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Abstract. In this paper, we study the focusing nonlinear Schrödinger equa-

tion with exponential nonlinearities{
i∂tu+ ∆u = −

(
e4π|u|

2 − 1− 4πµ|u|2
)
u, (t, x) ∈ R× R2,

u(0) = u0 ∈ H1,

where µ ∈ {0, 1}. By using variational arguments, we derive invariant sets
where the global existence and finite time blow-up occur. In particular, we

obtain sharp thresholds for global existence and finite time blow-up. In the

case µ = 1, we show the asymptotic behavior or energy scattering of global
solutions by using a recent argument of Arora-Dodson-Murphy [3].
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1. Introduction

We consider the initial valued problem for nonlinear Schrödinger equations with
exponential nonlinearities{

i∂tu+ ∆u = −fµ(u), (t, x) ∈ R× R2,
u(0, x) = u0(x),

(1.1)
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where

fµ(u) =
(
e4π|u|2 − 1− 4πµ|u|2

)
u, µ ∈ {0, 1}.(1.2)

The nonlinear Schrödinger equation (NLS) with exponential nonlinearity arises in
several physical contexts such as the self-trapped beams in plasma (see e.g. [20]).
To our knowledge, the first paper studied NLS with exponential nonlinearity goes
back to Cazenave [9] where he considered the Schrödinger equation with f(u) =(

1− e−|u|2
)
u and showed the global well-posedness and scattering. In this setting,

the function s 7→ f(s) is uniformly bounded together with all its derivatives due to
the negative exponent. In our setting, the nonlinearities and their derivatives grow
more rapidly than any power for large amplitude. This makes our problem more
difficult comparing to the one in [9]. Another interest of considering (1.2) is their
relations to the Trudinger-Moser inequality (see Section 2).

Solutions to (1.1) formally enjoy the conservation of mass and energy, namely

M(u(t)) = ‖u(t)‖2L2 = M(u0),(Mass)

Eµ(u(t)) =
1

2
‖∇u(t)‖2L2 −

∫
Fµ(u(t))dx = Eµ(u0),(Energy)

where

Fµ(u) :=
1

8π

(
e4π|u|2 − 1− 4π|u|2 − 8π2µ|u|4

)
.

The local well-posedness for (1.1) has been established by Colliander-Ibrahim-
Majdoub-Masmoudi [11]. More precisely, the following result holds.

Theorem 1.1 ([11]). Let u0 ∈ H1 be such that ‖∇u0‖L2 < 1. Then there
exists T > 0 and a unique solution u to (1.1) in C([0, T ], H1). Moreover, u ∈
L4([0, T ], C1/2) and for all 0 ≤ t ≤ T , Eµ(u(t)) = Eµ(u0) and M(u(t)) = M(u0).
Here Cα denotes the space of α-Hölder continuous functions endowed with the norm

‖u‖Cα := ‖u‖L∞ + sup
x 6=y

|u(x)− u(y)|
|x− y|α

.

Let T ∗ is the maximal forward time of existence, i.e.

T ∗ := sup{T > 0 : there exists a solution to (1.1) on [0, T ]}.
We have the blow-up alternative: either T ∗ = +∞ or T ∗ < +∞ and

lim sup
t↗T∗

‖∇u(t)‖L2 = 1.(1.3)

The main purpose of this paper is to study long time dynamics such as global
existence, blow-up and energy scattering for the equation (1.1). Before stating our
results, let us recall some known results related to (1.1). In the defocusing case,
i.e. the plus sign in front of the nonlinearity, the global well-posedness in H1 was
investigated by Colliander-Ibrahim-Majdoub-Masmoudi [11]. They introduced the
notion of criticality as follows: the defocusing problem (1.1) is said to be subcriti-
cal if the energy is strictly smaller than 1

2 , critical if the energy is equal to 1
2 and

supercritical if the energy is strictly greater than 1
2 . They proved that the equation

is globally well-posed in H1 in both subcritical and critical regimes, and global
solutions satisfy u ∈ C(R, H1) ∩ L4

loc(R,W 1,4). Moroever, a sort of ill-posedness
was proved in the supercritical case. More precisely, the solution maps u0 7→ u(t)
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fails to be continuous in H1 as t → 0. Afterwards, the energy scattering for the
defocusing problem (1.1) with µ = 1 in the subcritical case was established by
Ibrahim-Majdoub-Masmoudi-Nakanishi [21]. The proof is based on the a priori
global bound ‖u‖L4(R,L8) ≤ C(M,E) < ∞ which was proved independently by
Colliander-Grillakis-Tzirakis [12] and Planchon-Vega [22]. Later, the energy scat-
tering with radially symmetric initial data for the defocusing problem (1.1) with
µ = 1 in the critical case was proved by Bahouri-Ibrahim-Perelman [5]. The proof
relies on both the a priori global bound ‖u‖L4(R,L8) and the characterization of the

lack of compactness of the Sobolev embedding H1
rad into the critical Orlicz space

[6]. Recently, Azzam [2] proved the energy scattering for the defocusing problem
(1.1) with µ = 0 in the subcritical case. The proof is based on the perturbative ar-
gument of [26] by viewing the nonlinearity f0 as a perturbation of the mass-critical
NLS. This allows the author to combine the a priori global bound ‖u‖L4(R,L8) and
the known spacetime estimate for the mass-critical NLS proved by Dodson [13] to
obtain the global bound ‖u‖L4(R,W 1,4).

To state our results, let us recall the following notion of ground states related to
(1.1). By standing wave solutions, we mean solutions to (1.1) of the form u(t, x) =
eitφ(x), where φ ∈ H1 solves the elliptic equation

−∆φ+ φ = fµ(φ).(1.4)

Definition 1.2 (Ground state). A non-zero H1 solution Q to (1.4) is called a
ground state related to (1.4) if it minimizes the action functional

Sµ(φ) := Eµ(φ) +
1

2
M(φ) =

1

2
‖∇φ‖2L2 +

1

2
‖φ‖2L2 −

∫
Fµ(φ)dx

over all non-trivial solution of (1.4), that is,

Sµ(Q) = inf
{
Sµ(φ) : φ ∈ H1\{0}, φ is a solution to (1.4)

}
.

The existence of ground states related to (1.4) has been studied by many
authors. In [18], Jeanjean-Tanaka proved a mountain pass characterization of
ground states related to (1.4) when the nonlinearity has a subcritical exponential
growth. Alves-Souto-Montenegro [4] improved the arguments of [18] by assuming
the nonlinearity has a critical exponential growth. Recently, Ruf-Sani [24] ex-
tended Montenegro-Souto’s results to a more general class of critical exponential
nonlinearities. More precisely, they proved the following result.

Theorem 1.3 (Existence of ground states [24]). Let f satisfy the following
conditions:

i. f : R→ R is continuous and has critical exponential growth, i.e.

lim
|s|→∞

|f(s)|
eαs2

=

{
0 if α > 4π,

+∞ if α < 4π.

ii. lim
s→0

f(s)

s
= 0.

iii. There exists δ > 2 such that 0 < δF (s) < sf(s) for any s 6= 0, where

F (s) :=

∫ s

0

f(τ)dτ .

iv. lim
|s|→+∞

sf(s)

e4πs2
> 0.
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Then there exists a ground state Q related to

−∆φ+ φ = f(φ)(1.5)

which is radially symmetric. In addition,

1

2
‖∇Q‖2L2 = inf

{
1

2
‖∇φ‖2L2 : φ ∈ H1\{0}, 1

2
‖φ‖2L2 =

∫
F (φ)dx

}
.

Moreover,
0 < ‖∇Q‖L2 < 1.

We collect some properties of the ground state Q.

Lemma 1.4. The ground state Q obtained in Theorem 1.3 satisfies the following
properties:

• Q ∈ C2 ∩ L∞ and Q decays exponentially at infinity.
• Q is radially symmetric.
• 0 < ‖∇Q‖L2 < 1.

• ‖∇Q‖2L2 + ‖Q‖2L2 =

∫
Qf(Q)dx.

• 1
2‖Q‖

2
L2 =

∫
F (Q)dx.

Proof. The first item follows from [27, Proposition 2.1]. The second and
third items follow from Theorem 1.3. Multiplying both sides of (1.5) with Q, then
integrating over R2 and performing integration by parts, we get the fourth item.
The last item follows by multiplying (1.5) with x ·∇Q and integrating over R2. �

It is easy to check that our nonlinearities fµ (see (1.2)) satisfy the assumptions
i–iv of Theorem 1.3. Thus, there exist ground states Qµ related to (1.4) which
satisfy the properties given in Lemma 1.4. It follows that

Sµ(Qµ) =
1

2
‖∇Qµ‖2L2 = inf

{
Sµ(φ) : φ ∈ H1\{0}, Pµ(φ) = 0

}
,(1.6)

where

Pµ(φ) :=
1

2
‖φ‖2L2 −

∫
Fµ(φ)dx.

Note that if Pµ(φ) = 0, then Sµ(φ) = 1
2‖∇φ‖

2
L2 . Let us define the following sets

A+
µ :=

{
φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ), Pµ(φ) > 0

}
,

A−µ :=
{
φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ), Pµ(φ) < 0

}
.

(1.7)

Note that by (1.6),

A+
µ ∪ A−µ =

{
φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ)

}
(1.8)

since {
φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ), Pµ(φ) = 0

}
= ∅.

By the continuity argument and (1.6), it is easy to see that the sets A±µ are invariant
under the flow of (1.1).

Our first result is the following global existence for (1.1).

Theorem 1.5 (Global existence). Let µ ∈ {0, 1} and u0 ∈ A+
µ . Then the

corresponding solution to (1.1) exists globally in time.

Our next result concerns the finite time blow-up for (1.1).
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Theorem 1.6 (Finite time blow-up). Let µ ∈ {0, 1}. Let u0 ∈ H1 be such that
‖∇u0‖L2 < 1.

• If Eµ(u0) < 0 and either u0 ∈ L2(|x|2dx) or u0 is radially symmetric,
then the corresponding solution to (1.1) blows up in finite time.

• If Eµ(u0) ≥ 0, u0 ∈ A−µ and either u0 ∈ L2(|x|2dx) or u0 is radially
symmetric, then the corresponding solution to (1.1) blows up in finite time.

The proof of the finite time blow-up is closely related to the virial functional

Iµ(φ) := ‖∇φ‖2L2 −
∫
φfµ(φ)− 2Fµ(φ)dx = 2Eµ(φ)−

∫
φfµ(φ)− 4Fµ(φ)dx.

