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Abstract. A (multi)set of segments in the plane may form a TSP tour,
a matching, a tree, or any multigraph. If two segments cross, then we
can reduce the total length with the following flip operation. We remove
a pair of crossing segments, and insert a pair of non-crossing segments,
while keeping the same vertex degrees. The goal of this paper is to devise
efficient strategies to flip the segments in order to obtain crossing-free
segments after a small number of flips. Linear and near-linear bounds
on the number of flips were only known for segments with endpoints in
convex position. We generalize these results, proving linear and near-linear
bounds for cases with endpoints that are not in convex position. Our
results are proved in a general setting that applies to multiple problems,
using multigraphs and the distinction between removal and insertion
choices when performing a flip.

Keywords: Planar geometry · Reconfiguration · Matching · Euclidean
TSP.

1 Introduction

The Euclidean Travelling Salesman Problem (TSP) is one of the most studied
geometric optimization problems. We are given a set P of points in the plane
and the goal is to find a tour S of minimum length. While the optimal solution
has no crossing segments, essentially all approximation algorithms, heuristics,
and PTASs may produce solutions S with crossings. Given S, the only procedure
known to obtain a solution S′ without crossings and of shorter length is to
perform a flip operation. In our case, a flip consists of removing a pair of crossing
segments, and then inserting a pair of non-crossing segments preserving a tour
(and consequently reducing its length). Flips are performed in sequence until a
crossing-free tour is obtained, in a procedure called untangle.

The same flip operation may be applied in other settings. More precisely,
a flip consists of removing a pair of crossing segments s1, s2 and inserting a
⋆ This work is supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).
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pair of segments s′1, s
′
2 in a way that s1, s

′
1, s2, s

′
2 forms a cycle and a certain

graph property is preserved. In the case of TSP tours, the property is being a
Hamiltonian cycle. Other properties have also been studied, such as spanning
trees, perfect matchings, and multigraphs. Notice that flips preserve the degrees
of all vertices and multiple copies of the same edge may appear when we perform
a flip on certain graphs.

When the goal is to obtain a crossing-free TSP tour, we are allowed to choose
which pair of crossing segments to remove in order to perform fewer flips, which
we call removal choice (Figure 1(a)). Notice that, in a tour, choosing which pair of
crossing edges we remove defines which pair of crossing edges we insert. However,
this is not the case for matchings and multigraphs. There, we are also allowed to
choose which pair of segments to insert among two possibilities, which we call
insertion choice (Figure 1(b)).

(a) (b)

Fig. 1. (a) Three untangle sequences for a tour with different removal choices. (b) Three
untangle sequences for a matching with different insertion choices. We highlight the
segments removed and inserted at each flip.

Using removal or insertion choices to obtain shorter flip sequences has not
been explicitly studied before and opens several new questions, while unifying the
solution to multiple reconfiguration problems. Next, we describe previous work
according to which choices are used. Throughout, P denotes the set of points
and n the number of segments.

Using no choice: The length (i.e. the number of flips) of any untangle
sequence for a TSP tour is O(n3) [22] and it is easy to construct Ω(n2) examples.
The same proof has been rediscovered in the context of matchings [9] after 35
years. If P is in convex position, then the number of crossings decreases at each
flip, which gives a tight bound of Θ(n2). If all points except the endpoints of t
segments are in convex position, then the authors [15] recently showed a bound
of O(tn2).

Using only insertion choice: It is possible to untangle a matching using
only insertion choice and O(n2) flips [9]. Let σ be the spread of P , that is, the
ratio between the maximum and minimum distances among points in P . Using
insertion choice, it is also possible to untangle a matching using O(nσ) flips [7].

Using only removal choice: If P is in convex position, then by using O(n)
flips we can untangle a TSP tour [25,28], as well as a red-blue matching [7], while
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the best known bound for trees is O(n log n) [7]. If instead of convex position, we
have colinear red points in a red-blue matching, then O(n2) flips suffice [7,12].

Using both removal and insertion choices: If P is in convex position,
then by using O(n) flips we can untangle a matching [7].

