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Abstract. Based on recent works of Dodson-Murphy [12] and Arora-Dodson-
Murphy [3], we give a unified approach for the energy scattering with radi-
ally symmetric initial data for nonlinear Schrödinger equations and nonlinear
Choquard equations in any dimensions N ≥ 2. We also discuss its applications
for other Schrödinger-type equations.

1. Introduction. We first consider the Cauchy problem for the focusing intercrit-
ical nonlinear Schrödinger equation{

i∂tu+ ∆u = −|u|αu, (t, x) ∈ R× RN ,
u(0, x) = u0(x), (NLS)

where u : R× RN → C, u0 : RN → C and α∗ < α < α∗ with

α∗ := 4
N
, α∗ :=

{ 4
N−2 if N ≥ 3,
∞ if N = 1, 2.

It is well-known that the equation (NLS) is locally well-posed in H1 (see e.g. [6]).
Moreover, local solutions satisfy the conservation of mass and energy

M(u(t)) =
∫
|u(t, x)|2dx = M(u0), (Mass)

E(u(t)) = 1
2

∫
|∇u(t, x)|2dx− 1

α+ 2

∫
|u(t, x)|α+2dx = E(u0), (Energy)

for all t in the existence time. The equation (NLS) also enjoys the following scaling
invariance

uλ(t, x) := λ
2
αu(λ2t, λx), λ > 0.
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Note that this scaling leaves the Ḣγc -norm of the initial data invariant, i.e.

‖uλ(0)‖Ḣγc = ‖u0‖Ḣγc , γc := N

2 −
2
α
. (1.1)

In this paper, we are interested in the asymptotic completeness or energy scat-
tering for (NLS).
Definition 1.1 (Energy scattering). A global solution u ∈ C(R, H1) to (NLS) is
said to be scattering in H1 forward in time (resp. backward in time) if there exists
u+ ∈ H1 (resp. u− ∈ H1) such that

lim
t→+∞

‖u(t)− eit∆u+‖H1 = 0
(

resp. lim
t→−∞

‖u(t)− eit∆u−‖H1 = 0
)
.

The energy scattering for small data can be proved easily using Strichartz es-
timates and the contraction mapping argument (see e.g. [6]). More precisely, it
is known that there exists δ > 0 sufficiently small such that if ‖u0‖H1 < δ, then
the corresponding solution to (NLS) exists globally in time and scatters in H1 in
both directions. A natural question is: What happens for large data? A simple
observation is that there exists a global but non-scattering solution to (NLS) of
the form u(t, x) = eitQ(x), where Q is the ground state, i.e. the unique positive,
radially symmetric, radially decreasing solution to the elliptic equation

−∆Q+Q− |Q|αQ = 0. (1.2)
Note that the existence of radial solution to (1.2) was proved by Weinstein [39] and
the uniqueness of positive radial solution was proved by Coffman [9] and Kwong
[27].

Holmer-Roudenko [22] proved the energy scattering with radially symmetric ini-
tial data for the focusing cubic nonlinear Schrödinger equation in dimension three.
More precisely, they proved the following result.
Theorem 1.2 ([22]). Let N = 3 and α = 2. Let u0 ∈ H1 be radially symmetric
and satisfy

E(u0)M(u0) < E(Q)M(Q), ‖∇u0‖L2‖u0‖L2 < ‖∇Q‖L2‖Q‖L2 .

Then the corresponding solution to (NLS) exists globally in time and scatters in H1

in both directions.
We note that the global existence for data below the ground state goes back to

the work of Stubbe [34]. Theorem 1.2 was later extended to the non-radial case by
Duyckaerts-Holmer-Roudenko [14] and to the general case by Cazenave-Fang-Xie
[7], Akahori-Nawa [1] and Guevara [18].
Theorem 1.3 ([1, 7, 14, 18]). Let N ≥ 1, α∗ < α < α∗ and u0 ∈ H1 satisfy

E(u0)[M(u0)]σc < E(Q)[M(Q)]σc , (1.3)
‖∇u0‖L2‖u0‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2 , (1.4)

where σc := 1−γc
γc

= 4−(N−2)α
Nα−4 . Then the corresponding solution to (NLS) exists

globally in time and scatters in H1 in both directions.
We next consider the Cauchy problem for the focusing intercritical nonlinear

Choquard equation{
i∂tu+ ∆u = −(Iγ ∗ |u|p)|u|p−2u, (t, x) ∈ R× RN ,

u(0, x) = u0(x), (NLC)
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where u : R× RN → C, u0 : RN → C, N ≥ 1, p ≥ 2 and p∗ < p < p∗ with

p∗ := 1 + γ + 2
N

, p∗ :=
{

1 + γ+2
N−2 if N ≥ 3,
∞ if N = 1, 2.

(1.5)

Here Iγ is the Riesz potential defined by

Iγ(x) := A(γ)
|x|N−γ

, A(γ) :=
Γ
(
N−γ

2

)
Γ
(
γ
2
)
π
N
2 2γ

, x 6= 0 (1.6)

with 0 < γ < N and Γ is the Gamma function.
It was known (see [4, 29]) that the equation (NLC) is locally well-posed in H1.

Moreover, the following conservation laws hold:

M(u(t)) =
∫
|u(t, x)|2dx = M(u0), (Mass)

E(u(t)) = 1
2

∫
|∇u(t, x)|2dx− 1

2p

∫
(Iγ ∗ |u|p)(t, x)|u(t, x)|pdx = E(u0).

(Energy)
The equation (NLC) is also invariant under the scaling

uλ(t, x) := λ
γ+2

2(p−1)u(λ2t, λx), λ > 0.
Note that this scaling leaves the Ḣγc -norm of the initial data invariant, i.e.

‖uλ(0)‖Ḣγc = ‖u0‖Ḣγc , γc := N

2 −
γ + 2

2(p− 1) . (1.7)

As for (NLS), the energy scattering for (NLC) with small data can be proved by
using Strichartz estimates and the fixed point argument. Moreover, the equation
(NLC) admits a global but non-scattering solution u(t, x) = eitQ(x), where Q is a
ground state related to the elliptic equation

−∆Q+Q− (Iγ ∗ |Q|p)|Q|p−2Q = 0. (1.8)

Recall that a non-zero, non-negative H1 function to (1.8) is called a ground state
related to (1.8) if it minimizes the Weinstein’s functional

W (f) :=
[
‖∇f‖N(p−1)−γ

L2 ‖f‖γ+2−(N−2)(p−1)
L2

]
÷
∫

(Iγ ∗ |f |p)|f |pdx,

that is,
W (Q) = inf

{
W (f) : f ∈ H1\{0}

}
.

The existence of positive solutions along with the regularity and radial symmetric
solutions to (1.8) were studied by Moroz-Schaftingen [30]. The uniqueness of posi-
tive solutions to (1.2) is still an open problem except for p = 2, γ = 2 and N = 3, 4, 5
(see [28, 26, 4]) and for p > 2 close to 2 and N = 3 (see [40]).

The large data energy scattering for (NLC) was established recently by Arora-
Roudenko [4]. More precisely, we have the following result.

Theorem 1.4 ([4]). Let N ≥ 1, 0 < γ < N , p ≥ 2 and p∗ < p < p∗. Let u0 ∈ H1

satisfy
E(u0)[M(u0)]σc < E(Q)[M(Q)]σc (1.9)

and
‖∇u0‖L2‖u0‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2 , (1.10)
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where σc := 1−γc
γc

= γ+2−(N−2)(p−1)
N(p−1)−γ−2 . Then the corresponding solution to (NLC)

exists globally in time and scatters in H1 in both directions.

The proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4 are based on the
concentration-compactness-rigidity argument of Kenig-Merle [25]. It is done by
three main steps: scattering criteria, construction of the critical solution and rigidity
argument.

Step 1: Scattering criteria. Thanks to Strichartz estimates, one proves that
if u is a global solution to (NLS) or (NLC) satisfying

sup
t∈R
‖u(t)‖H1 <∞, ‖u‖S(R,Ḣγc ) <∞, (1.11)

then u scatters in H1 in both directions. Here

‖u‖S(I,Ḣγc ) := sup
(q,r)∈Sγ

‖u‖Lq(I,Lr),

where Sγ is the set of Ḣγ admissible pairs, i.e.
2
q

+ N

r
= N

2 − γ

and 
2N

N−2γ ≤ r ≤
(

2N
N−2

)−
if N ≥ 3,

2
1−γ ≤ r ≤

((
2

1−γ

)+
)∗

if N = 2,
2

1−2γ ≤ r ≤ ∞ if N = 1.
We have used the notation a+ for a fixed number slightly greater than a, a− for a
fixed number slightly smaller than a and

1
a

= 1
a+ + 1

(a+)∗ .

Step 2: Construction of the critical solution. Denote

Aδ :=
{
u0 ∈ H1 :

{
E(u0)[M(u0)]σc < δ
‖∇u0‖L2‖u0‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2

}
and

δc := sup {δ > 0 : if u0 ∈ Aδ, then the solution satisfies (1.11)} .
By the small data scattering, one knows that δc > 0. If δc ≥ E(Q)[M(Q)]σc , then
it is done. Assuming that δc < E(Q)[M(Q)]σc , one will derive a contradiction. By
the definition of δc, there exists a sequence of solutions un to (NLS) or (NLC) with
initial data u0

n satisfying

E(u0
n)[M(u0

n)]σc ↘ δc, ‖∇u0
n‖L2‖u0

n‖
σc
L2 < ‖∇Q‖L2‖Q‖σc

L2

for which (1.11) does not hold for all n ≥ 1. In particular, ‖un‖S(R,Ḣγc ) = ∞ for
all n ≥ 1.

Applying the profile decomposition to (un)n≥1, we can construct a critical so-
lution, denoted by uc, that lies exactly at the threshold δc. Moreover, the critical
solution satisfies ‖uc‖S(R,Ḣγc ) =∞ and

K := {uc(t) : t ∈ [0,∞)}

is a precompact set in H1.
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Step 3: Rigidity argument. Using localized virial estimates, we show that
such a critical solution is identically zero which is a contradiction.

Recently, Dodson-Murphy [12], Arora-Dodson-Murphy [3] and Arora [2] gave
alternative simple proofs for the large data scattering with radially symmetric initial
data that avoids the concentration-compactness-rigidity argument. See also [13] for
a new proof of scattering for (NLS) with general data that avoids the concentration-
compactness-rigidity argument.

In the case N ≥ 3, the proofs of these results are based on the following two
main ingredients. The first ingredient is the scattering criterion of Tao [36].

Lemma 1.5 (Scattering criterion [36]). Suppose u is a radially symmetric global
solution to (NLS) or (NLC) satisfying

sup
t∈R
‖u(t)‖H1 ≤ A

for some constant A > 0. Then there exist ε = ε(A) > 0 sufficiently small and
R = R(A) > 0 sufficiently large such that if

lim
t→∞

∫
|x|≤R

|u(t, x)|2dx ≤ ε,

then u scatters in H1 forward in time.

This scattering criterion was proved in [36] (see also [12]) for the focusing cubic
NLS in three dimensions. It was later extended to (NLS) and (NLC) by Arora [2].
However, the proof presented in [2] contains a flaw. More precisely, the author in
[2] used the following inhomogeneous Strichartz estimate∥∥∥∥∫ t

0
ei(t−τ)∆F (τ)dτ

∥∥∥∥
L

2(N+2)
N−2s (I×RN )

. ‖F‖
L2(I,L

2N
N+2(1−s) )

(1.12)

which is not clear to hold for all 0 < s < 1. In fact, to our knowledge, the best known
inhomogeneous Strichartz estimates were proved independently by Foschi [17] and
Vilela [38]. According to their results, the estimate (1.12) holds true provided that

(q, r) :=
(

2(N + 2)
N − 2s ,

2(N + 2)
N − 2s

)
, (m,n) :=

(
2, 2N
N − 2 + 2s

)
are N

2 -acceptable, i.e.

1 ≤ q, r,m, n ≤ ∞, 1
q
<
N

2 −
N

r
,

1
m
<
N

2 −
N

n
(1.13)

satisfying
2
q

+ 2
m

= N − N

r
− N

n
(1.14)

and
N − 2
N

≤ r

n
≤ N

N − 2 . (1.15)

It is easy to check that the last inequality in (1.13) requires s < 1
2 , and the second

inequality in (1.15) requires s ≤ N2+2N−4
2N2−4 < 1.

The second ingredient is the evacuation of the potential energy.
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Lemma 1.6 (Energy evacuation (NLS) [12, 2]). There exist a sequence of times
tn →∞ and a sequence of radii Rn →∞ such that

lim
n→∞

∫
|x|≤Rn

|u(tn, x)|α+2dx = 0.

Lemma 1.7 (Energy evacuation (NLC) [2]). There exist a sequence of times tn →
∞ and a sequence of radii Rn →∞ such that

lim
n→∞

∫
|x|≤Rn

|u(tn, x)|
2Np
N+γ dx = 0.

The proofs of these energy evacuations are based on the coercivity property of
global solutions below the ground state and localized Morawetz estimates using the
radial Sobolev embedding.

