littlewood-Sobolev inequality, we see that
IV (L [ulP) P2l o (g gy < IV [ulP) ] o oy el =20l per 1,y

S IV ul) e @,zen

ulP~ull per (1,1

2(p—1
S Nl 3 IV ull a2y, (4.5)
where
2N
a; =2, by = N _ ")/’
. 4p di— _ 2Np o 2N
Y+2—(N-2)(p—1) (N+7p-1) N+

Similarly, we have

I(Zy = [ul)V (P2 o 1,y < 1y % [ul?l oz (1,00 [V (P2 0) | ez 1,2

S ||\U|p||Laz(1,Lez)||V(|U|p_2u)||Lc2(1,Ldz)

2(p—1
S Ml 1V ull o o, (4.6)
where
B A(p—1) 2N
a2 = I b2 - I
TH2-(N=2)(p-1) N -~y
= 4dp(p — 1) L — 2Np ey — 2N
N(p-1)+2p(p—2) -7 (N+7)-1) N+7y
Collecting (4.5) and (4.6), we prove (4.4). The proof is complete. O

Remark 2. Let ¢,k and m be as in (4.1). It is easy to see that (¢,r) is a
Schrodinger admissible pair. Moreover, k,m and ¢ satisfy (2.2), hence (2.3) holds
for such choice of exponents.

Lemma 4.3 (Small data global well-posedness). Let N > 1, 0 <y < N, p > 2
and p. < p < p*. Let T > 0 be such that u(T) € H'. Then there exists § > 0 such
that if

e DR U(T) | L (17 400),17) < O
then there exists a unique global solution to (NLC) with initial data w(T) satisfying
)l L (7 400y, 27y < 21T DAU(T) | Lo (17, 4-00),27)
and

(V) wll Lo, +00),7) < 2C[[u(T)| 12,

where k,r and g are as in (4.1).
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Proof. Let q,r,k and m be as in (4.1). Consider
Y= {u : |lullpsrry <M, [[{V)ullpag,ry < L}
equipped with the distance
d(u,v) := |lu — U||Lk(1,u) + flu — v”Lq(I,LT)y

where I = [T,+00) and M,L > 0 will be chosen later. We will show that the

functional
t

D(u(t)) = e EDAy(T) +i/T AL Ju(s)P)|u(s) [P~ >u(s)ds

is a contraction on (Y,d). By Remark 2, (2.3) and Lemma 4.2,
@ (u)l Lk r,Lmy < ||€i(t7T)AU(T)||Lk(I ry (L * \U|p)|U|p72UHLm'(1,LW)
< "D | pra oy + Ul T Ly
By Strichartz estimates and Lemma 4.2,
(V) D)l pacr,ery S IV €D 2T | paqr ory + 1 (V) [Ty # [ulP) >l o 7,y
S M@+l 325 2 1) el zar -
We also have
1@(w) = @)l e,y S Iy [ul?)ulP 2w — (L * [0l [P =20 o 1,
< Iy # [uP) P 2w = (L * [ol?) [ulP =l pour 7, )

Iy # o) uP =2 — (L * [0l [P =20l o (7,

2(p—1) 2(p—1)
S (el 350y + U302 ) e = vl ez,
and
1@(w) = @)l Laqr,Lry S 1Ly * [ul?)|uP~u — (L * [o[") [olP 20l o (g )
2(p—1 2(p—1)
< (i385 0y + 103252 ) e = vl zar oo
Thus, there exists C' > 0 independent of T" such that for any u,v € Y,
”(I)(U)HL’“(I,LT) < ||€i(t7T)AU(T)||Lk(1,Lr) + CMQP’I,
1Y) @(w)l| sy < Cllu(T) | s + CMPP=DL
and
d(®(u), ®(v)) < CM>P=Vd(u,v).
By choosing M = 2||€i(t_T)AU(T)||Lk(I’Lr), L = 2C|u(T)| g2 and taking M suffi-
ciently small so that CM2P~Y < L e see that ® is a contraction on (Y, d). The
proof is complete. O
Lemma 4.4 (Small data scattering). Let N > 1,0 <y < N, p>2 and p. <p <
p*. Suppose that u is a global solution to (NLC) satisfying
HUHL‘X’(R,Hl) < 0.
Then there exists § > 0 such that if
i(t—T)A

le U(T)||Lk([T,+oo),Lr) <46

for some T > 0, where k and r are as in (3.1), then u scatters in H' forward in
time.
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Proof. Let 6 > 0 be as in Lemma 4.3. It follows from Lemma 4.3 that the solution
satisfies

[l k(17 4-00), L7y < QHei(t_T)Au(T)||Lk([T,+oo),L““)a
1 {V) ull a7 4-00),Lm) < 2C|[u(T)]| o

Now let 0 < 7 <t < 4+00. By Strichartz estimates, we see that

e 2ult) - e Bulr) s =

t
[ e s s uls)ds
S I Iy [l .10

2(p—1
Sl oo | (V) ull agry Ly = O

Hl

as 7,t — +o0. This shows that (e~"“u(t)); is a Cauchy sequence in H' as t — oc.
Thus the limit

