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1 IMSIA, CNRS, EDF, ENSTA Paris, Institut Polytechnique de Paris
2 College of Engineering, Mathematics and Physical Sciences, University of Exeter

Arbitrary order expansions for the automatic reduction and solutions of nonlinear vibratory systems
have been developed successfully within the realm of the direct parametrisation of invariant manifolds.
Whereas the method has been used with high-order expansions and large dimensional systems, this
article proposes to look at the same problem from the opposite view angle. By using low-dimensional
systems, symbolic computations, analytical developments and numerical verifications, this contribution
analyzes the reduced dynamics appearing in cases where a single master mode is involved, reviewing
typical scenarios in nonlinear vibrations: primary resonance, sub- and superharmonic resonances and
parametric excitation. To achieve this task, the normal form style is preferentially used. A symbolic
open-source package is also provided to generalize the presented results to other styles, higher orders, and
different scenarios. It is shown how the low-order terms allow recovering the classical solutions given
by perturbation methods, and how the automated expansions allow one to generalize the analysis to
arbitrary orders. When analytical solutions are not tractable anymore, numerical solutions are employed
to underline how converged solutions are at hand when the validity limit of the expansions is not reached.
All the results presented in this paper can thus be used to better understand the nonlinear dynamical
solutions occurring in nonlinear vibrations, as well as from a system identification perspective, since the
normal form is the simplest dynamical system displaying a given resonance scenario.

Keywords nonlinear oscillations, normal form, parametrisation method, geometric nonlinearity, nonlinear resonance,
asymptotic expansion, symbolic calculation

1 Introduction
Since its introduction in an abstract framework in Cabré et al. (2003); Cabré et al. (2003); Cabré
et al. (2005); Haro et al. (2016), the parametrisation method for invariant manifolds has been
extensively used in order to produce arbitrary order expansions for model order reduction of
systems with smooth nonlinearities. It has been used in the field of nonlinear vibrations in Haller
et al. (2016), allowing demonstration of the existence and uniqueness of spectral submanifolds
(SSMs). Since then, it has then been successfully used for the reduced order modelling of large
dimensional problems discretized by the finite element (FE) procedure, see e.g. Jain et al. (2022); Li
et al. (2022); Vizzaccaro et al. (2022); Opreni et al. (2023); Martin et al. (2023); Vizzaccaro et al.
(2023).

Another powerful result given by the method is also to unify the two main approaches that
have been used in the past to compute nonlinear normal modes (NNMs). The center manifold
technique has been used in the works by Shaw and Pierre to derive reduced-order models based
on invariant manifold theory (Shaw et al. 1991; Shaw et al. 1993; Shaw et al. 1999), whereas the
normal form approach has been proposed in Jézéquel et al. (1991); Touzé et al. (2004); Touzé et al.
(2006) in order to arrive to close results. The exact link between the two approaches has been
only recently uncovered by using the parametrisation method for invariant manifolds, which
highlights that the two techniques are in fact two different styles of parametrisation that can be
used to solve for the invariance equation.

Whereas previous works on the subject focus on direct applications to large dimensional FE
problems to underline the impressive gains in computing time that can be expected from the
application of the method, this contribution aims to give more insights into the results that can be
awaited from a broad use of the method to derive accurate, high-order analytical results obtained
thanks to symbolic computations on low-dimensional systems. To that purpose, a symbolic
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package which relies on the previous developments of the MORFE project (MORFE stands for
Model Order Reduction for Finite Element problems) is released with the present article in order
to help the analyst in producing automated solutions up to arbitrary order. This paper illustrates
how such outputs can be used to analyze the high-order reduced dynamics in different scenarios
and using ad hoc assumptions. In particular, it will be clearly shown how the first-order solutions
are completely equivalent to standard perturbative solutions. When the solutions are analytically
tractable, they will be symbolically analyzed to show how one can easily get more accurate
approximations that take into account the next orders. Finally, when the analytical solutions
are too lengthy, it will be illustrated how one can then easily use numerical solutions to reach
convergence to a reference solution, once the validity limit of the local expansions is not hit. The
purpose of all these developments is thus to show the continuity that exists between low-order
perturbative techniques and high-order numerical solutions, showing to the analyst how the
method can be used in an integrated manner since providing both analytical approximations for
the design and system understanding phase, and accurate numerical solution.