In the case N = 2, the scattering criterion of Tao is not sufficient to show the
energy scattering due to the logarithmic divergence of an integral appearing in using
dispersive estimates. To overcome this difficulty, Arora-Dodson-Murphy [3] made
use of the space-time estimate∫ T

0

∫
R2
|u(t, x)|α+2dxdt . T β , β := max

{
1
3 ,

2
α+ 2

}
to show the global space-time bound

‖u‖L2α(R×R2) <∞

which implies the scattering.
The purpose of this paper is to give a unified proof for the energy scattering

with radially symmetric initial data for both (NLS) and (NLC) in any dimensions
N ≥ 2. Let us give a brief description of the proof for (NLS), the one for (NLC) is
similar. The proof is divided into three steps.

Step 1: Scattering criteria. Using a suitable inhomogeneous Strichartz esti-
mate, we prove that if u is a global solution to (NLS) satisfying ‖u‖L∞(R,H1) <∞,
then there exists δ > 0 such that if

‖ei(t−T )∆u(T )‖Lk([T,∞),Lr) < δ (1.16)

for some T > 0, then u scatters in H1 forward in time, where

k := 2α(α+ 2)
4− (N − 2)α, r := α+ 2.

Step 2: Localized Morawetz estimates. By using some variational analysis,
we prove that under the assumptions (1.3) and (1.4), the corresponding solution
to (NLS) exists globally in time, and there exist ν = ν(u0, Q) > 0 and R0 =
R0(u0, Q) > 0 such that for any R ≥ R0,

H(χRu(t)) ≥ ν‖χRu(t)‖α+2
Lα+2 (1.17)

for all t ∈ R. Here
H(u) := ‖∇u‖2L2 −

Nα

2(α+ 2)‖u‖
α+2
Lα+2

is nothing but the virial functional
d2

dt2
‖xu(t)‖2L2 = 8H(u(t))
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and χR(x) = χ(x/R) with χ ∈ C∞0 (RN ) satisfying 0 ≤ χ ≤ 1 and

χ(x) =
{

1 if |x| ≤ 1/2,
0 if |x| ≥ 1.

Using the coercivity property (1.17), localized Morawetz estimates and the radial
Sobolev embedding, we prove that the solution to (NLS) satisfies for any time
interval I ⊂ R,∫

I

‖u(t)‖α+2
Lα+2dt . |I|β , β := max

{
1
3 ,

2
(N − 1)α+ 2

}
. (1.18)

Step 3: Energy scattering. By Step 1, it suffices to find T > 0 so that (1.16)
holds. To this end, let ε > 0 be a small parameter. For T > ε−σ, we use the
Duhamel formula to write

ei(t−T )∆u(T ) = eit∆u0 + F1(t) + F2(t),

where

F1(t) := i

∫
I

ei(t−s)∆|u(s)|αu(s)ds, F2(t) := i

∫
J

ei(t−s)∆|u(s)|αu(s)ds

with I := [T − ε−σ, T ] and J := [0, T − ε−σ].
Thanks to Strichartz estimates, the linear part can be made small by taking

T > ε−σ sufficiently large. Combining Strichartz estimates, (1.18) and the radial
Sobolev embedding, the term F1 becomes small by taking a suitable value of σ.
Finally, to treat the term F2, we make use of dispersive estimates and the space-
time estimate (1.18). We refer the reader to Section 3 for more details.

Comparing to previous works [12, 3, 2], the main contributions of the paper are
the followings:
• We give a unified simple proof for the radial data energy scattering for both

(NLS) and (NLC) in any dimensions N ≥ 2. In particular, we give the proof
of the energy scattering with radially symmetric initial data for (NLC) in two
dimensions which, to our knowledge, is new.
• We have fixed some flaws in the proofs of [2].
• Finally, we discuss some possible extensions of this method for other Schrödinger-

type equations.
This paper is organized as follows. In Section 2, we recall some Strichartz esti-

mates which are needed in the sequel. In Section 3, we prove the energy scattering
for nonlinear Schrödinger equations with radial data. The proof of the radial data
energy scattering for Choquard equations will be given in Section 4. Finally, we
discuss some possible extensions of the radial Sobolev-Morawetz method to other
Schrödinger-type equations in Section 5.

2. Strichartz estimates. Let eit∆ be the propagator for the free Schrödinger
equation i∂tu+ ∆u = 0. We have from the explicit formula

eit∆f(x) = Ct−
N
2

∫
ei
|x−y|2

4t f(y)dy

the standard dispersive estimate

‖eit∆f‖L∞ . |t|−N2 ‖f‖L1 .
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By interpolating this inequality with the L2-isometry ‖eit∆f‖L2 = ‖f‖L2 , we have
the following dispersive estimates: for any r ∈ [2,∞],

‖eit∆f‖Lr . |t|−
N
2 (1− 2

r )‖f‖Lr′ , (2.1)

where (r, r′) is the Hölder’s conjugate pair.
Let I ⊂ R be an interval and q, r ∈ [1,∞]. We define the mixed norm

‖u‖Lq(I,Lr) :=
(∫

I

(∫
RN
|u(t, x)|rdx

) q
r

dt

) 1
q

with a usual modification when either q or r are infinity. When q = r, we use the
notation Lq(I × RN ) instead of Lq(I, Lq).

Definition 2.1. A pair (q, r) is said to be Schrödinger admissible if
r ∈

[
2, 2N

N−2

]
if N ≥ 3,

r ∈ [2,∞) if N = 2,
r ∈ [2,∞] if N = 1,

2
q

+ N

r
= N

2 .

Proposition 1 (Strichartz estimates [6, 24]). Let N ≥ 1 and I ⊂ R be an interval.
There exists a constant C > 0 independent of I such that the following estimates
hold:
• (Homogeneous estimates)

‖eit∆f‖Lq(I,Lr) ≤ C‖f‖L2

for any f ∈ L2 and any Schrödinger admissible pair (q, r).
• (Inhomogeneous estimates)∥∥∥∥∫ t

0
ei(t−s)∆F (s)ds

∥∥∥∥
Lq(I,Lr)

≤ C‖F‖Lm′ (I,Ln′ )

for any F ∈ Lm′(I, Ln′) and any Schrödinger admissible pairs (q, r), (m,n).

We also have the following inhomogeneous Strichartz estimates for non Schrödinger
admissible pairs.

Lemma 2.2 ([8]). Let N ≥ 1, I ⊂ R be an interval. Let (q, r) be a Schrödinger
admissible pair with r > 2. Fix k > q

2 and define m by

1
k

+ 1
m

= 2
q
. (2.2)

Then there exists C > 0, depending only on N, r and k, such that∥∥∥∥∫ t

0
ei(t−s)∆F (s)ds

∥∥∥∥
Lk(I,Lr)

≤ C‖F‖Lm′ (I,Lr′ ) (2.3)

for any F ∈ Lm′(I, Lr′).

We refer the reader to [8, Lemma 2.1] for the proof of this result.

3. Nonlinear Schrödinger equations.
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3.1. Small data theory. We have the following nonlinear estimates which follow
directly from Hölder’s inequality.

Lemma 3.1 (Nonlinear estimates). Let N ≥ 1, α∗ < α < α∗ and I ⊂ R. Denote

q := 4(α+ 2)
Nα

, r := α+ 2, k := 2α(α+ 2)
4− (N − 2)α, m := 2α(α+ 2)

Nα2 + (N − 2)α− 4 .

(3.1)

Then the following estimates hold:

‖|u|αu‖Lm′ (I,Lr′ ) . ‖u‖
α+1
Lk(I,Lr), (3.2)

‖ 〈∇〉 (|u|αu)‖Lq′ (I,Lr′ ) . ‖u‖
α
Lk(I,Lr)‖ 〈∇〉u‖Lq(I,Lr). (3.3)

Remark 1. Let q, r, k and m be as in (3.1). It is easy to check that (q, r) is a
Schrödinger admissible pair. Moreover, k,m and q satisfy (2.2), hence (2.3) holds
for such choice of exponents.

Lemma 3.2 (Small data global well-posedness). Let N ≥ 1 and α∗ < α < α∗. Let
T > 0 be such that u(T ) ∈ H1. Then there exists δ > 0 such that if

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) < δ,

then there exists a unique global solution to (NLS) with initial data u(T ) satisfying

‖u‖Lk([T,+∞),Lr) ≤ 2‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr)

and
‖ 〈∇〉u‖Lq([T,+∞),Lr) ≤ 2C‖u(T )‖H1 .

Here k, q and r are as in (3.1).

Proof. Since the proof is nowadays standard, we only sketch it. Let q, r, k and m
be as in (3.1). By Remark 1, (2.3) and Lemma 3.1, it is easy to show that the
functional

Φ(u(t)) := ei(t−T )∆u(T ) + i

∫ t

T

ei(t−s)∆|u(s)|αu(s)ds

is a contraction on (X, d), where

X :=
{
u : ‖u‖Lk([T,+∞),Lr) ≤M, ‖ 〈∇〉u‖Lq([T,+∞),Lr) ≤ L

}
equipped with the distance

d(u, v) := ‖u− v‖Lk([T,+∞),Lr) + ‖u− v‖Lq([T,+∞),Lr)

with L = 2C‖u(T )‖H1 and M = 2‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) sufficiently small.

Lemma 3.3 (Small data scattering). Let N ≥ 1 and α∗ < α < α∗. Suppose that u
is a global solution to (NLS) satisfying

‖u‖L∞(R,H1) <∞.

Then there exists δ > 0 such that if

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) < δ

for some T > 0, where k and r are as in (3.1), then u scatters in H1 forward in
time.
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Proof. Let δ > 0 be as in Lemma 3.2. It follows from Lemma 3.2 that the solution
satisfies

‖u‖Lk([T,+∞),Lr) ≤ 2‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr),

‖ 〈∇〉u‖Lq([T,+∞),Lr) ≤ 2C‖u(T )‖H1 .

Now let 0 < τ < t < +∞. By Strichartz estimates, we see that

‖e−it∆u(t)− e−iτ∆u(τ)‖H1 =
∥∥∥∥∫ t

τ

e−is∆|u(s)|αu(s)ds
∥∥∥∥
H1

. ‖ 〈∇〉 (|u|αu)‖Lq′ ((τ,t),Lr′ )

. ‖u‖αLk((τ,t),Lr)‖ 〈∇〉u‖Lq((τ,t),Lr) → 0

as τ, t→ +∞. This shows that (e−it∆u(t))t is a Cauchy sequence in H1 as t→∞.
Thus the limit

u+ := u0 + i

∫ +∞

t

e−is∆|u(s)|αu(s)ds

exists in H1. By the same reasoning as above, we prove as well that

‖u(t)− eit∆u+‖H1 → 0

as t→ +∞. The proof is complete.

3.2. Variational analysis. We recall some properties of the ground stateQ related
to (1.2). The ground state Q optimizes the sharp Gagliardo-Nirenberg inequality

‖f‖α+2
Lα+2 ≤ Copt‖∇f‖

Nα
2
L2 ‖f‖

4−(N−2)α
2

L2

that is

Copt = ‖Q‖α+2
Lα+2 ÷

[
‖∇Q‖

Nα
2
L2 ‖Q‖

4−(N−2)α
2

L2

]
.

Recall that Q satisfies the following Pohozaev’s identities

‖Q‖2L2 = 4− (N − 2)α
Nα

‖∇Q‖2L2 = 4− (N − 2)α
2(α+ 2) ‖Q‖α+2

Lα+2 .

It follows that

E(Q) = Nα− 4
2Nα ‖∇Q‖

2
L2 = Nα− 4

4(α+ 2)‖Q‖
α+2
Lα+2

and
Copt = 2(α+ 2)

Nα

(
‖∇Q‖L2‖Q‖σc

L2

)−Nα−4
2 .

Lemma 3.4 (Coercivity I [2]). Let N ≥ 1, α∗ < α < α∗ and u0 ∈ H1 satisfy
(1.3) and (1.4). It follows that the corresponding solution exists globally in time.
Moreover, there exists ρ = ρ(u0, Q) > 0 such that

‖∇u(t)‖L2‖u(t)‖σc
L2 < (1− 2ρ)‖∇Q‖L2‖Q‖σc

L2 (3.4)

for all t ∈ R.

The proof of this result follows from the sharp Gagliardo-Nirenberg inequality
and the continuity argument. We refer the reader to [2, Lemma 3.1] for a detailed
proof.
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Lemma 3.5 (Coercivity II [2]). Let N ≥ 1 and α∗ < α < α∗. Let ρ be as in (3.4).
There exists R0 = R0(ρ, ‖u0‖L2) > 0 such that for any R ≥ R0,

‖∇(χRu(t))‖L2‖χRu(t)‖σc
L2 < (1− ρ)‖∇Q‖L2‖Q‖σc

L2 (3.5)

for all t ∈ R, where χR(x) = χ(x/R) with χ ∈ C∞0 (RN ) satisfying 0 ≤ χ ≤ 1,

χ(x) =
{

1 if |x| ≤ 1/2,
0 if |x| ≥ 1. (3.6)

In particular, there exists δ = δ(ρ) > 0 such that for any R ≥ R0,

‖∇(χRu(t))‖2L2 −
Nα

2(α+ 2)‖χRu(t)‖α+2
Lα+2 ≥ δ‖χRu(t)‖α+2

Lα+2 (3.7)

for all t ∈ R.