The functional Iµ is nothing but the second time derivative of ‖xu(t)‖2L2 (see (3.5)),
namely

d2

dt2
‖xu(t)‖2L2 = 8Iµ(u(t)), ∀t ∈ [0, T ∗).(1.9)

The finite time blow-up for negative energy initial data follows easily by noting that∫
φfµ(φ)− 4Fµ(φ)dx ≥ 0, ∀φ ∈ H1.

The one for non-negative energy initial data is more involved. To this end, we
observe (see (3.11))

Sµ(Qµ) = inf
{
Sµ(φ) : φ ∈ H1\{0}, Iµ(φ) = 0

}
(1.10)

and define

K−µ :=
{
φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ), Iµ(φ) < 0

}
,(1.11)

K+
µ :=

{
φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ), Iµ(φ) > 0

}
.(1.12)

Using (1.10) and the continuity argument, it is easy to see that the sets K±µ are
invariant under the flow of (1.1). Note that

K−µ ∪ K+
µ = {φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ)} = A−µ ∪ A+

µ(1.13)

since {
φ ∈ H1\{0} : Sµ(φ) < Sµ(Qµ), Iµ(φ) = 0

}
= ∅.

By using variational arguments, we show (see Lemma 3.8) that if φ ∈ H1 satisfies
Eµ(φ) ≥ 0 and φ ∈ K−µ , then

Iµ(φ) ≤ 2(Sµ(φ)− Sµ(Qµ)).(1.14)

Thanks to (1.14), the standard convexity argument of Glassey [15] implies the
finite time blow-up for initial data in K−µ satisfying some additional conditions.

The result then follows by observing that A−µ ≡ K−µ (see Lemma 3.12). We refer
the reader to Section 3 for more details.

Remark 1.7. We can construct an initial data u0 ∈ H1∩L2(|x|2dx) satisfying
‖∇u0‖L2 < 1 and Eµ(u0) < 0 as follows. Let ϕ ∈ H1 ∩ L2(|x|2dx) be such that

‖∇ϕ‖L2 < 1 (take for example ϕ(x) = e−|x|√
2π

). For λ > 0, we denote u0(x) = ϕ(λx).

It follows that ‖∇u0‖L2 = ‖∇ϕ‖L2 < 1 and

Eµ(u0) =
1

2
‖∇ϕ‖2L2 − λ−2

∫
Fµ(ϕ)dx < 0
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provided

0 < λ <

√
2

∫
Fµ(ϕ)dx

‖∇ϕ‖L2

.

Remark 1.8. By Lemma 3.12 and Lemma 3.13, there exists an initial data
u0 ∈ H1 ∩ L2(|x|2dx) satisfying ‖∇u0‖L2 < 1, Eµ(u0) > 0 and u0 ∈ A−µ .

Remark 1.9. We will see in Lemma 3.11 that if u0 ∈ A+
µ , then Eµ(u0) ≥ 0.

Thus, by Theorem 1.5 and Theorem 1.6, we obtain sharp thresholds (within the
radial or finite variance framework) for global existence and finite time blow-up for
(1.1).

Our next result is the following energy scattering for (1.1) with radially sym-
metric initial data.

Theorem 1.10. Let µ = 1. Let u0 ∈ A+
1 and u0 be radially symmetric. Let

u be the corresponding global solution to (1.1). Then the corresponding solution to
(1.1) scatters in H1 in both directions, i.e. there exists u± ∈ H1 such that

lim
t→±∞

‖u(t)− eit∆u±‖H1 = 0.

Let us briefly describe the strategy of the proof. First, we show (see Lemma
4.1) that

A+

1 :=
{
φ ∈ H1 : S1(φ) < S1(Q1), P1(φ) ≥ 0

}
= A+

1 ∪ {0}(1.15)

is an open set of H1. This is done by proving that functions with small H1-norm
belong to A+

1 . To see this, we make use of a refined Moser-Trundinger inequality
(see Corollary 2.7) due to [5].

Second, we prove that for data in A+
1 , there exists R0 = R0(u0, Q1) > 0

sufficiently large such that the corresponding solution satisfies χRu(t) ∈ A+

1 for all
R ≥ R0 and all t ∈ R. Here χR is a suitable cutoff function.

Third, thanks to the above observation and an argument using localized Morawetz
estimates, we show that there exists C = C(u0, Q1) > 0 such that

I1(χRu(t)) ≥ C‖χRu(t)‖6L6(1.16)

for all R ≥ R0 and all t ∈ R.
Finally, using (1.16) and a modified argument of Arora-Dodson-Murphy’s ap-

proach [3], we prove the global bound ‖u‖L8(R×R2) ≤ C(u0, Q1) < ∞ which yields
the energy scattering. We refer the reader to Section 4 for more details.

Remark 1.11. It is expected that a same result holds for radial initial data
in A+

0 . In fact, most of results given in Section 4 hold with A+
0 in place of A+

1 .
However, due to the critical nonlinearity |u|2u hidden in f0(u), we are not able
to obtain similar scattering criteria as in Proposition 4.9. We hope to solve this
problem in a forthcoming work.

Remark 1.12. In the preparation of this paper, we learnt that the energy scat-
tering with radially symmetric initial data for the focusing NLS with exponential
nonlinearity similar to f1 was proved in [16]. The proof in [16] is also based on an
argument of Arora-Dodson-Murphy [3], however, their proof is very different from
ours.
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The paper is organized as follows. In Section 2, we recall some preliminaries
needed in the paper such as Trundinger-Moser inequalities, the logarithmic inequal-
ity and Strichartz estimates. In Section 3, we give the proofs of the global existence
and finite time blow-up given in Theorem 1.5 and Theorem 1.6. Finally, in Section
4, we give the proof of the long time dynamics for radially symmetric initial data
given in Theorem 1.10.

2. Preliminaries

2.1. Some useful inequalities. In this section, we recall some useful in-
equalities which are needed in the sequel. The first one is the following classical
Moser-Trudinger inequality [1].

Proposition 2.1. Let α ∈ [0, 4π). A constant Cα > 0 exists such that

(2.1)

∫
R2

(
eα|u|

2

− 1
)
dx ≤ Cα‖u‖2L2 ,

for all u ∈ H1 such that ‖∇u‖L2 ≤ 1. Moreover, if α ≥ 4π, then (2.1) is false.

Remark 2.2. We point out that α = 4π becomes admissible in (2.1) if we
require ‖u‖H1 ≤ 1 rather than ‖∇u‖L2 ≤ 1. More precisely, we have

(2.2) sup
‖u‖H1≤1

∫
R2

(
e4π|u|2 − 1

)
dx =: κ <∞,

and this is false for α > 4π (see [23] for more details). Here

‖u‖2H1 = ‖u‖2L2 + ‖∇u‖2L2 .

Proposition 2.3. For all u ∈ H1 with ‖∇u‖L2 < 1, it holds that∫
R2

(
e4π|u|2 − 1

)
dx ≤ κ

‖u‖2L2

1− ‖∇u‖2L2

,(2.3)

where κ is as in (2.2).

Proof. We fix u ∈ H1 satisfying ‖∇u‖2 < 1 and define 1 uλ(x) = u(λx) for
some positive λ to be chosen later. It follows that

‖uλ‖2H1 = λ−2‖u‖2L2 + ‖∇u‖2L2 .

Choosing λ such that ‖uλ‖2H1 = 1, or equivalently

λ2 =
‖u‖2L2

1− ‖∇u‖2L2

,

it yields ∫
R2

(
e4π|uλ|2 − 1

)
dx ≤ κ.

Since ∫
R2

(
e4π|uλ|2 − 1

)
dx = λ−2

∫
R2

(
e4π|u|2 − 1

)
dx,

we obtain (2.3) as desired. �

Thanks to (2.3), we have the following global existence for (1.1).

1We are grateful to Z. Guo for bringing our attention to the scaling argument in the proof.
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Lemma 2.4. Let µ ∈ {0, 1}. Let u0 ∈ H1 be such that ‖∇u0‖L2 < 1 and

‖u0‖L2

1− ‖∇u0‖2L2

<

√
π

κ
,(2.4)

where κ is as in (2.2). Then the corresponding solution to (1.1) exists globally in
time.

Proof. Let T ∗ be the maximal forward time of existence. If T ∗ = +∞, we
are done. If T ∗ < +∞, then (1.3) holds. Set

T1 := sup

{
0 ≤ t < T ∗ : sup

τ∈[0,t]

‖∇u(t)‖2L2 <
1

2

(
‖∇u0‖2L2 + 1

)}
.

Since 1
2

(
‖∇u0‖2L2 + 1

)
< 1, we infer from (1.3) that T1 < T ∗. By the continuity of

t 7→ ‖∇u(t)‖2L2 , we must have that

‖∇u(T1)‖2L2 =
1

2

(
‖∇u0‖2L2 + 1

)
.(2.5)

By the conservation of energy,

1

2
‖∇u(T1)‖2L2 = Eµ(u(T1)) +

∫
Fµ(u(T1))dx

= Eµ(u0) +

∫
Fµ(u(T1))dx

≤ 1

2
‖∇u0‖2L2 +

∫
Fµ(u(T1))dx.

By (2.3), (2.5), the conservation of mass and (2.4), we have∫
Fµ(u(T1))dx ≤ 1

8π

∫ (
e4π|u(T1)|2 − 1

)
dx

≤ 1

8π
κ
‖u(T1)‖2L2

1− ‖∇u(T1)‖2L2

=
1

8π
κ

‖u0‖2L2

1− ‖∇u(T1)‖2L2

=
κ

4π

‖u0‖2L2

1− ‖∇u0‖2L2

<
1

4

(
1− ‖∇u0‖2L2

)
.

It follows that
1

2
‖∇u(T1)‖2L2 <

1

2
‖∇u0‖2L2 +

1

4

(
1− ‖∇u0‖2L2

)
=

1

4

(
‖∇u0‖2L2 + 1

)
which contradicts (2.5). The proof is complete. �

We also have the following refined Moser-Trudinger type inequalities due to [5].

Lemma 2.5. Let α ∈ [0, 4π) and p ∈ (2,∞). Then there exists Cα,p > 0 such
that ∫

R2

eα|u|
2

|u|pdx ≤ Cα,p‖u‖pLp(2.6)

for all u ∈ H1 satisfying ‖∇u‖L2 ≤ 1.
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Corollary 2.6. Let α ∈ [0, 4π). Then there exists Cα > 0 such that∫
R2

(
eα|u|

2

− 1− α|u|2
)
dx ≤ Cα‖u‖4L4(2.7)

for all u ∈ H1 satisfying ‖∇u‖L2 ≤ 1.

Corollary 2.7. Let β ∈ (0, 1) and p ∈ (2,∞). Then there exists Cβ,p > 0
such that ∫

R2

e4π|u|2 |u|pdx ≤ Cβ,p‖u‖pLp(2.8)

for all u ∈ H1 satisfying ‖∇u‖L2 ≤ β.

