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Abstract: Granitic rocks represent a ubiquitous component of upper continental crust but their origin remains
highly controversial. This controversy stems from the fact that the granites may result from fractionation of
mantle-derived basaltic magmas or partial melting of different crustal protoliths at contrasting pressure–temper-
ature conditions, either water-fluxed or fluid-absent. Consequently, many different mechanisms have been pro-
posed to explain the compositional variability of granites ranging from whole igneous suites down to mineral
scale. This Special Publication presents an overview of the state of the art and envisages future avenues towards
a better understanding of granite petrogenesis.

Granite (sensu lato) represents a ubiquitous rock
type dominating the upper–middle continental crust
(Taylor & McLennan 2009; Rudnick & Gao 2014).
For this reason, the granites have attracted a plethora
of studies, some dating back to the dawn of modern
igneous geology in the mid-eighteenth century.
Ever since, the controversy regarding the origin of
granites has been raging more or less continuously,
even though focusing on various aspects of the ‘gran-
ite problem’ (e.g. see Pitcher 1987, 1993; Clarke
1996; Cobbing 2000; Young 2003 for reviews).

The ‘great debate’

The modern dispute on the origin of granites dates
back to James Hutton who, based on carefully

made observations of textures, field relationships,
as well as the presence of country-rock meta-
sedimentary xenoliths in granitic intrusions of the
Scottish Highlands, proposed the revolutionary
idea that granite had to be a product of crystallization
from a ‘fluidal substance’ (i.e. magma) (Hutton
1788, 1794). This was in sharp contrast with the
then governing Wernerian theory (Werner 1787) in
which the granites belonged to the ‘Primitive foun-
dation’, precipitated from the primeval ocean.

The other flare-up in the heated debate was
centred on the so-called ‘room problem’, consider-
ing the way in which large granitic batholiths can
be accommodated within crust, especially in cases
when the country rock did not show evidence of
strong deformation. The other disputed observation
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came from the study of migmatite terrains, especially
in Nordic countries, where the contacts between
intrusions, partially molten and residual rocks are
often transitional.

An apparent remedy was offered by the ‘trans-
formists’, who proposed in situ conversion of
pre-existing rocks by metasomatic fluids or other
mechanisms (Read 1957; Mehnert 1968). However,
the ‘magmatists’ assumed that granites were a prod-
uct of crystal differentiation from a primary basaltic
magma. Indeed, the eutectic and cotectic composi-
tions of common granites, reproduced by water-
present melting experiments, represent a powerful
argument against the metasomatic models (Bowen
1948; Tuttle & Bowen 1958).

Another breakthrough came in the late 1960s and
early 1970s when it was recognized that many gran-
ites are crustally derived, having originated by partial
melting of metasediments (Winkler 1965). These
publications were followed by the first experiments
that generated granites by dehydration melting of
metapelitic starting materials (Brown & Fyfe 1970).

With the advancement of geochemistry, new
source-orientated paradigms emerged. Most notably,
it was the classification of Chappell &White (1974),
further elaborated over the years (Chappell & White
1992, 2001). Mainly based on modal composition
and major-element whole-rock geochemistry, it
distinguished granites generated by partial melting
of lower-crustal meta-igneous rocks (thus termed
I-type) from those originating by anatexis of meta-
sedimentary sources (S-type). As a result of
the popularity of this scheme, the ‘alphabetic soup’
terminology was supplemented by anorogenic
A-types (Loiselle & Wones 1979), mantle-derived
M-types (White 1979), charnockitic C-types (Kilpa-
trick & Ellis 1992) and hybrid H-types (Castro et al.
1991), eventually leading to a considerable confu-
sion (Clarke 1992).

Nowadays, it is widely believed that a significant
number of granites, including those occurring at
active continental margins, may result from fraction-
ation of mantle-derived basaltic magmas (Grove
et al. 2003; Ulmer et al. 2018). Many others, espe-
cially those in collisional orogens, are the ultimate
product of regional metamorphism, leading to partial
melting of different crustal protoliths at contrasting
pressure–temperature conditions, either water-fluxed
or fluid-absent (Clemens 2003, 2005, 2012; Brown
2010, 2013; Weinberg & Hasalová 2015; Collins
et al. 2016; Yakymchuk 2019).

