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LONG TIME DYNAMICS OF NON-RADIAL SOLUTIONS TO
INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATIONS *

VAN DUONG DINH ¥ AND SAHBI KERAANTI #

Abstract. We study long time dynamics of non-radial solutions to the focusing inhomogeneous
nonlinear Schrodinger equation. By using the concentration/compactness and rigidity method, we
establish a scattering criterion for non-radial solutions to the equation. We also prove a non-radial
blow-up criterion for the equation whose proof makes use of localized virial estimates. As a byproduct
of these criteria, we study long time dynamics of non-radial solutions to the equation with data lying
below, at, and above the ground state threshold. In addition, we provide a new argument showing
the existence of finite time blow-up solution to the equation with cylindrically symmetric data. The
ideas developed in this paper are robust and can be applicable to other types of nonlinear Schrodinger
equations.

Key words. Inhomogeneous nonlinear Schrodinger equation; Global existence; Scattering;
Blow-up

AMS subject classifications. 35Q55, 35B44

1. Introduction. The nonlinear Schrédinger equation (NLS) is one of the most
important equations in nonlinear optics. It models the propagation of intense laser
beams in a homogeneous bulk medium with a Kerr nonlinearity. It is well-known that
NLS governed the beam propagation cannot support stable high-power propagation
in a homogeneous bulk media. At the end of the last century, it was suggested that
stable high-power propagation can be achieved in plasma by sending a preliminary
laser beam that creates a channel with a reduced electron density, and thus reduces
the nonlinear inside the channel (see e.g., [34,41]). Under these conditions, the beam
propagation can be modeled by the inhomogeneous nonlinear Schrédinger equation
of the form

(1.1) i+ Au+ K(z)|u|®u =0, (t,z) € R xRY,

where u is the electric field in laser and optics, a > 0 is the power of nonlinear inter-
action, and the potential K (z) is proportional to the electron density. By means of
variational approximation and direct simulations, Towers and Malomed [53] observed
that for a certain type of nonlinear medium, (1.1) gives rise to completely stable
beams.

The equation (1.1) has been attracted a lot of interest from the mathematical com-
munity. When the potential K (z) is constant, (1.1) is the usual nonlinear Schrodinger
equation which has been studied extensively in the past decades (see e.g., the mono-
graphs [8,49,51]).

In the case of non-constant bounded potential K (x), Merle [44] proved the ex-
istence and nonexistence of minimal blow-up solutions to (1.1) with a = % and
K, < K(z) < Ko, where K; and K, are positive constants. Based on the work

of Merle, Raphaél and Szeftel [47] established sufficient conditions for the existence,
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2 V. D. DINH AND S. KERAANI

uniqueness, and charaterization of minimial blow-up solutions to the equation. Fibich
and Wang [28], and Liu and Wang [42] investigated the stability and instability of
solitary waves for (1.1) with o > + and K(z) = K(ex), where ¢ > 0 is a small
parameter and K € C*(RN) N L>(RY).

When the potential K (z) is unbounded, the problem becomes more subtle. The
case K (x) = |z|’,b > 0 was studied in several works, for instance, Chen and Guo [10],
and Chen [9] established sharp criteria for the global existence and blow-up, and
Zhu [56] studied the existence and dynamical properties of blow-up solutions. When
K (z) behaves like |2| ~* with b > 0, De Bouard and Fukuizumi [12] studied the stability
of standing waves for (1.1) with o < 4522, Fukuizumi and Ohta [30] established the
instability of standing waves for (1.1) with o > 2522 (see also [33,38] and references
therein for other studies related to standing waves for this type of equation).

In this paper, we consider the Cauchy problem for a class of focusing inhomoge-

neous nonlinear Schrédinger equations (INLS)

3 - —bl,, | N
(1.2) {’@“JFAU = —|z[Pul*u, (t,x) € RxRY,

_ 1
ul,_g = wup€ H',

where u : R x RN — C, ug : RN - C, N > 1,0 < b < min{2, N}, and 522 < o <
a(N) with

=26 if N >3,

(13) a(N) :{ i N-1.2

This equation plays an important role as a limiting equation in the analysis of (1.1)
with K(x) ~ |z|~° as |z| — oo (see e.g., [32,33]).

The local well-posedness for (1.2) was studied by Geneoud and Stuart [33, Ap-
pendix]. More precisely, they proved that (1.2) is locally well-posed in H! for N > 1,
0 < b < min{2, N}, and 0 < o < a(N). The proof of this result is based on the
energy method developed by Cazenave [8], which does not use Strichartz estimates.
See also [13,37] for other proofs based on Strichartz estimates and the contraction
mapping argument. Note that the local well-posedness in [13,37] is more restrictive
than the one in [33]. However, it provides more information on the local solutions,
for instance, local solutions belong to L ((—=T%,T*), Wb (RY)) for any Schrodinger
admissible pair (g,7) (see Section 2 for the definition of L? admissibility), where
(=T.,T*) is the maximal time interval of existence. Note that the latter property
plays an important role in the scattering theory.

It is well-known that solutions to (1.2) satisfy the conservation laws of mass and
energy

(Mass) M (u(t)) = [lu(t)l|72 = M (uo),

(Enerey)  E(u(t) = IVu)Es — — [ lal Mlutt. ) do = Blu).
The equation (1.2) also has the following scaling invariance

(1.4) ur(t,z) == A5 u(\2,Az), A> 0.

A direct calculation gives

2-b_ N
[ux(0)l v = X775 % [|uo] g7+

This manuscript is for review purposes only.



83

85

86
87
88

89
90
91
92
93
94
95

96

DYNAMICS FOR INHOMOGENEOUS NLS 3

which shows that (1.4) leaves the H-norm of initial data invariant, where

N 2-b
1.5 =—=——
(1.5) Ye 2 o
The condition 4_7217 < a < a(N) is equivalent to 0 < . < 1 which corresponds to the
mass-supercritical and energy-subcritical range (intercritical range, for short). For
later uses, it is convenient to introduce the following exponent

1—7v% 4-2b—(N-2)«
1. = =
(16) e e Noa— 4420

The main purpose of the present paper is to study long time dynamics (global
existence, energy scattering, and finite time blow-up) of non-radial solutions to (1.2).
Before stating our contributions, let us recall known results related to dynamics of
(1.2) in the intercritical range.

In [25], Farah showed the global existence for (1.2) with N > 1 and 0 < b <
min{2, N} by assuming ug € H' and

(L.7) E(uo)[M(uo)]” < E(@Q)[M(Q)]”,
(1.8) Vol 2[luollZ> < [IVQI L2 [IQIIZ5

where @ is the unique postive radial solution to the elliptic equation

(1.9) ~AQ+Q — |z|7°|Q|*"Q = 0.

He also proved the finite time blow-up for (1.2) with ug € ¥ := H' N L?(|z|?dz)
satisfying (1.7) and

(1.10) IVaol| 2 [[uol|Z2 > IV@QIl L2 [ QUIZ5-

The latter result was extended to radial data by the first author in [14]. Note that
the uniqueness of positive radial solution to (1.9) was established by Yanagida [55]
for N > 3, Genoud [32] for N = 2, and Toland [52] for N = 1.

The energy scattering (or asymptotic behavior) for (1.2) was first established
by Farah and Guzmaén [26] with 0 < b < %,a = 2, N = 3, and radial data. The
proof of this result is based on the concentration/compactness and rigidity argument
introduced by Kenig and Merle [40]. This scattering result was later extended to
dimensions N > 2 in [27] by using the same concentration/compactness and rigidity
method.

Later, Campos [5] made use of a new idea of Dodson and Murphy [20] to give an
alternative simple proof for the radial scattering results of Farah and Guzméan. He
also extends the validity of b in dimensions N > 3. Note that the idea of Dodson
and Murphy is a combination of a scattering criterion of Tao [50], localized virial
estimates, and radial Sobolev embedding.

Afterwards, Xu and Zhao [54], and the first author [17] have simultaneously
showed the energy scattering for (1.2) with 0 < b < 1, N = 2, and radial data.
The proof relies on a new approach of Arora, Dodson, and Murhpy [2], which is a
refined version of the one in [20].

In [6], Campos and Cardoso studied long time dynamics such as global existence,
energy scattering, and finite time blow-up of H!-solutions to (1.2) with data in X
lying above the ground state threshold.

This manuscript is for review purposes only.
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Recently, Miao, Murphy, and Zheng [45] showed a new nonlinear profile for non-
radial solutions related to (1.2). In particular, they constructed nonlinear profiles with
data living far away from the origin. This allows them to show the energy scattering
of non-radial solution to (1.2) with 0 < b < %, & = 2, and N = 3. This result was
extended to any dimensions N > 2 and 0 < b < min {2, %} by Cardoso, Farah,
Guzmén, and Murphy [7].

We also mention the works [15,17] for the energy scattering for the defocusing
problem INLS and [11] for the energy scattering for the focusing energy-critical INLS.

Motivated by the aforementioned works, we study the global existence, energy
scattering, and finite time blow-up of non-radial solutions to (1.2). To this end, let
us start with the following scattering criterion for (1.2).

THEOREM 1.1 (Scattering criterion). Let N > 1, 0 < b < min{2, N}, and
2 < o< aN). Let u be a solution to (1.2) defined on the mazimal forward time
interval of existence [0,T*). Assume that

(1.11) Jm POME)™ < PQIM@I™
where
(1.12) P()i= [ fal @)+

Then T* = oo. Moreover, if we assume in addition that N > 2 and 0 < b <
min {2, %}, then the solution scatters in H' forward in time, i.e., there exists uy €

H! such that

(1.13) Jim lu(t) — By || g = 0.

A similar statement holds for negative times.

We note that a scattering condition similar to (1.11) was first introduced by
Duyckaerts and Roudenko in [23, Theorem 3.7], where it was used to show the scat-
tering beyond the ground state threshold for the focusing Schrodinger equation. The
condition (1.11) was inspired by a recent work of Gao and Wang [31] (see also [16]).

The proof of Theorem 1.1 is based on the concentration/compactness and rigidity
method. The main difficulty comes from the fact that the potential energy P(u(t)) is
not conserved along the time evolution of (1.2). To overcome the difficulty, we estab-
lish a Pythagorean expansion along bounded nonlinear flows. Since we are interested
in non-radial solutions, we need to construct nonlinear profiles associated with the
linear ones living far away from the origin. The latter was recently showed by Miao,
Murphy, and Zheng [45] in three dimensions (see also [7] for dimensions N > 2). This
type of nonlinear profiles is constructed by observing that in the regime |z| — oo, the
nonlinearity becomes weak, and solutions to (1.2) can be approximated by solutions
to the underlying linear Schrédinger equation. Thanks to an improved nonlinear es-
timate (see Lemma 2.2), we give a refined result with a simple proof of these results
(see Lemma 2.8). For more details, we refer to Section 2.

Our next result is the following blow-up criterion for (1.2).

THEOREM 1.2 (Blow-up criterion). Let N > 1, 0 <b < min{2, N}, and 452 <
a < a(N). Let u be a solution to (1.2) defined on the mazimal forward time interval
of existence [0,T*). Assume that

(1.14) sup G(u(t)) < =4
te[0,T)

This manuscript is for review purposes only.
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DYNAMICS FOR INHOMOGENEOUS NLS 5

for some § > 0, where

Na +2b

(1.15) G(f) = |Vfllf= — Nat2)

P(f).

Then either T* < oo, or T* = oo and there exists a time sequence t, — oo such
that ||Vu(t,)|rz — o0 as n — o0o. Moreover, if we assume in addition that u has
finite variance, i.e., |z|u(t) € L*(|z|>dz) for all t € [0,T*), then T* < co. A similar
statement holds for negative times.

The proof of this blow-up result is based on a contradiction argument using localized
virial estimates for general (non-radial and infinite variance) solutions to (1.2) (see
Lemma 3.3). We also take the advantage of the decay of the nonlinear term outside a
large ball. It is conjectured that if a general (not finite variance or radially symmetric)
solution to (1.2) satisfy (1.14), then it blows up in finite time. However, there is
no affirmative answer for this conjecture up to date even for the classical nonlinear
Schrédinger equation.

A first application of Theorems 1.1 and 1.2 is the following long time dynamics
below the ground state threshold.

THEOREM 1.3 (Dynamics below the ground state threshold). Let N > 1, 0 <
b<min{2, N}, and 452 < a < a(N). Let ug € H' satisfy (1.7).
(1) If ug satisfies (1.8), then the corresponding solution to (1.2) satisfies

(1.16) sup  P(u(t))[M (u(?))])” < P(Q)[M(Q)].
te(—Ty,T*)

In particular, the solution exists globally in time. Moreover, if we assume in addition
that N > 2 and 0 < b < min {2, %}, then the corresponding solution scatters in H*
in both directions.