1.1 New Results

Previous results are usually stated for a single graph property. Using choices, we
are able to state the results in a more general setting. Proofs that use insertion
choice are unlikely to generalize to red-blue matchings, TSP tours, or trees,
where insertion choice is not available (still, they may hold for both non-bipartite
matchings and multigraphs). In contrast, bounds for multigraphs using only
removal choice apply to all these cases. Previously, we only knew linear or near-
linear bounds when the points P are in convex position and removal choice is
available. The goal of the paper is to obtain linear and near-linear bounds to as
many cases as possible, considering near-convex configurations as well as removal
and insertion choices.

Let P = C ∪ T where C is in convex position and the points of T are outside
the convex hull of C, unless otherwise specified. Let S be a multiset of n segments
with endpoints P and t be the number of segments with at least one endpoint in
T . We prove the following results to untangle S, and some are summarized in
Table 1.

Using only insertion choice (Section 2): If T = ∅, then O(n log n) flips
suffice. If T is separated from C by two parallel lines, then O(tn log n) flips suffice.

Using only removal choice (Section 3): If |T | ≤ 2 and t = O(1), then
O(n log n) flips suffice. In this case, our results hold with the points T being
anywhere with respect to the convex hull of C, however, if both points are outside,
then S must be a matching. As the bound for |T | ≤ 1 holds for trees, it is useful
to compare it against the O(n log n) bound for trees in the convex case from [7]
that strongly uses the fact that S forms a tree. The O(log n) factor is not present
for the special cases of TSP tours and red-blue matchings.

Using both removal and insertion choices (Section 4): If T is separated
from C by two parallel lines, then O(tn) flips suffice. If T is anywhere outside
the convex hull of C and S is a matching, then O(t3n) flips suffice.

In a matching or TSP tour, we have t = O(|T |) and n = O(|P |), however in
a tree, t can be as high as O(|T |2). In a multigraph t and n can be much larger
than |T | and |P |. The theorems describe more precise bounds as functions of all
these parameters. For simplicity, the introduction only shows bounds in terms of
n and t.

1.2 Related Reconfiguration Problems

Combinatorial reconfiguration studies the step-by-step transition from one so-
lution to another, for a given combinatorial problem. Many reconfiguration
problems are presented in [18]. We give a brief overview of reconfiguration among
line segments using alternative flip operations.
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Table 1. Upper bounds to different versions of the problem with points having O(1)
degree. The letter R corresponds to removal choice, I to insertion choice, and ∅ to no
choice. New results are highlighted in yellow with the theorem number in parenthesis
and tight bounds are bold.

Property: Matching TSP, Red-Blue
Choices: RI I R ∅ R ∅
Convex n [7] n logn (Thm 1) n logn (Thm 3) n2 n [7,25,28] n2

|T | = 1 n (Thm 8) n logn (Thm 2) n logn (Thm 4) n2 [15] n (Thm 4) n2 [15]
|T | = 2 n (Thm 9) n2 [9] n logn (Thm 5) n2 [15] n (Thm 5) n2 [15]
separated tn (Thm 8) tn logn (Thm 2) tn2 [15]
C ∪ T t3n (Thm 9) n2 [9] tn2 [15]

The 2OPT flip is not restricted to crossing segments. It removes and inserts
pairs of segments (the four segments forming a cycle) as the total length decreases.
In contrast to flips among crossing segments, the number of 2OPT flips performed
may be exponential [13].

It is possible to relax the flip definition even further to all operations that
replace two segments by two others forming a cycle [5,6,8,10,14,27]. This definition
has also been considered for multigraphs [16,17,20].

Another type of flip consists of removing a single segment and inserting
another one. Such flips are widely studied for triangulations [3,19,21,23,24,26].
They have also been considered for non-crossing trees [1] and paths. It is possible
to reconfigure any two non-crossing paths if the points are in convex position [4,11]
or if there is one point inside the convex hull [2].

1.3 Preliminaries

Throughout, we consider multigraphs (P, S) whose vertices P (called endpoints)
are points in the plane and edges S are a multiset of line segments. We assume
that the endpoints are in general position and that the two endpoints of a segment
are distinct. Given two (possibly equal) sets P1, P2 of endpoints, we say that
a segment is a P1P2-segment if one endpoint is in P1 and the other is in P2.
Similarly, we say that a segment is a P1-segment if at least one endpoint is in P1.

We say that two segments cross if they intersect at a single point that is
not an endpoint of either segment. We say that a line crosses a segment if they
intersect at a single point that is not an endpoint of the segment. We say that
a segment or a line h separates a set of points P if P can be partitioned into
two non-empty sets P1, P2 such that every segment p1p2 with p1 ∈ P1, p2 ∈ P2

crosses h. Several proofs in this paper use the following two lemmas from previous
papers.