For the proof of this result, we refer the reader to [2, Lemma 3.2].
We also have the following Morawetz identity.

Lemma 3.6 (Morawetz identity). Let N ≥ 1 and 0 < α < α∗. Let ϕ : RN → R
be a sufficiently smooth and decaying function. Let u be a H1 solution to (NLS).
Define

Mϕ(t) := 2
∫
∇ϕ · Im(u(t)∇u(t))dx.

Then

d

dt
Mϕ(t) = −

∫
∆2ϕ|u(t)|2dx+ 4

N∑
j,k=1

∫
∂2
jkϕRe(∂ju(t)∂ku(t))dx

− 2α
α+ 2

∫
∆ϕ|u(t)|α+2dx.

Let ζ : [0,∞)→ [0, 2] be a smooth function satisfying

ζ(r) =
{

2 if 0 ≤ r ≤ 1,
0 if r ≥ 2. (3.8)

We define the function θ : [0,∞)→ [0,∞) by

θ(r) :=
∫ r

0

∫ s

0
ζ(z)dzds.

Given R > 0, we define a radial function

ϕR(x) = ϕR(r) := R2θ(r/R), r = |x|. (3.9)

It is easy to check that

2 ≥ ϕ′′R(r) ≥ 0, 2− ϕ′R(r)
r
≥ 0, 2N −∆ϕR(x) ≥ 0, ∀r ≥ 0, ∀x ∈ RN .

Lemma 3.7 (Morawetz estimate). Let N ≥ 2 and α∗ < α < α∗. Let u0 ∈ H1 be
radially symmetric satisfying (1.3) and (1.4). Then the corresponding solution to
(NLS) satisfies for any time interval I ⊂ R,∫

I

‖u(t)‖α+2
Lα+2dt ≤ C(u0, Q)|I|β , β := max

{
1
3 ,

2
(N − 1)α+ 2

}
(3.10)

for some constant C(u0, Q) > 0 depending only on u0 and Q.
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Proof. Let ρ = ρ(u0, Q) be as in (3.4), and R = R(ρ, ‖u0‖L2) be as in Lemma 3.5.
We define ϕR as in (3.9). By the Cauchy-Schwarz inequality and (3.4), we see that

|MϕR(t)| . ‖∇ϕR‖L∞‖u(t)‖L2‖∇u(t)‖L2 . R (3.11)
for all t ∈ R. Here the implicit constant depends only on u0 and Q. By Lemma 3.6,

d

dt
MϕR(t) = −

∫
∆2ϕR|u(t)|2dx+ 4

N∑
j,k=1

∫
∂2
jkϕRRe(∂ju(t)∂ku(t))dx

− 2α
α+ 2

∫
∆ϕR|u(t)|α+2dx

= 8
(∫
|x|≤R

|∇u(t)|2dx− Nα

2(α+ 2)

∫
|x|≤R

|u(t)|α+2dx

)

−
∫

∆2ϕR|u(t)|2dx+ 4
N∑

j,k=1

∫
|x|>R

∂2
jkϕRRe(∂ju(t)∂ku(t))dx

− 2α
α+ 2

∫
|x|>R

∆ϕR|u(t)|α+2dx.

Since ‖∆2ϕR‖L∞ . R−2, the conservation of mass implies∣∣∣∣∫ ∆2ϕR|u(t)|2dx
∣∣∣∣ . R−2.

Since u is radial, we use the fact

∂2
jk =

(
δjk
r
− xjxk

r3

)
∂r + xjxk

r2 ∂2
r

to get
N∑

j,k=1
∂2
jkϕR∂ju∂ku = ϕ′′R|∂ru|2 ≥ 0

which implies

4
N∑

j,k=1

∫
|x|>R

∂2
jkϕRRe(∂ju(t)∂ku(t))dx ≥ 0.

Moreover, since ‖∆ϕR‖L∞ . 1, we have from the radial Sobolev embedding (see
e.g. [35]): for N ≥ 2,

sup
x 6=0
|x|

N−1
2 |f(x)| ≤ C(N)‖f‖H1 , ∀f ∈ H1

rad, (3.12)

that ∫
|x|>R

|u(t)|α+2dx ≤ ‖u(t)‖αL∞(|x|>R)‖u(t)‖2L2

. R−
(N−1)α

2 ‖u(t)‖αH1‖u(t)‖2L2 . R−
(N−1)α

2 .

We thus have

d

dt
MϕR(t) ≥ 8

(∫
|x|≤R

|∇u(t)|2dx− Nα

2(α+ 2)

∫
|x|≤R

|u(t)|α+2dx

)
+O

(
R−2 +R−

(N−1)α
2

)
.
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Now let χR be as in Lemma 3.5. We have∫
|∇(χRu(t))|2dx =

∫
χ2
R|∇u(t)|2dx−

∫
χR∆(χR)|u(t)|2dx

=
∫
|x|≤R

|∇u(t)|2dx−
∫
R/2≤|x|≤R

(1− χ2
R)|∇u(t)|2dx

−
∫
χR∆(χR)|u(t)|2dx∫

|χRu(t)|α+2dx =
∫
|x|≤R

|u(t)|α+2dx−
∫
R/2≤|x|≤R

(1− χα+2
R )|u(t)|α+2dx.

It follows that∫
|x|≤R

|∇u(t)|2dx− Nα

2(α+ 2)

∫
|x|≤R

|u(t)|α+2dx

=
∫
|∇(χRu(t))|2dx− Nα

2(α+ 2)

∫
|χRu(t)|α+2dx

+
∫
R/2≤|x|≤R

(1− χ2
R)|∇u(t)|2dx+

∫
χR∆(χR)|u(t)|2dx

− Nα

2(α+ 2)

∫
R/2≤|x|≤R

(1− χα+2
R )|u(t)|α+2dx.

Thanks to the fact that 0 ≤ χR ≤ 1, ‖∆(χR)‖L∞ . R−2 and the radial Sobolev
embedding, we get∫

|x|≤R
|∇u(t)|2dx− Nα

2(α+ 2)

∫
|x|≤R

|u(t)|α+2dx

≥
∫
|∇(χRu(t))|2dx− Nα

2(α+ 2)

∫
|χRu(t)|α+2dx+O

(
R−2 +R−

(N−1)α
2

)
.

We thus obtain
d

dt
MϕR(t) ≥ 8

(
‖∇(χRu(t))‖2L2 −

Nα

2(α+ 2)‖χRu(t)‖α+2
Lα+2

)
+O

(
R−2 +R−

(N−1)α
2

)
.

By Lemma 3.5 and (3.11), there exists δ = δ(ρ) > 0 such that for any R ≥ R0,

8δ‖χRu(t)‖α+2
Lα+2 ≤

d

dt
MϕR(t) +O

(
R−2 +R−

(N−1)α
2

)
which implies for any time interval I ⊂ R,

8δ
∫
I

∫
|χRu(t)|α+2dxdt ≤ sup

t∈I
|MϕR(t)|+O

(
R−2 +R−

(N−1)α
2

)
|I|.

It follows from the definition of χR and (3.11) that∫
I

∫
|x|≤R/2

|u(t, x)|α+2dxdt . R+
(
R−2 +R−

(N−1)α
2

)
|I|.

On the other hand, by radial Sobolev embeddings,∫
|x|≥R/2

|u(t, x)|α+2dx ≤

(
sup
|x|≥R/2

|u(t, x)|α
)
‖u(t)‖2L2 . R−

(N−1)α
2 .
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We thus get∫
I

∫
|u(t, x)|α+2dxdt . R+

(
R−2 +R−

(N−1)α
2

)
|I| . R+R−σ|I|,

where

σ := min
{

2, (N − 1)α
2

}
.

Taking R = |I|
1

1+σ , we get for |I| sufficiently large,∫
I

‖u(t)‖α+2
Lα+2dt . |I|

1
1+σ = |I|β ,

where β is as in (3.10). In the case |I| is sufficiently small, it follows from Sobolev
embeddings and (3.4) that∫

I

‖u(t)‖α+2
Lα+2dt .

∫
I

‖u(t)‖α+2
H1 dt . |I| . |I|β

since β < 1. This proves (3.10) and the proof is complete.

Lemma 3.8. Let N ≥ 2, α∗ < α < α∗ and u0 ∈ H1 be radially symmetric
satisfying (1.3) and (1.4). Then the corresponding solution to (NLS) satisfies

lim inf
t→+∞

‖u(t)‖Lα+2 = 0. (3.13)

Proof. Assume by contradiction that (3.13) does not hold. Then there exist t0 > 0
and % > 0 such that

‖u(t)‖Lα+2 ≥ %
for all t ≥ t0. This implies in particular that for every I ⊂ [t0,+∞),∫

I

‖u(t)‖α+2
Lα+2 ≥ %α+2|I|

which contradicts (3.10) for |I| large since β < 1.

Corollary 1. Let N ≥ 2, α∗ < α < α∗ and u0 ∈ H1 be radially symmetric
satisfying (1.3) and (1.4). Then there exists tn → +∞ such that the corresponding
solution to (NLS) satisfies for any R > 0,

lim
n→∞

∫
|x|≤R

|u(tn, x)|2dx = 0. (3.14)

Proof. By (3.13), there exists tn → +∞ such that

lim
n→∞

‖u(tn)‖Lα+2 = 0.

Let R > 0. By Hölder’s inequality, we see that∫
|x|≤R

|u(tn, x)|2dx ≤
(∫
|x|≤R

dx

) α
α+2

(∫
|x|≤R

|u(tn, x)|α+2dx

) 2
α+2

. R
Nα
α+2

(∫
|u(tn, x)|α+2dx

) 2
α+2

→ 0

as n→∞.
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3.3. Scattering below the ground state.

Proposition 2. Let N ≥ 2, α∗ < α < α∗ and u0 ∈ H1 be radially symmetric
satisfying (1.3) and (1.4). Then for ε > 0 sufficiently small, there exists T =
T (ε, u0, Q) sufficiently large such that the corresponding solution to (NLS) satisfies

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . εµ (3.15)
for some µ > 0, where k and r are as in (3.1).

Proof. We will consider separately two cases: N ≥ 3 and N = 2.

Case 1. N ≥ 3.

Let T > 0 be a large parameter depending on ε, u0 and Q to be chosen later. For
T > ε−σ with some σ > 0 to be chosen later, we use the Duhamel formula to write

ei(t−T )∆u(T ) = eit∆u0 + i

∫ T

0
ei(t−s)∆|u(s)|αu(s)ds

= eit∆u0 + F1(t) + F2(t),
(3.16)

where

F1(t) := i

∫
I

ei(t−s)∆|u(s)|αu(s)ds, F2(t) := i

∫
J

ei(t−s)∆|u(s)|αu(s)ds

with I := [T − ε−σ, T ] and J := [0, T − ε−σ].
Step 1. Estimate the linear part. By Strichartz estimates, Sobolev embeddings,
(1.3) and (1.4),
‖eit∆u0‖Lk(R,Lr) . ‖|∇|γceit∆u0‖Lk(R,Ll) . ‖u0‖Ḣγc . ‖u0‖H1 ≤ C(u0, Q) <∞,

where

l = 2Nα(α+ 2)
Nα2 + 4(N − 1)α− 8 . (3.17)

Note that (k, l) is a Schrödinger admissible pair. By the monotone convergence, we
may find T > ε−σ so that

‖eit∆u0‖Lk([T,+∞),Lr) . ε. (3.18)
Step 2. Estimate F1. By Remark 1, (2.3), (3.2) and Sobolev embedding, we have

‖F1‖Lk([T,+∞),Lr) . ‖|u|αu‖Lm′ (I,Lr′ ) . ‖u‖
α+1
Lk(I,Lr) . |I|

α+1
k ‖u‖α+1

L∞(I,Lr).

We estimate ‖u‖L∞(I,Lr) as follows. Fix R = max
{
ε−2−σ, ε−

4−(N−2)α
(N−1)α

}
, we have

from (3.14) (by enlarging T if necessary) that∫
|x|≤R

|u(T, x)|2dx . ε2.

By the definition of χR, ∫
χR(x)|u(T, x)|2dx . ε2.