(2) If ug satisfies (1.10), then the corresponding solution to (1.2) satisfies

(1.17) sup  G(u(t)) < -0
te(=Tx,T*)

for some 6 > 0. In particular, the solution either blows up in finite time, or there
exists a time sequence (tn)n>1 satisfying |t,| — oo such that ||Vu(t,)||r2 — oo as
n — 0o. Moreover, if we assume in addition that

e ug has finite variance,

e or N > 2, a<4, and ug is radially symmetric,

e or N >3, a <2, and ug € Xy, where

(1.18) Yy = {fEHl t fysan) = f(lyl, on), fo€L2}

with x = (y,zn), y = (v1, - ,xn—1) ERYN 7L and x5 € R,
then the corresponding solution blows up in finite time, i.e., Ty, T < co.

For the scattering part, Theorem 1.3 provides an alternative proof of a recent
result of Cardoso, Farah, Guzmdn, and Murphy [7]. For the blow-up part, Theorem
1.3 extends earlier results of [25] (for finite variance data) and the first author [14]
(for radial data) to the case of cylindrically symmetric data. Note that the first work
addressed the finite time blow-up for NLS with cylindrically symmetric data is due
to Martel [43], where the blow-up was shown for data with negative energy. Recently,
Bellazzini and Forcella [3] extended Martel’s result to the case of focusing cubic NLS

This manuscript is for review purposes only.
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6 V. D. DINH AND S. KERAANI

for data with non-negative energy data lying below the ground state threshold. Our
result not only extends the ones of [3,43] to the focusing inhomogeneous NLS but
also provides an alternative simple proof for these results. In particular, our choice
of cutoff function is simpler than that in [3,43]. Our argument is robust and can
be applied to show the existence of finite time blow-up solutions with cylindrically
symmetric data for other Schrédinger-type equations. See [1,4,18].

Another application of Thereorems (1.1) and (1.2) is the following long time
dyanmics at the ground state threshold.

THEOREM 1.4 (Dynamics at the ground state). Let N > 1, 0 < b < min {2, N},
and 352 < o < a(N). Let ug € H' be such that

(1.19) B (uo)[M (uo)]”* = B(Q)[M(Q))"".
(1) If
(1.20) IVuollzelluollgs < IV Q2 1QN:,

then the corresponding solution to (1.2) exists globally in time. Moreover, the solution
either satisfies

(1.21) sup Pu(t)[M (u(t))]” < P(Q)[M(Q)]7

or there exists a time sequence (t,)n>1 satisfying |t,| — oo such that
(1.22) u(t,) — €9Q  strongly in H*

for some 8 € R asn — oo. In particular, if we we assume in addition that N > 2 and
0 < b < min {2, %}, then the solution either scatters in H' forward in time, or there
exist a time sequence t, — oo and a sequence (Tn)n>1 C RY such that (1.22) holds.

(2) If

(1.23) Vol 2[luollZ> = [IVQI 2| QIIZ5
then u(t,z) = e'*e?Q(z) for some 6 € R.

(3) 1If

(1.24) Vol 2lluollZ> > IVQI 2| QIIZ5

then the corresponding solution to (1.2)
i. either blows up forward in time, i.e., T* < oo,
ii. or there exists a time sequence t, — oo such that |Vu(t,)|r2 — oo as
n — oo,
iti. or there exists a time sequence t, — oo such that (1.22) holds.
Moreover, if we assume in addition that
e ug has finite variance,
e or N > 2, a<4, and ug is radially symmetric,
e or N >3, a<2, and ug € Xp,
then the possibility in Item ii. can be excluded.

To our knowledge, Theorem 1.4 is the first result addressing long time dynamics
of solutions to (1.2) with data lying at the ground state threshold. For the classical
NLS, dynamics at the ground state threshold was first studied by Duyckaerts and

This manuscript is for review purposes only.
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Roudenko [22] for the 3D focusing cubic NLS. The proof in [22] relies on delicate
spectral estimates which make it difficult to extend to higher dimensions. Recently,
the first author in [16] gave a simple approach to study the dynamics at the threshold
for the focusing NLS in any dimensions. Our result is an extension of the one in [16] to
the focusing inhomogeneous NLS. The proof of Theorem 1.4 relies on the scattering
and blow-up criteria given in Theorems 1.1, 1.2, and the compactness property of
optimizing sequence for the Gagliardo-Nirenberg inequality (2.3) (see Lemma 4.2).
We refer the reader to Section 4 for more details.

Finally, we study long time dynamics above the ground state threshold. Before
stating our result, we introduce the virial quantity

(1.25) V(t) ::/|x|2|u(t,x)|2dac.

If V(0) < oo, then V(¢) < oo for all ¢ in the existence time. Moreover, the following
identities hold

V'(t) = 4Im/ﬂ(t, x)z - Vu(t, z)dz,

(1.26) 4(Na + 2b)

// _ 2
V(1) = 8 Vu(®)lfs — =

P(u(t)).

THEOREM 1.5 (Dynamics above the ground state). Let N > 1, 0 < b <
min {2, N}, and 352 < o < a(N). Let ug € 3 satisfy

(1.27) Buo)[M(uo)]" > E(Q)M(Q)]",
B(u0)[M (o)) (V'(0))?

(1.28) E(ﬂ(@«:@ waW<J<L

(1) 1f

(1.20) Plun)[M(uo)]" < P@QMQ).

(1.30) V'(0) > 0,

then the corresponding solution to (1.2) satisfies (1.11). In particular, if N > 2 and
0 < b < min {2, %}, then the solution exists globally in time and scatters in H' in
the sense of (1.13).

(2) If
(1.31) P(uo)[M(ug)]” > P(Q)[M(Q)],
(1.32) V'(0) <0,

then the corresponding solution to (1.2) blows up forward in time, i.e., T* < co.

For the scattering part, Theorem 1.5 improves a recent result of Campos and
Cardoso [6] at two points: (1) removing the radial assumption and (2) extending the
validity of b. For the blow-up part, we extend the one in [6] to any dimensions N > 1.
The proof of Theorem 1.5 is based on virial identities and a continuity argument in
the same spirit of Duyckaerts and Roudenko [23].

We finish the introduction by outlining the structure of the paper. In Section
2, we give the proof of the scattering criterion given in Theorem 1.1. In Section 3,
we prove the blow-up criterion given in Theorem 1.2. Finally, we study long time
dynamics of H'-solutions lying below, at, and above the ground state threshold in
Section 4.

This manuscript is for review purposes only.
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2. Scattering criterion.

2.1. Local theory. In this subsection, we recall the well-posedness theory for
(1.2) due to [26,27,37]. To this end, we introduce some notations. Let v > 0. A pair
(g,r) is called H7-admissible if

2 N _N__
q r 2
and
o <r< 3y if N>3,
(2.1) $<r<oo it N=2,
= <r<oo if N=1L

The set of all H7-admissible pairs is denoted by A.,. Similarly, a pair (g, r) is called
H~7-admissible if

2 N N
-+ —=—=+7
q r 2
and 7 satisfies (2.1). The set of all H~7-admissible pairs is denoted by A_.. Note

that we do not consider the pair (oo, NQ_AQV) as a H7-admissible pair. The reason for

doing so will be clear in Subsection 2.3. When v = 0, we denote L? instead of HOY. In
this case, the L?-admissible pair is also called Schrédinger admissible.
Let I C R be an interval and v > 0. We define the Strichartz norm

Ulgir gy = sup  |ullpecr.pey-
lellsr (q,r)G.A.YH LY(I,L7)

For a set A C RY, we denote

lulls(r vay = sup  lullpar,or(ay)-
(LEYAD e, e

When I = R, we omit the dependence on R and denote [[ulg s~y and [lullg g (a))-
Similarly, we define

ullsrr,60-+) = (qmi)relfA_W lell 1,007y
and for A Cc RV,
ellsrcrm=cay = mE Welly py

As before, when I = R, we simply use |[ul[g/z-~) and [l g - (ay)-
We have the following Strichartz estimates (see e.g., [8,29,39]).

PROPOSITION 2.1 (Strichartz estimates [8,29,39]). Lety >0 and I C R be an
interval containing 0. Then there exists a constant C' > 0 independent of I such that

HeitAst(I,Hw) < Clfll g

2N .
Moreover, the above estimates still hold with L (I, Ly ~*")-norm in place of S(I, H)-
norm.

and

t
/ IR (5)ds

0

S ClFllgr -
S(I,H7)

This manuscript is for review purposes only.
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We also need the following nonlinear estimates due to [5, Lemma 2.5] and [7,
Lemma 2.1].

LeEMMA 2.2 (Nonlinear estimates [5,7]). Let N > 2,0 < b < min{2,5}, and
220 < o < a(N). Then there exists 0 € (0,) sufficiently small so that

—b 0
[ lul*0llgr s vey S IIUIILooHlIIUIIS(H%)HvIIs(H%),

—b
=" ul*lls 22y S lullfpe mz lull§oq. Iollscee),

IV (=l w522y S lullfge iy 5o I Vullsce).-

Note that if b =0, we can take 0 = 0 in the above estimates.

Proof. The first two estimates were proved in [5, Lemma 2.5] (for N > 3) and [7,
Lemma 2.1] (for N > 2). An estimate similar to the last one was proved in [5, Lemma

2.5] for N > 3. However, the proof in [5] used the dual pair of the end-point (27 %)

which, however, is excluded in our definition of L2?-admissible pair (see (2.1)). Thus
we need a different argument. Let 8 > 0 be a small parameter to be chosen later. We
denote

, 4 , 2N
T xe "TNtz-0

_ da(a+1-0) _ 2Na(a+1-196)

“TI % (N—2)a+oa’ T INT2-20)a-0d—-2b+a)
B do(a+1-10) o Na

q= my =

a(Na—2+2b)—0(Na—4+2b—a)’ 2—-bF Nab’

Here (¢’,7’) is the dual pair of (2 - N2]2V+9> € Ag. We can readily check that

(@,7) € Ap and (@, T) € A, prov1ded that 6 > 0 is taken sufficiently small. Moreover,
as 4— <a< 4]1\, 23 , N for 6 > 0 sufficiently small.

We observe that

(2.2) V(|| ulu) = ] 7"V (Ju|"u) — bﬂlwl_b (J]~ ul "u)

and

| ~* £ Lr'(A) < 2l ="l prx ay Il 2z

where A stands for either B = B(0,1) or B¢ = RN\ B(0,1). To ensure |||:c\*b||L;1(A) <
o0, we take

1 b
— = — + 6
1 N ’

where the plus sign is for A = B and the minus one is for A = B¢. It follows that

1 1 1 N+2-2b—-10

T rory 2N

As % < W <lfor N>2and0<b< %, we choose 6 > 0 sufficiently small so
that 1 < ro < N which allows us to use the Hardy’s inequality (see e.g., [46])

|~ fllre < IVl

N

This manuscript is for review purposes only.
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Applying the above inequality to f = |u|*u and using (2.2), we see that

IV (=l *w)]

rr SV (ul*uw)l .

By Holder’s inequality and the fact that

0 a+1-40
— =+ ——,
ro T4 T
we have
IV (] =l )l S el Nall 5 I VPl -
A L z
By Holder’s inequality in time with

1 a-—-6 1
- - — + )
q a q
we get
- —6
IV (el el )y e S Wll] e Nl IVl

0 -6
S lullzge mllell gz - Vull o s

where the last inequality follows from the Sobolev embedding as 2 < m4 < % The

proof is complete. 0
Using Proposition 2.1 and Lemma 2.2, we have the following result.
PROPOSITION 2.3 (Local theory [26,27,37]). Let N > 2,0 <b < min{2, I},

and 3522 < o < a(N).

(1) (Local well-posedness) Let ug € H'. Then there exist T, T* € (0,0], and a
unique local solution to (1.2) satisfying

ue C(~T,, T*), H' )N L]

loc

(_T*a T*)v WLT)

forany (g,7) € Ag. If T* < oo (resp. Ty < 00), then limy sp»
(resp. limy 7, ||[Vu(t)|| L2 = o0).