The development and release of symbolic softwares for computing high-order normal form
solutions, center manifold approximations or automated perturbative techniques, is not new and
has been largely documented in the past, see for example Elphick et al. (1987); Roberts (1997);
Leung et al. (1998); Yagasaki (1998); Yagasaki (1999); Yagasaki et al. (1999); Huseyin et al. (2000);
Zhang et al. (2000); Leung et al. (2003) for different proposals. However, we believe that, by
replacing the normal form development in the more general framework of the parametrisation
method, and proposing a symbolic software in order to automatically derive such high-order
solutions, including also the graph style parametrisation, is a needed development in order to
give more physical insights into the powerful results obtained when using large dimensional
systems. Moreover, we will show in the course of the article that the results analyzed are general
and can be used to better understand the reduced dynamics of large-scale problems, as well as to
propose arbitrary order analytical solutions for nonlinear vibration problems. Moreover, thanks
to the original treatment of the non-autonomous forcing term recently proposed in Vizzaccaro
et al. (2023), the analysis can be enlarged to a high level of forcing and can treat any type of
classical resonance scenario occurring in nonlinear vibrations: primary resonance, subharmonic
and superharmonic resonance, parametric resonance, ...

Another target of the analytical developments presented in this contribution is to give a
detailed explanation of the different variants of normal forms that have been used in the literature
on nonlinear vibration, by proposing a unified presentation that also explains their advantages
and drawbacks. Indeed, while complex normal form (CNF) is generally in use in the mathematical
literature, see e.g. Haragus et al. (2009); Iooss et al. (1998); Jézéquel et al. (1991); Gabale et al.
(2009); Haller et al. (2016); Waswa et al. (2020), a real normal form has been introduced in Neild
et al. (2011); Neild et al. (2015) and analyzed in Vizzaccaro et al. (2022); Opreni et al. (2023) in the
context of the parametrisation method. Furthermore, another variant of the normal form has been
used in Touzé et al. (2004); Touzé et al. (2006); Touzé (2014) in order to keep real oscillator-like
equations throughout the process. This third variant is called the oscillator normal form (ONF)
and has been fruitful in order to make a direct link with the calculations of invariant manifolds
using the center manifold technique as proposed by Shaw and Pierre, see e.g. Touzé et al. (2021).

The software used to produce automatically the outputs of the high-order expansions
presented in this paper is called MORFE_Symbolic. It is based on the implementation of the
parametrisation method for nonlinear vibrating systems used in the MORFE project (Opreni
et al. 2022). A key feature is also the treatment of the forcing term and the time dependence of
the invariant manifolds, when harmonic excitation is considered. This automatic treatment
proposed in Vizzaccaro et al. (2023), allows very general results that are not limited to a first-order
expansion in the forcing amplitude as proposed in Breunung et al. (2018); Ponsioen et al. (2018);
Jain et al. (2022); Opreni et al. (2023). In particular, the nonlinear dependence upon the forcing
amplitude can be taken into account with the method proposed in Vizzaccaro et al. (2023), such
that all types of resonance scenarios including the superharmonic can be analyzed. The code
MORFE_Symbolic also allows one to start from a differential algebraic equation (DAE), extending
again the range of dynamical scenarios that can be analyzed. This feature will be illustrated
here in the case of the parametric excitation. A repository containing different versions of the
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symbolic code is provided in link with the paper, where both julia and Mathematica versions are
released. The julia version has the advantage of not using a proprietary software. However,
today’s symbolic computation capacities of the julia package are not as efficient as those of
Mathematica. Because of that, the more involved examples studied in this paper were treated
with the Mathematica version, or using a mix of both codes, due to processing time.

As a final introductory remark, most of the results presented in the paper aim to analyze
reduced-order dynamics by systematically understanding the effects of the terms produced by
asymptotic expansions. The code MORFE_Symbolic can also be used in a very general manner to
produce many more different cases than the ones analyzed here. We think that such a tool is a key
feature allowing reinterpretation of the grammar of nonlinear oscillations. Another interesting
feature of the results produced by the normal form approach is the creation of a dictionary
of the simplest dynamical systems containing a typical feature in nonlinear vibration. Such a
dictionary can be very efficiently used in the realm of system identification with data-driven
techniques. Thanks to the automated symbolic calculation, the method can be used to derive the
dynamical systems that will produce the feature of e.g. a superharmonic resonance or a 1:2
internal resonance with the minimal number of monomials.

The outline of the paper is as follows. Section 2 is a pedagogical introduction to the different
variants of normal form styles, which underlines some key features of the different techniques.
Section 3 contains most of the analysis by focusing on cases where the reduced dynamics contains
a single master mode. Typical scenarios in nonlinear vibrations are analyzed: primary resonance,
super and sub-harmonic resonance and parametric excitation. Section 4 extends some of these
results by accurately quantifying the effect that a slave mode can have on the reduced dynamics
with a single master mode. In order to restrict the length of the paper, this section is deliberately
shorter than the previous one and closes with an illustrative example.