Lemma 1 ([22]). Given a multiset S of segments and a line ℓ, let the line
potential of ℓ, denoted λ(ℓ), be the number of segments in S crossing ℓ. Then,
λ(ℓ) never increases at a flip.
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Lemma 2 ([9]). Consider a partition S =
⋃

i Si of the multiset S of segments
and let Pi be the set of endpoints of Si. If no segment of

(
Pi

2

)
crosses a segment

of
(
Pj

2

)
for i ̸= j, then the sequences of flips in each Si are independent.

We say that a segment s is uncrossable if for any two endpoints p1, p2, we
have that p1p2 do not cross s. Lemma 2 implies that an uncrossable segment
cannot be flipped.

Our bounds often have terms like O(tn) and O(n log |C|) that would incor-
rectly become 0 if t or log |C| is 0. In order to avoid this problem, factors in the
O notation should be made at least 1. For example, the aforementioned bounds
should be respectively interpreted as O((1 + t)n) and O(n log(2 + |C|)).

2 Insertion Choice

In this section, we show how to untangle a multigraph using only insertion choice,
that is, our strategies do not choose which pair of crossing segments is removed,
but only which pair of segments with the same endpoints is subsequently inserted.
We start with the convex case, followed by points outside the convex separated
by two parallel lines.

2.1 Convex

Let P = C = {p1, . . . , p|C|} be a set of points in convex position sorted in
counterclockwise order along the convex hull boundary (Figure 2(a)). Given a
segment papb, we define the depth δ(papb) = |b−a|. This definition resembles but
is not the same as the depth used in [7]. We use the depth to prove the following
theorem.

C

p1

p2

p3

p4p5p6p7
p8

p9

p10

p11
p12 p13

p14

C
3

2
6
7

pd = p10 pa = p1

pc = p4

pb = p8 C

7
7

pb = p8

pa = p1

pc = p7

pd = p14
13

1

(a) (b) (c)

Fig. 2. (a) A multigraph (C, S) with |C| = 14 points in convex position and n = 9
segments. (b) Insertion choice for Cases 1 and 2 of the proof of Theorem 1. (c) Insertion
choice for Case 3.

Theorem 1. Every multigraph (C, S) with C in convex position has an untangle
sequence of length O(n log |C|) = O(n log n) using only insertion choice, where
n = |S|.
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Proof. Let the potential function ϕ(S) =
∏

s∈S δ(s). As δ(s) ∈ {1, . . . , |C| − 1},
we have that ϕ(S) is integer, positive, and at most |C|n. Next, we show that
for any flipped pair of segments papb, pcpd there exists an insertion choice that
multiplies ϕ(S) by a factor of at most 3/4, and the theorem follows.

Consider a flip of a segment papb with a segment pcpd and assume without
loss of generality that a < c < b < d. The contribution of the pair of segments
papb, pcpd to the potential ϕ(S) is the factor f = δ(papb)δ(pcpd). Let f ′ be the
factor corresponding to the pair of inserted segments.

Case 1: If δ(papc) ≤ δ(pcpb), then we insert the segments papc and pbpd and
we get f ′ = δ(papc)δ(pbpd) (Figure 2(b)). We notice δ(papb) = δ(papc) + δ(pcpb).
It follows δ(papc) ≤ δ(papb)/2 and we have δ(pbpd) ≤ δ(pcpd) and then f ′ ≤ f/2.

Case 2: If δ(pbpd) ≤ δ(pcpb), then we insert the same segments papc and
pbpd as previously. We have δ(papc) ≤ δ(papb) and δ(pbpd) ≤ δ(pcpd)/2, which
gives f ′ ≤ f/2.