(2) (Small data scattering) Let T > 0 be such that ||[u(T)||gx < A for some
constant A > 0. Then there exists § = 6(A) > 0 such that if

Vu(t)| gz = o0

" 2T 5 (1,009, £r0e) < 0

then the corresponding solution to (1.2) with initial data u|,_, = u(T) exists
globally in time and satisfies

lulls((7,00), frve) < 2|’ =T A(T)

(V) ulls(i.00),22) < Cllu(T)][ a1

HS([T,oo),H%)’

(3) (Scattering condition) Let u be a global solution to (1.2). Assume that
lullzgemmny < A, lullg ey < oo

Then u scatters in H' in both directions.
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Here we have used the following convention

(V) fllx == fllx +IVFflx, feX.
We also recall the following stability result due to [26,27].
LEMMA 2.4 (Stability). Let N >2,0<b<min{2, 5}, and 452 < a < a(N).
Let 0 e I CR and @ : I x RY — C be a solution to
10y + AT+ |2 0|0 = e
with l,_, = to satisfying
@l e (rmyy < M, g r ey < L
for some constants M, L > 0. Let ug € H' be such that
luo — @ollerr < M, €™ (uo — @0) | g1 frvey < €
for some M' > 0 and some 0 < e < ey =e1(M,M’',L). Suppose that
(V) ellsr(r,z2) + llellsi 1,7~y < &
Then there ezists a unique solution u : I xRN — C to (1.2) with u|,_, = ug satisfying

||’lL - ﬁ||S(I,H’Yc < C(Ma Mla L)Ea
lull g (r,mry + 11{V) ulls(r,z2) + ullgr ey < C(M, M, L).

Remark 2.5. If we assume in addition that

itA <e¢

"= (uo — o) ||

2N s
Lo (I, LY ~27¢)

then
< C(M,M', L)e.

[|w — 2N
L (I,Ly —279)

In fact, by Duhamel’s formula, we have

t

u(t) —a(t) = " (ug — o) + Z/o IR (e u(s) [ *uls) — ol "lals)|*als))ds

t
—l—i/ et =308 e(s)ds.
0
By Strichartz estimates and Lemma 2.2, we have
o~ AL, o~ )
[lu uHL;"’(I,Ljvzig%) < [le"(uo UO)||L,‘?°(I,L;Vzi]2V’YC) + ||6||S/(I,H_’Yc)

+ O]~ ul*u — [ ~"1a| "l 5 e

ity = .
<l a0l e+ Wllsi o

—6 ~ ~a—0 ~
o C (Il e 1y IS ey + N e NS ) ) e = @l 1 v

< C(M,M', L.
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2.2. Variational analysis. We recall some properties of the ground state @
which is the unique positive radial solution to (1.9). The ground state @) optimizes
the weighted Gagliardo-Nirenberg inequality: for N > 1 and 0 < b < min{2, N},

Na2+2b 4—2b—(2N—2)o< 1 N
(2~3) P(f) < COptvaHm Hf”m ) f €EH (R )7

that is

4-2b—(N—2)«

Na+2b
Copt = P(Q) = [IVQ2* 1@l > 2 J

where P(f) is as in (1.12). We have the following Pohozaev’s identities (see e.g., [25])

4—-2b— (N —-2)a 4—-2b— (N -2«
2 _ 2 _
24) Rl = gy VAl = T PQ)
In particular, we have
2(a_|_2) o _N(x—24+2b

(2.5) Copt = Na+2b (IVQll2NQl7s)
We also have

_ Na—4+2b s  Na—4+2b
(2.6) E(Q) = mHvQHm = Ala+2) P(Q)
hence

- Na—4+2b N2

(2.7) E(Q)M(Q)]° = (IVQllL21QN7s)" -

2(Na + 2b)

2.3. Profile decompositions. In this subsection, we recall the linear profile
decomposition and construct some nonlinear profiles associated to (1.2). Let us start
with the following result due to [24,36] (see also [26,27]).

LEMMA 2.6 (Linear profile decomposition [24,26,27,36]). Let N > 1,0<b <
min{2, N}, and 4;1\?1’ < a < a(N). Let (¢n)n>1 be a uniformly bounded sequence in
H'. Then for each integer J > 1, there exists a subsequence, still denoted by ¢, and

e for each 1 < j < J, there exists a fized profile |7 € H';
e for each 1 < j < J, there exists a sequence of time shifts (t})n>1 C R;
e for each 1 < j < J, there exists a sequence of space shifts (x)),>1 C RY;
e there exists a sequence of remainders (W,/),>1 C H;
such that

J

(2.8) Sn(z) = 3 e Ay (@ — 2d) + W ().

Jj=1

The time and space shifts have a pairwise divergence property, i.e., for1 < j £k < J,
we have
(2.9) nh_}rr;o [t —th| + |2d — 2F| = 0.

n

The remainder has the following asymptotic smallness property

lim | lim ||eitAW;L]|| oN
J—o0 | n—o0 S(H%)OL?(RL;\J_Q%)

:07
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where . is as in (1.5). Moreover, for fized J and v € [0,1], we have the asymptotic
Pythagorean expansions

J
lonllE = D 171, + W1, + on(1).
j=1

Finally, we may assume either tJ =0 or tJ, — +o00, and either xJ, = 0 or |v)| — oc.
In the next lemmas, we will construct nonlinear profiles associated to the linear
ones with either divergent time or divergent space shifts.
LEMMA 2.7 (Nonlinear profile with divergent time shift and no space translation).
Let N >2,0<b<min{2 5}, and 52 < a < a(N). Let ¢ € H' and t, — o0.
Let v, : C((=Ty, T*), H) denote the mazimal solution to (1.2) with initial data

(2.10) v (0, 2) = e~ A (x).

Then for n sufficiently large, v, exists globally backward in time, i.e., Ty = co. More-
over, we have for any 0 <T < T,

(2.11) Jim (V) (n = ¥n)lls((—00,1),22) + [vn = Yullg((— 0oy, frrey = 0,
where
(2.12) U (t, ) i= Tt By (2).

In addition, we have
(2.13) nh—>néo v — ’(/)n”Lfo((foo,T),H;) =0.

Similarly, if t, — —oo and v, : C((=T\,T*), H') is the mazimal solution to (1.2)
with initial data (2.10), then for n sufficiently large, vy, exists globally forward in time,
i.e., T* = 0co. Moreover, we have for any 0 <T < T,

lim | (V) (vn = ¥n)lls((~T.00).22) + 100 = Unll g 1,00, 117¢) = 0,

n—o0

where 1y, is as in (2.12). Moreover,
o = Wnllzge (- 7.00),12) = 0-

Proof. We only treat the first point, the second point is similar. We see that 1,
satisfies

7Jat7/}n + A'l/)n + |x|7b|¢n|a¢n =é€n
with e, := |2|7°|¢n|%%,. Since v,(0) = 9,,(0), the result follows from the stability
given in Lemma 2.4 provided that
(2.14) Jim [[(V) enlls((—oo.r).22) + lenllsr((—oor),ir-7e) = O-

By Lemma 2.2, we have

(V) enllsr((—oom),z2) = (V) (|21 19| “Wn) |l 57((—00,m),22)
= (V) (2] 7" 29| * 2 [l 1((—o0,7—1,),12)
IS HGZtAw”%’gO((—oo,T—tn),H;)||eztA7/)||g(_(e_oo,T_tn)7HwC)

x (V) eitA¢||S((—oo,T—tn),L2) —0

Thi: iscript s fi CView P 0.
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14 V. D. DINH AND S. KERAANI

asn — 0o as (V) €24 € S(L?) and 29 € S(H). Here we do not include the pairs
(00,2) and (oo, Nzg/ - into the definitions of L? and He admissibility, respectively.

Similarly, we have

—b| ,itA itA
||6n||s'((_oo,o)7g—vc) = |||z~ B[ ve” w”s’((—oo,T—tn),H— e)
itA 110 itA 1-6
S ™17 00 (—oor—tn), 1) ll€™ TPHCSY&_O@T_M,H%) —0

as n — oco. This shows (2.14).
We next show (2.13). To see this, we have from (2.11),

[ (V >¢n||s —00,T),L2) = (V) itAwHS((foo,Tftn),L?) — 0 asn — oo,

and similarly for [|¢n[|g((_co 1) 7r7e) that
Jim [[(V) vnlls((—o0.1).22) + [1Vnlls((—c0.1), 17e) = O-

This together with Strichartz estimates Lemma 2.2, and the fact that ¢, (¢t,z) =

e, (0, z) imply |vnll Lo (—o0,1),m1) S 1. By Lemma 2.2, we have
lon =l ((—oomy,m2) S 10nllfoo ooy ) nllSe” oo oy e | V) Ol s((—00,7),22)
which tends to zero as n — oco. The proof is complete. 0

LEMMA 2.8 (Nonlinear profile with divergent space shift). Let N > 2,0 <b <
min {2, T}, and ﬂ < a < alN). Let ¢ € H* and (t,,z,) € R x RN satisfying
|xy| = 00 asn — oo Let v, : C((=Ty, T*), H') denote the mazimal solution to (1.2)
with initial data

(2.15) v (0,2) = e~ Ay (z — x,).

Then for n sufficiently large, v,, exists globally in time, i.e., T, = T* = co. Moreover,
we have

i {| (V) (vn = ¥n)llsL2) + lon = ¥nllg ey = 0,

where
(2.16) Y (t, ) = T2 (z — 2,).

Remark 2.9. The construction of nonlinear profiles with divergent space trans-
lations was first established by Miao, Murphy, and Zheng [45] for (1.2) with o = 2
and N = 3. This result was recently extended to (1.2) with N > 2 by Cardoso,
Farah, Guzmén, and Murphy [7]. Here we give a refine result with a simple proof
compared to the ones in [7,45]. More precisely, for a linear profile with a divergent
space shift, the associated nonlinear profile is close to the solution of the underlying
linear Schrodinger equation.

Proof of Lemma 2.8. As in the proof of Lemma 2.7, it suffices to show

(217) lim H <V> en”S/(LQ) + ||en||S/(H—'yC) =0.

n—oo
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To see this, we take € > 0. We have
(V) enllsr 2y = (V) (= ~°[nln) 57 (2)
= [ (V) (|2 + 2a| [ 29" 2 9) | 57 (12)
<AV (|2 + @] 712012 9) 57 (12(2))
FV) (j + 2] P[22 P) | 9112 (B5,))

where Br := {z € RN : |z| < R} and B§ = RV\Bg with R > 0 to be chosen later.
On B%, by splitting B = (; U Qy with

1={zeRY : [z >R, |z+2,/]<1}, Q={zeRY : |z|>R,|z+z,|>1},
the same argument as in the proof of Lemma 2.2 implies that
V) (= + 2 =l ")l (22 B3y S Nl Tge m1 (e 10 5 o (V) @lls g,

where ‘
p(t, ) = "B (x).
As ¢ € S(H) and (V) ¢ € S(L?), we see that

||90||S(ch(3§))7 (V) ¢||S(L2(B§)) —0as R — oo.

Note that it is crucial to exclude the pairs (oo, 2) and (oo, — %) from the defini-

tions of L2 and H" admissible conditions, respectively. This shows that for Ry > 0

sufficiently large,
€

—b
V) (2 + 2nl lel0)llsr 2285, < 4

for all n > 1.
Next, for x € Bg,, as |z,| — o0, we have |z + z,| > |z,| — |z| > IanI for n
sufficiently large. It follows from Lemma 2.2 that

llz + zal ~*le*ells (L2 (Bry) S lenl " llel*@lls 22y S |2l 0l e 0Nl 52y — O
as n — oo. Similarly, we have
IV (2 + 2~ o102 B )
S e+ mn|7bv(|<P|OL<P)||s'(1:2‘(BRO)) + |z + $n|7b71‘(p|a‘:0||3’(L2(BRO))
S |2al UV (el s 22y + |2nl = el ells z2)
< Lol 1S oo IVl s(22) + a3 ey Il sz = O
as n — o0o. Thus there exists n; > 0 sufficiently large such that for all n > nq,
1 (V) (e + 2l el s (22080, < -

hence €
(V) (| + 2n| Lo s z2) < 5

A similar argument show that for all n > ny with ny > 0 sufficiently large,
Iz + Lol g ey < 5-
Therefore, we have for all n > max{nj,na},
(V) (J + 2l P lol@) 522y + [l + 2] P10l Pl g1 (1= ey <€

which proves (2.17). The proof is complete. o

This manuscript is for review purposes only.
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16 V. D. DINH AND S. KERAANI

2.4. Energy scattering. In this section, we give the proof of the scattering
criterion given in Theorem 1.1. To this end, we need the following coercivity lemma.