In collisional orogens, granitic crustal melts
can be produced due to both crustal thickening and
thinning, as well as decompression of high-grade,
metamorphic terrains. The heat necessary for ana-
texis can be: (1) produced in situ, due to radioactive
decay in a thickened continental crust rich in U, Th
and K; (2) advected from basic intrusion(s) or from

quickly exhumed, still hot, lower-crustal meta-
morphic complexes; (3) conducted from a thermal
anomaly in the mantle (originating due to slab
break-off, thermal boundary layer detachment,
mantle delamination, asthenosphere upwelling in
extensional settings or ascent of a mantle plume);
or (4) come from an underlying metasomatized/
crustally-contaminated lithospheric mantle where it
is produced by in situ radioactive decay (Henk
et al. 2000; Clark et al. 2011; Bea 2012).

Why the ‘granite problem’ is still there

Granites are difficult to study for four main reasons.
The first problem is that granitic melts, regardless of
their parental composition, tend to evolve towards
the granite minimum in the course of crystallization
or are often minimal melts to start with (Johannes &
Holtz 1996). Secondly, the generally high viscosity
of siliceous melts, especially the low-temperature
S-type ones (Dingwell 1999), means that many gran-
ites (sensu lato) do not represent pure melts. They
rather are mixtures of cumulus phase(s) or even crys-
tal mushes, from which liquids were extracted
and erupted as dacites or rhyolites (Bachmann &
Bergantz 2004, 2008; Bachmann & Huber 2016;
Cashman et al. 2017), or partial melts that have car-
ried entrained material from the source, either restite
or peritectic phases (Chappell et al. 1987; Stevens
et al. 2007; Clemens et al. 2010, 2011). Moreover,
during its construction, a granitic pluton may also
incorporate extra material either from the country
rock (xenocrysts) or the previous pulses of the
same magmatism (antecrysts) (Streck 2008; Jerram
et al. 2018). A distinct (third) possibility remains
of mixing or mingling with some other magma
pulse(s), either broadly cogenetic, during incremen-
tal construction commonly invoked for the granitic
plutons (Bartley et al. 2006; Farina et al. 2012;
Chen & Nabelek 2017; Hines et al. 2018), or even
coming from a contrasting, mantle source (Hibbard
1995; Perugini & Poli 2000; Didier & Barbarin
1991). Last, but not least, granitic plutons are com-
monly associated with hydrothermal systems, and
the water-rich fluid unmixed during crystallization
inevitably results in alterations.

To obscure things further, the methods we are
using are not flawless. The large sets of composi-
tional data require machine processing but sophisti-
cated statistical methods very often cannot decipher
any useful patterns beyond the analytical or natural
noise. Alternatively, they may yield undisputed
truths and obvious conclusions, apparent to anyone
with a good working knowledge of field relation-
ships, petrology and/or the composition of granitic
rocks. Given the number of mineral phases, includ-
ing accessories, (nearly) all trace elements behave
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as compatible ones, complicating whole-rock-based
geochemical modelling (Janoušek et al. 2016). Of
course, these techniques are also difficult to apply
when not dealing with pure melts.

Frustratingly, progress in understanding granite
genesis often has not seemed to advance in step
with the effort invested. As in other branches of sci-
ence, the existence of a large community of active
researchers also has its downside, as the relevant lit-
erature is massive and impossible to follow in its
entirety. Any progressive or even ground-breaking
ideas can thus be swamped by work that represents
only incremental, if any, advancement.

As previous disputes have shown, the large com-
munity tends to buffer changes in the long-term sta-
tus quo; any innovative approach has to struggle with
tradition, or even rigidity, and most workers tend to
stick to existing paradigms. Moreover, geologists
typically believe and apply their own experience;
thus, depending on the country of origin and terrains
they have worked in, they prefer certain ideas and
models over the others. Nowadays, it is unthinkable
that Hutton, for the sake of being unbiased, inten-
tionally sought field evidence for his influential the-
ory on the origin of granites only after its first
public presentation.