Using the fact that∣∣∣∣ ddt
∫
χR(x)|u(t, x)|2dx

∣∣∣∣ =
∣∣∣∣2 ∫ ∇χR(x) · Im(u(t, x)∇u(t, x))dx

∣∣∣∣
≤ 2‖∇χR‖L∞‖u(t)‖L2‖∇u(t)‖L2 . R−1
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for all t ∈ R, we have for any t ∈ I,∫
χR(x)|u(t, x)|2dx =

∫
χR(x)|u(T, x)|2dx−

∫ T

t

(
d

ds

∫
χR(x)|u(s, x)|2dx

)
ds

≤
∫
χR(x)|u(T, x)|2dx+ CR−1(T − t)

≤ Cε2 + CR−1ε−σ ≤ 2Cε2

for some constant C = C(u0, Q) > 0. This shows that
‖χRu‖L∞(I,L2) . ε,

where we have used the fact χ2
R ≤ χR since 0 ≤ χR ≤ 1. By Hölder’s inequality,

the radial Sobolev embedding and the fact ‖u‖L∞(R,H1) ≤ C(u0, Q),
‖u‖L∞(I,Lr) ≤ ‖χRu‖L∞(I,Lr) + ‖(1− χR)u‖L∞(I,Lr)

≤ ‖χRu‖
4−(N−2)α

2(α+2)
L∞(I,L2) ‖χRu‖

Nα
2(α+2)

L∞(I,L
2N
N−2 )

+‖(1− χR)u‖
α
α+2
L∞(I,L∞)‖(1− χR)u‖

2
α+2
L∞(I,L2)

. ε
4−(N−2)α

2(α+2) +R−
(N−1)α
2(α+2) . ε

4−(N−2)α
2(α+2) .

It follows that

‖F1‖Lk([T,+∞),Lr) . ε−
(α+1)σ

k ε
(4−(N−2)α)(α+1)

2(α+2) = ε
(α+1)

[
−σk+ 4−(N−2)α

2(α+2)

]
.

By the definition of k, we see that

‖F1‖Lk([T,+∞),Lr) . ε
(α+1)(4−(N−2)α)(α−σ)

2α(α+2) . (3.19)
Step 3. Estimate F2. We estimate

‖F2‖Lk([T,+∞),Lr) ≤ ‖F2‖θLk([T,+∞),Ll)‖F2‖1−θLk([T,+∞),Ln)

where l is as in (3.17), θ ∈ (0, 1) and n > r satisfy
1
r

= θ

l
+ 1− θ

n
.

Using the fact (k, l) is a Schrödinger admissible pair and

F2(t) = ei(t−T+ε−σ)∆u(T − ε−σ)− eit∆u0,

Strichartz estimates imply
‖F2‖Lk([T,+∞),Ll) . 1.

On the other hand, by the dispersive estimates (2.1) and Sobolev embeddings with
the fact that ‖u‖L∞(R,H1) ≤ C(u0, Q), we have for any t ≥ T ,

‖F2(t)‖Ln .
∫
J

(t− s)−
N
2 (1− 2

n )‖|u(s)|αu(s)‖Ln′ds

=
∫ T−ε−σ

0
(t− s)−

N
2 (1− 2

n )‖u(s)‖α+1
Ln′(α+1)ds

. (t− T + ε−σ)−
N
2 (1− 2

n )+1

provided

n′(α+ 1) ∈
[
2, 2N
N − 2

]
,

N

2

(
1− 2

n

)
− 1 > 0.
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It follows that

‖F2‖Lk([T,+∞),Ln) .

(∫ +∞

T

(t− T + ε−σ)−[N2 (1− 2
n )−1]kdt

) 1
k

. εσ[N2 (1− 2
n )−1− 1

k ]

provided
N

2

(
1− 2

n

)
− 1− 1

k
> 0.

We thus obtain

‖F2‖Lk([T,+∞),Lr) . εσ[N2 (1− 2
n )−1− 1

k ](1−θ). (3.20)

The above estimate holds true provided

n > r, n′(α+ 1) ∈
[
2, 2N
N − 2

]
,

N

2

(
1− 2

n

)
− 1− 1

k
> 0.

We will choose a suitable n satisfying the above conditions. By the choice of r and
k, the above conditions become

0 ≤ 1
n
<

1
α+ 2 ,

1
n
∈
[

1− α
2 ,

N + 2− (N − 2)α
2N

]
,

1
n
<

(N − 2)(α2 + 3α)− 4
2Nα(α+ 2) .

(3.21)

In the case α > 1, we take 1
n = 0 or n =∞.

In the case α ≤ 1, which together with 4
N < α < 4

N−2 imply N ≥ 5, we take
1
n = 1−α

2 or n = 2
1−α . It is not hard to check that the conditions in (3.21) are

satisfied with this choice of n.
Step 4. Conclusion. By (3.16), we get from (3.18), (3.19) and (3.20) that for
σ > 0 sufficiently small, there exists µ = µ(σ) > 0 such that

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . εµ.

Case 2. N = 2.

Recall that we are considering α > 2 for N = 2. In this case, the last condition
in (3.21) does not work. To overcome this difficulty, we use the space time estimate
(3.10) as follows. By the dispersive estimate and Hölder’s inequality, we see that
for t ≥ T ,

‖F2(t)‖L∞ .
∫
J

(t− s)−1‖u(s)‖α+1
Lα+1ds

.
∫
J

(t− s)−1‖u(s)‖
(α−1)(α+2)

α

Lα+2 ‖u(s)‖
2
α

L2ds

.
∫
J

(t− s)−1‖u(s)‖
(α−1)(α+2)

α

Lα+2 ds

. ‖(t− s)−1‖Lαs (J)‖‖u(s)‖
(α−1)(α+2)

α

Lα+2 ‖
L

α
α−1
s (J)

. ‖(t− s)−1‖Lαs (J)

(
‖u‖α+2

Lα+2(J×R2)

)α−1
α

.
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We see that for t ≥ T ,

‖(t− s)−1‖Lαs (J) =
(∫ T−ε−σ

0
(t− s)−αds

) 1
α

=
(

(t− s)−α+1

α− 1

∣∣∣∣s=T−ε
−σ

s=0

) 1
α

≈
(
(t− T + ε−σ)−α+1 − t−α+1) 1

α

. (t− T + ε−σ)−
α−1
α ,

where we have used t ≥ t− T + ε−σ since T > ε−σ. On the other hand, by (3.10),
‖u‖α+2

Lα+2(J×R2) . |J |
β . T β ,

where β = max
{

1
3 ,

2
α+2

}
. It yields that for t ≥ T ,

‖F2(t)‖L∞ . (t− T + ε−σ)−
α−1
α T

(α−1)β
α .

It follows that

‖F2‖Lk([T,+∞),L∞) . T
(α−1)β
α

(∫ +∞

T

(t− T + ε−σ)−
(α−1)k
α dt

) 1
k

. T
(α−1)β
α

(
(t− T + ε−σ)−

(α−1)k
α +1

∣∣∣t=+∞

t=T

) 1
k

. T
(α−1)β
α εσ(α−1

α −
1
k ).

We thus get

‖F2‖Lk([T,+∞),Lr) .
[
T

(α−1)β
α εσ(α−1

α −
1
k )
]1− l

r =
(
T

(α−1)β
α ε

(α2+α−4)σ
α(α+2)

) α2−4
α2+2α−4

.

(3.22)
Collecting (3.16), (3.18), (3.19) and (3.22) that

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . ε+ ε
2(α+1)(α−σ)
α(α+2) +

(
T

(α−1)β
α ε

(α2+α−4)σ
α(α+2)

) α2−4
α2+2α−4

.

By taking T = ε−aσ with some a > 1 to be chosen shortly (it ensures T > ε−σ) and
choosing σ > 0 small enough, we obtain

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . εµ (3.23)
for some µ > 0. The above estimate requires

α2 + α− 4
α(α+ 2) −

a(α− 1)β
α

> 0 or a <
α2 + α− 4

β(α+ 2)(α− 1) .

It remains to show that
α2 + α− 4

β(α+ 2)(α− 1) > 1. (3.24)

In the case β = 1
3 or α ≥ 4, we see that (3.24) is equivalent to

2α2 + 2α− 10
(α+ 2)(α− 1) > 0
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which is satisfied for α ≥ 4. In the case β = 2
α+2 or 2 < α ≤ 4, (3.24) is equivalent

to
α2 − α− 2
2(α− 1) > 0

which is also satisfied for 2 < α ≤ 4. Therefore, (3.24) is satisfied for all α > 2, and
we can choose a > 1 so that (3.23) holds. The proof is complete.

The proof of energy scattering for (NLS) with radial data follows immediately
from (3.3), Lemma 3.4 and Proposition 2.

4. Choquard equations.

4.1. Small data theory. Let us start with the following Hardy-Littlewood-Sobolev
inequality is useful for our purpose.

Lemma 4.1 (Hardy-Littlewood-Sobolev inequality [33]). Let N ≥ 1, 0 < γ < N
and 1 < q < r <∞ be such that

1
q

= 1
r
− γ

N
.

Then there exists C = C(N, γ, q, r) > 0 such that
‖Iγ ∗ f‖Lq ≤ C‖f‖Lr

for all f ∈ Lr.

We also have the following nonlinear estimates.

Lemma 4.2 (Nonlinear estimates). Let N ≥ 1, 0 < γ < N , p ≥ 2, p∗ < p < p∗

and I ⊂ R. Denote

q := 4p
N(p− 1)− γ , r := 2Np

N + γ
,

k := 4p(p− 1)
γ + 2− (N − 2)(p− 1) , m := 4p(p− 1)

2N(p− 1)2 + (N − 2γ − 2)(p− 1)− γ − 2 .

(4.1)
Then the following estimates hold:

‖(Iγ ∗ |u|p)|u|p−2u‖Lm′ (I,Lr′ ) . ‖u‖
2p−1
Lk(I,Lr), (4.2)

‖ 〈∇〉 [(Iγ ∗ |u|p)|u|p−2u]‖Lq′ (I,Lr′ ) . ‖u‖
2(p−1)
Lk(I,Lr)‖ 〈∇〉u‖Lq(I,Lr). (4.3)

Proof. By Hölder’s inequality and the Hardy-Littlewood-Sobolev inequality, we
have

‖(Iγ ∗ |u|p)|u|p−2u‖Lm′ (I,Lr′ ) ≤ ‖Iγ ∗ |u|
p‖La(I,Lb)‖|u|p−2u‖Lc(I,Ld)

. ‖|u|p‖La(I,Le)‖|u|p−2u‖Lc(I,Ld)

. ‖u‖2p−1
Lk(I,Lr),

where

a = 4(p− 1)
γ + 2− (N − 2)(p− 1) , b = 2N

N − γ
,

c = 4p
γ + 2− (N − 2)(p− 1) , d = 2Np

(N + γ)(p− 1) , e = 2N
N + γ

.
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To see (4.3), it suffices to show

‖∇[(Iγ ∗ |u|p)|u|p−2u]‖Lq′ (I,Lr′ ) . ‖u‖
2(p−1)
Lk(I,Lr)‖∇u‖Lq(I,Lr). (4.4)

We estimate

‖∇[(Iγ ∗ |u|p)|u|p−2u]‖Lq′ (I,Lr′ ) ≤ ‖∇(Iγ ∗ |u|p)|u|p−2u‖Lq′ (I,Lr′ )
+ ‖(Iγ ∗ |u|p)∇(|u|p−2u)‖Lq′ (I,Lr′ ).

By Hölder’s inequality and the Hardy-Littlewood-Sobolev inequality, we see that

‖∇(Iγ ∗ |u|p)|u|p−2u‖Lq′ (I,Lr′ ) ≤ ‖∇(Iγ ∗ |u|p)‖La1 (I,Lb1 )‖|u|p−2u‖Lc1 (I,Ld1 )

. ‖∇(|u|p)‖La1 (I,Le1 )‖|u|p−2u‖Lc1 (I,Ld1 )

. ‖u‖2(p−1)
Lk(I,Lr)‖∇u‖Lq(I,Lr), (4.5)

where

a1 = 2, b1 = 2N
N − γ

,

c1 = 4p
γ + 2− (N − 2)(p− 1) , d1 = 2Np

(N + γ)(p− 1) , e1 = 2N
N + γ

.

Similarly, we have

‖(Iγ ∗ |u|p)∇(|u|p−2u)‖Lq′ (I,Lr′ ) ≤ ‖Iγ ∗ |u|
p‖La2 (I,Lb2 )‖∇(|u|p−2u)‖Lc2 (I,Ld2 )

. ‖|u|p‖La2 (I,Le2 )‖∇(|u|p−2u)‖Lc2 (I,Ld2 )

. ‖u‖2(p−1)
Lk(I,Lr)‖∇u‖Lq(I,Lr), (4.6)

where

a2 = 4(p− 1)
γ + 2− (N − 2)(p− 1) , b2 = 2N

N − γ
,

c2 = 4p(p− 1)
N(p− 1) + 2p(p− 2)− γ , d2 = 2Np

(N + γ)(p− 1) , e2 = 2N
N + γ

.

Collecting (4.5) and (4.6), we prove (4.4). The proof is complete.

Remark 2. Let q, r, k and m be as in (4.1). It is easy to see that (q, r) is a
Schrödinger admissible pair. Moreover, k,m and q satisfy (2.2), hence (2.3) holds
for such choice of exponents.