—+oo
we =i [ () P)u(s) P us)ds
t

exists in H'. By the same reasoning as above, we prove as well that
u(t) — ™Syl — 0
as t — +o00. The proof is complete. O

4.2. Variational analysis. We recall some properties of the ground state () related
0 (1.8). The ground state @ optimizes the sharp Gagliardo-Nirenberg inequality

/ (I, # | f ) Pz < Cop IV A2~ =2@70 0 vy e g\ (o},
that is
N(p—1)— —(N— —
Con = [ (I, 4 QP QP = [IVQUY QU=

Recall that @ satisfies the following Pohozaev’s identities

||Q||2 _2+’7—(N—2)(p—1) _2+'7_(N_2)(p_1)
e N -1 - - 2p

It follows that

Np—1)—~—2 2
=SNG 1) ] Vel =

IV Q3 / (1, 1QP) Q[P dz.

Np-1) -
4p

72 / (I, * Q") QPP dx

2p

___ % Lloloe )N =) =7=2
Con = 375717 — (IVQUe=11Q155) - (4.7)

Lemma 4.5 (Coercivity I). Let N >1,0<~y < N, p>2 and p. <p < p*. Let
up € HY satisfy (1.9) and (1.10). It follows that the corresponding solution exists
globally in time. Moreover, there exists p = p(ug, Q) > 0 such that

[Vu(®)]c2[lu(®)[[7e < (1 =2p)[[VQ| L[ QlIT5 (4.8)
for allt e R.
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Proof. By the sharp Gagliardo-Nirenberg inequality, we have

E(u(t))[M (u(t))]7

1

= > (IVu®)| 2 llu®)173)” - % (/(I'y * U(t)lp)IU(t)I”dfv) lu(®)172°

2
1 on2  Co —1)— C(N—=2)(p—1)+20
> §(HVu(t)||Lz||u(t) %) — 2;t||Vu(t)||gQ(p 1) VHU(t)HZjQ (N=2)(p—1)+2
= f (IVu@®)ll 2 llu®)l|75) , (4.9)
where
_ Lo Copt Np-1)—
flz) = 5% R x .
Using Pohozaev’s identities,
o N(p—l)—’}/—z oc )2
VQ2|Ql7%) = VQl:Q[72)” = E(@Q)[M(Q)].
£ (IVQUEIQIZ:) = Sy o (1Y@l 1QIE)* = B@)M (@)

We have from (1.9), the conservation of mass and energy that
F Va2 llu@®7s) < Eluo)[M(uo)l™ < B@Q)M(Q)]7 = f (IVQIr=1QII75)
for all ¢ in the existence time. By (1.10), the continuity argument implies that

Va2 l[u@llze < VR QU

2

for all ¢ in the existence time. The conservation of mass then implies that || Vu(t)|| .2
is uniformly bounded. The blow-up alternative then shows that the solution exists
globally in time.

To see (4.8), we use (1.9) to take ¥ = ¥(ug, Q) > 0 such that

E(uo)[M (uo)]”e < (1= 9)E(Q)[M(Q)]". (4.10)
Using the fact
BQMQI™ = SR (9@l Q1)
Nip—1)—y—2

oc N(p—1)—vy
= i Cops ([IVQII21QNI72) )

we infer from (4.9) and (4.10) that
N(p—1)—~ (llVU(t)HmHU(fHZ% >
Np—-1)—~v-2\ [VQI.[Ql%

) 2 (HWt)L2||u<t>||‘za)N“"”‘7 <1-9. (411
Np-1)-v-2\ [VQllIQlE -

Consider the function

Np-1)—-v 2 N(p—1)—v
9(y) = y© - y ;
) Np—-1)—v-2 N(p—-1)—~-2

O<y<1.

It is easy to see that g is strictly increasing in (0,1) with ¢g(0) = 0 and g(1) = 1.
It follows from (4.11) that there exists p > 0 depending on ¥ such that y < 1 —2p
which shows (4.8). The proof is complete. O
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Remark 3. If ug € H' satisfies (1.9) and (1.10), then E(ug) > 0. Indeed, by (4.9),
B(uo)[M (u0)]7s = f (I[Vuollz2uol|75) -

It is easy to see that f is strictly increasing on (0, (y) and strictly decreasing on
(Co, ), where

<'< 7 )N(MI)HHVQ Qi
"\ IN(p = 1) = 1]Cops B L2iiLe:

Here the last equality follows from (4.7). It follows that f(¢) > f(0) = 0 or
E(UO) > 0.

Lemma 4.6 (Coercivity II). Let N > 1,0 <~y < N, p>2 and p. <p < p*. Let
p be as in (4.8). There exists Ry = Ro(p, ||uol|r2) > 0 such that for any R > Ry,

IVxru®)llzz Ixru®)lze < (1= p)[IVQ|L2|Q

for all t € R, where xg(z) = x(x/R) with x € C(RYN) satisfying 0 < x < 1 and
(3.6). In particular, there exists v = v(p) > 0 such that for any R > Ry,

75 (4.12)

W / (L, * X ru(®P)xru®Pde > vixru(t)]? o,

L N+~

(4.13)

IVOxcru®))Z —

for allt € R.