Proof. Set uβ = u
β . Applying (2.6) to uβ and α = 4πβ2 < 4π, we see that∫

R2

e4π|u|2 |u|pdx =

∫
R2

e4πβ2|uβ |2βp|uβ |pdx ≤ βpCβ,p‖uβ‖pLp = Cβ,p‖u‖pLp .

�

Corollary 2.8. Let β ∈ (0, 1) and p ∈ (2,∞). Then there exists Cβ,p > 0
such that ∫

R2

e4π(1+ν)|u|2 |u|pdx ≤ Cβ,p‖u‖pLp(2.9)

for all u ∈ H1 satisfying ‖∇u‖L2 ≤ β and 0 < ν < 1
β2 − 1.

Proof. Set uβ := u
β . Applying (2.6) to uβ and α = 4π(1 + ν)β2 < 4π, we see

that∫
R2

e4π(1+ν)|u|2 |u|pdx =

∫
R2

e4π(1+ν)β2|uβ |2βp|uβ |pdx ≤ βpCβ,p‖uβ‖pLp = Cβ,p‖u‖pLp .

�

It is well-known that H1(R2) embeds continuously into Lp(R2) for any p ∈
(2,∞) but not in L∞(R2). However, one can estimate L∞-norm of functions in
H1 by a stronger norm but with a weaker growth. More precisely, we have the
following logarithmic estimate due to [17].

Lemma 2.9. Let 0 < β < 1. For any λ > 1
2πβ and any 0 < ω ≤ 1, a constant

Cλ > 0 exists such that, for any function u ∈ H1 ∩ Cβ,

‖u‖2L∞ ≤ λ‖u‖2Hω log

(
Cλ +

8βω−β‖u‖Cβ
‖u‖Hω

)
,(2.10)

where

‖u‖2Hω := ‖∇u‖2L2 + ω2‖u‖2L2 .

We also recall the following Sobolev embeddings which are needed in the paper
(see e.g. [8]).

Proposition 2.10. • Let 1 < p < q < ∞ and 0 < γ < 2
p be such that

1
q = 1

p −
γ
2 . Then Ẇ γ,p(R2) ↪→ Lq(R2). In particular,

‖u‖Lq . ‖|∇|γu‖Lp .
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• Let p > 2. Then W 1,p(R2) ↪→ C1− 2
p (R2). In particular

W 1,4(R2) ↪→ C1/2(R2).(2.11)

The following continuity argument (or bootstrap argument) will also be useful
for our purpose.

Lemma 2.11. Let I ⊂ R be a time interval, and X : I → [0,∞) be a continuous
function satisfying, for every t ∈ I,

(2.12) X(t) ≤ a+ b[X(t)]θ,

where a, b > 0 and θ > 0 are constants. Assume that, for some t0 ∈ I,

(2.13) X(t0) ≤ 2a, b < 2−θa1−θ.

Then, for every t ∈ I, we have

(2.14) X(t) ≤ 2a.

Proof. Assume there exists t1 ∈ I such that X(t1) > 2a. Then by continu-
ity, there exists t2 ∈ [t0, t1) such that X(t2) = 2a. This contradicts the second
assumption in (2.13) since 2a ≤ a+ b(2a)θ implies b ≥ 2−θa1−θ. �

2.2. Linear Schrödinger equation. It is well-known that solutions to the
linear Schrödinger equation

i∂tu+ ∆u = 0, u(0) = u0, (t, x) ∈ R× R2

satisfy the L2-isometry

‖u(t)‖L2 = ‖u0‖L2(2.15)

and for t 6= 0 the dispersive inequality

‖u(t)‖L∞ . |t|−1‖u0‖L1 .(2.16)

Definition 2.12. A pair (q, r) is called Schrödinger admissible if

q ∈ [2,∞], r ∈ [2,∞),
2

q
+

2

r
= 1.

A pair (q, r) is called Schrödinger acceptable if

q ∈ [1,∞], r ∈ [1,∞), (q, r) = (∞, 2) or
1

q
+

2

r
< 1.

Note that if (q, r) is a Schrödinger admissible pair, then (q, r) is also a Schrödinger
acceptable pair. Thanks to (2.15), (2.16) and the TT ∗-argument, we get the fol-
lowing Strichartz estimates (see [14, 19]).

Proposition 2.13 (Strichartz estimates [14, 19]). There exists a positive con-
stant C such that the following estimates hold true:

• (Homogeneous estimates)

‖eit∆u0‖Lq(R,Lr) ≤ C‖u0‖L2

for any Schrödinger admissible pair (q, r).
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• (Inhomogeneous estimates)∥∥∥∥∫ t

0

ei(t−s)∆f(s)ds

∥∥∥∥
Lq(R,Lr)

≤ C‖f‖Lm′ (R,Ln′ )(2.17)

for any Schrödinger acceptable pairs (q, r) and (m,n) satisfying

2

q
+

2

r
= 2−

(
2

m
+

2

n

)
.

Note that, in particular, (4, 4) is a Schrödinger admissible pair, and its dual
pair is

(
4
3 ,

4
3

)
. We denote for any time interval I ⊂ R,

‖u‖ST(I) := ‖ 〈∇〉u‖L4(I×R2) + ‖ 〈∇〉u‖L∞(I,L2)(2.18)

and

‖u‖ST∗(I) := ‖ 〈∇〉u‖
L

4
3 (I×R2)

,(2.19)

where 〈∇〉 =
√

1−∆.

3. Sharp thresholds for global existence and blow-up

3.1. Global existence. Let us prove the global existence for initial data in
A+
µ .

Proof of Theorem 1.5. We first note that if u0 ∈ A+
µ , then

1

2
‖∇u0‖2L2 = Sµ(u0)− Pµ(u0) < Sµ(u0) < Sµ(Qµ) =

1

2
‖∇Qµ‖2L2 <

1

2

which implies that ‖∇u0‖L2 < 1. By Theorem 1.1, there exists a unique local
solution to (1.1) with initial data u0. Let [0, T ∗) be the maximal forward time
interval of existence. Since A+

µ is invariant under the flow of (1.1), we have u(t) ∈
A+
µ for all t ∈ [0, T ∗). By the conservation of mass and energy, we see that

1

2
‖∇u(t)‖2L2 = Sµ(u(t))− Pµ(u(t)) < Sµ(u(t)) = Sµ(u0) < Sµ(Qµ)

for all t ∈ [0, T ∗). Hence ‖∇u(t)‖L2 < 2Sµ(Qµ) < 1 for all t ∈ [0, T ∗). By the local
theory, we can extend the local solution globally in time. �

3.2. Finite time blow-up. In this subsection, we give the proof of the fi-
nite time blow-up given in Theorem 1.6. We will consider separately two cases:
Eµ(u0) < 0 and Eµ(u0) ≥ 0.

3.2.1. Finite time blow-up for negative energy initial data.

Lemma 3.1. Let µ ∈ {0, 1}. Let u0 ∈ H1 be such that ‖∇u0‖L2 < 1 and
Eµ(u0) < 0. If u0 ∈ L2(|x|2dx), then the corresponding solution to (1.1) blows up
in finite time.

Proof. By the local theory, the condition ‖∇u0‖L2 < 1 ensures the existence
of local solutions for (1.1). It is well-known (see e.g. [10]) that if u0 ∈ Σ :=
H1 ∩ L2(|x|2dx), then the corresponding solution belongs to Σ and satisfies

d2

dt2
‖xu(t)‖2L2 = 8Iµ(u(t)) = 16Eµ(u(t))− 8

∫
u(t)fµ(u(t))− 4Fµ(u(t))dx

for all t ∈ [0, T ∗). Note that a direct computation shows

ufµ(u)− 4Fµ(u) =
1

4π
gµ(4π|u|2),
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where

gµ(s) := s(es − 1− µs)− 2
(
es − 1− s− µ

2
s2
)
.

It is easy to see that gµ(s) ≥ 0 for all s ≥ 0, hence∫
ufµ(u)− 4Fµ(u)dx ≥ 0(3.1)

for all u ∈ H1. This together with the conservation of energy imply that

d2

dt2
‖xu(t)‖2L2 ≤ 16Eµ(u(t)) = 16Eµ(u0) < 0

for all t ∈ [0, T ∗). By the standard argument of Glassey [15], the solution must
blow up in finite time. �

We are next interested in the finite time blow-up of radial solutions for (1.1). To
do this, we need the following virial estimates related to (1.1). Given a real-valued
function ϕ, we define the virial potential

Vϕ(t) :=

∫
ϕ|u(t)|2dx.

Lemma 3.2 ([26]). Let u be a sufficiently smooth and decaying solution to (1.1).
Then it holds that

d

dt
Vϕ(t) = 2

∫
∇ϕ · Im(u(t)∇u(t))dx

and

d2

dt2
Vϕ(t) = −

∫
∆2ϕ|u(t)|2dx+ 4

∑
j,k

∫
∂2
jkϕ Re(∂ju(t)∂ku(t))dx

− 2

∫
∇ϕ · {f(u), u}p(t)dx,

where {f, g}p = Re(f∇g − g∇f) is the momentum bracket.

In our case fµ(u) =
(
e4π|u|2 − 1− 4πµ|u|2

)
u, a direct computation shows that

{fµ(u), u}p = Re
((
e4π|u|2 − 1− 4πµ|u|2

)
u∇u− u∇

((
e4π|u|2 − 1− 4πµ|u|2

)
u
))

= −|u|2∇
(
e4π|u|2 − 1− 4πµ|u|2

)
= − 1

4π
∇
(
hµ(4π|u|2)

)
,

where

hµ(s) := s(es − 1− µs)−
(
es − 1− s− µ

2
s2
)

= ses − es + 1− µ

2
s2.(3.2)

We thus obtain

d2

dt2
Vϕ(t) = −

∫
∆2ϕ|u(t)|2dx+ 4

∑
j,k

∫
∂2
jkϕ Re(∂ju(t)∂ku(t))dx

− 2

∫
∆ϕHµ(u(t))dx,

(3.3)
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where

Hµ(u) :=
1

4π
hµ(4π|u|2) = ufµ(u)− 2Fµ(u).(3.4)

Taking ϕ(x) = |x|2 and using the fact ∂2
jkϕ = 2δjk and ∆ϕ = 4, we get

d2

dt2
‖xu(t)‖2L2 = 8

(
‖∇u(t)‖2L2 −

∫
Hµ(u(t))dx

)
= 8Iµ(u(t))(3.5)

which confirms (1.9).
Let ζ : [0,∞)→ [0, 2] be a smooth function satisfying

ζ(r) =

{
2 if 0 ≤ r ≤ 1,
0 if r ≥ 2.