Lemma 4.3 (Small data global well-posedness). Let N ≥ 1, 0 < γ < N , p ≥ 2
and p∗ < p < p∗. Let T > 0 be such that u(T ) ∈ H1. Then there exists δ > 0 such
that if

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) < δ,

then there exists a unique global solution to (NLC) with initial data u(T ) satisfying

‖u‖Lk([T,+∞),Lr) ≤ 2‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr)

and
‖ 〈∇〉u‖Lq([T,+∞),Lr) ≤ 2C‖u(T )‖H1 ,

where k, r and q are as in (4.1).
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Proof. Let q, r, k and m be as in (4.1). Consider
Y :=

{
u : ‖u‖Lk(I,Lr) ≤M, ‖ 〈∇〉u‖Lq(I,Lr) ≤ L

}
equipped with the distance

d(u, v) := ‖u− v‖Lk(I,Lr) + ‖u− v‖Lq(I,Lr),

where I = [T,+∞) and M,L > 0 will be chosen later. We will show that the
functional

Φ(u(t)) := ei(t−T )∆u(T ) + i

∫ t

T

ei(t−s)∆(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)ds

is a contraction on (Y, d). By Remark 2, (2.3) and Lemma 4.2,
‖Φ(u)‖Lk(I,Lr) ≤ ‖ei(t−T )∆u(T )‖Lk(I,Lr) + ‖(Iγ ∗ |u|p)|u|p−2u‖Lm′ (I,Lr′ )

≤ ‖ei(t−T )∆u(T )‖Lk(I,Lr) + ‖u‖2p−1
Lk(I,Lr).

By Strichartz estimates and Lemma 4.2,
‖ 〈∇〉Φ(u)‖Lq(I,Lr) . ‖ 〈∇〉 ei(t−T )∆u(T )‖Lq(I,Lr) + ‖ 〈∇〉 [(Iγ ∗ |u|p)|u|p−2u]‖Lq′ (I,Lr′ )

. ‖u(T )‖H1 + ‖u‖2(p−1)
Lk(I,Lr)‖ 〈∇〉u‖Lq(I,Lr).

We also have
‖Φ(u)− Φ(v)‖Lk(I,Lr) . ‖(Iγ ∗ |u|p)|u|p−2u− (Iγ ∗ |v|p)|v|p−2v‖Lm′ (I,Lr′ )

≤ ‖(Iγ ∗ |u|p)|u|p−2u− (Iγ ∗ |v|p)|u|p−2u‖Lm′ (I,Lr′ )
+‖(Iγ ∗ |v|p)|u|p−2u− (Iγ ∗ |v|p)|v|p−2v‖Lm′ (I,Lr′ )

.
(
‖u‖2(p−1)

Lk(I,Lr) + ‖v‖2(p−1)
Lk(I,Lr)

)
‖u− v‖Lk(I,Lr)

and
‖Φ(u)− Φ(v)‖Lq(I,Lr) . ‖(Iγ ∗ |u|p)|u|p−2u− (Iγ ∗ |v|p)|v|p−2v‖Lq′ (I,Lr′ )

.
(
‖u‖2(p−1)

Lk(I,Lr) + ‖v‖2(p−1)
Lk(I,Lr)

)
‖u− v‖Lq(I,Lr).

Thus, there exists C > 0 independent of T such that for any u, v ∈ Y ,
‖Φ(u)‖Lk(I,Lr) ≤ ‖ei(t−T )∆u(T )‖Lk(I,Lr) + CM2p−1,

‖ 〈∇〉Φ(u)‖Lq(I,Lr) ≤ C‖u(T )‖H1 + CM2(p−1)L

and
d(Φ(u),Φ(v)) ≤ CM2(p−1)d(u, v).

By choosing M = 2‖ei(t−T )∆u(T )‖Lk(I,Lr), L = 2C‖u(T )‖H1 and taking M suffi-
ciently small so that CM2(p−1) ≤ 1

2 , we see that Φ is a contraction on (Y, d). The
proof is complete.

Lemma 4.4 (Small data scattering). Let N ≥ 1, 0 < γ < N , p ≥ 2 and p∗ < p <
p∗. Suppose that u is a global solution to (NLC) satisfying

‖u‖L∞(R,H1) <∞.
Then there exists δ > 0 such that if

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) < δ

for some T > 0, where k and r are as in (3.1), then u scatters in H1 forward in
time.
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Proof. Let δ > 0 be as in Lemma 4.3. It follows from Lemma 4.3 that the solution
satisfies

‖u‖Lk([T,+∞),Lr) ≤ 2‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr),

‖ 〈∇〉u‖Lq([T,+∞),Lr) ≤ 2C‖u(T )‖H1 .

Now let 0 < τ < t < +∞. By Strichartz estimates, we see that

‖e−it∆u(t)− e−iτ∆u(τ)‖H1 =
∥∥∥∥∫ t

τ

e−is∆(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)ds
∥∥∥∥
H1

. ‖ 〈∇〉 [(Iγ ∗ |u|p)|u|p−2u]‖Lq′ ((τ,t),Lr′ )

. ‖u‖2(p−1)
Lk((τ,t),Lr)‖ 〈∇〉u‖Lq((τ,t),Lr) → 0

as τ, t→ +∞. This shows that (e−it∆u(t))t is a Cauchy sequence in H1 as t→∞.
Thus the limit

u+ := u0 + i

∫ +∞

t

e−is∆(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)ds

exists in H1. By the same reasoning as above, we prove as well that

‖u(t)− eit∆u+‖H1 → 0

as t→ +∞. The proof is complete.

4.2. Variational analysis. We recall some properties of the ground stateQ related
to (1.8). The ground state Q optimizes the sharp Gagliardo-Nirenberg inequality∫

(Iγ ∗ |f |p)|f |pdx ≤ Copt‖∇f‖N(p−1)−γ
L2 ‖f‖γ+2−(N−2)(p−1)

L2 , ∀f ∈ H1\{0},

that is

Copt =
∫

(Iγ ∗ |Q|p)|Q|pdx÷
[
‖∇Q‖N(p−1)−γ

L2 ‖Q‖γ+2−(N−2)(p−1)
L2

]
.

Recall that Q satisfies the following Pohozaev’s identities

‖Q‖2L2 = 2 + γ − (N − 2)(p− 1)
N(p− 1)− γ ‖∇Q‖2L2 = 2 + γ − (N − 2)(p− 1)

2p

∫
(Iγ∗|Q|p)|Q|pdx.

It follows that

E(Q) = N(p− 1)− γ − 2
2[N(p− 1)− γ] ‖∇Q‖

2
L2 = N(p− 1)− γ − 2

4p

∫
(Iγ ∗ |Q|p)|Q|pdx

and

Copt = 2p
N(p− 1)− γ

(
‖∇Q‖L2‖Q‖σc

L2

)−[N(p−1)−γ−2]
. (4.7)

Lemma 4.5 (Coercivity I). Let N ≥ 1, 0 < γ < N , p ≥ 2 and p∗ < p < p∗. Let
u0 ∈ H1 satisfy (1.9) and (1.10). It follows that the corresponding solution exists
globally in time. Moreover, there exists ρ = ρ(u0, Q) > 0 such that

‖∇u(t)‖L2‖u(t)‖σc
L2 < (1− 2ρ)‖∇Q‖L2‖Q‖σc

L2 (4.8)

for all t ∈ R.
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Proof. By the sharp Gagliardo-Nirenberg inequality, we have

E(u(t))[M(u(t))]σc

= 1
2
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)2 − 1
2p

(∫
(Iγ ∗ |u(t)|p)|u(t)|pdx

)
‖u(t)‖2σc

L2

≥ 1
2
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)2 − Copt

2p ‖∇u(t)‖N(p−1)−γ
L2 ‖u(t)‖γ+2−(N−2)(p−1)+2σc

L2

= f
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)
, (4.9)

where

f(x) = 1
2x

2 − Copt

2p xN(p−1)−γ .

Using Pohozaev’s identities,

f
(
‖∇Q‖L2‖Q‖σc

L2

)
= N(p− 1)− γ − 2

2[N(p− 1)− γ]
(
‖∇Q‖L2‖Q‖σc

L2

)2 = E(Q)[M(Q)]σc .

We have from (1.9), the conservation of mass and energy that

f
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)
≤ E(u0)[M(u0)]σc < E(Q)[M(Q)]σc = f

(
‖∇Q‖L2‖Q‖σc

L2

)
for all t in the existence time. By (1.10), the continuity argument implies that

‖∇u(t)‖L2‖u(t)‖σc
L2 < ‖∇Q‖L2‖Q‖σc

L2

for all t in the existence time. The conservation of mass then implies that ‖∇u(t)‖L2

is uniformly bounded. The blow-up alternative then shows that the solution exists
globally in time.

To see (4.8), we use (1.9) to take ϑ = ϑ(u0, Q) > 0 such that

E(u0)[M(u0)]σc < (1− ϑ)E(Q)[M(Q)]σc . (4.10)

Using the fact

E(Q)[M(Q)]σc = N(p− 1)− γ − 2
2[N(p− 1)− γ]

(
‖∇Q‖L2‖Q‖σc

L2

)2
= N(p− 1)− γ − 2

4p Copt
(
‖∇Q‖L2‖Q‖σc

L2

)N(p−1)−γ
,

we infer from (4.9) and (4.10) that

N(p− 1)− γ
N(p− 1)− γ − 2

(
‖∇u(t)‖L2‖u(t)‖σc

L2

‖∇Q‖L2‖Q‖σc
L2

)2

− 2
N(p− 1)− γ − 2

(
‖∇u(t)‖L2‖u(t)‖σc

L2

‖∇Q‖L2‖Q‖σc
L2

)N(p−1)−γ

≤ 1− ϑ. (4.11)

Consider the function

g(y) = N(p− 1)− γ
N(p− 1)− γ − 2y

2 − 2
N(p− 1)− γ − 2y

N(p−1)−γ , 0 < y < 1.

It is easy to see that g is strictly increasing in (0, 1) with g(0) = 0 and g(1) = 1.
It follows from (4.11) that there exists ρ > 0 depending on ϑ such that y < 1− 2ρ
which shows (4.8). The proof is complete.
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Remark 3. If u0 ∈ H1 satisfies (1.9) and (1.10), then E(u0) > 0. Indeed, by (4.9),

E(u0)[M(u0)]σc
L2 ≥ f

(
‖∇u0‖L2‖u0‖σc

L2

)
.

It is easy to see that f is strictly increasing on (0, ζ0) and strictly decreasing on
(ζ0,∞), where

ζ0 :=
(

2p
[N(p− 1)− γ]Copt

) 1
N(p−1)−γ−2

= ‖∇Q‖L2‖Q‖σc
L2 .

Here the last equality follows from (4.7). It follows that f(ζ) > f(0) = 0 or
E(u0) > 0.

Lemma 4.6 (Coercivity II). Let N ≥ 1, 0 < γ < N , p ≥ 2 and p∗ < p < p∗. Let
ρ be as in (4.8). There exists R0 = R0(ρ, ‖u0‖L2) > 0 such that for any R ≥ R0,

‖∇(χRu(t))‖L2‖χRu(t)‖σc
L2 < (1− ρ)‖∇Q‖L2‖Q‖σc

L2 (4.12)

for all t ∈ R, where χR(x) = χ(x/R) with χ ∈ C∞0 (RN ) satisfying 0 ≤ χ ≤ 1 and
(3.6). In particular, there exists ν = ν(ρ) > 0 such that for any R ≥ R0,

‖∇(χRu(t))‖2L2 −
N(p− 1)− γ

2p

∫
(Iγ ∗ |χRu(t)|p)|χRu(t)|pdx ≥ ν‖χRu(t)‖2

L
2Np
N+γ

(4.13)

for all t ∈ R.

Proof. By the definition of χR, we have that ‖χRu(t)‖L2 ≤ ‖u(t)‖L2 . On the other
hand, using the fact∫

|∇(χf)|2dx =
∫
χ2|∇f |2dx−

∫
χ∆χ|f |2dx, (4.14)

we have
‖∇(χRu(t))‖2L2 ≤ ‖∇u(t)‖2L2 +O

(
R−2‖u(t)‖2L2

)
.

Thus

‖∇(χRu(t))‖L2‖χRu(t)‖σc
L2 ≤

(
‖∇u(t)‖2L2 +O

(
R−2‖u(t)‖2L2

)) 1
2 ‖u(t)‖σc

L2

≤ ‖∇u(t)‖L2‖u(t)‖σc
L2 +O

(
R−1‖u(t)‖σc+1

L2

)
< (1− 2ρ)‖∇Q‖L2‖Q‖σc

L2 +O
(
R−1‖u0‖σc+1

L2

)
< (1− ρ)‖∇Q‖L2‖Q‖σc

L2

provided R > 0 is taken sufficiently large depending on ρ, ‖u0‖L2 .
To show (4.13), we use the following fact: if

‖∇f‖L2‖f‖σc
L2 < (1− ρ)‖∇Q‖L2‖Q‖σc

L2 , (4.15)

then there exists δ = δ(ρ) > 0 such that

‖∇f‖2L2 −
N(p− 1)− γ

2p

∫
(Iγ ∗ |f |p)|f |pdx ≥ δ‖∇f‖2L2 . (4.16)
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To see (4.16), we first have from the Gagliardo-Nirenberg inequality and (4.15) that

E(f) ≥ 1
2‖∇f‖

2
L2 −

Copt

2p ‖∇f‖
N(p−1)−γ
L2 ‖f‖γ+2−(N−2)(p−1)

L2

= 1
2‖∇f‖

2
L2

(
1− Copt

p
‖∇f‖N(p−1)−γ−2

L2 ‖f‖γ+2−(N−2)(p−1)
L2

)
= 1

2‖∇f‖
2
L2

(
1− Copt

p

(
‖∇f‖L2‖f‖σc

L2

)N(p−1)−γ−2
)

>
1
2‖∇f‖

2
L2

(
1− Copt

p
(1− ρ)N(p−1)−γ (‖∇Q‖L2‖Q‖σc

L2

)N(p−1)−γ−2
)

= 1
2‖∇f‖

2
L2

(
1− 2

N(p− 1)− γ (1− ρ)N(p−1)−γ
)
.