LEMMA 2.10. Let N > 1, 0 < b < min{2,N}, and 52 < a < o(N). Let
f € H' satisfy

(2.18) P(AM(F < A< PQ)M(Q))"

for some constant A > 0. Then there exists v =v(A, Q) > 0 such that
(2.19) G(f) 2 vV I,

(2.20) E(f) > 51Vl

Proof. We write
A=(1-p)P@Q)M(Q)
for some p = p(A, Q) € (0,1). Tt follows from (2.3), (2.4), (2.5), and (2.18) that

Na+2b

PO < Cope (PO A)) T2 O] a®
Na—4+2b
a + 2 P Oc 4 Na+2b
= IVFll*
NOHL? ||VQ|| 2||QH ) .
44-2b Na+2b
~ (polias ) RN
P(Q)[M(Q)]7 Na+2b L
Na+2b
Noa—at2 ((2(a+ 2) 9 4
< — 1 _— 2
< -0 (R D vz
which implies
2(a+2) Na—442b 9
< —72(1 — Na+2 2.
P() < 3852 (- ) R v
Thus we get
Na +2b Na—4+2b
— 22 - > — — Na+2 22
GU) = IVl = 5y PO 2 (1= (=) 58 ) 941
which proves (2.19). As Nao — 4+ 2b > 0, we have
1 Na—4+4+2b 1
which shows (2.20). The proof is complete. d

We are now able to give the proof of Theorem 1.1.
Proof of Theorem 1.1. Let u : [0,T*) x RY — C be a H'-solution to (1.2) satisfying
(1.11). By the conservation of mass and energy, we infer from (1.11) that

sup ||Vu(t)||r2z < C(E,Q) < .
t€[0,T*)

By the local well-posedness given in Lemma 2.3, we have T* = co.
Let A >0 and 6 > 0. We define

S(A,d) :=sup {HU||S([07OO)7H’YC) : wu is a solution to (1.2) satisfying (2.21)} ,

This manuscript is for review purposes only.
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where

(2.21) sup  P(u(t))[M(u(t))]” < A, E(u)[M(u)]” <.

t€[0,00)
Thanks to the scattering condition (see again Lemma 2.3) and the definition of S(A, 9),
Theorem 1.1 is reduced to show the following proposition.

PROPOSITION 2.11. Let N > 2,0 < b < min{2, ¥}, and 52 < a < «(N). If
A< P(Q)[M(Q)]%, then for all* § >0, S(A,§) < oo.

The proof of Proposition 2.11 is based on the concentration/compactness and rigidity
argument introduced by Kenig and Merle [40] (see also [21]). The main difficulty
comes from the fact that the potential energy P(u(t)) is not conserved along the time
evolution of (1.2). To overcome the difficulty, we establish a Pythagorean decomposi-
tion along the bounded INLS flow (see Lemma 2.12). In the context of the standard
NLS, a similar result was shown by Guevara in [36, Lemma 3.9] (see also [19]).

The proof of Proposition 2.11 is done by several steps.

Step 1. Small data scattering. By (2.20), we have

2 L2 )

luoll . < Vuol|72lluol75* < ~E(uo)[M (uo)]” < —.
By taking § > 0 sufficiently small, we see that ||uo|| -, is small which, by the small
data scattering given in Lemma 2.3, implies S(A, ) < oc.

Step 2. Existence of a critical solution. Assume by contradiction that S(A,J) =
oo for some § > 0. By Step 1,

(2.22) de :=0c(A) :=inf {6 >0 : S(A4,0) =00}

is well-defined and positive. From the definition of ., we have the following observa-
tions:
(1) If w is a solution to (1.2) satisfying

tes[ggo)P(U(t))[M(U(t))}”° <A, E()[M(w)]” < e,

then [[ull((o,00), f77e) < 00 and the solution scatters in H! forward in time.

(2) There exists a sequence of solution u, to (1.2) with initial data w,, o such that

sup  P(un(t))[M (un(t))]¢ < A for all n,
te[0,00)
(2:23) E(un)[M(uy)]? \( dc as n — oo,
”un”S([o,oo),ch) = oo for all n.

We will prove that there exists a critical solution u. to (1.2) with initial data wuc
satisfying

M(uc) =1,
sup P(uc(t)) < A4,

(224) te[0,00)
E(u.) = 6,

l[teell 5(10,00), f7e) = 0

INote the energy is positive due to Lemma 2.10.
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18 V. D. DINH AND S. KERAANI

To see this, we consider the sequence (u, 0)n>1. Thanks to the scaling (1.4), we can
assume that M (u,,0) = 1 for all n. By the conservation of mass and energy, (2.23)
becomes

M (up0) =1 for all n,

sup P(uy(t)) < A for all n,
(2.25) t€[0,00)
E(uno) N 0c as n — 00,

HUnHS([o,oo),H%) = oo for all n.

Since (tn,0)n>1 is bounded in H', we apply the linear profile decomposition to u, o
and get

J
(2.26) Uno(@) = Y e Ay (z — 2d) + W ()
j=1
with the following properties:
(2:27) L<j#k< o lim [t] —tp] + |2, — @] = oo,
(2.28) lim [ lim [[e"2W]|| oy | =0,
J—o0 [ n—o0 S(H%‘)OL;,’“(R,L;V*%VC)
and for fixed J and ~ € [0,1],
(2.29) .0l ZIIWII W1 + on(D).

Moreover, we also have the following Pythagorean expansions of the potential and
total energies:

P —itd Aw] %)) + P(WT{) + On(l)a

Mu

(2.30) P(tn0)

<.
I
—

E(e A3 (- — a1)) + B(W,]) + 04(1).

M«

(2.31) E(upnyp) =

<.
Il
Ja

For the proof of the above expansions, we refer to [26] (see also [27]). We now
define the nonlinear profiles v/ : I/ x RN — C associated to 17,/ and xJ, as follows:
e If 2/, = 0 and tJ = 0, then v/ is the maximal lifespan solution to (1.2) with
initial data Uj}t:o =,
o If zJ = 0 and tJ, — —oo, then v/ is the maximal lifespan solution to (1.2)
that scatters to €247 as t — oo (Such a solution exists due to Lemma 2.7).
In particular, ij||5((0’oo)7g%) < 0o and |[v7(—t)) — e Y| — 0 as
n — 00.
e If 27 =0 and t/ — oo, then v/ is the maximal lifespan solution to (1.2) that
scatters to e'*®1)J as t — —oo. In particular, HUJHS((—OO,O),H’YC) < oo and
07 (=t)) — e~ #nB9pT || g1 — 0 as n — oo.
o If |27 | — oo, then we simply take v7(t) = 27,

This manuscript is for review purposes only.
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For each j,n > 1, we introduce vJ, : I7 x RY — C defined by
o if 2 =0, then v (¢) :=vI(t — tJ), where I} := {t e R : t -t} € I7}.
o if |zJ| — o0, we define v} a solution to (1.2) with initial data v} (0,z) =
v(—th,x — xl) = e AT (x — x)). Tt follows from Lemma 2.8 that for
n sufficiently large, v/ exists globally in time and scatters in H! in both
directions.
We have from the definition of v and the continuity of the linear flow that

(2.32) w2 (0) — e*itiij( —20)|gr = 0 asn — oco.

Thus we rewrite (2.26) as

J
(2.33) uno(@) =Y _vh(0,2) + W,/ (2),
j=1
where
W) =D e 89 (@ — af) — v},(0,2) + W, (a).
j=1

By Strichartz estimates, we have

le* AWl T
S(HYe)NLy(R,Ly" ~~7¢)

J
< e AP (- — wl) — vk ()|l + €AW o
= S(HY)NLS (R, Ly ~27¢)

which, by (2.28) and (2.32), implies that

(2.34) lim [lim AW/ || =0.

2N
J—o0 |n—o0 S(H%)OL?Q(R’LINifzwc)
Using the fact that
IV FIIZe = IVglz2l SIVF = Vall2(IV £z + [ Val z2)
and (see [27, Lemma 4.3])

(2.35)
[P(f) = P9I S If = gllzase (IFI5E5 + Igll5aie) + 1 = gl (IFIEE + gl E)
for some % < r < 2%, where
2N
* N—2 if N Z 37
(2.36) 2 { o if N=1,2,

we infer from (2.31), Sobolev embedding, and (2.32) that

J
(2.37) E(unp) = Y_ E®(0)) + E(W,)) + 0, (1).

J=1

Next, we show the following Pythagorean expansion along the bounded INLS flow
(see [36, Lemma 3.9] for a similar result in the context of NLS).
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LEMMA 2.12 (Pythagorean expansion along the bounded INLS flow). Let T €
(0,00) be a fized time. Assume that for all n > 1, up(t) := INLS(t)u, o exists up to
time T and satisfies

(2.38) lim sup ||Vu,(t)]|r2 < oo,
N0 tc[0,T)

where INLS(t) f denotes the solution to (1.2) with initial data f at time t = 0. We
consider the nonlinear profile (2.33). Denote W,/ (t) := INLS(t)W,/. Then for all
te 0,77,

J
(2.39) IVun (@72 = Y IV O72 + IVW ()l + 0sn(1),
j=1

where 05,(1) = 0 as J,n — oo uniformly on 0 <t < T. In particular, we have for
all t €10,7),

(2.40) P(u(t)) = Y P(o) (1)) + P(W;(£)) + 050 (1).

j=1

Proof. By (2.29), there exists Jy large enough such that ||7 || 1 sufficiently small
for all j > Jp + 1. By the triangle inequality using (2.32), we see that for n large,
|v3 (0)|| g1 is small which, by the small data theory, implies that v/ exists globally
in time and scatters in H! in both directions. Moreover, we can assume that for all
1 < j < Jo, ¥, = 0 since otherwise, if |J| — oo, then by Lemma 2.8, we have for n
large, vJ exists globally in time and scatters in H'! in both directions. In particular,
we have for all j > Jy + 1,

(2.41) (AP

for n large. We reorder the first Jy profiles and let 0 < J; < Jj such that
e for any 1 < j < Jp, the time shifts ¢/ = 0 for all n. Here J, = 0 means
that there is no j in this case. Note that by the pairwise divergence property
(2.9), we have J; < 1.
e for any Jy + 1 < j < Jy, the time shifts |t/ | — co as n — oco. Here Jo = Jy
means that there is no j in this case.
In the following, we only consider the case Jo = 1. The one for Jo = 0 is treated
similarly (even simpler). Fix T € (0,00) and assume that w,,(t) = INLS(¢)u, ¢ exists
up to time T and satisfies (2.38). We observe that for 2 < j < Jy,

(2.42) ||”¥L||S([0,T],ch) — 0 asn— oo.

Indeed, if #J, — oo, then as ij||5((7oo,0)’H%) < 00, we have

”U%HS([O,T],H%) = ||Uj||s([7t{“T7tg;]7ch) — 0

as n — o0o. Note that we do not consider (oo, NEJ;’7 ) as a H7-admissible pair. A

similar argument goes for ), — —oc.
Moreover, for 2 < j < Jy, we have for all 2 < r < 2%,

(243) ||U%||L100([07T]7L:) — 0 asn — oco.
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In fact, we have
ol e o.71.2)
< (| (- — @)L o, r, ) + vh — € TBY (- — &l )| e 0,1,
< e TWBY ) 0,1,y + Cllvd, — 29I (- — )| e om0, 1) -

By the decay of the linear flow, the first term tends to zero as n tends to infinity due
to [t | — oco. For the second term, we use the Duhamel formula

t
() = 00 i [ eI ] g 5) ) (5,
0
Strichartz estimates, and Lemma 2.2 to have
||U£||L§°([O,T],H;) + (V) U%HS([O,T],Lz)
S v 0) e + H%Higo([o,nﬂ;)||U%||‘;&g,T]7H%)|| (V) vllls(o,m),L2)
S e8| + 1
j j 146
+ (ol e o.r.m) + (V) villsqo.ry.L2y) v, |S([0 ),
It follows from (2.42) that
(2.44) V21l Lo po,r1, 2y + 1 (V) v Nl sro,m),02) S 1-
Similarly, we have
HU% - ei(t_ti‘mwj(‘ - x%)”L;’O([O,T],H}C)
< e (0) — i(t_ti)AW(' — @)l Loe (jo, 77, H2)
+ an”L‘x’([O T),H}) an| S([O T],He) || <v> U%”S([O,T],LQ)
S 03 (0) — e AT (- — )|
+ HU%”L?([O,T],H;)HUﬁ”g(_[g,T]’H%)” (V) ol llso11,22)
which, by (2.32), (2.42), and (2.44), implies
llos, — "= W27 (- — @) Lo o,71,m1) — O a5 1 — 00,

We thus prove (2.43).
Denote

B := max{l lim sup ||Vuy(t )||L2} < 00.

n=00 ¢c[0,T)

and let T the maximal forward time such that

sup ||[Vol(t)||z: < 2B.
te[0,T1]

In what follows, we will show that for all ¢ € [0, 7],

(2.45) IVun(t)]122 = ZIIVUJ OlZ2 + VW @)1= + 0s(D),

This manuscript is for review purposes only.