2 Variants of normal form styles
This pedagogical introductory section aims to explain the different possible styles of normal
forms that have been proposed in the literature for nonlinear vibratory systems. To that purpose
and to make the presentation as simple as possible, the case of the unforced and undamped
Duffing oscillator equation is considered, as it is sufficient to understand the different variants.
Obviously, the findings extend naturally to coupled nonlinear oscillators, which will be studied in
the next sections.

The starting point is thus a conservative unforced cubic Duffing oscillator, reading

¥𝑢 + 𝜔2𝑢 + ℎ𝑢3 = 0. (1)

The three main variants that will be emphasized in this presentation are: the complex normal
form (CNF), the real normal form (RNF) and the oscillator normal form (ONF). The complex
normal form is recommended by mathematical textbooks (Iooss et al. 1998), and has been used
for example in Jézéquel et al. (1991); Haller et al. (2016); Waswa et al. (2020). The starting point is
to write Equation (1) at first-order, with a diagonalized linear part containing the eigenvalues
{±𝑖𝜔}. By doing so, complexification is enforced and the link to an oscillator-like equation is
lost. This is the main reason why alternative procedures have been proposed in the vibration
literature (namely RNF and ONF), in order to ease the realification and keep the link with
oscillator equations. Let us explain this in extensive detail on the Duffing equation.

To rewrite the system with a first-order diagonal linear part, the following linear change of
coordinate can be applied[

𝑢

𝑣

]
=

[
1 1
𝑖𝜔 −𝑖𝜔

] [
𝑦1

𝑦2

]
, (2)

where 𝑣 = ¤𝑢 has been introduced. Note that other linear transforms with different normalizations
can be applied here. Equation (1) then reads

¤𝑦1 = 𝑖𝜔𝑦1 + 𝑖 ℎ2𝜔
(
𝑦31 + 3𝑦21𝑦2 + 3𝑦1𝑦22 + 𝑦32

)
, (3a)

3



André de F. Stabile et al. Normal form analysis of nonlinear oscillator equations

¤𝑦2 = −𝑖𝜔𝑦1 − 𝑖
ℎ

2𝜔
(
𝑦31 + 3𝑦21𝑦2 + 3𝑦1𝑦22 + 𝑦32

)
. (3b)

In particular, one can see that, whereas only one monomial 𝑢3 is present in Equation (1), eight
monomials are in Equation (3). One can also remark that Equation (3b) is the complex conjugate
of Equation (3a). This is the direct consequence of the fact that the initial problem, Equation (1) is
second-order in time such that, when rewriting it as a first-order dynamical system, one of the
two equations, namely 𝑣 = ¤𝑢, is tautological.

The normal form procedure can be unfolded on Equation (3). It starts with introducing a
nonlinear change of coordinates between modal coordinates (𝑦1, 𝑦2) and normal coordinates
(𝑧1, 𝑧2) as

𝑦1 = 𝑧1 + 𝑎11𝑧
3
1 + 𝑎12𝑧

2
1𝑧2 + 𝑎13𝑧1𝑧

2
2 + 𝑎14𝑧

3
2 (4a)

𝑦2 = 𝑧2 + 𝑎21𝑧
3
1 + 𝑎22𝑧

2
1𝑧2 + 𝑎23𝑧1𝑧

2
2 + 𝑎24𝑧

3
2 . (4b)

The normal dynamics is also introduced as

¤𝑧1 = 𝑖𝜔𝑧1 + 𝑓11𝑧
3
1 + 𝑓12𝑧

2
1𝑧2 + 𝑓13𝑧1𝑧

2
2 + 𝑓14𝑧

3
2, (5a)

¤𝑧2 = −𝑖𝜔𝑧2 + 𝑓21𝑧
3
1 + 𝑓22𝑧

2
1𝑧2 + 𝑓23𝑧1𝑧

2
2 + 𝑓24𝑧

3
2, (5b)

where the linear part is preserved because the nonlinear change of coordinates Equation (4) is
identity-tangent.

The sixteen unknown coefficients {𝑎𝑖 𝑗 } and {𝑓𝑖 𝑗 }, 𝑖 = {1, 2} and 𝑗 = {1, . . . , 4}, are found by
plugging Equations (4) and (5) into Equation (3), and identifying coefficients for each monomial
of the normal coordinates. This leads to the four following equations, related to Equation (3a)

For 𝑧31 : (𝑖𝜔 + 𝑖𝜔 + 𝑖𝜔) 𝑎11 + 𝑓11 = 𝑖𝜔𝑎11 + 𝑖 ℎ2𝜔 , (6a)

For 𝑧21𝑧2 : (𝑖𝜔 + 𝑖𝜔 − 𝑖𝜔) 𝑎12 + 𝑓12 = 𝑖𝜔𝑎12 + 𝑖 3ℎ2𝜔 , (6b)