Case 3: If (i) δ(papc) > δ(pcpb) and (ii) δ(pbpd) > δ(pcpb), then we insert
the segments papd and pcpb (Figure 2(c)). The contribution of the new pair of
segments is f ′ = δ(papd)δ(pcpb). We introduce the coefficients x = δ(papc)

δ(pcpb)
and

y = δ(pbpd)
δ(pcpb)

so that δ(papc) = xδ(pcpb) and δ(pbpd) = yδ(pcpb). It follows that
δ(papb) = (1+x)δ(pcpb), δ(pcpd) = (1+y)δ(pcpb) and δ(papd) = (1+x+y)δ(pcpb).
The ratio f ′/f is equal to a function g(x, y) = 1+x+y

(1+x)(1+y) . Due to (i) and (ii), we
have that x ≥ 1 and y ≥ 1. In other words, we can upper bound the ratio f ′/f
by the maximum of the function g(x, y) with x, y ≥ 1. It is easy to show that the
function g(x, y) is decreasing with both x and y. Then its maximum is obtained
for x = y = 1 and it is equal to 3/4, showing that f ′ ≤ 3f/4. ⊓⊔

2.2 Separated by Two Parallel Lines

In this section, we prove the following theorem, which is a generalization of
Theorem 1.

Theorem 2. Consider a multigraph (P, S) with P = C ∪ T1 ∪ T2 where C is in
convex position and there exist two horizontal lines ℓ1, ℓ2, with T1 above ℓ1 above
C above ℓ2 above T2. Let T = T1∪T2, n = |S|, and t be the number of T -segments.
There exists an untangle sequence of length O(t|P | log |C|+n log |C|) = O(tn log n)
using only insertion choice.

Proof. We start by describing the insertion choice for flips involving at least one
point in T . Let p1, . . . , p|P | be the points P sorted vertically from top to bottom.
Consider a flip involving the points pa, pb, pc, pd with a < b < c < d. The insertion
choice is to create the segments papb and pcpd. As in [9], we define the potential
η of a segment pipj as η(pipj) = |i − j|. Notice that η is an integer between 1
and |P | − 1. We define ηT (S) as the sum of η(pipj) for pipj ∈ S with pi or pj
in T . Notice that 0 < ηT (S) < t|P |. It is easy to verify that any flip involving
a point in T decreases ηT (S) and other flips do not change ηT (S). Hence, the
number of flips involving at least one point in T is O(t|P |).
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For the flips involving only points of C, we use the same choice as in the
proof of Theorem 1. The potential function

ϕ(S) =
∏

pipj∈S : pi∈C and pj∈C

δ(pipj)

is at most |C|n and decreases by a factor of at most 3/4 at every flip that involves
only points of C.

However, ϕ(S) may increase by a factor of O(|C|2) when performing a flip
that involves a point in T . As such flips only happen O(t|P |) times, the total
increase is at most a factor of |C|O(t|P |).

Concluding, the number of flips involving only points in C is at most

log4/3

(
|C|O(n)|C|O(t|P |)

)
= O(n log |C|+ t|P | log |C|).⊓⊔

3 Removal Choice

In this section, we show how to untangle a multigraph using only removal choice.
We start with the convex case, followed by 1 point inside or outside the convex
hull of C, then 2 points outside the convex hull of C, 2 points inside the convex
hull of C, and 1 point inside and 1 outside the convex hull of C. As only removal
choice is used, all results also apply to red-blue matchings, TSP tours, and trees.

3.1 Convex

Let P = C = {p1, . . . , p|C|} be a set of points in convex position sorted in
counterclockwise order along the convex hull boundary and consider a set of
segments S with endpoints P . Given a segment papb and assuming without loss
of generality that a < b, we define the crossing depth δ×(papb) as the number of
points in pa+1, . . . , pb−1 that are an endpoint of a segment in S that crosses any
other segment in S (not necessarily papb). We use the crossing depth to prove
the following theorem, which implies a simpler and more general proof of the
O(n log n) bound for trees [7].

Theorem 3. Every multigraph (C, S) with C in convex position has an untangle
sequence of length O(n log |C|) = O(n log n) using only removal choice, where
n = |S|.

Proof. We repeat the following procedure until there are no more crossings. Let
papb ∈ S be a segment with crossings (hence, crossing depth at least one) and
a < b minimizing δ×(papb) (Figure 3(a)). Let q1, . . . , qδ×(papb) be the points
defining δ×(papb) in order and let i = ⌈δ×(papb)/2⌉. Since papb has minimum
crossing depth, the point qi is the endpoint of segment qipc that crosses papb.
When flipping qipc and papb, we obtain a segment s (either s = qipa or s = qipb)
with δ×(s) at most half of the original value of δ×(papb) (Figure 3(b,c)). Hence,
this operation always divides the value of the smallest positive crossing depth by