809
810
811

813

814

826

827
828

829

830

831

832
833

835

836
837

22 V. D. DINH AND S. KERAANI

where 07,(1) = 0 as J,n — oo uniformly on 0 < ¢ <T'. We see that (2.45) implies
(2.39) as Tt > T. In fact, if T1 < T, then by (2.45),

sup [[Vol(t)llz2 = sup [[Vup(t)llzz < sup [V (t)]r2
te[0,T1] telo,T1] te[0,T1]
< sup ||Vun(t)||rz < B.
te[0,7)
Note that t. = 0. By the continuity, it contradicts the maximality of 7.

We estimate [[v}]| (0,71, frve) s follows. For N > 3, by interpolation between
endpoints and Sobolev embedding, we have

1 1
||Un||s([o,T1],ch) = |jv ”S([O T, He)
Sl = 3 + vt T
LI ([0,T],L] L2 ([0,T], Ly ~27e)
< ot + vt vt
1, e W B e L s TP L
S/ (Tl) 1,L2) + C||Vvl||% 2N
L ([0,T1],LY %)
S (=

Here we have use the conservation of mass and the choice of v! to have that for all
te[0,T1],

. . gl
[0 ()2 = lim ol (=tp)]lz2 = lim [le™ 29! |2 = [[9"]| 2 < [lunollzz < 1.
n—oo n—oo

When N = 2, a similar estimate holds by interpolating between (oo, %) and

(%, r) with r sufficiently large and using Sobolev embedding. This shows that
Ve

(2.46) ||U71L||s([o,T1],HvC) < C(T',B).

Now we define the approximation

J
= val(t, x).
j=1

We have
Uno(2) — (0, ) = W,/ (x).
y (2.34), we have
(2.47) hm {hm €72 (w0 — @l (O] 2N } =0.
J—ro0 | n—00 S(HYe)NLE* (R, Ly —27¢)

We also have
. ~ ~ — ~ o ~
il + Aal + |zt |u,ﬂ al = ¢’

n
where
J J
el = ZF(vﬁL) - F Zv%
j=1 j=1
with F(u) := |z|~%|u|*u. We also have the following properties of the approximate
solutions.
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LEMMA 2.13. The functions @ and & satisfy
(2.48) lim sup <\|ﬂ7{||L;?°([o,T1],H;) + ||ﬁ7{||5([0,T1],ch)> <1
n—oo

uniformly in J and

. . ~J 5J
@49) Y T (V)& s qoran + 1o am ey = O

Proof. The boundedness of ||ﬂ£||s([07T1]’H%) follows from (2.41), (2.42), and (2.46).'
The boundedness of || || Lo (jo,71),22) follows from (2.29) and the fact that

. . . . . . . ]A . .
lod (Ol = 07 (¢ = )1z = lim_Jlo(=t)[1z2 = Tim e~ 293 12 = [[g] .

To see the boundedness of ||V’&i”L§°([O,T1LL£)7 we proceed as follows. For j > Jy, by
(2.41), we split [0, T?] into finite subintervals Iy, k = 1,--- , M such that ||”¥L||s(1k,HVc)
is small. By Duhamel’s formula, Strichartz estimates, and Lemma 2.2, we have

IVOi | oo 102y SV ER)l2, T = [testisa], k=1,---, M.
Summing over these finite intervals, we get
||VU%||L§°([0,T1],L3) S ||VUZL(0)||L2-

For 2 < j < Jy, we have from the Duhamel formula, Strichartz estimates, Lemma 2.2,
and (2.42), we have _ _
||VU¥L||L§°([0,T1]7L§) S VY (0)]l e
for n sufficiently large. Thus we have
J

Va7 or1),22) < IVO [T o,1),22) + Z V031 e 10,71, 22)
=2

J
S B2+ ) Vel (0)7
j=2

J
SB2+ ) [VY|l7z + on(1)

j=2
< B2+ [|[Vunol32 + on(1)
< B? 4 0,(1).
This shows the boundedness of ||V@;)|| L (jo,1],22) and we prove (2.48). To see (2.49),
we follow from the same argument as in [27, Claim 1 (6.23)]. We thus omit the details.0

Thanks to (2.47) and Lemma 2.13, the stability given in Lemma 2.4 (see also
Remark 2.5) implies

lim | lim [ju, — @] | =0.

2N
J=ro0 oo S([0,71), He)nLge ([0,T1],Ls 2 7¢)

By interpolating between endpoints and using Sobolev embedding, we infer that

oy
lun = @l Lo 0,717, L3+2) ALge (0,77, L)

S llun = 2

o (V) (un — @) || oo 0
L?([OyTl],Lé\"g%)” (V) Mg (por,02)
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24 V. D. DINH AND S. KERAANI

as J,nm — oo, where r is an exponent satisfying Nzgv- < N](Vo‘j;) < r < 2*. This
estimate together with (2.35) yield

(2.50) |P(un(t) = P (t))] = 0

as J,n — oo uniformly on 0 < ¢t < T'. On the other hand, we have from the same
argument as in [27, Proposition 5.3] using (2.43) that for all ¢ € [0,T],

(2.51)  P(ay(t)) = Y P}(t) + 0sa(1) = Y P}(t)) + POV (8) + 05(1).

j=1 j=1

Here we have used the fact that P(W./(t)) = 0s.,(1) uniformly on 0 < ¢ < T'. In
fact, by the Duhamel formula and Lemma 2.2, we have

HWnJ(t)Hs(HwC) < HeitAWnJHs(ch) + CHWT}]@)HOWO(RHi)HWﬁ](t)”(;E:%

for some 6 > 0 sufficiently small. Since HWﬁj(t)”Lf"(R,H;) < 1 (by the small data
theory), the continuity argument together with (2.28) imply

. . IrJ _
(252) Jim im0l g7 =0

— 00

Thanks to (2.52), Strichartz estimates, and (2.34), we have

lim [ lim W (8)]

2N - 0
S0 [n—reo Lo (R,Ly ~27¢)

which together with (2.35) yield

lim {lim sup P(W;! (t))} =0.

J—00 | n—=00 R

Moreover, by the conservation of energy, we have

J
E(un(t) = E(un) = Y E@)(0)) + E(W;]) + 0a(1)

<~
—

(2.53) E@l (1)) + EW, (1) 4 05.,(1).

J

<
—_

Collecting (2.50), (2.51), and (2.53), we prove (2.45). The proof is complete. |

We come back to the proof of Proposition 2.11. We will consider two cases.

Case 1. More than one non-zero profiles. We have
M(}(1)) = M(v(0)) = M(e™"897) = M) <1, Vj > 1.
By (2.23) and (2.40), we have

S )P(Ui(t))[M(vi;(t))]"c <A, Vji>1
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Here we note that by (2.39), || Vv ()| 2 is bounded uniformly which implies vJ, exists
globally in time. By Lemma 2.10, we have E(vJ(¢)) > 0, hence

Bl (0) M0 < b, ¥j>1.
By Item (1) (see after (2.22)), we have

||Uzz||s([o,oo),gw) <oo, Vj=>1

We can approximate u,, by
J

ui(t, x) = Z vl (t)

and get for J sufficiently large that

1l g0,00), ey < 00

which is a contradiction.

Case 2. Only one non-zero profile. We must have only one non-zero profile, i.e.,
—ith A1 1 : itA
Uno(z) = e "2t (z — xy,) + Wy (), nl;n;o €= Wall s (0,00, F17¢) = 0-
We note that ¢}, cannot tend to —co. Indeed, if t, — —oo, then we have

it A it A it A
e unoll 0,000, t7e) < 1€ 20 s1t1, 009, 76) T 1" Wallg0,00),17e) = 0

as n — o0o. By the Duhamel formula, Lemma 2.2, and the continuity argument,
unll5((0,00), 71y < 00 for n sufficiently large which is a contradiction.

We claim that xl = 0. Otherwise, if |xL] — oo, then, by Lemma 2.8, for n
large, there exist global solutions v, to (1.2) satisfying v, (0,z) = e*“iAwl(x —zl).
Moreover, v, scatters in H! in both directions. In particular, an”S(H%) < 00. Again,
by the long time perturbation, we show that ”u’”«HS([O,oo),H‘YC) < oo for n sufficiently
large which is a contradiction.

Let v! be the nonlinear profile associated to 1! and t., we have

U o(x) = v (—th, z) + W, (z).
Set v} (t) = v!(t — t1). Arguing as above, we have

M (v, (1) <1, Sup )P(vi(t)) <A B(ug (D) <0, lim [Wa(®)gggmey = 0.
t€|0,00 n— o0

We infer that M(v}(t)) =1 and E(v.(t)) = 6.. Otherwise, if M (v.(t)) < 1, then

S )P(vi(t))[M(vi(t))]‘“ <A, B(vy)[M(v)]7 <.

By Item (1) (see again after (2.22)), we have ||U'}LHS([0,00),H'YC) < 00. Thus we get a
contradiction by the long time perturbation argument.

Now we define u. the solution to (1.2) with initial data u.|,_, = v'(0). We have
(01(0)) = M(v'(t —t,)) = M(v, (1) = 1,
Bu'(t —t,)) = E(v,(t) = dc.

g
I
]
~
I
RS
<
=
—~
=
I
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935 Moreover,

936 sup P(uc(t)) = sup P(v'(t))= sup P@'(t—tl))= sup P(vl(t)) < A.
t€[0,00) te[0,00) te(th ,00) te(th,00)

n?

937 By the definition of J., we must have ||UCHS([O’00)’HWC) = 00. This shows (2.24).

938 By the same argument as in the proof of [27, Proposition 6.3], we show that the
939  set
940 K= {uc(t) : t€]0,00)}

941 is precompact in H?'.

942  Step 3. Exclusion of the critical solution. Thanks to the above compactness
943 result, the standard rigidity argument using localized virial estimates and Lemma
944 2.10 shows that u. = 0 which contradicts (2.24). We refer the reader to [27, Section
945 7] for more details. The proof of Proposition 2.11 is now complete. This also ends
946 the proof of Theorem 1.1. O

947 3. Blow-up criterion. In this section, we give the proof of the blow-up criterion
948 given in Theorem 1.2. Let us recall the following virial identity (see e.g., [14]).

949 LEMMA 3.1. Let ¢ : RN — R be a sufficiently smooth and decaying function. Let
950 u be a solution to (1.2) defined on the mazimal forward time interval of existence
951 [0, T*). Define

952 (3.1) Vo (1) ::/ga(x)\u(t,x)|2dx.

9514 Then we have for all t € [0,T%),

955 Vi (t) = QIm/Vgo(sc) -Vu(t, z)u(t, )dz

956 and

958 /A2 x)|u(t, )|*dr + 4 Z Re/ x)0;u(t, x)Opu(t, z)dx

7,k=1
959 |7bA<p(x)|u(t,x)\°‘+2dm+ /Vg@ V(x| ™) |u(t, z)|* T2 dx.
960
961 Remark 3.2. (1) In the case ¢(x) = |z|?, we have
06° d2 2
962 ﬁﬂxu(t)HLz = 8G(u(t)),
963 where G(f) is as in (1.15).
964 (2) In the case ¢ is radially symmetric, it follows from
. @ Ojk  xTk x]xk 9
965 8]‘ = 78r, 8]1@ = (r — 3 ) 8T 8
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that
Z Re/ x)0;u(t, x)Opu(t, z)dx

jk=1
/‘P;{’")Wu(t,xn?dﬁ/ (Wg’”) G )) |z Vu(t, z)[2da.

r 73

In particular, we have
Vi) = [ Ae@lutto)Pde+a [ £ 2O \Gut, )P
(3.2) +4/ (SD g” - “0;(3’")) \z - Vu(t, z)[2dz

r

bA a+2 / b‘P a+2
-2 [t et - = [l E D) .

(3) Denote x = (y,zy) with y = (21,---,2xy_1) € R¥"! and 2y € R. Let ¢ :
RM-1 — R be a sufficiently smooth decaying function. Set p(z) = @(y,zy) =
¥(y) + z%. We have

= QIm/ V¥ (y) - Vyu(t, z) + 2enOnu(t, x)) a(t, z)dx
and

V//( )
N-1

/A2 ) |u(t, z)*dr + 4 Z Re/ajkz/} )0u(t, x)Opu(t, x)dx
7,k=1

2a

a4+ 2

_ o 4b b o
[l ) 2ae - 2 [ 00) - ylal P 2futt o) s
4o _ o 8b e o
s [l e e - S [l o) g
Let x be a smooth radial function satisfying

r2 if r <1,
0 if r>2

+8llonu(t)||2: —

x(@) =x(r) = X'(r) <2 Vr=|z|>0.