Proof. By the definition of x g, we have that | xgu(t)||r2 < ||u(t)||r2. On the other
hand, using the fact

/ V(xf)|Pdz = / VIV P / YA fPdz, (4.14)

we have
IV (xru®)22 < (IVu®)ll72 + O (R72[lu(®)]Z) -
Thus
IV (xru(®) 22 Ixru®)|75 < (IVu@®)l72 + O (R_2||u(t)”2L2))% Ju()I75
< V@2 u®)7s + O (B Hlu@®)]75+)
< (1=2p)[IVQ|2[1QI 75 + O (R luo|75™)
< (L =plIVQL(QI75

provided R > 0 is taken sufficiently large depending on p, ||uo||zz2-
To show (4.13), we use the following fact: if

VA2l £1IZe < (= plIVQI QT (4.15)

then there exists § = §(p) > 0 such that

N(p—1)—
IV FI2 - % [ imiivas = s1vs @)
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To see (4.16), we first have from the Gagliardo-Nirenberg inequality and (4.15) that

1
B(f) = IV Sl7e = 52 ||Vf||L<” D e

— LIvAIE: (1— Gont 7 g Mr=D=1=2 ) t2-(V= W”)

= 1951 (1- 2 (9 15) ")

CVopt

1 1 o \N(p—1)—y—2
> 1911 (1= S - ¥ (ival i) V)

1 2 2 N(p—1)—
= 1l—— (1- p=1)=7)
We now set K (f) the left hand side of (4.16). We have that

K(f) =N~ 1) B - TN 2022 g e,
> M= D293 (1 - e 2 - o)
M= 29,

= (1= =Y VA

which proves (4.16).
Next, by enlarging Ry if necessary, we have for any R > Ry,

inf [V (xru(t)) 22 > C > 0. (4.17)

In fact, by Remark 3, we have E(up) > 0, hence
gg}% IVu(t)||rz > 2E(ug) > 0. (4.18)

Assume that (4.17) is not true, then there exist (¢,), C R and R,, — oo such that
Jim [|V(xr, u(tn))l[z2 = 0.

Using the identity
IV Gcr, uta ) = [, [Vu(ta)Pdo — [ xn, Alxr,ulta)Pdo
and the fact |A(xr,)| < R, 2, we obtain
/X?zn|vu(tn)|2dfﬂ = |V(xr,u(ts))|72 + O(R;?) =0

as n — oo which contradicts (4.18). Combining (4.16), (4.17), the Sobolev embed-
ding

2Np
H' — L™+ (4.19)
and the conservation of mass, we prove (4.13). The proof is complete. O

Remark 4. The estimate (4.13) was proved in [2, Lemma 3.4] by a similar argument
using the Sobolev embedding ||uH e S < |IVul|p2. However, this type of Sobolev

embedding does not hold in general w1th0ut (4.17).



26 VAN DUONG DINH AND SAHBI KERAANI

We also have the following Morawetz identity.

Lemma 4.7 (Morawetz identity). Let N > 1,0 < v < N and 2 < p < p*. Let
0 :RY = R be a sufficiently smooth and decaying function. Let u be a H' solution
o (NLC). Define

M,(t) := 2/ch Im(u(t) Vu(t))de
Then

d

Y, / Aplu(tfde 13" / &40 Re(9(1)Bpu(t) )

7,k=1

fw [ Aett, s ) utt s

D [ - o) @ - HELEIE 4,

[z = 4177+
(4.20)

where A(7y) be as in (1.6).

Proof. Tt follows from [37, Lemma 5.3] that if w is a solution to i0yu + Au = N (u)
with N(u) satisfying Im(N (u)@) = 0, then

/Azgp\u (t)2dx + 4 Z / kgoa Re(u(t)Oku(t))dx

7,k=1

+ 2/w AN (W), who (B

where {f, g} = Re(fVg — gV f) is the momentum bracket. Applying this result
to N(u) = — (I, * |u|?)|u[P~?u. Observe that

VL, * [ufP)ul?) = V(L * |ulP)ul? + (L, * [ul?)V (|ul?)
= V(I * [ul?)ul? + p(L, * [uf?) u]”~? Re(uVa).

On the other hand,

VI(Ey * [ul?ul?) = V(L * [ul?) w0
= V(L * [ulP)[ulP~*@]u + (I * [ul?)[ul ~*aVu.

Therefore,

{N(u),u}m = Re [V[(Ly * [u|?)[ul"?w)u] — Re [(I * [ul?)|u[P~*uV]
= V(L * [ul?)ul?] — 2Re{(T, * [ul?)|up~2uva].