We define the function θ : [0,∞)→ [0,∞) by

θ(r) :=

∫ r

0

∫ s

0

ζ(z)dzds.

For R > 0, we define the radial function

ϕR(x) = ϕR(r) := R2θ(r/R), r = |x|.

It is easy to see that

2 ≥ ϕ′′R(r) ≥ 0, 2− ϕ′R(r)

r
≥ 0, 4−∆ϕR(x) ≥ 0, ∀r ≥ 0, ∀x ∈ R2.(3.6)

Lemma 3.3. Let µ ∈ {0, 1}. Let u0 ∈ H1 be radially symmetric and satisfy
‖∇u0‖L2 < 1. Then the corresponding solution to (1.1) satisfies for any t ∈ [0, T ∗),

d2

dt2
VϕR(t) ≤ 8Iµ(u(t)) + CR−2 + C

(
eCR

−1

− 1
)

(3.7)

for some constant C independent of R.

Proof. Since ϕR(x) = |x|2 for |x| ≤ R, we see that

d2

dt2
VϕR(t) = 8

(
‖∇u(t)‖2L2 −

∫
Hµ(u(t))dx

)
−8‖∇u(t)‖2L2(|x|>R) + 4

∑
j,k

∫
|x|>R

∂2
jkϕRRe(∂ju(t)∂ku(t))dx

−
∫
|x|>R

∆2ϕR|u(t)|2dx+ 2

∫
|x|>R

(4−∆ϕR)Hµ(u(t))dx.

Since u is radial, we use (3.6) and the fact

∂2
jk =

(
δjk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2
r

to get that ∑
j,k

∂2
jkϕR∂ju∂ku = ϕ′′R(r)|∂ru|2 ≤ 2|∂ru|2 = 2|∇u|2.

Thus

4
∑
j,k

∫
|x|>R

∂2
jkϕRRe(∂ju∂ku)dx− 8‖∇u‖2L2(|x|>R) ≤ 0.
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Since |∆2ϕR| . R−2 and |4−∆ϕR| . 1, we have that

d2

dt2
VϕR(t) ≤ 8Iµ(u(t)) + CR−2 +

∫
|x|>R

Hµ(u(t))dx.

To estimate the last term, we recall the following radial Sobolev embedding due to
Strauss [25]:

sup
x 6=0
|x| 12 |f(x)| ≤ C‖∇f‖

1
2

L2‖f‖
1
2

L2 , ∀f ∈ H1
rad.

Note that

hµ(s) = ses − es + 1− µ

2
s2 ≤ ses − es + 1 ≤ s(es − 1)

for all s ≥ 0 which implies that Hµ(u) . |u|2
(
e4π|u|2 − 1

)
. By the conservation of

mass, the fact supt∈[0,T∗) ‖∇u(t)‖L2 ≤ 1 and the radial Sobolev embedding, we see
that ∫

|x|>R
Hµ(u(t))dx .

(
e4π‖u(t)‖2L∞ − 1

)
‖u(t)‖2L2 . eCR

−1

− 1(3.8)

for all t ∈ [0, T ∗). The proof is complete. �

Lemma 3.4. Let µ ∈ {0, 1}. Let u0 ∈ H1 be such that ‖∇u0‖L2 < 1 and
Eµ(u0) < 0. If u0 is radially symmetric, then the corresponding solution to (1.1)
blows up in finite time.

Proof. Since u0 ∈ H1
rad satisfies ‖∇u0‖L2 < 1, the local solution to (1.1) with

initial data u0 belongs toH1
rad for all t ∈ [0, T ∗) and satisfies supt∈[0,T∗) ‖∇u(t)‖L2 ≤

1. Applying Lemma 3.3, we have for any t ∈ [0, T ∗),

d2

dt2
VϕR(t) ≤ 8Iµ(u(t)) + CR−2 + C

(
eCR

−1

− 1
)

for some C > 0 independent of R. By (3.1) and the conservation of energy, we get

d2

dt2
VϕR(t) ≤ 16Eµ(u0) + CR−2 + C

(
eCR

−1

− 1
)

for all t ∈ [0, T ∗). Taking R > 0 sufficiently large, we obtain

d2

dt2
VϕR(t) ≤ 8Eµ(u0) < 0

for all t ∈ [0, T ∗). The standard argument of Glassey yields T ∗ < +∞. �

3.2.2. Finite time blow-up for non-negative energy initial data.

Lemma 3.5. Let µ ∈ {0, 1} and φ ∈ H1\{0}. Denote

φλ(x) := λφ(λx).(3.9)

It holds that

• ∂λSµ(φλ) = 1
λIµ(φλ).

• Iµ(φλ) = λ2Φµ(λ), where

λ 7→ Φµ(λ)

is a strictly decreasing function on (0,∞) and

Φµ(0) := lim
λ→0

Φµ(λ) = ‖∇φ‖2L2 − 2π(1− µ)‖φ‖4L4 .
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In particular, if there exists λµ > 0 such that Φµ(λµ) = 0 then λµ is unique and
λ 7→ Sµ(φλ) has a strict maximum in λµ.

Remark 3.6. The existence of such λµ is equivalent to Φµ(0) > 0. This is due
to the fact that limλ→∞Φµ(λ) = −∞. For µ = 1, it is always true. For µ = 0, it
is true under the following sufficient (not necessary) condition: E0(φ) ≥ 0. Indeed,
we write

E0(φ) =
1

2

(
‖∇φ‖2L2 − 2π‖φ‖4L4

)
− 1

8π

∫ (
e4π|φ|2 − 1− 4π|φ|2 − 8π2|φ|4

)
dx

=
1

2
Φ0(0)− 1

8π

∫ (
e4π|φ|2 − 1− 4π|φ|2 − 8π2|φ|4

)
dx.

The condition E0(φ) ≥ 0 implies that

Φ0(0) ≥ 1

4π

∫ (
e4π|φ|2 − 1− 4π|φ|2 − 8π2|φ|4

)
dx.

Since φ 6= 0, we infer that Φ0(0) > 0.

Proof of Lemma 3.5. We have

Iµ(φλ) = ‖∇φλ‖2L2 −
∫
φλfµ(φλ)− 2Fµ(φλ)dx

= λ2‖∇φ‖2L2 −
∫
λφ(λx)fµ(λφ(λx))− 2Fµ(λφ(λx))dx

= λ2‖∇φ‖2L2 − λ−2

∫
λφfµ(λφ)− 2Fµ(λφ)dx.

Similarly,

Sµ(φλ) =
λ2

2
‖∇φ‖2L2 +

1

2
‖φ‖2L2 − λ−2

∫
Fµ(λφ)dx.

We compute

∂λSµ(φλ) = λ‖∇φ‖2L2 + 2λ−3

∫
Fµ(λφ)− λ−2

∫
φfµ(λφ)dx.

It follows that ∂λSµ(φλ) = 1
λIµ(φλ). Using the fact

λφfµ(λφ)− 2Fµ(λφ) =
1

4π
hµ(4πλ2|φ|2)

with hµ as in (3.2), we write

Iµ(φλ) = λ2

(
‖∇φ‖2L2 − λ−4

∫
1

4π
hµ(4πλ2|φ|2)dx

)
.

We next write

λ−4hµ(4πλ2|φ|2) = 16π2|φ|4kµ(4πλ2|φ|2),

where

kµ(s) := s−2hµ(s) = s−1es − s−2es + s−2 − µ

2
.

Note that if we set lµ(s) := s3k′µ(s), then l′µ(s) = s2es ≥ 0. Since lµ(0) = 0, we get
lµ(s) ≥ 0 hence k′µ(s) ≥ 0 for all s ≥ 0. It follows that kµ is a strictly increasing
function on (0,∞). We infer that

λ 7→ ‖∇φ‖2L2 −
∫

4π|φ|4kµ(4πλ2|φ|2)dx =: Φµ(λ)(3.10)
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is strictly decreasing on (0,∞). A direct computation shows

Φµ(0) := lim
λ→0

Φµ(λ) = ‖∇φ‖2L2 − 2π(1− µ)‖φ‖4L4

and limλ→∞Φµ(λ) = −∞ since kµ(s) ≥ 1
3s for all s ≥ 0. The other properties

follow easily, and the proof is complete. �

Lemma 3.7. Let µ ∈ {0, 1}. It holds that

Sµ(Qµ) = inf
{
Sµ(φ) : φ ∈ H1\{0}, Iµ(φ) = 0

}
.(3.11)

Proof. Denote

Nµ := inf
{
Sµ(φ) : φ ∈ H1\{0}, Iµ(φ) = 0

}
.

It is clear that Sµ(Qµ) ≥ Nµ since Iµ(Qµ) = 0. Let φ ∈ H1\{0} be such that
Iµ(φ) = 0. It follows from Lemma 3.5 that λµ = 1 and Sµ(φ) ≥ Sµ(φλ) for
all λ > 0. If Pµ(φ) = 0, then Sµ(φ) ≥ Sµ(Qµ) due to (1.6). If Pµ(φ) 6= 0,
then we have from the fact that the map λ 7→ Pµ(φλ) is strictly decreasing on
(0,∞), limλ→0 Pµ(φλ) = 1

2‖φ‖
2
L2 > 0 and limλ→∞ Pµ(φλ) = −∞ that there exists

λ̃µ > 0 such that Pµ(φλ̃µ) = 0. Thus, by (1.6) and the fact λ 7→ Sµ(φλ) attains its

maximum at λ = 1, we see that Sµ(φ) ≥ Sµ(φλ̃µ) ≥ Sµ(Qµ). In both cases, we have

Sµ(φ) ≥ Sµ(Qµ). Taking the infimum over all φ ∈ H1\{0} satisfying Iµ(φ) = 0, we
get Nµ ≥ Sµ(Qµ) hence Nµ = Sµ(Qµ). �

Lemma 3.8. Let µ ∈ {0, 1} and φ ∈ H1 be such that Eµ(φ) ≥ 0. If φ ∈ K−µ ,
then it holds that

Iµ(φ) ≤ 2 (Sµ(φ)− Sµ(Qµ)) .(3.12)

Proof. Let φλ be as in Lemma 3.5.

Sµ(φλ) =
λ2

2
‖∇φ‖2L2 +

1

2
‖φ‖2L2 − λ−2

∫
Fµ(λφ)dx.