Lastly, all of us are, to varying degrees, ignorant
or careless regarding the original definitions and
proper meaning of even the most elementary terms.
Over time, some of them (e.g. the adjective
‘calc-alkaline’) have lost their original meaning
and should be either redefined or dropped. More-
over, granite petrologists, like other igneous petrolo-
gists, have introduced a plethora of historical and
parochial names for essentially the same rock types
that still persist in the current literature despite
the sterling efforts of the IUGS Subcommission on
Systematics of Igneous Rocks (Streckeisen 1976;
Le Maitre 2002). Thus, we all should strive to use
the approved terminology with as much rigour
as possible.

Ways ahead

From the above it follows that the origin of granitic
rocks is likely to remain amatter of passionate debate
for years to come. It will certainly be fuelled by
an increasing demand for raw materials, increasing
computer power and progress in analytical tech-
niques. The latter will secure a never-finishing flux
of increasingly affordable, high-quality compo-
sitional data, including non-traditional isotopic sys-
tems such as Fe, Ca, Li, Mg, Si, Cr or stable Sr
(Johnson et al. 2004; Foden et al. 2015; Tomascak
et al. 2016; Teng et al. 2017), as well as in situ ele-
mental and isotopic data for both individual minerals
and melt inclusions. To tackle the flood of data, an

increasing role will be played by statistical and com-
puting methods, data mining and online databases,
shared through the World Wide Web. There is also
a clear trend towards the increased application of
ever-improving tools for phase-equilibria modelling
(Ghiorso & Sack 1995; Asimow & Ghiorso 1998;
Holland & Powell 1998, 2011; Connolly 2005;
Gualda et al. 2012; Green et al. 2016) that will
become integrated into larger packages for compre-
hensive modelling of igneous rocks (Bohrson et al.
2014; Mayne et al. 2016). But at the same time, we
should not forget that we ultimately try to describe
and explain natural phenonomena, and thus detailed
and careful field and petrological work remain indis-
pensable even in the twenty-first century.

In this Special Publication the Editors aim to pre-
sent an overview of the state of the art, as well as
envisaging future avenues towards a better under-
standing of granite petrogenesis. As such, it is a
follow-up of the excellent GSL Special Publication
Understanding Granites: Integrating New and
Classical Techniques of Castro et al. (1999), which
is now exactly 20 years old. The current Special
Publication contains 10 papers, covering four main
themes:

• Compositional variability of granitic rocks gener-
ated in contrasting geodynamic settings during the
Proterozoic–Phanerozoic periods.

• Main permissible mechanisms producing subduc-
tion-related granites.

• Crustal anatexis of different protoliths, and the
role of water in granite petrogenesis.

• Theoretical tools available for modelling whole-
rock geochemical evolution and phase-mineral
equilibria to decipher the evolution of granitic
suites in P–T–t space.

Granitoids are the most common rocks in the Earth’s
continental crust and display many varieties, and
thus require classification. After a historical review
of previous schemes suggested on various grounds,
Bonin et al. (2020) state that classification should
preferentially link the bulk chemical composition
to the stoichiometry of the constituent minerals.
Based on statistical analysis of a large database of
granitic compositions, they identify the most dis-
criminant geochemical variables. They suggest the
winning strategy is to use simple atomic parameters
(e.g. millication-based) that can be linked to modal
proportions and compositions/structure of individ-
ual rock-forming minerals.

A-type granitoids, less abundant than the other
granite types, have generated no worldwide consen-
sus about their origins.Collins et al. (2019) compare
A-type granitoids in two classical type localities:
the Mesozoic Younger Granites province (northern
Nigeria) and the Paleozoic Lachlan Fold Belt
(eastern Australia). They show that rocks of the
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anorogenic Nigerian province crystallized from hot-
ter and drier liquids than those of the post-orogenic
A-types of the Lachlan Fold Belt province, which
were situated in a distal back-arc setting. In the
latter case, A-type granites are not strictly within-
plate, as generally assumed, but nonetheless were
hotter and more anhydrous that the associated S-
and I-type granites.

Whether large batholiths originate from magmas
occurring at the end of fractionation trends defining
a basalt–(basaltic) andesite–dacite–rhyolite series,
or form by partial melting of older crustal litho-
logies (amphibolites or intermediate igneous rocks)
remains a contentious issue (see Castro 2019).
Moyen (2019) explores the thermal implications
of both scenarios. Two situations appear equally
favourable for generating large volumes of granites:
short-lived high basaltic flux, where granites result
mostly from basalt differentiation, and long-lived
systems with no or only minimal basalt flux, where
granites are chiefly a product of crustal melting.