Note that V(|ulP) = p|u[P~2 Re(uVu), hence

{N(u), upm = VI[(L * |ul?)|ul"] = %(Iv * |u[?)V (Jul?).
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We thus get
/V(p AN (u),u}mdz
— [ Vo VI Pl = 2 [ Vi V() )iz
—— [ ety sl lulde + 2 [ et ) upda + 2 [ VoV, < luP)upds

-2 2
- —pT/Acp(IW « |ulP)|ulPdz + ;/w V(I # |ulP) P da.
Note also that

V(I [uf?) = V, / AWz — g~ N uy) Py

G N / AW (@ — )|z — g2 u(y) Pdy.
Thus

/Vgp - V(I * |ulP)|uPdz

- = )A0) [[ o) @ - ) 2 iy

—-5240) [[ (et - Tot) - (o - ) LD

Therefore,
/ch AN (u),u}mde

—2
=_2== / Ap(Ly * |ul?)|ulPda
p

S22 40) [[ (et - Totn) - - ) O

Combining the above calculations, we prove (4.20). The proof is complete. O

Lemma 4.8 (Morawetz estimate). Let N > 2, 0 < v < N, p > 2 and p, <
p < p*. Let ug € H' be radially symmetric satisfying (1.9) and (1.10). Then
the corresponding solution global solution to (NLC) satisfies for any time interval
I CR,
2 B ._ 1 Np
/1 ||u(t)||L%dt < C(ug,Q)I)?, B:= maX{B, Ny r (N DN =1 =] }
(4.21)

for some constant C(ug, Q) > 0 depending only on ug and Q.

Proof. Let p = p(ug, Q) be as in (4.8) and R = R(p, ||uo||r2) be as in Lemma 4.6.
We define ¢r as in (3.8)-(3.9). By the Cauchy-Schwarz inequality and (4.8), we
see that

(M, (D] S IVerllzellu@®)2[Vu@®)| 2 S R (4.22)
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for all ¢ € R. Here the implicit constant depends only on ug and ). By Lemma 4.7,

N
%MW@) _ / A2 plu(t) 2z + 4 ‘%::1 / Oor Re(0;u(1)pu(t))dx
- W [ Sen(t, suol)utpds

2(N — u(t, z)Plu(t,y)|P
22D ) [ [ @onte) - Veont) - (o - HEDERED g1,

Using the fact pg(z) = |z|? for |z| < R, we see that

L] = w(®)]? x_w % lu® ) lu(®) Pdz
My (1) =8 UMV (1) S RGO
N
_/A2¢R|u(t)|2dx+4 Z /|| R@?kapRRe(ajﬂ(t)aku(t))dx
Gk=1" 121>
_2p=2) (1P (£ Pda
- /lxMAwR(u u(®)[)u(t) d
22D ) ([ Fonte) - Vontn) - (o - HEDROD 41,
(4.23)
where

Q:={(z,y) eR*™ : R<|z|<2R or R<|y| <2R}.

Since ||A%pr||L~ < R™2, the conservation of mass implies

/AQ@RW(t)\zdz <R
Since w is radial, we use the fact
_ T o _ Ok _ Ttk TjTh o
8j_78m Ok = (r_ r3 )&—i— r2 &
to get
N
" Pyond; Re(a(t)ru(t) = hlru(t)? > 0
Jk=1
which implies
N
4y / 0%.or Re(0;u(t)Opu(t))dz > 0.
jik=1 |z|>R

By Hélder’s inequality and the Hardy-Littlewood-Sobolev inequality, we see that

I )P IPdz| < ||I )P )P
‘/leﬂ%( v * u@P)|u@)Pde| S |1y [u(t)] ||L%(‘x|>R)H|U( )| HL%(MpR)
S anp Tu@] 2n, . (4.24)
LNFy LNH (Jz|>R)

For the first term in (4.24), we use the Sobolev embedding (4.19), the conservation
of mass and (4.8) to get

lu@ll 232 < llu®)llm < C(uo, Q).
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For the second term in (4.24), we use the radial Sobolev embedding (3.12) to have

J%NTP 2Np
lu(®)| ™2z, - / fu(t, )| 52 da
LN (lal>R)  Jlal>R

2[N(p—1)—~]
NF

< (sup u(t,x)|> ' [u(t)]|7

|z|>R

_(N=D[N(p=1D=9] 2AN(p-)=r]
SR S ) T )]
5 R,(N*U[II\\;J(:;*U*’Y]

This shows that

(N-D[N(p—1)—~]

‘ /| ICRICEROTEE B (4.25)

Using (4.25) and the fact ||[Apg|lr~ < 1, we have

_(N-DI[N(p—1)—1]
|/ Apr(Ly * [u(t)]P)|u(t)[Pdz| < R N
|z|>R

For the term in (4.23), we use the fact
(Ver(z) = Vor(y)) - (@ —y)| < o -yl

for all (x —y) € Q and (4.24) to get

A) [[ (Vo) - Tort)a - LD g0y

S CRTCIETOIE
R (N-1D[N(p—1)—~] 1>N(p 1)—7]
‘We thus obtain

4
dt

e - 0D 20 * |u(t)|P)|u(t)|Pdx
o Ve = S [ o) d]