We have

∂λSµ(φλ) = λ‖∇φ‖2L2 − λ−3

∫
λφfµ(λφ)− 2Fµ(λφ)dx =

Iµ(φλ)

λ
.(3.13)

We also have

∂λIµ(φλ) = 2λ‖∇φ‖2L2 + 2λ−3

∫
λφfµ(λφ)− 2Fµ(λφ)dx

−λ−2

∫
∂λ[λφfµ(λφ)− 2Fµ(λφ)]dx

= 2

(
λ‖∇φ‖2L2 − λ−3

∫
λφfµ(λφ)− 2Fµ(λφ)dx

)
+4λ−3

∫
λφfµ(λφ)− 2Fµ(λφ)dx− λ−2

∫
∂λ[λφfµ(λφ)− 2Fµ(λφ)]dx

= 2∂λSµ(φλ) +
[
4λ−3

∫
λφfµ(λφ)− 2Fµ(λφ)dx

−λ−2

∫
∂λ[λφfµ(λφ)− 2Fµ(λφ)]dx

]
.
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A direct computation shows that the term inside the square bracket becomes

π−1λ−3

∫
mµ(4πλ2|φ|2)dx,

where

mµ(s) := hµ(s)− s

2
h′µ(s) = ses − es − s2

2
es + 1

with hµ as in (3.2). Note that

m′µ(s) = −s
2

2
es ≤ 0

for all s ≥ 0 which implies mµ(s) ≤ mµ(0) = 0 for all s ≥ 0. It follows that

∂λIµ(φλ) ≤ 2∂λSµ(φλ), ∀λ > 0.(3.14)

Since Iµ(φ) < 0, we see that Φµ(1) < 0 (see (3.10)). On the other hand, Φµ(0) > 0

by Remark 3.6. Thus there exists λ̃µ ∈ (0, 1) such that Φµ(λ̃µ) = 0 or Iµ(φλ̃µ) = 0.

Integrating (3.14) over the interval (λ̃µ, 1), we obtain

Iµ(φ) = Iµ(φ)− Iµ(φλ̃µ) ≤ 2
(
Sµ(φ)− Sµ(φλ̃µ)

)
≤ 2 (Sµ(φ)− Sµ(Qµ)) .

Here we have used the fact Sµ(φλ̃µ) ≥ Sµ(Qµ) which follows from (3.11) and

Iµ(φλ̃µ) = 0. The proof is complete. �

Lemma 3.9. Let µ ∈ {0, 1}. Let u0 ∈ H1 be such that ‖∇u0‖L2 < 1 and
Eµ(u0) ≥ 0. If u0 ∈ K−µ and u0 ∈ Σ := H1 ∩ L2(|x|2dx), then the corresponding
solution to (1.1) blows up in finite time.

Proof. Since K−µ is invariant under the flow of (1.1), we have u(t) ∈ K−µ for
all t ∈ [0, T ∗). Moreover, by the conservation of energy, Eµ(u(t)) = Eµ(u0) ≥ 0 for
all t ∈ [0, T ∗). By (1.9) and Lemma 3.8,

d2

dt2
‖xu(t)‖2L2 = 8Iµ(u(t)) ≤ 16 (Sµ(u(t))− Sµ(Qµ)) = 16 (Sµ(u0)− Sµ(Qµ)) < 0

for all t ∈ [0, T ∗). This shows that the solution must blow up in finite time. �

Lemma 3.10. Let µ ∈ {0, 1}. Let u0 ∈ H1 be such that ‖∇u0‖L2 < 1 and
Eµ(u0) ≥ 0. If u0 ∈ K−µ and u0 is radially symmetric, then the corresponding
solution to (1.1) blows up in finite time.

Proof. Applying Lemma 3.3, we get for any t ∈ [0, T ∗),

d2

dt2
VϕR(t) ≤ 8Iµ(u(t)) + CR−2 + C

(
eCR

−1

− 1
)

for some C > 0 independent of R. Since K−µ is invariant under the flow of (1.1),

we have that u(t) ∈ K−µ for all t ∈ [0, T ∗). Moreover, by the conservation of energy,
Eµ(u(t)) = Eµ(u0) ≥ 0 for all t ∈ [0, T ∗). We thus apply Lemma 3.8 and the
conservation of mass and energy to get

d2

dt2
VϕR(t) ≤ 16(Sµ(u(t))− Sµ(Qµ)) + CR−2 + C

(
eCR

−1

− 1
)

= 16(Sµ(u0)− Sµ(Qµ)) + CR−2 + C
(
eCR

−1

− 1
)
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for all t ∈ [0, T ∗). By taking R > 0 sufficiently large, we obtain

d2

dt2
VϕR(t) ≤ 8(Sµ(u0)− Sµ(Qµ)) < 0

for all t ∈ [0, T ∗). This implies that the solution blows up in finite time. �

Lemma 3.11. Let µ ∈ {0, 1}. If φ ∈ A+
µ , then Eµ(φ) ≥ 0.

Proof. We firstly note that

A+
µ ∩

{
φ ∈ H1\{0} : Eµ(φ) < 0

}
∩ Σ = ∅

due to Theorem 1.5 and Lemma 3.1. The result follows by noticing that A+
µ and

{φ ∈ H1\{0} : Eµ(φ) < 0} are open sets of H1 and Σ is dense in H1. �

We also have the following equivalence of invariant sets.

Lemma 3.12. Let µ ∈ {0, 1}. It holds that A+
µ ≡ K+

µ and A−µ ≡ K−µ .

Proof. Thanks to (1.13), it suffices to show K+
µ ≡ A+

µ . Let us prove the

first inclusion K+
µ ⊂ A+

µ . Let φ ∈ K+
µ , i.e. Sµ(φ) < Sµ(Qµ) and Iµ(φ) > 0. We

need to show that Pµ(φ) > 0. Assume by contradiction that Pµ(φ) < 0 (note that
Sµ(φ) < Sµ(Qµ) and Pµ(φ) = 0 are not compatible). Since the function λ 7→ Φµ(λ)
(see (3.10)) is strictly decreasing on (0,∞) and limλ→∞Φµ(λ) = −∞, we have
from the fact Φµ(1) = Iµ(φ) > 0 that there exists λµ > 1 such that Φµ(λµ) = 0 or
Iµ(φλµ) = 0. It follows that{

∂λSµ(φλ) > 0 if 0 < λ < λµ,
∂λSµ(φλ) < 0 if λµ < λ <∞.

Since Pµ(φ) < 0, we have from the fact limλ→0 Pµ(φλ) = 1
2‖φ‖

2
L2 > 0 that there

exists λ̃µ ∈ (0, 1) such that Pµ(φλ̃µ) = 0, hence by (1.6), Sµ(φλ̃µ) ≥ Sµ(Qµ). It

however contradicts Sµ(φλ̃µ) ≤ Sµ(φ) < Sµ(Qµ). Hence Pµ(φ) > 0 and φ ∈ A+
µ .

We next prove A+
µ ⊂ K+

µ . It follows by using (1.13) and the fact

A+
µ ∩ K−µ ∩ Σ = ∅

which follows from Theorem 1.5, Lemma 3.9 and Lemma 3.11.
This shows that A+

µ ≡ K+
µ . The proof is complete. �

Proof of Theorem 1.6. It follows immediately from Lemmas 3.1, 3.4, 3.9, 3.10
and Lemma 3.12. �

We end this section with the following observation.

Lemma 3.13. Let µ ∈ {0, 1}. It holds that Eµ(Qµ) > 0. Moreover, there exists
u0 ∈ Σ satisfying ‖∇u0‖L2 < 1, Eµ(u0) > 0 and u0 ∈ K−µ .

Proof. Denote

ψλ(x) := λQµ(λx).

By Lemma 3.5,

∂λEµ(ψλ) = ∂λSµ(ψλ) =
1

λ
Iµ(ψλ), Iµ(ψλ) = λ2Ψµ(λ),
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where λ 7→ Ψµ(λ) is strictly decreasing on (0,∞). Since Ψµ(1) = Iµ(Qµ) = 0,
we infer that λ 7→ Eµ(ψλ) and λ 7→ Sµ(ψλ) attain their maxima at λ = 1. If
Eµ(Qµ) ≤ 0, then for λ close to 1 and λ < 1, we have

Eµ(ψλ) < 0, Iµ(ψλ) > 0, Sµ(ψλ) < Sµ(Qµ)

which implies that
ψλ ∈ K+

µ , Eµ(ψλ) < 0, ψλ ∈ Σ.

This however is a contradiction because Lemma 3.12, Theorem 1.5 and Lemma 3.1.
This shows that Eµ(Qµ) > 0. Moreover, for λ close to 1 and λ > 1, we have

Eµ(ψλ) > 0, Iµ(ψλ) < 0, Sµ(ψλ) < Sµ(Qµ).

Moreover, for λ close to 1 and λ > 1, we also have ‖∇ψλ‖L2 = λ‖∇Qµ‖L2 <
1 since ‖∇Qµ‖L2 < 1. Thus, there exists an initial data satisfying the desired
properties. �

4. Energy scattering for radially symmetric initial data

In this section, we give the proof of Theorem 1.10. To this end, we prepare
some lemmas.

Lemma 4.1. We have that

A+

1 = A+
1 ∪ {0}

is an open set of H1, where A+

1 is as in (1.15).

Proof. Let φ ∈ A+

1 , i.e. S1(φ) < S1(Q1) and P1(φ) ≥ 0. If P1(φ) > 0, then
φ ∈ A+

1 . Otherwise, if P1(φ) = 0, then, by (1.6), we must have φ = 0. This shows

that A+

1 = A+
1 ∪ {0}.

To see that A+

1 is an open set of H1, it suffices to show that there exists ε0 > 0
sufficiently small such that if φ ∈ H1\{0} satisfying ‖φ‖H1 < ε0, then φ ∈ A+

1 . In
fact, we have

S1(φ) ≤ 1

2
‖φ‖2H1 ≤

1

2
ε20 < S1(Q1)

provided that ε0 > 0 is sufficiently small. On the other hand, by Corollary 2.7 and
the Gagliardo-Nirenberg inequality, we have∫

R2

F1(φ)dx ≤
∫
R2

e4π|φ|2 |φ|6dx ≤ C‖φ‖6L6

≤ C‖∇φ‖4L2‖φ‖2L2 ≤ Cε40‖φ‖2L2 ≤
1

4
‖φ‖2L2

for ε0 > 0 sufficiently small. It follows that P1(φ) ≥ 1
4‖φ‖

2
L2 > 0, hence φ ∈ A+

1 .
The proof is complete. �

Lemma 4.2. Let µ = 1 and φ ∈ A+

1 . Then it holds that

I1(φ) ≥ min

{
2(S1(Q1)− S1(φ)),

∫
k1(4π|φ|2)dx

}
,

where

k1(s) =
1

4π

(
1

2
s2es − ses + es − 1

)
.(4.1)

Note that k1(s) ≥ 1
24π s

3 for all s ≥ 0.
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Proof. It suffices to prove the above estimate for φ ∈ A+
1 since it holds triv-

ially for φ = 0. If

4‖∇φ‖22 −
∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)∣∣
λ=1

dx ≥ 0,

then

I1(φ) = ‖∇φ‖22 −
∫
φf1(φ)− 2F1(φ)dx

≥ 1

4

∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)∣∣
λ=1

dx−
∫
φf1(φ)− 2F1(φ)dx

=

∫
k1(4π|φ|2)dx,

where k1(s) is given in (4.1). Note that a direct computation shows that

∂λ
(
λφf1(λφ)− 2F1(λφ)

)∣∣
λ=1

= 8π|φ|4
(
e4π|φ|2 − 1

)
and

φf1(φ)− 2F1(φ) =
1

4π

(
4π|φ|2e4π|φ|2 − e4π|φ|2 + 1− 8π2|φ|4

)
.