We now set K(f) the left hand side of (4.16). We have that

K(f) = [N(p− 1)− γ]E(f)− N(p− 1)− γ − 2
2 ‖∇f‖2L2

≥ N(p− 1)− γ
2 ‖∇f‖2L2

(
1− 2

N(p− 1)− γ (1− ρ)N(p−1)−γ
)

−N(p− 1)− γ − 2
2 ‖∇f‖2L2

=
(

1− (1− ρ)N(p−1)−γ
)
‖∇f‖2L2

which proves (4.16).
Next, by enlarging R0 if necessary, we have for any R ≥ R0,

inf
t∈R
‖∇(χRu(t))‖L2 ≥ C > 0. (4.17)

In fact, by Remark 3, we have E(u0) > 0, hence
inf
t∈R
‖∇u(t)‖L2 ≥ 2E(u0) > 0. (4.18)

Assume that (4.17) is not true, then there exist (tn)n ⊂ R and Rn →∞ such that
lim
n→∞

‖∇(χRnu(tn))‖L2 = 0.

Using the identity

‖∇(χRnu(tn))‖2L2 =
∫
χ2
Rn |∇u(tn)|2dx−

∫
χRn∆(χRn)|u(tn)|2dx

and the fact |∆(χRn)| . R−2
n , we obtain∫

χ2
Rn |∇u(tn)|2dx = ‖∇(χRnu(tn))‖2L2 +O(R−2

n )→ 0

as n→∞ which contradicts (4.18). Combining (4.16), (4.17), the Sobolev embed-
ding

H1 ↪→ L
2Np
N+γ (4.19)

and the conservation of mass, we prove (4.13). The proof is complete.

Remark 4. The estimate (4.13) was proved in [2, Lemma 3.4] by a similar argument
using the Sobolev embedding ‖u‖

L
2Np
N+γ

. ‖∇u‖L2 . However, this type of Sobolev
embedding does not hold in general without (4.17).
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We also have the following Morawetz identity.

Lemma 4.7 (Morawetz identity). Let N ≥ 1, 0 < γ < N and 2 ≤ p < p∗. Let
ϕ : RN → R be a sufficiently smooth and decaying function. Let u be a H1 solution
to (NLC). Define

Mϕ(t) := 2
∫
∇ϕ · Im(u(t)∇u(t))dx.

Then

d

dt
Mϕ(t) = −

∫
∆2ϕ|u(t)|2dx+ 4

N∑
j,k=1

∫
∂2
jkϕRe(∂ju(t)∂ku(t))dx

−2(p− 2)
p

∫
∆ϕ(Iγ ∗ |u(t)|p)|u(t)|pdx

−2(N − γ)
p

A(γ)
∫∫

(∇ϕ(x)−∇ϕ(y)) · (x− y) |u(t, x)|p|u(t, y)|p

|x− y|N−γ+2 dxdy,

(4.20)

where A(γ) be as in (1.6).

Proof. It follows from [37, Lemma 5.3] that if u is a solution to i∂tu+ ∆u = N(u)
with N(u) satisfying Im(N(u)u) = 0, then

d

dt
Mϕ(t) = −

∫
∆2ϕ|u(t)|2dx+ 4

N∑
j,k=1

∫
∂2
jkϕ∂j Re(u(t)∂ku(t))dx

+ 2
∫
∇ϕ · {N(u), u}m(t)dx,

where {f, g}m := Re(f∇g − g∇f) is the momentum bracket. Applying this result
to N(u) = −(Iγ ∗ |u|p)|u|p−2u. Observe that

∇[(Iγ ∗ |u|p)|u|p] = ∇(Iγ ∗ |u|p)|u|p + (Iγ ∗ |u|p)∇(|u|p)
= ∇(Iγ ∗ |u|p)|u|p + p(Iγ ∗ |u|p)|u|p−2 Re(u∇u).

On the other hand,

∇[(Iγ ∗ |u|p)|u|p] = ∇[(Iγ ∗ |u|p)|u|p−2uu]
= ∇[(Iγ ∗ |u|p)|u|p−2u]u+ (Iγ ∗ |u|p)|u|p−2u∇u.

Therefore,

{N(u), u}m = Re
[
∇[(Iγ ∗ |u|p)|u|p−2u)u

]
− Re

[
(Iγ ∗ |u|p)|u|p−2u∇u

]
= ∇[(Iγ ∗ |u|p)|u|p]− 2 Re[(Iγ ∗ |u|p)|u|p−2u∇u].

Note that ∇(|u|p) = p|u|p−2 Re(u∇u), hence

{N(u), u}m = ∇[(Iγ ∗ |u|p)|u|p]−
2
p

(Iγ ∗ |u|p)∇(|u|p).
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We thus get∫
∇ϕ · {N(u), u}mdx

=
∫
∇ϕ · ∇[(Iγ ∗ |u|p)|u|p]dx−

2
p

∫
∇ϕ · ∇(|u|p)(Iγ ∗ |u|p)dx

= −
∫

∆ϕ(Iγ ∗ |u|p)|u|pdx+ 2
p

∫
∆ϕ(Iϕ ∗ |u|p)|u|pdx+ 2

p

∫
∇ϕ · ∇(Iγ ∗ |u|p)|u|pdx

= −p− 2
p

∫
∆ϕ(Iγ ∗ |u|p)|u|pdx+ 2

p

∫
∇ϕ · ∇(Iγ ∗ |u|p)|u|pdx.

Note also that

∇(Iγ ∗ |u|p) = ∇x
∫
A(γ)|x− y|−(N−γ)|u(y)|pdy

= −(N − γ)
∫
A(γ)(x− y)|x− y|−(N−γ)−2|u(y)|pdy.

Thus∫
∇ϕ · ∇(Iγ ∗ |u|p)|u|pdx

= −(N − γ)A(γ)
∫∫
∇ϕ(x) · (x− y) |u(x)|p|u(y)|p

|x− y|N−γ+2 dxdy

= −N − γ2 A(γ)
∫∫

(∇ϕ(x)−∇ϕ(y)) · (x− y) |u(x)|p|u(y)|p

|x− y|N−γ+2 dxdy.

Therefore,∫
∇ϕ · {N(u), u}mdx

= −p− 2
p

∫
∆ϕ(Iγ ∗ |u|p)|u|pdx

−N − γ
p

A(γ)
∫∫

(∇ϕ(x)−∇ϕ(y)) · (x− y) |u(x)|p|u(y)|p

|x− y|N−γ+2 dxdy.

Combining the above calculations, we prove (4.20). The proof is complete.

Lemma 4.8 (Morawetz estimate). Let N ≥ 2, 0 < γ < N , p ≥ 2 and p∗ <
p < p∗. Let u0 ∈ H1 be radially symmetric satisfying (1.9) and (1.10). Then
the corresponding solution global solution to (NLC) satisfies for any time interval
I ⊂ R,∫

I

‖u(t)‖2
L

2Np
N+γ

dt ≤ C(u0, Q)|I|β , β := max
{

1
3 ,

Np

Np+ (N − 1)[N(p− 1)− γ]

}
(4.21)

for some constant C(u0, Q) > 0 depending only on u0 and Q.

Proof. Let ρ = ρ(u0, Q) be as in (4.8) and R = R(ρ, ‖u0‖L2) be as in Lemma 4.6.
We define ϕR as in (3.8)–(3.9). By the Cauchy-Schwarz inequality and (4.8), we
see that

|MϕR(t)| . ‖∇ϕR‖L∞‖u(t)‖L2‖∇u(t)‖L2 . R (4.22)
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for all t ∈ R. Here the implicit constant depends only on u0 and Q. By Lemma 4.7,

d

dt
MϕR(t) =−

∫
∆2ϕR|u(t)|2dx+ 4

N∑
j,k=1

∫
∂2
jkϕR Re(∂ju(t)∂ku(t))dx

− 2(p− 2)
p

∫
∆ϕR(Iγ ∗ |u(t)|p)|u(t)|pdx

− 2(N − γ)
p

A(γ)
∫∫

(∇ϕR(x)−∇ϕR(y)) · (x− y) |u(t, x)|p|u(t, y)|p

|x− y|N−γ+2 dxdy.

Using the fact ϕR(x) = |x|2 for |x| ≤ R, we see that

d

dt
MϕR(t) =8

[∫
|x|≤R

|∇u(t)|2dx− N(p− 1)− γ
2p

∫
|x|≤R

(Iγ ∗ |u(t)|p)|u(t)|pdx
]

−
∫

∆2ϕR|u(t)|2dx+ 4
N∑

j,k=1

∫
|x|>R

∂2
jkϕR Re(∂ju(t)∂ku(t))dx

− 2(p− 2)
p

∫
|x|>R

∆ϕR(Iγ ∗ |u(t)|p)|u(t)|pdx

− 2(N − γ)
p

A(γ)
∫∫

Ω
(∇ϕR(x)−∇ϕR(y)) · (x− y) |u(t, x)|p|u(t, y)|p

|x− y|N−γ+2 dxdy,

(4.23)
where

Ω :=
{

(x, y) ∈ R2N : R ≤ |x| ≤ 2R or R ≤ |y| ≤ 2R
}
.

Since ‖∆2ϕR‖L∞ . R−2, the conservation of mass implies∣∣∣∣∫ ∆2ϕR|u(t)|2dx
∣∣∣∣ . R−2.

Since u is radial, we use the fact

∂j = xj
r
∂r, ∂2

jk =
(
δjk
r
− xjxk

r3

)
∂r + xjxk

r2 ∂2
r

to get
N∑

j,k=1
∂2
jkϕR∂j Re(u(t)∂ku(t)) = ϕ′′R|∂ru(t)|2 ≥ 0

which implies

4
N∑

j,k=1

∫
|x|>R

∂2
jkϕR Re(∂ju(t)∂ku(t))dx ≥ 0.

By Hölder’s inequality and the Hardy-Littlewood-Sobolev inequality, we see that∣∣∣∣∣
∫
|x|>R

(Iγ ∗ |u(t)|p)|u(t)|pdx

∣∣∣∣∣ . ‖Iγ ∗ |u(t)|p‖
L

2N
N−γ (|x|>R)

‖|u(t)|p‖
L

2N
N+γ (|x|>R)

. ‖u(t)‖p
L

2Np
N+γ
‖u(t)‖p

L
2Np
N+γ (|x|>R)

. (4.24)

For the first term in (4.24), we use the Sobolev embedding (4.19), the conservation
of mass and (4.8) to get

‖u(t)‖
L

2Np
N+γ

. ‖u(t)‖H1 ≤ C(u0, Q).
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For the second term in (4.24), we use the radial Sobolev embedding (3.12) to have

‖u(t)‖
2Np
N+γ

L
2Np
N+γ (|x|>R)

=
∫
|x|>R

|u(t, x)|
2Np
N+γ dx

≤

(
sup
|x|>R

|u(t, x)|
) 2[N(p−1)−γ]

N+γ

‖u(t)‖2L2

. R−
(N−1)[N(p−1)−γ]

N+γ ‖u(t)‖
2[N(p−1)−γ]

N+γ
H1 ‖u(t)‖2L2

. R−
(N−1)[N(p−1)−γ]

N+γ .

This shows that ∣∣∣∣∣
∫
|x|>R

(Iγ ∗ |u(t)|p)|u(t)|pdx

∣∣∣∣∣ . R−
(N−1)[N(p−1)−γ]

2N . (4.25)

Using (4.25) and the fact ‖∆ϕR‖L∞ . 1, we have∣∣∣∣∣
∫
|x|>R

∆ϕR(Iγ ∗ |u(t)|p)|u(t)|pdx

∣∣∣∣∣ . R−
(N−1)[N(p−1)−γ]

2N .

For the term in (4.23), we use the fact

|(∇ϕR(x)−∇ϕR(y)) · (x− y)| . |x− y|2

for all (x− y) ∈ Ω and (4.24) to get∣∣∣A(γ)
∫∫

Ω
(∇ϕR(x)−∇ϕR(y))·(x− y) |u(t, x)|p|u(t, y)|p

|x− y|N−γ+2 dxdy
∣∣∣

.
∫
|x|>R

(Iγ ∗ |u(t)|p)|u(t)|pdx

. R−
(N−1)[N(p−1)−γ]

2N .