+0(R2 4 R

M@R (t) 28

(4.26)

Now let xr be as in Lemma 4.6. We have

/ IV (xru(t)2dz = / 2| Vu(t) Pdz — / xrA)u(b) Pz

- / Vu(t)dx — / (1 \2)|Vu(t) 2dz
lz|<R R/2<|z|<R

- / XRA () u(t) P
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and

J @ ruP)ru(oPas

/ (L * e u(e) s~ (1= BT * [xmu(®) ) ()P

R/2<|2|<R

/ (I, * [P u()Pd — / U [ RO )

- / (1= xB) (L # [xu()P)u(t) Pd.
R/2<|z|<R

It follows that

2, NP—-1)—7 (P (£ P
/lngWu(t) e 2p /IxSR(Iv [u(@®)[P)u(t)[d

= [V Pas - T2V (s a0 ds

2p
+/R/2SI|SR(1—XR)|VU(75)| dx+/XRA(XR)|u(t)‘ d
Ne-1D) -~
2p
_M Xt * w(t)P)|u(t)|Pdx
2p /R/2<z|<R(1 Xr) Ly * [xru()P)u(t)|Pdz.

Thanks to the fact that 0 < xg < 1, supp(1 — x%) C {|z] > R/2}, |Alxgr)||lL> <
R~? and estimating as in (4.24), we get

2 z_w (D)1 (£ P
/Im<R|Vu(t) d 2p /|m<R(I"Y [u(t)[P)u(t)d

> [ 1V (enult)) s - N(p;i;)*” @ ruP) erutolras

/ (L * [(1 = x2) [u()[P]) [u(t)Pdac
|lz|<R

+0 (R‘2 + R‘%)
We thus obtain
d Np—1)—~
aM&PR(t) > 8[||V(XRU(15))||%2 - % /(I'y % ‘XRU(t)|p)|XRU(t)|pd:L'}
+0(R2+ R

By Lemma 4.6, there exists v = v(p) > 0 such that for any R > Ry,

(N=D[N(p=1)=1] )
2N
dt

which implies for any time interval I C R,

d
Sulxru®)|)? anp < =My () + O (zr2 + R
LN+~

(N—1)[N(p—1)—~] )
N

8u/||XRu 23 t<sup\M¢ ()|+O(R72+R7 [I]. (4.27)

By the definition of x g and (4.22),

/ lu(®)]1? 2 dtSR+0(R2+ RS )

LN+w (Jz|<R/2)
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On the other hand, by radial Sobolev embeddings,

2[N(p—1)—9]
N+~

/ MWﬁ%ws<wpwm» lu(t)||2: < R
|z|>R/2 |z|>R/2

(N=D[N(p=1)=7]
N+~ .

We thus get

N-1[N(p—1)—1]

J IO s dt 5 Rt (B2 4 RS2 1) < R R,
I L N+~

where

0::min{2, (N—l)[N(p—l)—’r]}.

Np

Here we have used the fact p > 2 to get the first estimate. Taking R = |I |1+%, we
get for |I| sufficiently large,

‘ﬂwmz&wsmﬁ=uw
I L N+~

where (3 is as in (4.21). In the case |I| is sufficiently small, it follows from the
Sobolev embedding (4.19) that

SO s dt 5 [ o) Brode < 1115 111
I LN+~ I
since 8 < 1. This proves (4.21) and the proof is complete. O

Lemma 4.9. Let N > 2, 0 <~y < N,p>2andp. <p < p*. Let ug € H*
be radially symmetric satisfying (1.9) and (1.10). Then the corresponding global
solution to (NLC) satisfies

lim inf [|u(t)]] 2xp =0. (4.28)

t—+o0 LN+~ (RN)

Proof. Assume by contradiction that (4.28) is not true. There exist 5 > 0 and
o > 0 such that

>
Ol g, >0 V2t

This implies in particular that, for every I C [tg, +00),
SO s de= Pl
I LNF7 (RN)
which contradicts (4.21) for |I| large since § < 1. O

Corollary 2. Let N > 2, 0<y < N, p>2and p, <p < p*. Let ug € H' be
radially symmetric satisfying (1.9) and (1.10). Then there exists t,, — 400 such
that the corresponding solution to (NLC) satisfies for any R > 0,

lim |u(tn, x)|*dx = 0. (4.29)

Proof. By (4.28), there exists t,, — 400 such that

| e =
LNFY (RN)

Jim[u(t,)
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Let R > 0. By Holder’s inequality, we see that

N(p;]U*“/ NN+’Y
P P
/ (b, 2)[2dz < / do / (b, 2)| 755 da
|z|<R |z|<R [z|<R
NN+’Y
N(p—1)— 2N P
<SR 7 </|u(tn,x)|N+I;d:E> -0

as n — 00. 0

4.3. Scattering below the ground state.

Proposition 3. Let N >2,0<~y < N, p>2andp, <p < p*. Let ug € H" be
radially symmetric satisfying (1.9) and (1.10). Then for € > 0 sufficiently small,
there exists T = T(e,up, Q) sufficiently large such that the corresponding solution
to (NLC) satisfies

”ei(t_T)Au(T)HL’“([T,+oo),L7' Set (4.30)

)~

for some p > 0, where k and r are as in (4.1).