It is not hard to check that k1(s) ≥ 1
24π s

3 for all s ≥ 0.
We now consider the case

4‖∇φ‖22 −
∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)∣∣
λ=1

dx < 0.

As in the proof of Lemma 3.8, if we set g(λ) := S1(φλ), then a direct computation
shows that

g′(λ) = λ‖∇φ‖22 − λ−3

∫
λφf1(λφ)− 2F1(λφ)dx =

I1(φλ)

λ

and

(λg′(λ))′ = 2λ‖∇φ‖22 + 2λ−3

∫
λφf1(λφ)− 2F1(λφ)dx

−λ−2

∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)
dx

= −2g′(λ) + λ

(
4‖∇φ‖22 − λ−3

∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)
dx

)
.

It is easy to check that

λ 7→ 4‖∇φ‖22 − λ−3

∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)
dx

is a decreasing function on (0,∞). Thus,

4‖∇φ‖22 − λ−3

∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)
dx

≤ 4‖∇φ‖22 −
∫
∂λ
(
λφf1(λφ)− 2F1(λφ)

)∣∣
λ=1

dx < 0

for all λ ≥ 1. This shows that

(λg′(λ))′ ≤ −2g′(λ), ∀λ ≥ 1.
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Now since φ ∈ A+
1 , I1(φ) > 0 and there thus exists λ1 > 1 such that I1(φλ1

) = 0
and hence S1(φλ1) ≥ S1(Q1). Integrating the above inequality over (1, λ1), we get

I1(φλ1
)− I1(φ) ≤ −2 (S1(φλ1

)− S1(φ)) ,

hence

I1(φ) ≥ 2 (S1(φλ1
)− S1(φ)) ≥ 2 (S1(Q1)− S1(φ)) .

The proof is complete. �

Lemma 4.3. Let µ = 1. Let u0 ∈ A+
1 and u0 be radially symmetric. Let u be

the corresponding global solution to (1.1). Then there exists C = C(u0, Q1) > 0
such that for any R > 0 and any t ∈ R,

d2

dt2
VϕR(t) ≥ 8I1(χRu(t))− CR−2 − C

(
eCR

−1

− 1
)
,(4.2)

where χR(x) = χ(x/R) with χ ∈ C∞0 (R2) satisfying 0 ≤ χ ≤ 1, χ = 1 on B(0, 1/2)
and χ = 0 on R2\B(0, 1).

Proof. We have from (3.3) that

d2

dt2
VϕR(t) = −

∫
∆2ϕR|u(t)|2dx+ 4

∑
j,k

∫
∂2
jkϕRRe(∂ju(t)∂ku(t))dx

− 2

∫
∆ϕRH1(u(t))dx,

where

H1(u) := uf1(u)− 2F1(u).

Since ϕR(x) = |x|2 for 0 ≤ |x| ≤ R,

d2

dt2
VϕR(t) = 8

(∫
|x|≤R

|∇u(t)|2dx−
∫
|x|≤R

H1(u(t))dx

)

−
∫
|x|>R

∆2ϕR|u(t)|2dx+ 4
∑
j,k

∫
|x|>R

∂2
jkϕRRe(∂ju(t)∂ku(t))dx

−2

∫
|x|>R

∆ϕRH1(u(t))dx.

Since ‖∆2ϕR‖L∞ . R−2, the conservation of mass implies that∫
|x|>R

∆2ϕR|u(t)|2dx . R−2.

Since u is radially symmetric, we use the fact

∂2
jk =

(
δjk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2
r

to get ∑
j,k

∂2
jkϕR∂ju∂ku = ϕ′′R|∂ru|2 ≥ 0.

On the other hand, noting that H1(u) = 1
4πh1(4π|u|2) (see (3.4)) with

h1(s) := s(es − 1− s)−
(
es − 1− s− s2

2

)
≤ s(es − 1), ∀s ≥ 0,(4.3)
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we infer by using the radial Sobolev embedding

‖u(t)‖2L∞(|x|>R) . R
−1‖∇u(t)‖L2‖u(t)‖L2 ≤ R−1‖∇Q1‖L2‖u0‖L2

and estimating as in (3.8) that∫
|x|>R

∆ϕRH1(u(t))dx .
∫
|x|>R

|u(t)|2
(
e4π|u(t)|2 − 1

)
dx

. eCR
−1

− 1.

This shows that

d2

dt2
VϕR(t) ≥ 8

(∫
|x|≤R

|∇u(t)|2dx−
∫
|x|≤R

H1(u(t))dx

)
−CR−2−C

(
eCR

−1

− 1
)

for some C = C(u0, Q1) > 0. Now let χR be as in (4.2). We see that∫
|∇(χRu(t))|2dx

=

∫
χ2
R|∇u(t)|2dx+

∫
|∇χR|2|u(t)|2dx+ 2Re

∫
χRu(t)∇χR · ∇u(t)dx

=

∫
χ2
R|∇u(t)|2dx−

∫
χR∆(χR)|u(t)|2dx

=

∫
|x|≤R

|∇u(t)|2dx−
∫
R/2≤|x|≤R

(1− χ2
R)|∇u(t)|2dx−

∫
χR∆(χR)|u(t)|2dx

and∫
H1(χRu(t))dx =

∫
|x|≤R

H1(u(t))dx−
∫
R/2≤|x|≤R

H1(u(t))−H1(χRu(t))dx.

Note that ∫
χR∆(χR)|u(t)|2dx . R−2

and since h1 defined in (4.3) is increasing on [0,∞),∣∣∣∣∣
∫
R/2≤|x|≤R

H1(u(t))−H1(χRu(t))dx

∣∣∣∣∣ ≤ 2

∫
R/2≤|x|≤R

H1(u(t))dx . eCR
−1

− 1.

This implies that∫
|x|≤R

|∇u(t)|2dx−
∫
|x|≤R

H1(u(t))dx

=

∫
|∇(χRu(t))|2dx−

∫
H1(χRu(t))dx+

∫
R/2≤|x|≤R

(1− χ2
R)|∇u(t)|2dx

+

∫
χR∆(χR)|u(t)|2dx+

∫
R/2≤|x|≤R

H1(u(t))−H1(χRu(t))dx

≥ I1(χRu(t))− CR−2 − C
(
eCR

−1

− 1
)

for some C = C(u0, Q1) > 0. The proof is complete. �



FOCUSING EXPONENTIAL NLS 23

Lemma 4.4. Let µ = 1. Let u0 ∈ A+
1 and u0 be radially symmetric. Let u be

the corresponding global solution to (1.1). Then there exists R0 = R0(u0, Q1) > 0
sufficiently large such that

S1(χRu(t)) ≤ S1(u0) + CR−2 + C
(
eCR

−1

− 1
)

(4.4)

for some constant C = C(u0, Q1) > 0. In particular, we have

S1(χRu(t)) < S1(Q1)(4.5)

for all R ≥ R0 and all t ∈ R.

Proof. Since A+
1 is invariant under the flow of (1.1), we have that u(t) ∈ A+

1

for all t ∈ R. We also have that

S1(χRu(t)) =
1

2
‖∇(χRu(t))‖2L2 +

1

2
‖χRu(t)‖2L2 −

∫
F1(χRu(t))dx,

where

‖χRu(t)‖2L2 ≤ ‖u(t)‖2L2 ,

‖∇(χRu(t))‖2L2 =

∫
χ2
R|∇u(t)|2dx−

∫
χR∆(χR)|u(t)|2dx

≤
∫
|∇u(t)|2dx+O(R−2)

and ∫
F1(χRu(t))dx =

∫
F1(u(t))dx+

∫
|x|>R/2

F1(χRu(t))− F1(u(t))dx

=

∫
F1(u(t)) +O

(
eCR

−1

− 1
)
.

Here we have used the fact

F1(u) .
(
e4π|u|2 − 1

)
|u|2.

Thus

S1(χRu(t)) ≤ S1(u(t)) + CR−2 + C
(
eCR

−1

− 1
)

for some constant C = C(u0, Q1) > 0. This proves (4.4) as S1(u(t)) = S1(u0) due
to the conservation of mass and energy. Next, we write S1(u0) = S1(Q1) − ρ for
some ρ = ρ(u0, Q1) > 0. By choosing R0 = R0(u0, Q1) > 0 sufficiently large so
that for any R ≥ R0,

CR−2 + C
(
eCR

−1

− 1
)
≤ ρ/2,

we obtain

S1(χRu(t)) < S1(Q1)

for all R ≥ R0 and all t ∈ R. �

Lemma 4.5. Let µ = 1. Let u0 ∈ A+
1 and u0 be radially symmetric. Let u be

the corresponding global solution to (1.1). Let R0 = R0(u0, Q1) be as in Lemma

4.4. Then we have that χRu(t) ∈ A+

1 for all R ≥ R0 and all t ∈ R. Moreover, we
have that for any time interval I ⊂ R,∫

I

‖u(t)‖6L6dt ≤ C(u0, Q1)|I|1/3.(4.6)
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Proof. By (4.5), it remains to show that

P1(χRu(t)) ≥ 0(4.7)

for all R ≥ R0 and all t ∈ R. Indeed, suppose that there exist R1 ≥ R0 and t1 ∈ R
such that P1(χR1u(t1)) < 0. Note that limR→∞ P1(χRu(t1)) = P1(u(t1)) > 0
since A+

1 is invariant under the flow of (1.1). Let R2 > R1 be the smallest value
such that P1(χR2u(t1)) = 0, that is, P1(χRu(t1)) < 0 for all R ∈ [R1, R2). Since

P1(χR2
u(t1)) = 0 and S1(χR2

u(t1)) < S1(Q1), we have χR2
u(t1) ∈ A+

1 . Since A+

1

is open in H1, we get that P1(χRu(t1)) ≥ 0 for R < R2 and R close to R2. This
contradicts to the choice of R2, and (4.7) is proved.