8 G. D. da Fonseca, Y. Gerard, and B. Rivier

p5

p13

C

p1

p2

p3

pa = p4p5p6p7
qi = p8

p9

pb = p10
p11

p12

0
3

6

0

p13
p14

4
3 6

6

p5

p13

pa = p4

pb = p10

qi = p8

pc = p1

C
3

1

p5

p13

pa = p4

pb = p10

qi = p8 C
31

pc = p1

(a) (b) (c)

Fig. 3. Proof of Theorem 3. (a) The segments of a convex multigraph are labeled with
the crossing depth. (b,c) Two possible pairs of inserted segments, with one segment of
the pair having crossing depth ⌊ 3

2
⌋ = 1.

at least two. As the crossing depth is an integer smaller than |C|, after performing
this operation O(log |C|) times, it produces a segment of crossing depth 0. As
the segments of crossing depth 0 can no longer participate in a flip, the claimed
bound follows. ⊓⊔

3.2 One Point Inside or Outside a Convex Region

In this section, we prove Theorem 4. In the case of TSP tours [25,28] and red-
blue matchings [8], the preprocessing to untangle CC-segments takes O(n) flips.
However, in the case of trees [8] and in general (Theorem 3), the best bound
known is O(n log n). We first state a lemma used to prove Theorem 4.

Lemma 3. Consider a set C of points in convex position, and a multiset S of n
crossing-free segments with endpoints in C. Consider the multiset S ∪ {s} where
s is an extra segment with one endpoint in C and one endpoint q anywhere in
the plane. There exists an untangle sequence for S ∪ {s} of length O(n) using
only removal choice.

Proof. Iteratively flip the segment qp1 with the segment p2p3 ∈ S crossing qp1
the farthest from q. This flip inserts a CC-segment p1p2, which is impossible to
flip again, because the line p1p2 is crossing free. The flip does not create any
crossing between CC-segments. ⊓⊔

We are now ready to state and prove the theorem.

Theorem 4. Consider a multigraph (P, S) with P = C ∪T where C is in convex
position, where T = {q}, and such that there is no crossing pair of CC-segments
(possibly after a preprocessing for the convex case). Let n = |S| and t be the
number of T -segments. There exists an untangle sequence of length O(tn) using
only removal choice.

Proof. For each segment s with endpoint q with crossing, we apply Lemma 3 to
s and the CC-segments crossing s. Once a segment s incident to q is crossing
free, it is impossible to flip it again as we fall in one of the following cases. Let ℓ
be the line containing s.
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Case 1: If ℓ is crossing free, then it splits the multigraph in three partitions:
the segments on one side of ℓ, the segments on the other side of ℓ, and the segment
s itself.

Case 2: If ℓ is not crossing free and q is outside the convex hull of C, then s
is uncrossable.

Case 3: If q is inside the convex hull of C, then introducing a crossing
on s would require that q lies in the interior of the convex quadrilateral whose
diagonals are the two segments removed by a flip. The procedure excludes this
possibility by ensuring that there are no crossing pair of CC-segments, and,
therefore, that one of the removed segment already has q as an endpoint.

Therefore, we need at most n flips for each of the t segments incident to q. ⊓⊔

3.3 Two Points Not in Convex Position

In this section, we consider the case of two points that are not in convex position.
We present the proof for a matching with two points outside a convex region.
The remaining cases hold for general multigraphs but the proofs are long and
technical. These proofs are presented in the full version.

Theorem 5. Consider a matching (P, S) with P = C ∪ T where C is in convex
position, where T = {q, q′}, and such that there is no crossing pair of CC-
segments (possibly after a preprocessing for the convex case). Let n = |S|. There
exists an untangle sequence of length O(n) using only removal choice.

Proof. Throughout this proof, we partition the TT -segments respectively the
CT -segments into two types: TTI-segments and CTI-segments if they intersect
the interior of the convex hull of C and TTO-segments and CTO-segments
otherwise. Next, we describe the removal choices of an untangle sequence of a
matching such as the one shown in Figure 4(a). We decompose this sequence into
two phases.

Phase 1: handle a TT -segment. If the TT -segment s = qq′ is in S and
crosses no segment in S, then S is crossing free. If the TT -segment s = qq′ is in
S and crosses at least one segment in S (necessarily a CC-segment), then we flip
s = qq′ with any segment, say s′. The line containing s′ now splits S into one
matching with q and another matching with q′. Figures 4(b) and (c) show the
splitting line in the two possible insertion cases. We untangle each of these two
matchings using O(n) flips by Theorem 4. Figure 4(d) shows an example of the
matching S at the end of Phase 1.