Proof. We will consider separately two cases: N > 3 and N = 2.
Case 1. N > 3.

Let T > 0 be a large parameter depending on €, ug and @ to be chosen later. For
T > ¢77 with some o > 0 to be chosen later, we use the Duhamel formula to write

T
DA Y(T) = e™Pug + z/ ei(t*s)A(Iy * [u(s)[P)|u(s) [P~ u(s)ds
0 (4.31)
= eitA’U,O + Fl(t) + F2<t),

where

Fi(t) ::i/IBi(t’Sm(Iy * [u(s)[7)[u(s) [P u(s)ds,

Fy(t) =i /J (L Ju(s)P)|u(s) [P~ 2u(s)ds

with I := [T — e ?,T] and J :=[0,T — 7).
Step 1. Estimate the linear part. By Strichartz estimates, Sobolev embeddings,
(1.9) and (1.10),

e ugll prr rry S NV ol e,y S ol e S luolle < Clug, Q) < o0,

where

— 2Np(p —1)
l_(Np+N—2)(p_1)_7_2- (4.32)

Note that (k,1) € Sy. By the monotone convergence, we may find 7' > £~ 7 so that

e A uol| e (1, 4-00),0) S €- (4.33)

Step 2. Estimate Fj. By Remark 2, (2.3), (4.24) and Sobolev embedding, we
have
2p—

- 2p—1 L 2p—1
IF i, o0y, 2r) S Nl alP =20l e 1,1y S Nl 7 ey S T Nl -
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_N[24y—(N=2)(p=1)]
To estimate ||u||ze(r zr), We take R = max {5_2_‘7,5 V=D (N+7) } and get

from (4.29) (by enlarging T if necessary) that
/ |u(T, z)Pdx < &%
l2|<R
By the definition of g,

/XR(I)\U(T,CE)FLZI < e

Using the fact that

% /XR(m)|u(t, z)|?dx

= ’2/VXR(!E) -Im(u(t, x)Vu(t, z))dx
< 2| Vxrlpellu®)| 2 [ Vut) |2 S R
for all t € R, we have for any t € I,

[ xn@utt.o)Pds = [xn@lur.opds - [ ' (j / XR<x>|u<s,x>|2dx) ds

< /XR(x)|u(T, z)2dx + CR™Y(T —t)
< Ce?2+CR e <2062
for some constant C' = C(ug, Q) > 0. This implies
IxrullLo(1,2) S €,

where we have used the fact X%{ < xr since 0 < xg < 1. By Holder’s inequality,
the radial Sobolev embedding and the fact |u|| @, m1) < C(uo, Q),

lull oo 1,2y < lIxrullzoe(r,my + (1 = xR)Ull Lo (1,27

2+W7(Nz;2)(pfl) N(p;;)fw
< xrullpmr By el 7 e
N+~ Np-—1)—v
I = xr)ull (2 (1 poo) 11 = XR)Ul o (712
247 —-(N—-2)(p—1) _(N-1)(N+v) 2+y—(N—-2)(p—1)
e 2p R 2Np 2p

~

It follows that

_(p-lo [24y—(N-2)(p-1](2p-1)
I EU Lk (1, 400),27) S € € P

o | 24y—(N—2)(p—1
_ E(Qpil) [7?4» y—( o )(p )] '

By the definition of k, we see that

2Hy=(N=2)(p=D][2(p=1)=0]

11| w7, 400),27) S € ap(p=1) : (4.34)

Step 3. Estimate F,. We estimate

12l Lk (17, 400),L7) < ||F2||%k([T,+oo),Ll)||F2||}J;(9[T,+oo),L")
where [ is as in (4.32), 6 € (0,1) and n > r satisfy
1 6 1-90
+ .

r l n
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Using the fact (k,l) € Sy and
Fy(t) = €T D81 — 70 ity
Strichartz estimates imply
|2l Lk (11, 400),21) S 1-
On the other hand, by the dispersive estimates (2.1), we have for any ¢t > T,

1E()l|n S / (t — )" F OB, # [u(s)|P)|u(s)[P~2uls)|| L ds.

By the Hardy-Littlewood-Sobolev inequality, we see that

(L fulP) ul?~2ull o < 12y uf?)| Np(N ') P~ ?ull _@p-1xn
L 2p—1)NZn/ —yp(N+~yn’) L (p—1)(N+~n’)
Sl nw S1
L N+vn’
(4.35)
provided

(2p —1)Nn' 2N
N +~yn/ "N -2
It follows that for any ¢t > T,

T—e™ 7
1Fa(t) 1 < / (t— ) 0 Bas < (¢ - T 1oy FO-H0
0

provided

We infer that

I E2ll 2 (7,400, 27)

A
A/~

provided

We thus obtain

|2l Lk (17, 400),27) S ol (1=2)-1-4ja-0), (4.36)
The above estimate holds true provided

/
n>r, (vaﬁig" € [2]\[21172] ];[(12) 71—%>0.