Now, we claim that there exists C = C(u0, Q1) > 0 such that

I1(χRu(t)) ≥ C‖χRu(t)‖6L6(4.8)

for all R ≥ R0 and all t ∈ R. In fact, since χRu(t) ∈ A+

1 for all R ≥ R0 and all
t ∈ R, we have from Lemma 4.2 that

I1(χRu(t)) ≥ min

{
2(S1(Q1)− S1(χRu(t))),

∫
k1(4π|χRu(t)|2)dx

}
for all R ≥ R0 and all t ∈ R, where k1 is as in (4.1). Thanks to the fact that∫

k1(4π|φ|2)dx ≥ 8π2

3
‖φ‖6L6 ,

it remains to show

S1(Q1)− S1(χRu(t)) ≥ C(u0, Q1)‖χRu(t)‖6L6 .(4.9)

Indeed, by (4.4), we have

S1(Q1)− S1(χRu(t)) ≥ S1(Q1)− S1(u0)− CR−2 − C
(
eCR

−1

− 1
)

≥ 1

2
(S1(Q1)− S1(u0))

provided that R ≥ R0 is taken sufficiently large. On the other hand, by Sobolev
embedding, we obtain

‖χRu(t)‖L6 ≤ ‖u(t)‖L6 ≤ ‖u(t)‖H1 ≤ C(u0, Q).

This shows (4.9), and the claim is proved.
From (4.8) and (4.2), we get

‖χRu(t)‖6L6 .
d2

dt2
VϕR(t) + CR−2 + C

(
eCR

−1

− 1
)
.

Using the fact
∣∣ d
dtVϕR(t)

∣∣ . R, we see that for any T > 0,∫ T

0

∫
|χRu(t)|6dxdt . R+

[
CR−2 + C

(
eCR

−1

− 1
)]
T

which implies that∫ T

0

∫
|x|≤R/2

|u(t)|6dxdt . R+
[
CR−2 + C

(
eCR

−1

− 1
)]
T.(4.10)

It follows from (4.10) and the fact∫
|x|>R/2

|u(t)|6dx ≤ ‖u(t)‖4L∞(|x|>R/2)‖u(t)‖2L2 . R−2‖∇u(t)‖2L2‖u(t)‖4L2 . CR−2
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that ∫ T

0

‖u(t)‖6L6dt . R+
[
CR−2 + C

(
eCR

−1

− 1
)]
T.

Note that for R > 0 sufficiently large

eCR
−1

− 1 . CR−2.

It follows that for T > 0 sufficiently large, we choose R = T 1/3 and get∫ T

0

‖u(t)‖6L6dt . T 1/3.

By the same argument, we also have that for any time interval I,∫
I

‖u(t)‖6L6dt . |I|1/3.

Indeed, for |I| sufficiently large, it follows from the above argument. For |I| small,
it follows from the Sobolev embedding ‖u(t)‖L6 . ‖u(t)‖H1 ≤ C(u0, Q1). �

Remark 4.6. It is not hard to see that Lemmas 4.1–4.5 still hold true with
µ = 0.

To show the scattering, we need the following scattering criteria.

Proposition 4.7. Let µ = 1. Let u0 ∈ A+
1 and u be the corresponding global

solution to (1.1). Assume that

‖u‖L8(R×R2) <∞.(4.11)

Then the solution scatters in H1.

Proof. We first notice that u(t) ∈ A+
1 for all t ∈ R and hence ‖∇u(t)‖L2 <

‖∇Q1‖2 < 1 for all t ∈ R. This allows us to use the refined Moser-Trundinger
inequality (2.8). Let I be a time interval. By Strichartz estimates and the Duhamel
formula

u(t) = eit∆u0 + i

∫ t

0

ei(t−s)∆f1(u(s))dx,

we have that
‖u(t)− eit∆u0‖ST(I) . ‖f1(u)‖ST∗(I).

We refer to (2.18) and (2.19) for the definitions of ST- and ST*-norms. Using the

fact |f ′1(u)| . e4π|u|2 |u|4, the Hölder’s inequality implies that

‖ 〈∇〉 f1(u)‖L4/3(I×R2) . ‖ 〈∇〉u‖L4(I×R2)

(∫∫
I×R2

e8π|u|2 |u|8dxdt
)1/2

.

By (2.8),∫
R2

e8π|u(t)|2 |u(t)|8dx ≤ e4π‖u(t)‖2∞
∫
R2

e4π|u(t)|2 |u(t)|8dx .Q1 e
4π‖u(t)‖2∞‖u(t)‖8L8 .

In the case ‖u(t)‖L∞ ≥ 1, we use (2.10) with β = 1/2 to get

e4π‖u(t)‖2L∞ .

(
1 +
‖u(t)‖C1/2
‖u(t)‖Hω

)4πλ‖u(t)‖2Hω

for some λ > 1
π and some 0 < ω < 1 to be chosen later. Since

‖u(t)‖2Hω = ‖∇u(t)‖2L2 + ω2‖u(t)‖2L2 < ‖∇Q1‖2L2 + ω2‖u0‖2L2 =: K2(ω),
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we bound

e4π‖u(t)‖2L∞ .

(
1 +
‖u(t)‖C1/2
K(ω)

)4πλK2(ω)

.

Here we have used the fact that the function

s 7→
(

1 +
1

s

)s2
is an increasing function on (0,∞). Since K2(ω) → ‖∇Q1‖2L2 < 1 as ω → 0,
we can choose ω > 0 small enough depending on u0 and Q1 such that K2(ω) <
1
2

(
‖∇Q1‖2L2 + 1

)
. We next choose λ > 1

π depending on ω so that 4πλK2(ω) =

2
(
‖∇Q1‖2L2 + 1

)
. We thus get from (2.11) that

e4π‖u(t)‖2L∞ .u0,Q1
(1 + ‖u(t)‖C1/2)

m .u0,Q1 ‖u(t)‖mW 1,4 ,

where m := 2
(
‖∇Q1‖2L2 + 1

)
∈ (2, 4). This shows that∫

R2

e8π|u(t)|2 |u(t)|8dx .u0,Q1
‖u(t)‖mW 1,4‖u(t)‖8L8 .u0,Q1

‖u(t)‖mW 1,4‖u(t)‖nL8 ,

where n := 2(4 −m) ∈ (0, 4). Here we have use the fact ‖u(t)‖L8 . ‖u(t)‖H1 .
C(u0, Q1). It follows that∫∫

I×R2

e8π|u|2 |u|8dxdt .u0,Q1
‖‖u(t)‖mW 1,4‖L4/m‖‖u(t)‖nL8‖L4/(4−m)

= ‖u‖mL4(I,W 1,4)‖u‖
n
L8(I×R2).

We thus get

‖ 〈∇〉 f(u)‖L4/3(I×R2) .u0,Q1
‖u‖1+m/2

L4(I,W 1,4)‖u‖
n/2
L8(I×R2).

In the case ‖u(t)‖L∞ ≤ 1, we simply bound∫
R2

e8π|u(t)|2 |u(t)|8dx .Q1
‖u(t)‖8L8 .u0,Q1

‖u(t)‖mW 1,4‖u(t)‖nL8 ,

where we have use ‖u(t)‖L8 . ‖u(t)‖W 1,4 , ‖u(t)‖L8 . ‖u(t)‖H1 . C(u0, Q1) and
the fact m+ n = 8−m < 8. By Hölder’s inequality, we get

‖ 〈∇〉 f(u)‖L4/3(I×R2) .u0,Q1 ‖u‖
1+m/2
L4(I,W 1,4)‖u‖

n/2
L8(I×R2).

Thus in both cases, we have proved that

‖ 〈∇〉 f(u)‖L4/3(I×R2) .u0,Q1 ‖u‖
1+m/2
L4(I,W 1,4)‖u‖

n/2
L8(I×R2).

Thus

‖u(t)− eit∆u0‖ST(I) .u0,Q1 ‖u‖
1+m/2
L4(I,W 1,4)‖u‖

n/2
L8(I×R2)

which implies that

‖u‖ST(I) ≤ C(u0, Q1) + C(u0, Q1)‖u‖1+m/2
L4(I,W 1,4)‖u‖

n/2
L8(I×R2).(4.12)

Let ε > 0 to be chosen shortly. By the assumption ‖u‖L8(R×R2)) < ∞, we split R
into J = J(ε) intervals Ij such that

‖u‖L8(Ij×R2) < ε, j = 1, · · · , J.
Applying (4.12) to Ij with j = 1, · · · , J , we have that

‖u‖ST(Ij) ≤ C(u0, Q1) + C(u0, Q1)εn/2‖u‖1+m/2
ST(Ij)

.
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By choosing ε > 0, the continuity argument shows that

‖u‖ST(Ij) ≤ C(u0, Q1), j = 1, · · · , J.

Summing over all j = 1, · · · , J , we obtain ‖u‖ST(R) ≤ C(u0, Q1) <∞. This global
bound implies the scattering. �

By the same argument as above with m = 2(‖∇Q1‖2L2 + 1) and n = 4−m, we
have the following scattering criteria in the case µ = 0.

Corollary 4.8. Let µ = 0. Let u0 ∈ A+
0 and u be the corresponding global

solution to (1.1). Assume that

‖u‖L4(R×R2) <∞.

Then the solution scatters in H1.

Proposition 4.9. Let µ = 1. Let u0 ∈ A+
1 and u0 be radially symmetric. Let

u be the corresponding global solution to (1.1). Then (4.11) holds.

Proof. Let ε > 0 be a small parameter to be chosen sufficiently small depend-
ing on u0 and Q1 below. By Sobolev embedding and Strichartz estimates,

‖eit∆u0‖L6(R×R2) . ‖|∇|1/3eit∆ 〈∇〉u0‖L6(R,L3) . ‖u0‖H1 .

We may split R into K = K(ε, u0) intervals Ik such that

‖eit∆u0‖L6(Ik×R2) < ε(4.13)

for all k = 1, · · · ,K. Let T = T (ε, u0, Q1) be a large parameter to be chosen later.
We will prove that

‖u‖L6(Ik×R2) . T(4.14)

for all k = 1, · · · ,K. Summing over all intervals Ik, k = 1, · · · ,K, we get

‖u‖L6(R×R2) . T

which implies the scattering. In fact, by the scattering criteria given in Proposition
4.7, it suffices to show

‖u‖L8(R×R2) ≤ C(ε, u0, Q1).(4.15)

To see (4.15), we use (2.17) to have∥∥∥∥∫ t

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L8(R×R2)

. ‖f1(u)‖Lm′ (R,Ln′ ),

where (m′, n′) is the dual pair of a Schrödinger acceptable pair (m,n) satisfying

2

m
+

2

n
=

3

2
or

2

m′
+

2

n′
=

5

2
.