Phase 2: handle CT -segments. We remove an arbitrary CT -segment s,
say the segment incident to q, from S. We then untangle S using O(n) flips
by Theorem 4, and insert the segment s back in S afterwards. Notice that all
crossings are now on s.

While s′, the segment of S that crosses s the farthest away from q, is a
CC-segment, we flip s and s′ and we set s to be the newly inserted CT -segment
incident to q. By Lemma 3, at most O(n) flips are performed in this loop.
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Fig. 4. Illustrations for the proof of Theorem 5. (a) Example of the matching S before
Phase 1. (b) & (c) Illustration of the two insertion cases of Phase 1. In both insertion
cases, the highlighted line slpits the matching. (d) Example of the matching S before
Phase 2. (e) & (f) & (g) The three sub-cases of Insertion case 1 of Phase 2. (h) Example
of the Insertion case 2 of Phase 2.

At the end of the loop, either s is crossing free, or s′ is adjacent to q′. Then,
we also flip s and s′.

Insertion case 1: If two CT -segments are inserted, then we examine the
two following three cases.

If s′ is a CTI-segment, then the line containing s′ now splits S into one
matching with q and another matching with q′ (Figure 4(e)). Again, we untangle
each of these two matchings using O(n) flips by Theorem 4.

If s′ is a CTO-segment and s is a CTI-segment, then s′ is the only segment
crossing s before the flip. Thus, after the flip, the line containing s splits S into
one matching with q and another matching with q′ (Figure 4(f)). Again, we
untangle each of these two matchings using O(n) flips by Theorem 4.

If both s and s′ are CTO-segments, then S is crossing free after the flip
(Figure 4(g)).

Insertion case 2: If the TT -segment qq′ is inserted (Figure 4(h)), then we
apply Phase 1 to untangle S using O(n) flips.

In total, we have used O(n) flips to untangle S. ⊓⊔

In the full version, we prove the following two theorems that handle the
remaining cases of two points that are not in convex position.

Theorem 6. Consider a multigraph (P, S) with P = C ∪T where C is in convex
position, the points of T are inside the convex hull of C, and T = {q, q′}. Let
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n = |S| and t be the number of T -segments. There exists an untangle sequence of
length O(dconv(n) + tn) using only removal choice, where dconv(n) is the number
of flips to untangle any multiset of at most n segments with endpoints in convex
position.

Proof. (Sketch) The untangle sequence is decomposed in five phases. At the end of
each phase, one more type of crossings is removed, and types of crossings removed
in the previous phases are not present, even if they may temporarily appear
during the phase. Phase 1. We untangle the CT -segments using O(dconv(n)) flips.
Phase 2. We untangle the CC-segments using O(dconv(n)) flips. Phase 3. We
remove the crossings between CT -segments and CC-segments that cross qq′ using
O(tn) flips. Phase 4. We remove the remaining crossings between CT -segments
and CC-segments using O(tn) flips. Phase 5. We remove the remaining crossings,
which are between qq′ and CC-segments, using O(dconv(n)) flips. ⊓⊔

Theorem 7. Consider a multigraph (P, S) with P = C ∪T where C is in convex
position, and T = {q, q′} such that q is outside the convex hull of C and q′ is
inside the convex hull of C. Let n = |S| and t be the number of T -segments. There
exists an untangle sequence of length O(dconv(n)+δ(q)δ(q′)n) = O(dconv(n)+t2n)
using only removal choice, where dconv(n) is the number of flips to untangle any
multiset of at most n segments with endpoints in convex position.

Proof. (Sketch) The untangle sequence is decomposed in four phases. Phase 1. We
untangle the CC-segments using dconv(n) flips. Phase 2. We remove the crossings
between Cq′-segments and CC-segments using O(tn) flips (Theorem 4). Phase 3.
We remove the crossings between Cq-segments using O(t2n) flips. Phase 4. We
remove the crossings between qq′ and CC-segments, using O(tn) flips. ⊓⊔

4 Removal and Insertion Choices

In this section, we show how to untangle a matching or a multigraph using both
removal and insertion choices. We start with the case of points outside the convex
separated by two parallel lines. Afterwards, we prove an important lemma and
apply it to untangle a matching with points outside the convex.