We will choose a suitable n satisfying the above conditions. By the choice of r and
k, the above conditions become
1<N+7 1€[N+2'y—2(p—1)N N+4+2+4+2y—-2(p—1)(N —2)
n 2Np ’ 2N ’ 2N ’

N -2)p—-1)(2p+1)—7—-2
4Np(p —1) '

<

S 3

(4.37)

Note that it is easy to check that (N —2)(p — 1)(2p+1) — v —2 > 0 for any
24y — 247
N <p-1< 5=
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olfp—1> N;J'\?”, then we take 1 -
oIfp—1 < N2
following conditions

2N
N+2y—2p DN _ Nt~y

0 or n = .

1 N+2v—2(p—1)N
n

then we take = ——5y ——- We need to check the

2N INp
N+2y-2(p—1)N < (N=-2)p—1)(2p+1)—~v—2 (4.38)
2N 4Np(p—1) '

Note that the condition p — 1 < N+27 combining with 2+7 <p-—-1< m require
N > 5.
The first condition in (4.38) is equivalent to

2Np(p—1) = (N +2y)p+ N+~ > 0. (4.39)
The left hand side of (4.39) is written as f(p — 1), where
f(z) :=2Nz? + (N —2v)x — .

It is easy to check that f is increasing on @ > 22 and f (%) 0. This shows
that the first condition in (4.38) is satisfied for 2"’—7 <p—-1< +
The second condition in (4.38) is in turn equlvalent to

ANp(p—1*+(N=2)(p—1)(2p+1) —2(N +2y)p(p—1) —y—2 > 0. (4.40)
The left hand side of (4.40) is written as g(p — 1), where
g(x) :=4N2® + 4(N =1 —y)2® + (N — 6 — 4y)z — v — 2.

We have ¢/(z) = 12N2? +8(N — 1 — )z + N — 6 — 4. We see that ¢’ is increasing
on r > 2+7 and ¢’ (2+7) > 0. It follows that g is increasing on z > 2'” which
together Wlth the fact g (Z‘M) > 0 imply that g(x) > 0 for any = > 27\}7. Therefore,
the second condition in (4.38) is also satisfied.

Step 4. Conclusion. By (4.31), we get from (4.33), (4.34) and (4.36) that for
o > 0 sufficiently small, there exists p = p(o) > 0 such that

||e (=14 u(T )||Lk(T+oo) L7) Sel

Case 2. N = 2.

Recall that we are considering 2p > 4 4+~ here. In this case, the last estimate in
(4.37) does not work. To overcome this difficulty, we use the space time estimate
(4.21) as follows. By the dispersive estimate and the Hardy-Littlewood-Sobolev
inequality (4.35), we see that for t > T,

WMthSﬂﬁfﬁ*MAHM$WW@W”M$hds
sﬂefe*wwm%¢1>

=

By the interpolation inequality, we have

full sz <l g
2+~
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which together with the conservation of mass imply

2p(2p—3—1)

IF0le 5 [ =9 )] 57 ds
J L2+~

2p(?p*37w)
lu(s)Il %
L2+~

_ 217(2p—23—'v)
St —s) HL@(J)HUII s ap

B2 (J,LTH7)

Sht—97"

e

We see that for t > T,

T—e™
[ (/ (t—s) st)
0
5 T—e “ %
sO

~((t-T+e7) ftfl)%
thJre"’)’%,

Nl

where we have used t >t — T + e~ since T' > ¢~ . On the other hand, by (4.21)
4p
and the Sobolev embedding H' < L= with |ul| e (r, m1) < C(uo, Q), we see that

2p—2-—7 (2p—1)(2p—3—7)—1
lull spep—s- — a <||u||2"‘2p i IUH R
L 2p—2-~ 2+7) JL2+ Loo(J,L2F7)
< ||u||ﬁ
L2(JL2+ )
B

< |J|m

(2p—2—7)8

5 T 4p(2p—3-7) ,

where

1 2p 2p
= = . 4.41
v= max{34 —-2- 7} dp—2—v (4.41)
It yields that for t > T,

SIS
[

[Fo()lpe S(E=T+e77)"

+oo i %
/ (t—T+e“’)—zdt>
T
1
t=+o0\ k
o)

T=.
It follows that

B
I 2| Lk (17,4 00), 100y S T2

(
5T‘3((
q

I %7%)

t—T4e o) 5t

We thus get

(2p(p—1)—2— o (p—1)(2p—2—7)—v—2

- e
||F2||Lk([T7+oo),Lr) S [Tge”(%_%)} = (Tgaw) wemhmE
(4.42)
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Collecting (4.31), (4.33), (4.34) and (4.42) that

(2+7)(2p—2-7) 5 Ep(p—1) -2 A]o \ LSy =2
E—TVA N(2p—2-y g PPple—1)-2-9]¢ 2p(p—1)—7—2
e DAY e (17 00y Ly S €+ @D +(T2e @D

By taking T' = ¢~?? with some a > 1 to be chosen shortly and choosing ¢ > 0 small
enough, we obtain

"D AU | (17, 100) 1) S " (4.43)
for some p > 0. The above estimate requires

2p(p—1)—2— 2p(p—1)—2—
p(p—1) V_B g o < 2P gl

4p(p—1) 2 2p(p—1)p
Using (4.41) and the fact 2p > 4 + +, it is easy to check that

2p(p—1)—2—7
2p(p —1)B

Therefore, we can choose a > 1 so that (4.43) holds. The proof is complete. O

> 1.