Given R > 1, we define the radial function
(3.3) or(r) ;== R*x(z/R).
We have the following localized virial estimate.

PROPOSITION 3.3. Let N > 1, 0 < b < min{2, N}, and 352 < a < a(N). Let
u be a solution to (1.2) defined on the mazimal forward tzme interval of existence
[0,T%). Let pr be as in (3.3) and define V,,(t) as in (3.1). Then we have for all
0,7%),

Venr(t) =2Im / Vor(z) - Vu(t, z)u(t, z)dz
and
V(8) < 8G(u(®) + CR™ + CR u(t) 57

where G is as in (1.15) and some constant C > 0 independent of R.

This manuscript is for review purposes only.



1009

1013
1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029
1030

1031
1032

28

V. D. DINH AND S. KERAANI

Proof. Tt follows from (3.2) that

V] (t) = 8G (u(t)

(Na + 2b) o
>—8||Vu<t>||%z+7/| Pt 2)[* 2 de

—/A2¢R(x)|u(t,m)|2dx+4/SORT()Wu(t,x)de
+4/ <</’é§r) - “’f@) |z - Vu(t, z)|*d

a+2

a © a
© e aen@luta) e - 2 [l D e 2

As ||A%¢g| L~ < R™2, the conservation of mass implies that

[ ottt o)) < B2 S R

By the Cauchy-Schwarz inequality |z - Vu| < |z||Vu| = r|Vu| and the fact p%(r) < 2,

we see that

4 / @wu(t,x)l%zx + 4/ <@%§T) - w%fgr)) [ - Vu(t,o)*dz - 8| Vu(t)|Z2

cof

Moreover,

4(Na + 2b) /| -
Ca+2

Since Apr < 2N,

) _ ) Vatta)Pde+4 [ (2_ “”’ff”) &+ Vu(t, 2)[*dz < 0.

2
blut, )| 2dr — — /|x|*bA<pR(x)|u(t,z)|a+2dx
O[_|_2/| ‘ bQOR( )|u(t x)|a+2d$

- a+2/‘ 7P (2N — Apg(2))lu(t, z)|*?de

72/|xrb (2 - Fﬁf“) lu(t, )| 2dz.

@ < 2, Apgr(z) = 2N, and @ = 2 for r = |z| < R, the

above quantity is bounded by

C
lz| >R

2] " u(t)|*F2dx < CR™[lu(®)|§23: < CR™Ju(®)|512,

where the last inequality follows from the Sobolev embedding as o < «(/N). Collecting
the above estimates, we end the proof. O

Proof of Theorem

1.2. Let u : [0,T*) x RN — C be a solution to (1.2) satisfying

(1.14). If T* < oo, then we are done. If T* = oo, then we show that there exists
t, — oo such that ||Vu(t,)||rz — oo as n — oo. Assume by contradiction that it

does not hold, i.e.,
of mass, we have

(3.4)

SUPyco,00) | Vu(t)[ L2 < Co for some Cp > 0. By the conservation

sup |u(t)|[m < C
t€[0,00)
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for some C7 > 0.
By Proposition 3.3, (1.14), and (3.4), we have for all ¢ € [0, c0),

V2, (t) < 8G(u(t)) + CR™* + CR[lu(t)||34? < ~85 + CR™2 + CR™°CH2,
By taking R > 1 sufficiently large, we have for all ¢ € [0, 00),
V) (t) < —40.

Integrating this estimate, there exists ¢y > 0 sufficiently large such that V(o) < 0
which is impossible. This finishes the first part of Theorem 1.2.

If we assume in addition that u has finite variance, i.e., u(t) € L?(|z|?dz) for all

€ [0,7*), then we have T* < oo. In fact, it follows from Remark 3.2 and (1.14) that

d2
@qu(t)ﬂiz = 8G(u(t)) < —8¢

for all t € [0,T*). The convexity argument of Glassey [35] implies T* < oo. O

4. Long time dynamics. In this section, we give the proofs of long time dy-
namics of H'-solutions given in Theorems 1.3, 1.4 and 1.5.
Proof of Theorem 1.3. We will consider separately two cases.

Case 1. Global existence and energy scattering. Let uy € H! satisfy (1.7) and
(1.8). Let us prove (1.16). To see this, we first claim that there exists p = p(ug, @) > 0
such that

(4.1) [Vu@)]l2llu®)ll7e < (1 =)Vl QTS

for all t € (=T, T*). We assume (4.1) for the moment and prove (1.16). By (2.3)
and (4.1), we have

Na+2b 1=2—(N=2)a 4 o
Pu(®)[M (u(t)]” < Copt[Vul)ll2*  [lu(®)ll. * ’

= Copt (||Vu( Wza |t )||O'C)N0‘2+2b
< Copt(1 = )Na+25 (HvQHLzHQH ) Moz

for all t € (=T, T*). By (2.4) and (2.5) , we get

er+2b

n < 2at2)
Pu@®)Mu®) < T 1= 0 (19QI 1 Ql7:)°

=(1-p) T PQIM(Q)

for all t € (=T, T*) which shows (1.16). By Theorem 1.1, the solution exists globally
in time. Moreover, if N > 2 and 0 < b < min {2, %}, then the solution scatters in
H' in both directions.

Let us now prove the claim (4.1). By the definition of energy and (2.3), we have

B(u(t)[M (u(t))]
> 2 (I9u(t) e ) 33)* -
(12) = F (V@) fu(0)35)

Copt at2 4—2b— (N 2)0/+2a_c
z;j;7§H‘7 u(t )HLz HU( )HLz
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1071  where

1 C Na+2b
: F()) = A7 — =272
e O s A
1073 Using (2.4), (2.5) and (2.7), we see that
o Na—4+2b o2 o
o F(IV@IIQIE) = S gy (IVQUQI5)° = B@IM @)
1075 It follows from (1.7), (4.2) and the conservation of mass and energy that

1076 F ([[Vu(t)| r2llut)[175) < E(uo)[M(uo)]” < E(Q)[M(Q)]7 = F ([VQIl1[Ql75)
1077 for all t € (=T, T*). By (1.8), the continuity argument implies

lg7g  (4.3) Vu@)llzelu@®)7e < VRl L2 IQNT
1080 for all t € (=T, T*). Next, using (1.7), we take ¥ = d(up, Q) > 0 such that
gy (44) E(uo)[M (uo)]” < (1 = 9)E(Q)[M(Q)]7
1083  Using

. Na—4+2b r2
1084 E@Q)[M(Q)]% = m (HVQ||L2HQ||L‘2)

Na—4+2b Noa2b
1085 =TTy S e
055 e (IVGle1QI:)
1087 we we infer from (4.2) and (4.4) that
Na+2b
s No +2b <||Vu('5)|L2||U(15)||‘E°z>2 B 4 (Vu(t)llellu(t)‘Z%> ’
Na—4+20 \ [[VQ|2QIZ5 Na—4+2b \ [[VQl[QIZ:
1680 (4-5) <1-9
1091 for all t € (=T, T*). Let us consider the function
Na +2b 2 4 Na+2b
92 (4. = —

0z (46) Al VP T AR s

1004 with 0 < A < 1 due to (4.3). We see that G is strictly increasing on (0,1) with
1095 G(0) =0 and G(1) = 1. It follows from (4.6) that there exists p > 0 depending on ¢
1096 such that A <1 — p which is (4.1). This finishes the first part of Theorem 1.3.

1097 Case 2. Blow-up. Let ug € H! satisfy (1.7) and (1.10). Let us prove (1.17). By
1098  the same argument as above using (1.10) instead of (1.8), we have
1998 (4.7) IVu®)lrzllu(®)[72 > VQI 2 1QN 7

1101 for all t € (=T, T*). Let ¥ be as in (4.4). By the conservation laws of mass and
1102 energy together with (4.7) and (2.7), we have

1103 G(u(t))[ M (u(t))]

10 = [ 0> — 5 Pl M )

105 = 202 B M) - S (V) ) 55)°
o6 < X209 EQurQ) - TR (IVals elg)’
nor = -2 (Ivalelel)’
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for all ¢t € (=T, T*). This shows (1.17) with

Noa—4+2b M(Q)

By Theorem 1.2, the corresponding solution either blows up in finite time, or there
exists a time sequence (t,),>1 satisfying |¢,| — oo such that |Vu(t,)| 2 — oo as
n — oo.

e Finite variance data. If we assume in addition that ug € X, then the correspond-
ing solution blows up in finite time. It directly follows from Theorem 1.2.

e Radially symmetric data. If we assume in addition that N > 2, o < 4, and ug
is radially symmetric, then the corresponding solution blows up in finite time. This
result was shown in [14]. Note that in [14], « is assumed to be strictly smaller than
4. However, a closer look at the proof of [14], we see that a = 4 is allowed.

e Cylindrically symmetric data. If we assume in addition that N > 3, a < 2, and
ug € X (see (1.18)), then the corresponding solution blows up in finite time. To this
end, let  be a smooth radial function satisfying

2 if 7 <1,
i =nn={ 7y § TSy =2 vi=pzo

Given R > 1, we define the radial function

(4.8) ¥r(y) = R°n(y/R).
Set
(4.9) or(z) =vYr(y) + x?\,

Applying Remark 3.2, we have

Vo (t) = 21m/ (Vyr(y) - Vyu(t, z) + 2enOnu(t, z)) u(t, z)dz

and
V2 /A Yr(y)|u(t, r)|*dx + 4 Z Re/ﬁjka )0;u(t, x)Opu(t, z)dx
J,k=1
4b YR(T)| o
—b a+2 27R b—2 a+2
- / ol Am( utt, )l 2ds — 2 [ P ]2 ) o
+ 8ol - 225 [ lalue x)\““d [ el utt, )

We can rewrite it as

V(1) = 8G(u(t)) — 8||Vyu(t)||7. + 4((N —1)a+2b)

P(u(t))

a+2
/A2¢R Nu(t, z)|*de + 4 Z Re/&akwg )0;u(t, x)Opu(t, z)dx
7,k=1
_ 2 —b ate,. 4D / 2VR(T) | ps at2
2 [ Avunlel Mute)e 2 - 20 [P a2, 0) 2
8b 2 (.—b—2 at2
5 [ el Tt )
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1144 Rewriting it further, we get

N-1

1145 VL (t) = 8G(u(t)) — 8[| Vyult N3z +4 Z Re/83k¢R y)0;u(t, z)Opu(t, x)dx
7,k=1
2
wo [ Aualutt oo+ 20 @ =1) - 8 ol u(t )] da
4b YR(T) | 12 2) —b—2 2

1147 + — 20z)? — 2 y2 — 2z x u(t, z)|“ 2du.
g B € Ve S TH e OS]

1149  Since u is radially symmetric with respect to the first N — 1 variables, we use the fact
1150 that
0jk

Yj YiYk Y5iYk .
1151 @-zf@h 8]2k(TJT:,))3T+ JTQ o2, T=ll, jk=1,---,N-1

1152 to have
1153 Z 2 R (1)05u(t, 2)Opu(t, ) = Yi(7)|0-ult, @) |* < 2|0-u(t, z)]* = 2|V u(t, z)|*.
k=1
1154 Thus we get
1155 4 Z Re/ 2R (y)05u(t, ) Opu(t, z)dz — 8||Vyu(t)||3. < 0.
jyk=1

1156 By the conservation of mass and the fact ||Ay¢g| L~ < R™2, we have

1157 ‘/AquR(y)u(t,m)Fdx <R2

1158 Moreover, since ¥r(y) = |y|? for |y| < R and ||Ay¥r|r=~ <1, we see that

1150 ' [ @V = 1) = Ayl el e, )

1160

< / 2|~ lu(t, )| 2da.
ly|>R

1161  Similarly, we have

A
1162 ’/ (2|:v|2 — M\m? - 2:5?\,) || =02 |u(t, )| 2da
T

1163

S [ el e )
ly>R
1164  We thus obtain

165 (4.10) V! (t) < 8G(u(t)) + CR™* + CR™ / lu(t, 2)|* Pz
1166 ly|>R

1167 To estimate the last term in the right hand side of (4.10), we recall the following
1168 radial Sobolev embedding due to Strauss [48]: for any radial function f : RN~ — C,
1169 it holds that

N-—2 1 1
170 (4.11) sup |y| = [f(y)| < C(N)IIf1I72IVy £l -
1171 y7#0 v !
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1172 We estimate
we [ )l ey < [ Nt an) st on) [ da.
A y|>R R