We thus obtain

d

dt
MϕR(t) ≥8

[∫
|x|≤R

|∇u(t)|2dx− N(p− 1)− γ
2p

∫
|x|≤R

(Iγ ∗ |u(t)|p)|u(t)|pdx
]

+O
(
R−2 +R−

(N−1)[N(p−1)−γ]
2N

)
.

(4.26)

Now let χR be as in Lemma 4.6. We have∫
|∇(χRu(t))|2dx =

∫
χ2
R|∇u(t)|2dx−

∫
χR∆(χR)|u(t)|2dx

=
∫
|x|≤R

|∇u(t)|2dx−
∫
R/2≤|x|≤R

(1− χ2
R)|∇u(t)|2dx

−
∫
χR∆(χR)|u(t)|2dx
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and∫
(Iγ ∗ |χRu(t)|p)|χRu(t)|pdx

=
∫
|x|≤R

(Iγ ∗ |χRu(t)|p)|u(t)|pdx−
∫
R/2≤|x|≤R

(1− χpR)(Iγ ∗ |χRu(t)|p)|u(t)|pdx

=
∫
|x|≤R

(Iγ ∗ |u(t)|p)|u(t)|pdx−
∫
|x|≤R

(Iγ ∗ [(1− χpR)|u(t)|p]) |u(t)|pdx

−
∫
R/2≤|x|≤R

(1− χpR)(Iγ ∗ |χRu(t)|p)|u(t)|pdx.

It follows that∫
|x|≤R

|∇u(t)|2dx− N(p− 1)− γ
2p

∫
|x|≤R

(Iγ ∗ |u(t)|p)|u(t)|pdx

=
∫
|∇(χRu(t))|2dx− N(p− 1)− γ

2p

∫
(Iγ ∗ |χRu(t)|p)|χRu(t)|pdx

+
∫
R/2≤|x|≤R

(1− χ2
R)|∇u(t)|2dx+

∫
χR∆(χR)|u(t)|2dx

−N(p− 1)− γ
2p

∫
|x|≤R

(Iγ ∗ [(1− χpR)|u(t)|p]) |u(t)|pdx

−N(p− 1)− γ
2p

∫
R/2≤|x|≤R

(1− χpR)(Iγ ∗ |χRu(t)|p)|u(t)|pdx.

Thanks to the fact that 0 ≤ χR ≤ 1, supp(1 − χpR) ⊂ {|x| ≥ R/2}, ‖∆(χR)‖L∞ .
R−2 and estimating as in (4.24), we get∫
|x|≤R

|∇u(t)|2dx− N(p− 1)− γ
2p

∫
|x|≤R

(Iγ ∗ |u(t)|p)|u(t)|pdx

≥
∫
|∇(χRu(t))|2dx− N(p− 1)− γ

2p

∫
(Iγ ∗ |χRu(t)|p)|χRu(t)|pdx

+O
(
R−2 +R−

(N−1)[N(p−1)−γ]
2N

)
.

We thus obtain
d

dt
MϕR(t) ≥ 8

[
‖∇(χRu(t))‖2L2 −

N(p− 1)− γ
2p

∫
(Iγ ∗ |χRu(t)|p)|χRu(t)|pdx

]
+O

(
R−2 +R−

(N−1)[N(p−1)−γ]
2N

)
.

By Lemma 4.6, there exists ν = ν(ρ) > 0 such that for any R ≥ R0,

8ν‖χRu(t)‖2
L

2Np
N+γ

≤ d

dt
MϕR(t) +O

(
R−2 +R−

(N−1)[N(p−1)−γ]
2N

)
which implies for any time interval I ⊂ R,

8ν
∫
I

‖χRu(t)‖2
L

2Np
N+γ

dt ≤ sup
t∈I
|MϕR(t)|+O

(
R−2 +R−

(N−1)[N(p−1)−γ]
2N

)
|I|. (4.27)

By the definition of χR and (4.22),∫
I

‖u(t)‖2
L

2Np
N+γ (|x|≤R/2)

dt . R+O
(
R−2 +R−

(N−1)[N(p−1)−γ]
2N

)
|I|.
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On the other hand, by radial Sobolev embeddings,

∫
|x|≥R/2

|u(t, x)|
2Np
N+γ dx ≤

(
sup
|x|≥R/2

|u(t, x)|
) 2[N(p−1)−γ]

N+γ

‖u(t)‖2L2 . R−
(N−1)[N(p−1)−γ]

N+γ .

We thus get∫
I

‖u(t)‖2
L

2Np
N+γ

dt . R+
(
R−2 +R−

(N−1)[N(p−1)−γ]
Np

)
|I| . R+R−σ|I|,

where

σ := min
{

2, (N − 1)[N(p− 1)− γ]
Np

}
.

Here we have used the fact p ≥ 2 to get the first estimate. Taking R = |I|
1

1+σ , we
get for |I| sufficiently large,∫

I

‖u(t)‖2
L

2Np
N+γ

dt . |I|
1

1+σ = |I|β ,

where β is as in (4.21). In the case |I| is sufficiently small, it follows from the
Sobolev embedding (4.19) that∫

I

‖u(t)‖2
L

2Np
N+γ

dt .
∫
I

‖u(t)‖2H1dt . |I| . |I|β

since β < 1. This proves (4.21) and the proof is complete.

Lemma 4.9. Let N ≥ 2, 0 < γ < N , p ≥ 2 and p∗ < p < p∗. Let u0 ∈ H1

be radially symmetric satisfying (1.9) and (1.10). Then the corresponding global
solution to (NLC) satisfies

lim inf
t→+∞

‖u(t)‖
L

2Np
N+γ (RN )

= 0. (4.28)

Proof. Assume by contradiction that (4.28) is not true. There exist t0 > 0 and
% > 0 such that

‖u(t)‖
L

2Np
N+γ (RN )

> %, ∀t ≥ t0.

This implies in particular that, for every I ⊂ [t0,+∞),∫
I

‖u(t)‖2
L

2Np
N+γ (RN )

dt ≥ %2|I|,

which contradicts (4.21) for |I| large since β < 1.

Corollary 2. Let N ≥ 2, 0 < γ < N , p ≥ 2 and p∗ < p < p∗. Let u0 ∈ H1 be
radially symmetric satisfying (1.9) and (1.10). Then there exists tn → +∞ such
that the corresponding solution to (NLC) satisfies for any R > 0,

lim
n→∞

∫
|x|≤R

|u(tn, x)|2dx = 0. (4.29)

Proof. By (4.28), there exists tn → +∞ such that

lim
n→∞

‖u(tn)‖
L

2Np
N+γ (RN )

= 0.
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Let R > 0. By Hölder’s inequality, we see that∫
|x|≤R

|u(tn, x)|2dx ≤
(∫
|x|≤R

dx

)N(p−1)−γ
Np

(∫
|x|≤R

|u(tn, x)|
2Np
N+γ dx

)N+γ
Np

. R
N(p−1)−γ

p

(∫
|u(tn, x)|

2Np
N+γ dx

)N+γ
Np

→ 0

as n→∞.

4.3. Scattering below the ground state.

Proposition 3. Let N ≥ 2, 0 < γ < N , p ≥ 2 and p∗ < p < p∗. Let u0 ∈ H1 be
radially symmetric satisfying (1.9) and (1.10). Then for ε > 0 sufficiently small,
there exists T = T (ε, u0, Q) sufficiently large such that the corresponding solution
to (NLC) satisfies

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . εµ (4.30)

for some µ > 0, where k and r are as in (4.1).

Proof. We will consider separately two cases: N ≥ 3 and N = 2.

Case 1. N ≥ 3.

Let T > 0 be a large parameter depending on ε, u0 and Q to be chosen later. For
T > ε−σ with some σ > 0 to be chosen later, we use the Duhamel formula to write

ei(t−T )∆u(T ) = eit∆u0 + i

∫ T

0
ei(t−s)∆(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)ds

= eit∆u0 + F1(t) + F2(t),
(4.31)

where

F1(t) := i

∫
I

ei(t−s)∆(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)ds,

F2(t) := i

∫
J

ei(t−s)∆(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)ds

with I := [T − ε−σ, T ] and J := [0, T − ε−σ].
Step 1. Estimate the linear part. By Strichartz estimates, Sobolev embeddings,
(1.9) and (1.10),

‖eit∆u0‖Lk(R,Lr) . ‖|∇|γceit∆u0‖Lk(R,Ll) . ‖u0‖Ḣγc . ‖u0‖H1 ≤ C(u0, Q) <∞,

where

l = 2Np(p− 1)
(Np+N − 2)(p− 1)− γ − 2 . (4.32)

Note that (k, l) ∈ S0. By the monotone convergence, we may find T > ε−σ so that

‖eit∆u0‖Lk([T,+∞),Lr) . ε. (4.33)

Step 2. Estimate F1. By Remark 2, (2.3), (4.24) and Sobolev embedding, we
have

‖F1‖Lk([T,+∞),Lr) . ‖(Iγ∗|u|p)|u|p−2u‖Lm′ (I,Lr′ ) . ‖u‖
2p−1
Lk(I,Lr) . |I|

2p−1
k ‖u‖2p−1

L∞(I,Lr).
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To estimate ‖u‖L∞(I,Lr), we take R = max
{
ε−2−σ, ε−

N[2+γ−(N−2)(p−1)]
(N−1)(N+γ)

}
and get

from (4.29) (by enlarging T if necessary) that∫
|x|≤R

|u(T, x)|2dx . ε2.

By the definition of χR, ∫
χR(x)|u(T, x)|2dx . ε2.

Using the fact that∣∣∣∣ ddt
∫
χR(x)|u(t, x)|2dx

∣∣∣∣ =
∣∣∣∣2 ∫ ∇χR(x) · Im(u(t, x)∇u(t, x))dx

∣∣∣∣
≤ 2‖∇χR‖L∞‖u(t)‖L2‖∇u(t)‖L2 . R−1

for all t ∈ R, we have for any t ∈ I,∫
χR(x)|u(t, x)|2dx =

∫
χR(x)|u(T, x)|2dx−

∫ T

t

(
d

ds

∫
χR(x)|u(s, x)|2dx

)
ds

≤
∫
χR(x)|u(T, x)|2dx+ CR−1(T − t)

≤ Cε2 + CR−1ε−σ ≤ 2Cε2

for some constant C = C(u0, Q) > 0. This implies

‖χRu‖L∞(I,L2) . ε,

where we have used the fact χ2
R ≤ χR since 0 ≤ χR ≤ 1. By Hölder’s inequality,

the radial Sobolev embedding and the fact ‖u‖L∞(R,H1) ≤ C(u0, Q),

‖u‖L∞(I,Lr) ≤ ‖χRu‖L∞(I,Lr) + ‖(1− χR)u‖L∞(I,Lr)

≤ ‖χRu‖
2+γ−(N−2)(p−1)

2p
L∞(I,L2) ‖χRu‖

N(p−1)−γ
2p

L∞(I,L
2N
N−2 )

+‖(1− χR)u‖
N+γ
Np

L∞(I,L∞)‖(1− χR)u‖
N(p−1)−γ

Np

L∞(I,L2)

. ε
2+γ−(N−2)(p−1)

2p +R−
(N−1)(N+γ)

2Np . ε
2+γ−(N−2)(p−1)

2p .

It follows that

‖F1‖Lk([T,+∞),Lr) . ε−
(2p−1)σ

k ε
[2+γ−(N−2)(p−1)](2p−1)

2p

= ε
(2p−1)

[
−σk+ 2+γ−(N−2)(p−1)

2p

]
.

By the definition of k, we see that

‖F1‖Lk([T,+∞),Lr) . ε
[2+γ−(N−2)(p−1)][2(p−1)−σ]

4p(p−1) . (4.34)

Step 3. Estimate F2. We estimate

‖F2‖Lk([T,+∞),Lr) ≤ ‖F2‖θLk([T,+∞),Ll)‖F2‖1−θLk([T,+∞),Ln)

where l is as in (4.32), θ ∈ (0, 1) and n > r satisfy
1
r

= θ

l
+ 1− θ

n
.
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Using the fact (k, l) ∈ S0 and

F2(t) = ei(t−T+ε−σ)∆u(T − ε−σ)− eit∆u0,

Strichartz estimates imply
‖F2‖Lk([T,+∞),Ll) . 1.

On the other hand, by the dispersive estimates (2.1), we have for any t ≥ T ,

‖F2(t)‖Ln .
∫
J

(t− s)−
N
2 (1− 2

n )‖(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)‖Ln′ds.

By the Hardy-Littlewood-Sobolev inequality, we see that
‖(Iγ ∗ |u|p)|u|p−2u‖Ln′ ≤ ‖Iγ ∗ |u|

p‖
L

Np(N+γn′)
(2p−1)N2n′−γp(N+γn′)

‖|u|p−2u‖
L

(2p−1)Nn′
(p−1)(N+γn′)

. ‖u‖2p−1

L
(2p−1)Nn′
N+γn′

. 1

(4.35)
provided

(2p− 1)Nn′

N + γn′
∈
[
2, 2N
N − 2

]
.