4.1 Separated by Two Parallel Lines

We start with the simpler case in which T is separated from C by two parallel
lines. In this case, our bound of O(n+ t|P |) interpolates the tight convex bound
of O(n) from [7] and the O(t|P |) bound from [9] for t arbitrary segments.

Theorem 8. Consider a multigraph (P, S) with P = C ∪ T1 ∪ T2 where C is
in convex position and there exist two horizontal lines ℓ1, ℓ2, with T1 above ℓ1
above C above ℓ2 above T2. Let n = |S|, T = T1 ∪ T2, and t be the number of
T -segments. There exists an untangle sequence of length O(n + t|P |) = O(tn)
using both removal and insertion choices.
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Proof. The algorithm runs in two phases.
Phase 1. We use removal choice to perform the flips involving a point in

T . At the end of the first phase, there can only be crossings among segments
with all endpoints in C. The insertion choice for the first phase is the following.
Let p1, . . . , p|P | be the points P sorted vertically from top to bottom. Consider a
flip involving the points pa, pb, pc, pd with a < b < c < d. The insertion choice is
to create the segments papb and pcpd. As in [9], we define the potential η of a
segment pipj as η(pipj) = |i− j|. Notice that η is an integer from 1 to |P | − 1.
We define η(S) as the sum of η(pipj) for pipj ∈ S with pi or pj in T . Notice that
0 < η(S) < t|P |. It is easy to verify that any flip involving a point in T decreases
η(S). Hence, the number of flips in Phase 1 is O(t|P |).

Phase 2. Since T is outside the convex hull of C, flips between segments
with all endpoints in C cannot create crossings with the other segments, which
are guaranteed to be crossing free at this point. Hence, it suffices to run an
algorithm to untangle a convex set with removal and insertion choice from [7],
which performs O(n) flips. ⊓⊔

4.2 Liberating a Line

In this section, we prove the following key lemma, which we use next. The lemma
only applies to matchings and it is easy to find a counter-example for multisets
(S consisting of n copies of a single segment that crosses pq).

Lemma 4. Consider a matching S of n segments with endpoints C in convex
position, and a segment pq separating C. Using O(n) flips with removal and
insertion choices on the initial set S ∪ {pq}, we obtain a set of segments that do
not cross the line pq.

Proof. For each flip performed in the subroutine described hereafter, at least one
of the inserted segments does not cross the line pq and is removed from S (see
Figure 5).

p
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p2n
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p2

p3 p4
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p2n
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p1
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p3 p4
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q
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p3 p4

p2n−1
p2n

Fig. 5. An untangle sequence of the subroutine to liberate the line pq (with n = 4).

Preprocessing. First, we remove from S the segments that do not intersect
the line pq, as they are irrelevant. Second, anytime two segments in S cross, we
flip them choosing to insert the pair of segments not crossing the line pq. One
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such flip removes two segments from S. Let p1p2 (respectively p2n−1p2n) be the
segment in S whose intersection point with pq is the closest from p (respectively
q). Without loss of generality, assume that the points p1 and p2n−1 are on the
same side of the line pq.

First flip. Elementary geometry yields that at least one of the segments
among pp2n−1, qp1, qp2 intersects all the segments of S (see full version).

Without loss of generality, assume that pp2n−1 is such a segment, i.e., that
pp2n−1 crosses all segments of S \{p2n−1p2n}. We choose to remove the segments
pq and p2n−1p2n, and we choose to insert the segments pp2n−1 and qp2n. As the
segment qp2n does not cross the line pq, we remove it from S.

Second flip. We choose to flip the segments pp2n−1 and p1p2. If n is odd,
we choose to insert the pair of segments pp1, p2p2n−1. If n is even, we insert the
segments pp2, p1p2n−1.

By convexity, one of the inserted segment (the one with endpoints in C)
crosses all other n− 2 segments. The other inserted segment (the one with p as
one of its endpoints) does not cross the line pq, so we remove it from S. Note
that the condition on the parity of n is there only to ensure that the last segment
p2n−3p2n−2 is dealt with at the last flip.