In the original alphabetical classification (Chap-
pell & White 1974), I-type granitoids were defined
as having originated from partial melting of igneous
rocks located within the Earth’s lower crust. Geo-
logical and geochemical features provide evidence
that other formations may be involved, such as
immature quartzo-feldspathic metasedimentary
suites. In a review of experimental data, Castro
(2019) shows that I-type granitoids should be sub-
divided into two classes: ‘primary granitoids’ that
are directly related to subduction and composed of
fractionated liquids from intermediate magma sys-
tems of broadly andesitic composition, and ‘second-
ary granitoids’ that are crustal melts produced by
fluid-fluxed melting of older subduction-related
igneous rocks that resided in the continental crust.

Fiannacca et al. (2019) describe Late Paleozoic
peraluminous granites and trondhjemites from
southern Italy, demonstrating the contrasting roles
of water-fluxed and fluid-absent (dehydration) melt-
ing during magma genesis. They also explain an
unusual low-Ca trondhjemite suite by metasomatic
alteration, highlighting the need for petrographical
analysis in conjunction with geochemical modelling.

Nabelek (2019) provides an overview of compo-
sitional variability and possible genesis of peralumi-
nous leucogranites that are ubiquitous in collisional
orogens, such as the Variscides and Himalayas.
Based mainly on phase-equilibria and whole-rock
geochemical considerations, it is concluded that
most of these syn- to post-collisional leucogranites
are characterized by the presence of muscovite,
biotite and tourmaline, and formed under vapour-
poor conditions involving a peritectic breakdown
of muscovite.

In their first contribution, Mayne et al. (2019a)
present the background, overall philosophy and

explore full potential of their new software (RCRUST)
(Mayne et al. 2016) which allows phase-equilibria
modelling along pressure–temperature paths with
composition as a variable. To demonstrate the
utility of RCRUST for process-orientated investiga-
tions, the authors briefly present four possible fields
of application. In the first, they explore the evolution
of the water content in a fully-hydrated but fluid-
absent rock composition along pressure–temperature
trajectories that evolve towards granulite- and
eclogite-facies peak metamorphic conditions. The
second and third cases investigate the effect of melt
loss during partial melting and the role of peritectic
crystals entrained from the source. The last of the
open-system processes presented deals with melt–
crystal separation during crystallization, mimicking
processes like crystal settling or filter pressing in
magma reservoirs.

In their second contribution, Mayne et al.
(2019b) apply RCRUST to investigate the control
exerted by the source on the bulk composition of
anatectic melts derived by partial melting of an
average pelite under both water-deficient and water
in excess conditions. The initial magnesium, iron,
sodium and calcium contents of the source are var-
ied, as are the pressure–temperature path followed
by the system and the melt extraction threshold.
The resulting melt compositions are compared to
those of natural S-type granites. The work confirms
that the strongest control on melt composition is
exerted by the availability of a water-rich fluid in
the source, while bulk-rock composition and the
degree of melt retention in the source have only a
minor influence.

Another interesting application of the path-
dependent phase-equilibria modelling using the soft-
ware RCRUST is presented in the case study of the
Buddusò Pluton in NE Sardinia by Farina et al.
(2019). The authors propose that the internal chemi-
cal variability of this normally-zoned pluton, homo-
geneous in terms of whole-rock Sr–Nd isotopic
compositions, could have been generated by crystal-
lization differentiation of the same hydrous tonalitic
parental magma. The inferred mechanism invokes
compaction in a rheologically locked crystal-rich
magma chamber (Bachmann & Bergantz 2004).

Petrogenesis of igneous suites, including gran-
itoids, may be deciphered by whole-rock geochemi-
cal modelling. Janoušek & Moyen (2019) provide
an overview of the current approaches and argue
that petrogenetic modelling is a powerful tool
to rule out impossible scenarios and to constrain
likely processes inferred from geological and petro-
logical observations. Particularly promising seems
to be the development of integrated, coherent
and comprehensive software, using the R and Python
languages (Shen 2014; Janoušek et al. 2016; Mayne
et al. 2016), that combines thermodynamic and
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whole-rock geochemistry-based petrogenetic model-
ling of igneous rocks.
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