It follows that for any t ≥ T ,

‖F2(t)‖Ln .
∫ T−ε−σ

0
(t− s)−

N
2 (1− 2

n )ds . (t− T + ε−σ)−
N
2 (1− 2

n )+1

provided
N

2

(
1− 2

n

)
− 1 > 0.

We infer that

‖F2‖Lk([T,+∞),Ln) .

(∫ +∞

T

(t− T + ε−σ)−[N2 (1− 2
n )−1]kdt

) 1
k

. εσ[N2 (1− 2
n )−1− 1

k ]

provided
N

2

(
1− 2

n

)
− 1− 1

k
> 0.

We thus obtain
‖F2‖Lk([T,+∞),Lr) . εσ[N2 (1− 2

n )−1− 1
k ](1−θ). (4.36)

The above estimate holds true provided

n > r,
(2p− 1)Nn′

N + γn′
∈
[
2, 2N
N − 2

]
,

N

2

(
1− 2

n

)
− 1− 1

k
> 0.

We will choose a suitable n satisfying the above conditions. By the choice of r and
k, the above conditions become

1
n
<
N + γ

2Np ,
1
n
∈
[
N + 2γ − 2(p− 1)N

2N ,
N + 2 + 2γ − 2(p− 1)(N − 2)

2N

]
,

1
n
<

(N − 2)(p− 1)(2p+ 1)− γ − 2
4Np(p− 1) .

(4.37)

Note that it is easy to check that (N − 2)(p − 1)(2p + 1) − γ − 2 > 0 for any
2+γ
N < p− 1 < 2+γ

N−2 .
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• If p− 1 ≥ N+2γ
2N , then we take 1

n = 0 or n =∞.
• If p − 1 < N+2γ

2N , then we take 1
n = N+2γ−2(p−1)N

2N . We need to check the
following conditions

N + 2γ − 2(p− 1)N
2N <

N + γ

2Np ,

N + 2γ − 2(p− 1)N
2N <

(N − 2)(p− 1)(2p+ 1)− γ − 2
4Np(p− 1) .

(4.38)

Note that the condition p− 1 < N+2γ
2N combining with 2+γ

N < p− 1 < 2+γ
N−2 require

N ≥ 5.
The first condition in (4.38) is equivalent to

2Np(p− 1)− (N + 2γ)p+N + γ > 0. (4.39)

The left hand side of (4.39) is written as f(p− 1), where

f(x) := 2Nx2 + (N − 2γ)x− γ.

It is easy to check that f is increasing on x > 2+γ
N and f

( 2+γ
N

)
> 0. This shows

that the first condition in (4.38) is satisfied for 2+γ
N < p− 1 < 2+γ

N−2 .
The second condition in (4.38) is in turn equivalent to

4Np(p− 1)2 + (N − 2)(p− 1)(2p+ 1)− 2(N + 2γ)p(p− 1)− γ − 2 > 0. (4.40)

The left hand side of (4.40) is written as g(p− 1), where

g(x) := 4Nx3 + 4(N − 1− γ)x2 + (N − 6− 4γ)x− γ − 2.

We have g′(x) = 12Nx2 + 8(N − 1− γ)x+N − 6− 4γ. We see that g′ is increasing
on x > 2+γ

N and g′
( 2+γ
N

)
> 0. It follows that g is increasing on x > 2+γ

N which
together with the fact g

( 2+γ
N

)
> 0 imply that g(x) > 0 for any x > 2+γ

N . Therefore,
the second condition in (4.38) is also satisfied.
Step 4. Conclusion. By (4.31), we get from (4.33), (4.34) and (4.36) that for
σ > 0 sufficiently small, there exists µ = µ(σ) > 0 such that

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . εµ.

Case 2. N = 2.

Recall that we are considering 2p > 4 + γ here. In this case, the last estimate in
(4.37) does not work. To overcome this difficulty, we use the space time estimate
(4.21) as follows. By the dispersive estimate and the Hardy-Littlewood-Sobolev
inequality (4.35), we see that for t ≥ T ,

‖F2(t)‖L∞ .
∫
J

(t− s)−1‖(Iγ ∗ |u(s)|p)|u(s)|p−2u(s)‖L1ds

.
∫
J

(t− s)−1‖u(s)‖2p−1

L
2(2p−1)

2+γ
ds.

By the interpolation inequality, we have

‖u‖
L

2(2p−1)
2+γ

≤ ‖u‖
2p(2p−3−γ)

(2p−1)(2p−2−γ)

L
4p

2+γ
‖u‖

2p+2+γ
(2p−1)(2p−2−γ)
L2
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which together with the conservation of mass imply

‖F2(t)‖L∞ .
∫
J

(t− s)−1‖u(s)‖
2p(2p−3−γ)

2p−2−γ

L
4p

2+γ
ds

. ‖(t− s)−1‖L2
s(J)

∥∥∥∥‖u(s)‖
2p(2p−3−γ)

2p−2−γ

L
4p

2+γ

∥∥∥∥
L2
s(J)

. ‖(t− s)−1‖L2
s(J)‖u‖

2p(2p−3−γ)
2p−2−γ

L
4p(2p−3−γ)

2p−2−γ (J,L
4p

2+γ )
.

We see that for t ≥ T ,

‖(t− s)−1‖L2
s(J) =

(∫ T−ε−σ

0
(t− s)−2ds

) 1
2

=
(
− (t− s)−1∣∣s=T−ε−σ

s=0

) 1
2

≈
(
(t− T + ε−σ)−1 − t−1) 1

2

. (t− T + ε−σ)− 1
2 ,

where we have used t ≥ t − T + ε−σ since T > ε−σ. On the other hand, by (4.21)
and the Sobolev embedding H1 ↪→ L

4p
2+γ with ‖u‖L∞(R,H1) ≤ C(u0, Q), we see that

‖u‖
L

4p(2p−3−γ)
2p−2−γ (J,L

4p
2+γ )

≤ ‖u‖
2p−2−γ

2p(2p−3−γ)

L2(J,L
4p

2+γ )
‖u‖

(2p−1)(2p−3−γ)−1
2p(2p−3−γ)

L∞(J,L
4p

2+γ )

. ‖u‖
2p−2−γ

2p(2p−3−γ)

L2(J,L
4p

2+γ )

. |J |
(2p−2−γ)β

4p(2p−3−γ)

. T
(2p−2−γ)β

4p(2p−3−γ) ,

where

β := max
{

1
3 ,

2p
4p− 2− γ

}
= 2p

4p− 2− γ . (4.41)

It yields that for t ≥ T ,

‖F2(t)‖L∞ . (t− T + ε−σ)− 1
2T

β
2 .

It follows that

‖F2‖Lk([T,+∞),L∞) . T
β
2

(∫ +∞

T

(t− T + ε−σ)− k2 dt
) 1
k

. T
β
2

(
(t− T + ε−σ)− k2 +1

∣∣∣t=+∞

t=T

) 1
k

. T
β
2 εσ( 1

2−
1
k ).

We thus get

‖F2‖Lk([T,+∞),Lr) .
[
T
β
2 εσ( 1

2−
1
k )
]1− l

r =
(
T
β
2 ε

[2p(p−1)−2−γ]σ
4p(p−1)

) (p−1)(2p−2−γ)−γ−2
2p(p−1)−γ−2

.

(4.42)
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Collecting (4.31), (4.33), (4.34) and (4.42) that

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . ε+ε
(2+γ)(2p−2−γ)

4p(p−1) +
(
T
β
2 ε

[2p(p−1)−2−γ]σ
4p(p−1)

) (p−1)(2p−2−γ)−γ−2
2p(p−1)−γ−2

.

By taking T = ε−aσ with some a > 1 to be chosen shortly and choosing σ > 0 small
enough, we obtain

‖ei(t−T )∆u(T )‖Lk([T,+∞),Lr) . εµ (4.43)

for some µ > 0. The above estimate requires

2p(p− 1)− 2− γ
4p(p− 1) − aβ

2 > 0 or a <
2p(p− 1)− 2− γ

2p(p− 1)β .

Using (4.41) and the fact 2p > 4 + γ, it is easy to check that

2p(p− 1)− 2− γ
2p(p− 1)β > 1.

Therefore, we can choose a > 1 so that (4.43) holds. The proof is complete.

The proof of the energy scattering for (NLC) with radial data follows immediately
from (4.4), Lemma 4.5 and Proposition 3.

5. Some possible extensions. The radial Sobolev-Morawetz method introduced
by Dodson-Murphy [12] has been applied to show the energy scattering with radi-
ally symmetric initial data for other Schrödinger-type equations. It turns out to be
useful for equations which do not have the conservation of momentum. This method
gives alternative simple proofs to similar results proved via the concentration-
compactness-rigidity argument.

5.1. Nonlinear Schrödinger equations with potential. Consider the Cauchy
problem for the focusing intercritical nonlinear Schrödinger equation with potential{

i∂tu+ ∆u− V u = −|u|αu, (t, x) ∈ R× R3,
u(0, x) = u0(x), (5.1)

where u : R × R3 → C, u0 : R3 → C and 4
3 < α < 4. Here V : R3 → R is a

real-valued potential satisfying

V ∈ K ∩ L 3
2 , ‖V−‖K < 4π,

where K is the class of Kato potential,

‖V ‖K := sup
x∈R3

∫
R3

|V (y)|
|x− y|

dy

and V−(x) := min{V (x), 0}.
The energy scattering for (5.1) with α = 2 was studied by Hong [23] using

the concentration-compactness-rigidity argument of Kenig-Merle [25]. Recently,
Hamano-Ikeda [21] adapted the Dodson-Murphy’s method to extend the result in
[23] to the whole range of the intercritical case.
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5.2. Inhomogenous nonlinear Schrödinger equations. Consider the Cauchy
problem for the focusing intercritical inhomogeneous nonlinear Schrödinger equation{

i∂tu+ ∆u = −|x|−b|u|αu, (t, x) ∈ R× RN ,
u(0, x) = u0(x), (5.2)

where u : R× RN → C, u0 : RN → C, 0 < b < min{2, N} and α∗ < α < α∗ with

α∗ := 4− 2b
N

, α∗ :=
{ 4−2b

N−2 if N ≥ 3,
∞ if N = 1, 2.

The energy scattering for (5.2) was first established by Farah-Guzman [15] with
0 < b < 1, α = 2 and N = 3. This result was later extended to higher dimensions in
[16]. The proofs of these results are based on the concentration-compactness-rigidity
argument of Kenig-Merle [25]. Campos [5] used the Dodson-Murphy’s method to
give an alternative simple proof for the results of Farah-Guzman. He also extended
the validity of b in dimensions N ≥ 3. Recently, Xu-Zhao [41] and the first author in
[10] has simultaneously proved the energy scattering for (5.2) in the two dimensions.

5.3. Fractional nonlinear Schrödinger equations. Consider the Cauchy prob-
lem for the focusing intercritical fractional nonlinear Schrödinger equation{

i∂tu− (−∆)su = −|u|αu, (t, x) ∈ R× RN ,
u(0, x) = u0(x), (5.3)

where u : R× RN → C, u0 : RN → C, N ≥ 2, 1
2 < s < 1 and 4s

N < α < 4s
N−2s . The

operator (−∆)s is the fractional Laplacian defined by
(−∆)su := F−1[|ξ|2sF(u)],

where F and F−1 are the Fourier transform and inverse Fourier transform respec-
tively.

The energy scattering for (5.3) was first established by Sun-Wang-Yao-Zheng
[32] using a modified argument of Dodson-Murphy [12]. However, due to dispersive
estimates with a loss of derivatives, there are some restrictions on the validity of s
and α. In particular, the result in [32] is only available for 3 ≤ N ≤ 5. Later, Guo-
Zhu [20] extended the result of [32] to any dimensions N ≥ 2 and the whole range
of the intercritical case by using the concentration-compactness-rigidity argument
of Kenig-Merle [25]. However, due to the fact that there is no dispersive estimates
without loss of derivatives for the fractional Schrödinger operator available even in
the radial case, the inhomogeneous Strichartz estimates stated in [20] require some
restrictions on the validity of s. Thus, the claimed result in [20] is doubtful.

5.4. Biharmonic nonlinear Schrödinger equations. Consider the Cauchy prob-
lem for the focusing intercritical biharmonic nonlinear Schrödinger equation{

i∂tu−∆2u = −|u|αu, (t, x) ∈ R× RN ,
u(0, x) = u0(x), (5.4)

where u : R× RN → C, u0 : RN → C, N ≥ 4 and α∗ < α < α∗ with

α∗ := 8
N
, α∗ :=

{ 8
N−4 if N ≥ 5,
∞ if N = 4.

The energy scattering for the equation (5.4) has been established by Guo [19]
using the concentration-compactness argument of Kenig-Merle [25]. In [11], the first
author makes use of the radial Sobolev-Morawetz method to give an alternative
simple proof for the result in [19].
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