The proof of the energy scattering for (NLC) with radial data follows immediately
from (4.4), Lemma 4.5 and Proposition 3.

5. Some possible extensions. The radial Sobolev-Morawetz method introduced
by Dodson-Murphy [12] has been applied to show the energy scattering with radi-
ally symmetric initial data for other Schrodinger-type equations. It turns out to be
useful for equations which do not have the conservation of momentum. This method
gives alternative simple proofs to similar results proved via the concentration-
compactness-rigidity argument.

5.1. Nonlinear Schrodinger equations with potential. Consider the Cauchy
problem for the focusing intercritical nonlinear Schrédinger equation with potential

(5.1)

iOu+Au—Vu = —Jul, (t,z)eRxR?
w(0,2) = wup(z),

Whereu:RxR:’%C,uo:RS%Cand%<a<4. Here V : R? =+ Ris a
real-valued potential satisfying

VekKnL?, |V_|x<A4nr,

where I is the class of Kato potential,

Vv
IVl = sup / Wl g,
R

z€R3 JR3 |l‘ - y|

and V_(z) := min{V(x), 0}.

The energy scattering for (5.1) with a = 2 was studied by Hong [23] using
the concentration-compactness-rigidity argument of Kenig-Merle [25]. Recently,
Hamano-Tkeda [21] adapted the Dodson-Murphy’s method to extend the result in
[23] to the whole range of the intercritical case.
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5.2. Inhomogenous nonlinear Schrédinger equations. Consider the Cauchy
problem for the focusing intercritical inhomogeneous nonlinear Schrédinger equation

i0u+Au = —|z|7Cul*u, (t,z) € R x RV,
u(0,2) = wup(x),

where u: R x RY — C, ug : RY — C, 0 < b < min{2, N} and a, < a < o* with

A= :{ 2N >3,
N co fN=12.

The energy scattering for (5.2) was first established by Farah-Guzman [15] with
0<b< 1, a=2and N = 3. This result was later extended to higher dimensions in
[16]. The proofs of these results are based on the concentration-compactness-rigidity
argument of Kenig-Merle [25]. Campos [5] used the Dodson-Murphy’s method to
give an alternative simple proof for the results of Farah-Guzman. He also extended
the validity of b in dimensions N > 3. Recently, Xu-Zhao [41] and the first author in
[10] has simultaneously proved the energy scattering for (5.2) in the two dimensions.

(5.2)

Oyt

5.3. Fractional nonlinear Schrédinger equations. Consider the Cauchy prob-
lem for the focusing intercritical fractional nonlinear Schrédinger equation
i0u — (—A)u = —|ul®u, (t,7) € R xRN,
u(0,z) = uo(x),

Whereu:RxRN%C,uO:RN%(C,NZQ,%<s<1and%<a< N‘ESQS. The
operator (—A)® is the fractional Laplacian defined by

(=A)*u = FHEPF(u)],

where F and F~! are the Fourier transform and inverse Fourier transform respec-
tively.

The energy scattering for (5.3) was first established by Sun-Wang-Yao-Zheng
[32] using a modified argument of Dodson-Murphy [12]. However, due to dispersive
estimates with a loss of derivatives, there are some restrictions on the validity of s
and «. In particular, the result in [32] is only available for 3 < N < 5. Later, Guo-
Zhu [20] extended the result of [32] to any dimensions N > 2 and the whole range
of the intercritical case by using the concentration-compactness-rigidity argument
of Kenig-Merle [25]. However, due to the fact that there is no dispersive estimates
without loss of derivatives for the fractional Schrédinger operator available even in
the radial case, the inhomogeneous Strichartz estimates stated in [20] require some
restrictions on the validity of s. Thus, the claimed result in [20] is doubtful.

(5.3)

5.4. Biharmonic nonlinear Schrédinger equations. Consider the Cauchy prob-
lem for the focusing intercritical biharmonic nonlinear Schréodinger equation

i0u — A%u = —|u|u, (t,z) € R xRN,

u(0,z) = wuo(z),
where 4 : R xRN = C, up : RN - C, N >4 and a,, < o < a* with
8 . { o if N >5,

(5.4)

_° .— )] N4
= “ o if N =4

The energy scattering for the equation (5.4) has been established by Guo [19]
using the concentration-compactness argument of Kenig-Merle [25]. In [11], the first
author makes use of the radial Sobolev-Morawetz method to give an alternative
simple proof for the result in [19].
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