1175  We consider separately two subcases: a = 2 and «a < 2.
1176  Subcase 1. a = 2. We have

1177 // lult, y, o x| 2dyday < (Sup lu(t, zn) ||L2) / [t $N)||Loo (ly|>R)4TN -
R J|y|=R

N ER

1179 By the radial Sobolev embedding (4.11) and the conservation of mass, we have

1180 /||u(t,3:N)||2Loo(|y‘>R dey <SR- / ult, ) 122 | Vyult, ) | 3 do
R Y -
oo 1/2 1/2
1181 <R (/ ||u(t7xN)||2L2de> (/ ||vyu(t,xN)||izde>
R Y R Y

1182 = R [fu(®)] 12 |V yu(®) | 2
118 SRT yu(t)] 2.
1185 Set g(zy) := |lu(t,zn)||3.. We have

TN TN
1186 g(zN) :/ 0s9(s)ds = 2/ Re/ u(t,y, s)0su(t,y, s)dyds

—o00 —o0 RN-1
}18¢ < 2f|ult)|| L2 [|Onu(t)|| L2

1189  Thus we get

1190 sup |lu(t, xN)HLz < Cllonu(t)] Lz
1191 onER :

1192 This shows that
193 / / wlt, o on) |2 dydon S R [V yu(t)] oz 0w u()l s
ly|>R
1194 SR Vu(t)|3s.
1196 Subcase 2. a < 2. We have
2—a

1197 / / lu(t,y, zn )| 2dyde
R Jly|>R

2
1198 < (/ ||“(t,$N)|%;o(|yzR)d$N> (/ lu(t, 2N ||L2ade>
1199 R

1200 By the Gagliardo-Nirenberg inequality, we have

[ huttamlzy day < ox (luttzmllas) |7, Mute,z)
: N
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34 V. D. DINH AND S. KERAANI
By the Cauchy-Schwarz inequality, we see that
2|on (It on)llss )| It 2x)lg = 10w (lu(t, 232 ) |
> ‘Re [t an)owate, )y
RN-1
< 2fult,on)ll 2 |Onut, o)l 2

which implies that (aN (||u(t,xN)HL5>‘ < llOnu(t, zn)lr2. It follows that

14—
2—a

_4 _a
/RHU(t, en)lzz"den S 10vult, en)lizlizz” w2
_a d—a
= llowu(®)| 27 fu(®)]| 25"
< lloxu®)l|Z:"

Thus, by the Young inequality, we get

/ / fu(t, y, )| dydey < R
RJ|y|>R

(N—2)o
1

19, a0 lowu(o)] £

_ (N-2)a
SR (IVyu® ez [ovu®)lze +1)
SR Vu()g; + ORTES
Collecting the above subcases and using (4.10), we obtain
-2
V). (t) <8G(u(t)) + CR
CR™ T V| Vu(t)|l3, it a=2,

(N—2)«x

4.12 + —2)a
(4.12) { CR=22 0| Vu(t)|2, + CR-750 if a <2,

for all t € (=T, T*). Under the assumptions (1.7) and (1.10), we have the following
estimate due to [14, (5.8)]: for € > 0 small enough, there exists a constant § = §(¢) > 0
such that

(4.13) 8G(u(t)) + e[| Vu(t)||7. < —6
for all t € (=T, T*). Thanks to (4.12), we take R > 1 sufficiently large to get

)
Vi (t) < =5 < 0

for all t € (=T, T*). The standard convexity argument yields T, T* < co. The proof
is complete. O

We are next interested in long time dynamics of H!-solutions for (1.2) with data
at the ground state threshold. To this end, we need the following lemmas.

LEMMA 4.1. Let N > 1,0 < b <min{2, N}, and 0 < a < a(N). Let (fn)n>1 be
a bounded sequence in H'. Then, there exist a subsequence still denoted by (fn)n>1
and a function f € H' such that:
o f, — f weakly in H'.
o f, — f strongly in L] . for all 1 <r < 2%,

loc
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o lim, ., P(fn) = P(f) as n — oo, where P is as in (1.12).

Proof. The first two items are well-known. Let us prove the last one. Let € > 0.
Since (f5)n>1 is bounded in H', we have for any R > 0,

< R (I fullS2 + 11 £1952)

/ 27" (1 (@2 = [ (@)|**?) da
lz|>R

< CR™ (|| £allSt2 + (1 £1155%2)
< CR™Y.

By choosing R > 0 sufficiently large, we have

< £
ok

(4.14) ’/I o =0 (| fn (@) 22 = [ f(2)*F?) da

On the other hand, we have

[ el (@ = @)
|z|<R
< Ml Pz o1 <r) Nl 2 = 1F1°T2 L o)< )

. The term |||z]~°(|1s(jz)<r) is finite provided that

provided that 6, > 1,1 = 1 +
=1 % ]\717. We next bound

N 1 b 1
?>bThuSS>Nandﬁ

£l = 1£10 2 e gai<ry S (T +IAIZE) e = Fllzeqoizry

provided that

2 1 N-b
(4.15) ats_ 1o

By the Sobolev embedding H' < L" for any 2 < r < 2* and the fact that f, — f
strongly in L"(Jz| < R) for any 1 < r < 2*, we are able to choose o € (2,2*) so that
(4.15) holds. Indeed, in the case N > 3, we choose ¢ smaller but close to % We
see that (4.15) is satisfied provided that

(@+2)(N=2) N—b
N STN

This condition is fulfilled since a < $=22. In the case N = 1,2, we see that (4.15) is

satisfied by choosing o sufficiently large As a consequence, we get

(4.16) / |20 (| fn (@) T2 = | f(@)|*F?) d2| < C| fa = fllLeei<r) < =
z|<R 2

for n sufficiently large. Collecting (4.14) and (4.16), we prove the result. d

LEMMA 4.2. Let N > 1,0 < b < min{2, N}, and 0 < o < a(N). Let Q be the
unique positive radial solution to (1.9). Let (fn)n>1 be a sequence of H'-functions
satisfying
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and
nlgl;o IV fnllee = IVQ| 2.

Then there exists a subsequence still denoted by (fn)n>1 such that
fn—€Q  strongly in H*

for some 8 € R as n — .

Proof. Since (f,) is a bounded sequence in H', by Lemma 4.1, there exist a
subsequence still denoted by (f,,)n>1 and a function f € H' such that f, — f weakly
in H! and P(f,) — P(f) as n — oo. We first observe that

PU) = Jim () = tim (a+2) (51951 - B())

n—o0 n—oo

(@+2) (3IvalE: - Q)

- 2(a+2)

2 _
= m”vQHH = P(Q).

This shows that f # 0. Moreover, by the Gagliardo-Nirenberg inequality (2.3), we

have
2b—(N—-2)ax

Na+2b 4—
P(f>_00pt||vf||L22 ||fHL2 2 <0.

By the lower continuity of weak convergence, we have

IV fllze < liminf ||V fo][7
n—oo

which implies that

4—2b—(N—2)a

Na+2b
P(f) = CoplVFllp2" fllp> 7

. Na+2b 4—2b—(N—2)a
> liminf P(fa) = Copel[Vinllga® Il fnll 2
Na+2b 4-2b—(N—-2)a
= P(Q) - 00pt||vQ||L22 ||QHL2 ? =0.

This shows that f is an optimizer for the Gagliardo-Nirenberg inequality (2.3). We
also have

191122 = lim [V £ull3,

hence f, — f strongly in H'. We claim that there exists # € R such that f(x) =
e?g(z), where g is a non-negative radial optimizer for (2.3). Indeed, since ||V (| f])| 1z
< ||V fllze, it is clear that |f]| is also an optimizer for (2.3) and

(4.17) V(D2 = IV £lze-

Set w(x) := ;Egl Since |w(z)|? = 1, it follows that Re(wVw(z)) = 0 and

V(@) = V(f(@)hw(z) + |f(@)[Vw(z) = w@)(V([f(@)]) + |f(@)[w(z) Ve ()

which implies |V f(2)|? = |V(|f(z)])]? + | f(2)|*|Vw(z)|* for all z € R3. From (4.17),
we get

/, |f(2)]?|Vw(z)|?dz = 0
R3
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which shows |Vw(z)| = 0, hence w(x) is a constant, and the claim follows with
g(x) = |f(z)|]. Moreover, by replacing g with its symmetric rearrangement, we can
assume that ¢ is radially symmetric. Since g is an optimizer for (2.3), g must satisfy
the Euler-Lagrange equation

d

de

where W is the Weinstein functional

W(g+eg) =0,
e=0

+2b 2b—(N—-2)a

W(f) = P(f) [||Vf| T

A direct computation shows
2
—mAg+ng — ot
C’opt

|| ~b1g|*g = 0,

where

Na+2b Noa+2b—4 4-2b—(N—2)a
e 021 1P ] P

4 —92b — (N — 2)a No+2b _ 20+ (N—2)
n:= 5 VAl Il 2

By a change of variable g(z) = A¢(ux) with A, p > 0 satisfying

2 n @ nCOPt —b

= — )\ =
H m’ a+2ﬂ )

we see that ¢ solves (1.9) and W(g) = W(¢) = Copt. By the uniqueness of positive
radial solution to (1.9) due to [32,52,55], we have ¢ = Q. As ||g|lrz = [|Q]|r2 and
IVallze = IVQ|| 2, we infer that A = p = 1. This shows that f(z) = e*Q(x) for
some 0 € R. The proof is complete. 0

Proof of Theorem 1.4. We consider separately three cases.

Case 1. Let ug € H! satisfy (1.19) and (1.20). We first note that (1.19) and (1.20)
are invariant under the scaling

(4.18) ud(x) == N5 up(Az), A > 0.

By choosing a suitable scaling, we can assume that

(4.19) M(uo) = M(Q),  E(uo) = E(Q).
Thus (1.20) becomes ||Vug||r2 < ||[VQ|/r2. We first claim that
(4.20) [Vu®)lz < [[VQL2

for all t € (=T, T*). Assume by contradiction that there exists to € (=T, T*) such
that ||Vu(to)|lrz > ||VQ||r2- By continuity, there exists t; € (—T%,T*) such that
IVu(t1)||z2 = |[VQ| 2. By the conservation of energy and (2.6), we see that

Plu(t)) = (a-+2) (5ITu(t) I - Bu(n) )

—(a+2) (5IValE: - E@)

- 2(a+2)

o\ rte) 2
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This shows that u(t;) is an optimizer for the Gagliardo-Nirenberg inequality (2.3).
Arguing as in the proof of Lemma 4.2, we have u(t;) = ¢*?Q for some § € R. Moreover,
by the uniqueness of solution to (1.2), we infer that u(t) = e"*¢®@Q which contradicts
(1.20). This shows (4.20). In particular, the solution exists globally in time. We now
have two possibilities.
First possibility. If

sup [Vu(t)||> < [[VQ||z2,

teR

then there exists p > 0 such that

IVu()]|r> < (1= p)IVQ]| 2

which, by (4.19), implies that (4.1) holds for all t € R. By the same argument as in the
proof of Theorem 1.3, we prove (1.21). In particular, if N > 2 and 0 < b < min {2, %},
then by Theorem 1.1, the solution scatters in H' in both directions.

Second possibility. If

sup [[Vu(t)|| L2 = [|[VQ][ 2,
teR
then there exists a time sequence (¢,),>1 C R such that
M(u(ta) = M(Q),  E(u(ta) = B(Q),  lim_[|[Vu(ta)] 2 = [ VQl|z2.

We notice that |t,| — co. Otherwise, passing to a subsequence if necessary, we have

t, — top as n — co. By continuity of the solution, we have u(t,) — u(tp) strongly in

H'. This implies that u(t) is an optimizer for (2.3) which is a contradiction.
Applying Lemma 4.2 with f,, = u(¢,), we prove that up to a subsequence,

u(t,) — €*Q strongly in H!
for some 0 € R as n — oo.

Case 2. Let ug € H'! satisfy (1.19) and (1.23). By the scaling (4.18), we can assume
that

M(ug) = M(Q), [[Vuollez = V@2, E(uo) = E(Q).

In particular, ug is an optimizer for (2.3) which implies ug(z) = €Q(x) for some
6 € R. By the uniqueness of solution to (1.2), we have u(t,z) = e Q(x).

Case 3. Let ug € H! satisfy (1.19) and (1.24). As in Case 1, we can assume that
(4.21) M(uo) = M(Q),  E(uo) = E(Q), [[Vuolr> > [[VQI|L2.
Arguing as above, we prove that

[Vu()l|z2 > [VQ| L2

for all t € (=T, T*). Let us consider only positive times. The one for negative times
is similar. If 7% < oo, then we are done. Otherwise, if T* = oo, then we consider two
possibilities.