Using the fact |f1(u)| . e4π|u|2 |u|5, we see that

‖f1(u)‖Lm′ (R,Ln′ ) . ‖u‖L∞(R,La)‖e4π|u|2 |u|4‖Lb(R,Lc)

for some (a, b, c) ∈ [1,∞]3 provided that

1

m′
=

1

b
,

1

n′
=

1

a
+

1

c
.
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Taking c := 1 + ν for some ν > 0 small to be chosen shortly, we use (2.9) with
‖∇u(t)‖L2 < ‖∇Q1‖2 < 1 for all t ∈ R to get

‖e4π|u(t)|2 |u(t)|4‖cLc =

∫
R2

e4π(1+ν)|u(t)|2 |u(t)|4(1+ν)dx .Q1 ‖u(t)‖4(1+ν)

L4(1+ν)

provided that 0 < ν < 1
‖∇Q1‖2

L2
− 1. This implies that

‖e4π|u(t)|2 |u(t)|4‖Lc .Q1
‖u(t)‖4L4c .

Choosing a = (1+ν)(2+ν)
ν , the Sobolev embedding implies

‖u‖L∞(R,La) . ‖u‖L∞(R,H1).

It follows that

‖f1(u)‖Lm′ (R,Ln′ ) .Q1
‖u‖L∞(R,H1)‖u‖4L4b(R,L4c)

.Q1
‖u‖L∞(R,H1)‖u‖4θL6(R×R2)‖u‖

4(1−θ)
L∞(R,Lq)

provided that θ ∈ (0, 1), q ∈ (2,∞) and

1

4b
=
θ

6
,

1

4c
=
θ

6
+

1− θ
q

.

We see that
2

a
+

4θ

3
=

5

2
− 2

c
,

hence

θ =
3

4

(
5

2
− 2

c
− 2

a

)
=

3

4

(
5

2
− 2

1 + ν
− 2ν

(1 + ν)(2 + ν)

)
=

3(2 + 5ν)

8(2 + ν)
.

A direct computation shows

m =
4(2 + ν)

6− ν
, n =

2 + ν

ν
, b =

4(2 + ν)

2 + 5ν
, q =

2(10− 7ν)(1 + ν)

6− 3ν − 5ν2
.

By taking ν > 0 sufficiently small, it is easy to check that (m,n) is a Schrödinger
acceptable pair and

q ∈ (2,∞), θ ∈ (0, 1), 4θ > 1.

The Sobolev embedding then implies that∥∥∥∥∫ t

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L8(R×R2)

.Q1
‖u‖1+4(1−θ)

L∞(R,H1)‖u‖
4θ
L6(R×R2)(4.16)

. C(ε, u0, Q1).

We thus get

‖u‖L8(R×R2) ≤ ‖eit∆u0‖L8(R×R2) + C(ε, u0, Q1) ≤ C(ε, u0, Q1)

which proves (4.15).
It remains to show (4.14). By Sobolev embedding, we observe that

‖u‖6L6(I×R2) ≤ |I|‖u‖
6
L∞(I,L6) . |I|‖u‖

6
L∞(I,H1) .u0,Q1 |I|
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for any interval I ⊂ R. It suffices to show (4.14) with |Ik| > 2T . Let us fix one such
interval, say I = (c, d) with |I| > 2T . We will show that there exists t1 ∈ (c, c+ T )
such that ∥∥∥∥∫ t1

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L6([t1,+∞)×R2)

≤ C(u0, Q1)ε1/4.(4.17)

Assume (4.17) for the moment, let us prove (4.14). By the Duhamel formula

ei(t−t1)∆u(t1) = eit∆u0 + i

∫ t1

0

ei(t−s)∆f1(u(s))ds

and (4.13), we see that

‖ei(t−s)∆u(t1)‖L6([t1,d]×R2) ≤ C(u0, Q1)ε1/4.

By the same argument as in the proof of (4.16) with c = 1 + ν, a = (1+ν)(2+ν)
ν and

θ =
1 + 2ν

2− ν
, m =

3(2 + ν)

4− ν
, n =

2 + ν

ν
, b =

3(2 + ν)

2(1 + 2ν)
, q =

12(1− ν)(1 + ν)

4− 3ν − 4ν2
,

(4.18)

we have for ν > 0 sufficiently small that 4θ > 1 and∥∥∥∥∫ t

t1

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L6([t1,d]×R2)

.Q1
‖u‖1+4(1−θ)

L∞([t1,d],H1)‖u‖
4θ
L6([t1,d]×R2)(4.19)

≤ C(u0, Q1)‖u‖4θL6([t1,d]×R2).

This together with

u(t) = ei(t−t1)∆u(t1) + i

∫ t

t1

ei(t−s)∆f1(u(s))ds

yield

‖u‖L6([t1,d]×R2) ≤ ‖ei(t−t1)∆u(t1)‖L6([t1,d]×R2) + C(u0, Q1)‖u‖4θL6([t1,d]×R2)

≤ C(u0, Q1)ε1/4 + C(u0, Q1)‖u‖4θL6([t1,d]×R2).

By the continuity argument and the fact 4θ > 1, we get

‖u‖L6([t1,d]×R2) ≤ C(ε, u0, Q1).

On the other hand, since t1 − c < T ,

‖u‖L6([c,t1]×R2) . |t1 − c|
1
6 . T

1
6

hence (4.14) follows.
Let us prove (4.17). By time-translation, we may assume that c = 0. We first

claim that there exists t0 ∈ [T/4, T/2] such that∫ t0+εT 2/3

t0

‖u(s)‖6L6ds ≤ C(u0, Q1)ε.(4.20)

Indeed, we cover the interval J := [T/4, T/2] by N ∼ ε−1T 1/3 intervals Jk of length
εT 2/3 to have that

N min
1≤k≤N

∫
Jk

‖u(s)‖6L6ds ≤
N∑
k=1

∫
Jk

‖u(s)‖6L6ds =

∫
J

‖u(s)‖6L6ds ≤ C(u0, Q1)T 1/3.
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This implies that there exists k0 ∈ {1, · · · , N} such that∫
Jk0

‖u(s)‖6L6ds ≤ C(u0, Q1)ε

which proves the claim. Set

t1 := t0 + εT 2/3.

Since t0 < T/2, by enlarging T if necessary, we may assume that t1 < T . We will
estimate the left hand side of (4.17) by considering separately [0, t0] and [t0, t1]. We
first treat [0, t0]. For t > t1, we use the dispersive estimate and Hölder’s inequality
to get∥∥∥∥∫ t0

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L∞
.
∫ t0

0

|t− s|−1‖f1(u(s))‖L1ds

.Q1

∫ t0

0

|t− s|−1‖u(s)‖5L5ds

.Q1

∫ t0

0

|t− s|−1‖u(s)‖9/2L6 ‖u(s)‖1/2L2 ds

.u0,Q1

(∫ t0

0

‖u(s)‖6L6ds

)3/4

‖|t− s|−1‖L4
s([0,t0])

.u0,Q1
T 1/4|t− t0|−3/4

.u0,Q1
T 1/4|t1 − t0|−3/4

.u0,Q1

(
εT 2/3

)−3/4

.

This implies that∥∥∥∥∫ t0

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L∞([t1,+∞)×R2)

≤ C(u0, Q1)
(
εT 2/3

)−3/4

.

On the other hand, since

i

∫ t0

0

ei(t−s)∆f1(u(s))ds = ei(t−t0)∆u(t0)− eit∆u0,

Strichartz estimates imply that∥∥∥∥∫ t0

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L4([t1,+∞)×R2)

≤ C(u0, Q1).

Interpolating between L∞ and L4, we get∥∥∥∫ t0

0

ei(t−s)∆f1(u(s))ds
∥∥∥
L6([t1,+∞)×R2)

≤
∥∥∥∥∫ t0

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
1
3

L∞([t1,+∞)×R2)

∥∥∥∥∫ t0

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
2
3

L4([t1,+∞)×R2)

≤ C(u0, Q1)
(
εT 2/3

)− 1
3

.
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On [t0, t1], we use (4.19) and (4.20) to have that∥∥∥∥∫ t1

t0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L6([t1,∞)×R2)

.Q1
‖u‖1+4(1−θ)

L∞([t0,t1],H1)‖u‖
4θ
L6([t0,t1]×R2)

≤ C(u0, Q1)ε2θ/3

≤ C(u0, Q1)ε1/4,

where 2θ/3 > 1/4 with θ as in (4.18). Collecting the contributions of the above
two intervals, we get∥∥∥∥∫ t1

0

ei(t−s)∆f1(u(s))ds

∥∥∥∥
L6([t1,+∞)×R2)

≤ C(u0, Q1)

[(
εT 2/3

)−1/3

+ ε1/4

]
.

By taking T = ε−21/8, we prove (4.17). The proof is complete. �

Remark 4.10. The above argument does not work for µ = 0. The first difficulty
is that an estimate similar to (4.19), namely∥∥∥∥∫ t

0

ei(t−s)∆f0(u(s))ds

∥∥∥∥
L4(R×R2)

.Q0 ‖u‖
1+4(1−θ)
L∞(R,H1)‖u‖

4θ
L4(R×R2)

for some θ ∈ (0, 1) satisfying 4θ > 1, is not easy to obtain. More precisely, if we
perform the same reasoning as above, we will get θ = 2+3ν

2+ν which is strictly greater

than 1. The second difficulty comes from the fact (4, 4) is a Schrödinger admissible
pair which prevents the smallness of∥∥∥∥∫ t0

0

ei(t−s)∆f0(u(s))ds

∥∥∥∥
L4([t1,∞)×R2)

.

Proof of Theorem 1.10. Theorem 1.10 follows immediately from Lemma 4.7 and
Proposition 4.9. �
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Villeneuve d’Ascq Cedex, France & Department of Mathematics, HCMC University of
Pedagogy, 280 An Duong Vuong, Ho Chi Minh, Vietnam

Email address: contact@duongdinh.com

(S. Keraani) Laboratoire Paul Painlevé UMR 8524, Université de Lille CNRS, 59655
Villeneuve d’Ascq Cedex, France

Email address: sahbi.keraani@univ-lille.fr

(M. Majdoub) Deapartment of Mathematics, College of Science, Imam Abdulrah-

man Bin Faisal University, P. O. Box 1982, Dammam, Saudi Arabia & Basic and Applied
Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982,

31441, Dammam, Saudi Arabia
Email address: mmajdoub@iau.edu.sa

https://arxiv.org/abs/1906.01804v3

	1. Introduction
	2. Preliminaries
	3. Sharp thresholds for global existence and blow-up
	4. Energy scattering for radially symmetric initial data
	Acknowledgement
	References