Remaining flips. We describe the third flip. The remaining flips are per-
formed similarly. Let s be the previously inserted segment. Let p3p4 be the
segment in S whose intersection point with pq is the closest from p. Without loss
of generality, assume that p3 is on the same side of the line pq as p1 and p2n−1.

We choose to flip s with p3p4. If s = p2p2n−1, we choose to insert the pair of
segments p2p4, p3p2n−1. If s = p1p2n−1, we choose to insert the pair of segments
p1p3, p4p2n−1.

By convexity, one inserted segment (the one with p2n−1 as an endpoint)
crosses all other n− 3 segments. The other inserted segment does not cross the
line pq, so we remove it from S. Note that the insertion choice described is the
only viable one, as the alternative would insert a crossing-free segment crossing
the line pq that cannot be removed. ⊓⊔

4.3 Points Outside a Convex Region

We are now ready to prove the following theorem, which only applies to matchings
because it uses Lemma 4.

Theorem 9. Consider a matching S consisting of n segments with endpoints
P = C ∪ T where C is in convex position and T is outside the convex hull of
C. Let t = |T |. There exists an untangle sequence of length O(t3n) using both
removal and insertion choices.

Proof. Throughout this proof, we partition the TT -segments into two types: TTI-
segment if it intersects the interior of the convex hull of C and TTO-segment
otherwise.

TT -segments. At any time during the untangle procedure, if there is a
TTI-segment s that crosses more than t segments, we apply Lemma 4 to liberate s
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from every CC-segment using O(n) flips. Let ℓ be the line containing s. Since λ(ℓ)
cannot increase (Lemma 1), λ(ℓ) < t after Lemma 4, and there are O(t2) different
TTI-segments, it follows that Lemma 4 is applied O(t2) times, performing a total
O(t2n) flips. As the number of times s is inserted and removed differ by at most
1 and λ(ℓ) decreases at each flip that removes s, it follows that s participates in
O(t) flips. As there are O(t2) different TTI-segments, the total number of flips
involving TTI-segments is O(t3).

We define a set L of O(t) lines as follows. For each point q ∈ T , we have
two lines ℓ1, ℓ2 ∈ L that are the two tangents of the convex hull of C that pass
through q. As the lines ℓ ∈ L do not separate C, the potential λ(ℓ) = O(t). When
flipping a TTO-segment q1q2 with another segment q3p with q3 ∈ T (p may be
in T or in C), we make the insertion choice of creating a TTO-segment q1q3
such that there exists a line ℓ ∈ L whose potential λ(ℓ) decreases. It is easy to
verify that ℓ always exist (see full version). Hence, the number of flips involving
TTO-segments is O(t2) and the number of flips involving TT -segments in general
is O(t3).

All except pairs of CC-segments. We keep flipping segments that are
not both CC-segments with the following insertion choices. Whenever we flip
two CT -segments, we make the insertion choice of creating a TT -segment. Hence,
as the number of flips involving TT -segments is O(t3), so is the number of flips
of two CT -segments.

Whenever we flip a CT -segment p1q with q ∈ T and a CC-segment p3p4,
we make the following insertion choice. Let v(q) be a vector such that the dot
product v(q) · q < v(q) · p for all p ∈ C, that is, v is orthogonal to a line ℓ
separating q from C and pointing towards C. We define the potential η(pxq)
of a segment with px ∈ C and q ∈ T as the number of points p ∈ C such that
v(q) · p < v(q) · px, that is the number of points in C before px in direction v. We
choose to insert the segment pxq that minimizes η(pxq) for x = {1, 2}. Let η(S)
be the sum of η(pxq) for all CT -segments pxq in S. It is easy to see that η(S)
is O(t|C|) and decreases at each flip involving a CT -segment (not counting the
flips inside Lemma 4).

There are two situation in which η(S) may increase. One is when Lemma 4
is applied, which happens O(t2) times. Another one is when a TT -segment and
a CC-segment flip, creating two CT -segments, which happens O(t3) times. At
each of these two situations, η(S) increases by O(|C|). Consequently, the number
of flips between a CT -segment and a CC-segment is O(t3|C|) = O(t3n).

CC-segments. By removal choice, we choose to flip the pairs of CC-segments
last (except for the ones flipped in Lemma 4). As T is outside the convex hull
of C, flipping two CC-segments does not create crossings with other segments
(Lemma 2). Hence, we apply the algorithm from [7] to untangle the remaining
segments using O(n) flips. ⊓⊔
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