First possibility. If

sup [|Vu(t)||2 > V@I L2,
te[0,00)
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then there exists p > 0 such that
(4.22) [Vu(t)llz2 = (14 p)[IVQ| 22

for all ¢t € [0,00). By (4.21) and the conservation laws of mass and energy, we have

G (u(t))[M (u(t))]
= TR B MO — R (a0 s a0 3)°
< Mot pgr@ - Y (14 ) vQlelQls)?
= TR (1 - 1) (9@l Q1)

for all t € [0,00). By Theorem 1.2, there exists a time sequence t,, — oo such that
(IVu(tn)||zz — oo as n — oo.
Second possibility. If

sup [|Vu(t)|[z2 = [[VQ]| 2,
te[0,00)

then there exists a time sequence (¢, )n>1 such that ||Vu(t,)||r2z = ||VQ| /L2 as n — .
Arguing as in Case 1, we show that ¢, — co and

u(t,) — € Q strongly in H!

for some 0 € R as n — oo. This completes the first part of Item (3) of Theorem 1.4.
Let us prove the second part of Item (3) of Theorem 1.4.

e Finite variance data. If we assume in addition that uy € X, then the first
possibility cannot occur. In fact, if it occurs, then there exists § > 0 such that

G(u(t)) <=9

for all t € [0,00). This is impossible by the convexity argument as

d? 9
2 Tz = 8G(u(?)).

e Radially symmetric data. If we assume in addition that N > 2, a < 4, and ug is
radially symmetric, then the first possibility cannot occur. In fact, suppose that the
first possibility occurs, so (4.22) holds. It follows from (4.21) and (2.7) that
8G(u(t)) + e[ Vu(t)|[7-
= 4(Na + 2b) E(u(t))[M (u(t))]7c — (2Na — 4b + 8 — &)||Vu(t)||22[M (u(t))]%
o Oc 2
< 4(Na+20)E(Q)[M(Q)]7 — (2Na — 4b+8 —¢)(1 + p)* (I[VQI|2[1Q175)

2 [(L+p)? -1 €
(1+p)? 2(Nao — 4+ 2b)

— —2(Na—4+2b) (IVQ 2 1Q1I%)* (1 + p)

for all ¢ € [0,00). Taking € > 0 sufficiently small, there exists 6 = §(¢) > 0 such that

(4.23) 8G(u(t)) + e||Vu(t)||2. < —6
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for all ¢ € [0,00). We recall the following estimate due to [14, Lemma 3.4]: for any
R > 1 and any € > 0,

CR™? + CREN=D40 |7y 1) |2, if a=4,
2[(N—1)a+2b

V" (t) < 8G(u(t)) + N
en(t) < 8G(u(1)) { CR‘2+C’8_WR_T] —|—€||Vu(t)||2LQ if o<4.

Thanks to (4.23), we take R > 1 sufficiently large if @ = 4, and £ > 0 sufficiently
small and R > 1 sufficiently large depending on &, we obtain
)

Vi) < =3

for all t € [0,00). This is impossible.

e Cylindrically symmetric data. If we assume in addition that N > 3, o < 2, and

ug € X, then the first possibility cannot occur. This is done by the same argument

as above using (4.12) and (4.23). The proof of Theorem 1.4 is now complete. 0
Finally, we study long time dynamics of H'-solutions for (1.2) with data above

the ground state threshold.

Proof of Theorem 1.5. Let us consider two cases.

Case 1. Let ug € ¥ satisfy (1.27), (1.28), (1.29), and (1.30). We will show that

(1.11) holds. To this end, let us start with the following estimate: for f € X,

(Im/f:c : Vfdx>2
(124) < Yo 2 (IIVF13 — [Copr] ™75 [0 ( )]~ 552 [P )] )

In fact, let A > 0. We have

/|V(e“'““’|2f)|2dm:4)\2||xf||%2 +4)\Im/fx-Vfdx+ IVFI3e.

By the Gagliardo-Nirenberg inequality (2.3), we have
2[4—2b— (N —2)a]

[P(f)] 757 = [P(eMl £)] 7 < [Cope] T | V(e F) 2.1l Y

or
_4-2b—(N—2)a

IV (N )32 > [Copt] ™ Tor M(f)™ " etz [P(f)]¥arm.
It follows that
N f| 2 +4)\Im/fx-Vfdm+ IV 7112

_4-2b—(N-2)a

— [Cop] TFa [M(f)] " Nwim [P(f)] 75 > 0

for all A > 0. Since the left hand side is a quadratic polynomial in A, its discriminant
must be non-positive which proves (4.24).
We also have

V(6) = $IVa(t)is - “ S22 plu)
= 168(u) - *0 ) par)

= 4(Na + 20)E(u(t)) — 2(Na — 4 4 2b)||Vu(t)]|22
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which implies that

P(u(t) = e gy (BE0) = V().
IVl = srva— s (A0Ve + 2E0) = V'(0).

Since P(u(t)) > 0, we have V" (t) < 16E(u(t)) = 16E(up). Inserting the above
identities to (4.24), we get

V(1) < 16V (1) [

2(Na— 4+ 2b) (4(Na+ 20)E(u(t)) — V(1))

R (s em o) - V)

— [Copt] ™ ™52 [M(u(t))] = vare A(Na—d+20)

which implies

(4.25) (Zl<t))2 S 49(‘/,,(1&))7
where
2(t) ==/ V(1)
and
1
g(A) = T (4(Na+2b)E — \)
o S (e a6 ) T

with A < 16E. Here we have used the notation E(u(t)) = E, M (u(t)) = M due to the
conservation of mass and energy. Since Na + 2b > 4, we see that g()) is decreasing
on (—o00, Ag) and increasing on (Ag, 16 E), where \g satisfies

(4.26)
Na +2b 4 4-2b—(N—-2)a a+2 e
St = [Cope] ™ MR (S (165 - o) )
2(@ " 2) [Copt] Na+26 Na+2b 4(Na Y 2b) ( 6 )\0)

A direct calculation shows

1 Na+2b )\0

Using the fact that
Na—442b
~ 2(a+2) [ 2(Na+2b) o)
Con = 3022 (22 pQQ) ) ,

we infer from (4.26) that

| BEQIQ)"

(1I6E — o) Mo

or

EMPOe )\0 N
427 mo@r (1)
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1486 Thus the assumption (1.27) is equivalent to
1487 (4.28) Ao > 0.

1489  Moreover, the assumption (1.28) is equivalent to

1490 (V'(0))% > 2V (0) Ao
1491 or

1492 (4.29) (2/(0))* > 2o _ 4g9(Xo)
1493 ' =2 0/

1494  Similarly, the assumption (1.30) is equivalent to
1495 (4.30) Z(0) > 0.
1497  Finally, the assumption (1.29) is equivalent to
19y (4.31) V"(0) > Ao.

1500 Indeed, from (1.29), we have

A(Na — 4+ 2b)
5 "(0)=16F — ————=P
1501 V’"(0) =16 P (uo)
A(Na — o
. - op AN — 14 20) P@M(Q)
a+2 Moe
EQ)[M(Q)]
150: =16(F— ——————
1503 < Mo
EQ)[M(Q)]*
504 =16F (1 - —————
1504 ( T o
15388 = Ao,
1507  where we have used (4.27) to get the last equality.
1508 Next, we claim that there exists g > 0 small such that for all ¢ € [0,77),

150 (4.32) V"(t) > Xo + do.

1511 Assume (4.32) for the moment, we prove (1.11). We have

512 P@®) M) = 4(]\7;——+42+2b) (16E — V"(t)) M

1513 < 4(Naa——+42+2b)(16E — Ao — 0p) M

o - Ni(izi)zbE(Q)[M @I = 4(Naa—+42+ ap) M
1318 = (1 =p)P(Q)[M(Q)]

1517 for all ¢t € [0,7*), where p := 4(N3j42+2b)60 P(Q)J[\X;(CQ)]GC > 0. Here we have used

1518 (4.27) to get the third line. This shows (1.11). In particular, if N > 2 and 0 < b <
1519  min {2, %}, then the solution scatters in H' forward in time.
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It remains to show (4.32). By (4.31), we take 6; > 0 so that
V" (0) > Ao + 261.
By continuity, we have
(4.33) V"(t) > X\ + 61, Vte|0,tp).
for tg > 0 sufficiently small. By reducing ¢, if necessary, we can assume that
(4.34) 2 (to) > 2/9(No).

In fact, if 2/(0) > 2+/g(\o), then (4.34) follows from the continuity argument. Other-
wise, if 2/(0) = 24/g(X\o), then using the fact that

(4.35) Z”(t) _ % <V”2(t) _ (Z/(t))2)

and (4.31), we have z”(0) > 0. This shows (4.34) by taking tg > 0 sufficiently small.
Thanks to (4.34), we take ey > 0 be a small constant so that

(436) Z/(t()) Z 2\/ g()\o) + 260.
We will prove by contradiction that
(4.37) 2'(t) > 2v/g(Xo) + €0, VE>to.

Suppose that it is not true and set

ty = inf{tzto : 2(t) 52\/g(To)+eo}.

By (4.36), we have t; > to. By continuity, we have

(438) Z/(tl) = 2\/9()\0) + €o
and
(439) 2/(f) > 2\/9()\0) + €, Vi€ [t07t1].

By (4.25), we see that

(4.40) <2\/g()\o) + 60)2 < ()2 < 4g(V"(t)), VL€ [to, 1]

It follows that g(V"(t)) > g(Xo) for all ¢ € [to,t1], thus V(t) # Ao and by continuity,
V''(t) > Ao for all t € [to, t1].
We will prove that there exists a constant C' > 0 such that

(4.41) V() > Xo + ? Vt € [to, t1]-

Indeed, by the Taylor expansion of g near Ay with the fact g’(\g) = 0, there exists
a > 0 such that

(4.42) g\) < g(Xo) Fa(h— o), VA |IA= o < 1.
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1559 If V(t) > Ap + 1, then (4.41) holds by taking C' large. If A\g < V"' (t) < Ag + 1, then
1560 by (4.40) and (4.42), we get
2

1561 (2v900) +60) < (2/(1)* < 49(V"(1)) < 4g(o) + 4a(V" (1) = Ao)?
1562 thus
1563 deor/g(No) + €2 < 4a(V"(t) — Xo)%.
1564 This shows (4.41) with C' = v/a[g(A\o)] 3.
565 However, by (4.35), (4.38) and (4.41), we have

1 VIt
1566 2(t) = ) ( 2( D _ (Z'(tl))z)

L (A | Ve 2
1567 > — 4+ — (2 g9\
e _z(t1)<2+20 ( 9 OHGO))

, L (Ve ﬁ

1568 > ~— —4deg/g(Ao) — >0
15(;?} ~ z2(t) <2C 0V5ldo) =

570 provided that €y is taken small enough. This however contradicts (4.38) and (4.39).
1571 This proves (4.37). Note that we have also proved (4.41) for all ¢ € [tg,T*). This

1572 together with (4.33) imply (4.32) with d, = min {51, Vo }
573 Case 2. Let ugp € ¥ satisfy (1.27), (1.28), (1.31) and (1.32). As in Step 1, we see
1574 that the conditions (1.27), (1.28), (1.31) and (1.32) are respectively equivalent to

Ao

(4.43) Ao >0, (2/(0)? >4g(N\o) = 5 V"(0) < X, Z'(0) <0.

7
577  We claim that
1575 (444) Z'(t) <0, Vtelo,T).

1580 Note that by (4.35), we have 2”(0) < 0. Assume by contraction that (4.44) does not
1581 hold. Then there exists to € (0,7*) such that

1582 2"(t) <0, Vtel,ty)

1583 and 2”(tp) = 0. By (4.43), we have

1584 Z(t) < 2'(0) < =2¢/g(No), Yt e (0,tg].

1585  Hence (2/(t))? > 2g()\o) which combined with (4.25) imply that

1586 g(V"(t)) > g(No), Vte (0,to).

1587 It follows that V' (t) # Ao for all ¢ € (0,tp], and by continuity, we have
1588 V" (t) < Xo, Vt € [0,t].

1580 By (4.35), we obtain

1590 2" (tg) = z(io) (VHQ(to) _ (z’(to))Q) < 2(10) <>\20 - )\20> =0

1591  which is absurd. Now, assume by contradiction that the solution exists globally
1592 forward in time, i.e., T* = co. By (4.44), we see that

1593 2'(t) <2'(1) < 2(0) <0, Vtell, o00).

1594  This contradicts with the fact that z(¢) is positive. The proof is complete. O
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