For 𝑧1𝑧22 : (𝑖𝜔 − 𝑖𝜔 − 𝑖𝜔) 𝑎13 + 𝑓13 = 𝑖𝜔𝑎13 + 𝑖 3ℎ2𝜔 , (6c)

For 𝑧32 : (−𝑖𝜔 − 𝑖𝜔 − 𝑖𝜔) 𝑎14 + 𝑓14 = 𝑖𝜔𝑎14 + 𝑖 ℎ2𝜔 , (6d)

while four other ones, not reported here for the sake of brevity, are derived from Equation (3b).
Equation (6) is an underdetermined system of four equations for eight unknowns, admitting

an infinity of possible solutions. Equations (6a), (6c) and (6d) can be solved easily for 𝑎11, 𝑎13
and 𝑎14, by imposing 𝑓11 = 𝑓13 = 𝑓14 = 0. This choice is the classical one to derive the normal
form of the system, with the idea of simplifying as much as possible the normal dynamics
Equation (5). A trivial resonance relationship occurs in Equation (6b), as a direct consequence of
the eigenspectrum composed of a purely complex conjugate pair {±𝑖𝜔}. The three variants of
normal form styles discussed herein depart on the choices made in order to solve Equation (6),
which can also be viewed as a more or less stringent interpretation of the resonance relationship.
This is detailed now for each of the three normal form styles.

2.1 The complex normal form style
The complex normal form (CNF) style is the classical treatment proposed in mathematical
textbooks to deal with purely imaginary complex eigenspectrum, see e.g. Iooss (1988); Haragus
et al. (2009); Wiggins (2003); Jézéquel et al. (1991). Referring to the simple case of the Duffing
equation, it amounts to cancel the three non-resonant monomials 𝑧31, 𝑧1𝑧22 and 𝑧32 in Equations (6a),
(6b) and (6d) with the choice 𝑓11 = 𝑓13 = 𝑓14 = 0. For the only resonant monomial 𝑧21𝑧2, then one
imposes 𝑎12 = 0 and 𝑓12 = 3𝑖ℎ/2𝜔 . This follows from a strict interpretation of the resonance
relationship stemming from the homological equations at each order. The generalisation of the
resonance relationship to arbitrary order can be found in many classical books, see e.g. Poincaré
(1892); Iooss (1988); Guckenheimer et al. (1983); Manneville (1990); Murdock (2003), and reads, for
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a dynamical systems of dimension 𝑛 with {𝜆1, . . . , 𝜆𝑛} the eigenvalues, and for an order 𝑝 of
nonlinearity:

𝜆𝑘 =
𝑛∑︁
𝑖=1

𝑚𝑖𝜆𝑖 , with 𝑚𝑖 ≥ 0 and
𝑛∑︁
𝑖=1

𝑚𝑖 = 𝑝. (7)

For conservative mechanical systems with an eigenspectrum composed of pairs of purely
imaginary numbers, trivial resonance relationships appear at each odd order in the normal form
computation. Focusing on the simple case of the Duffing equation with cubic nonlinearity, an
interesting feature of the CNF is that, for each odd order, only one resonant monomial stays in
the normal form, as a consequence of these trivial resonances. Symbolic calculation of the normal
form up to arbitrary order is possible thanks to the code MORFE_Symbolic, which has been used
to develop the calculations shown in this paper. As an illustration, we give below the CNF for the
Duffing equation up to order 11, which reads:

¤𝑧1 = i𝜔𝑧1 + i
3ℎ
2𝜔𝑧21𝑧2 − i

51ℎ2
24𝜔3𝑧

3
1𝑧

2
2 + i

1419ℎ3
27𝜔5 𝑧41𝑧

3
2 − i

47505ℎ4
210𝜔7 𝑧51𝑧

4
2 + 𝑖

438825ℎ5
211𝜔9 𝑧61𝑧

5
2, (8a)

¤𝑧2 = −i𝜔𝑧2 − i
3ℎ
2𝜔𝑧1𝑧

2
2 + i

51ℎ2
24𝜔3𝑧

2
1𝑧

3
2 − i

1419ℎ3
27𝜔5 𝑧31𝑧

4
2 + i

47505ℎ4
210𝜔7 𝑧41𝑧

5
2 − 𝑖

438825ℎ5
211𝜔9 𝑧61𝑧

5
2 . (8b)

As announced, one can observe that only one resonant monomial of the form 𝑧
𝑝+1
1 𝑧

𝑝
2 stays

in the normal dynamics for each odd order 2𝑝 + 1. Equation (8b) is the complex conjugate
of Equation (8a), and one can also observe the change of sign in each successive odd order
coefficients. For the sake of completeness, the nonlinear change of coordinates is reported
in Appendix A.

An essential property of the CNF solution for conservative systems is that an analytic
backbone curve is easily computed for any order. This property is known and has been for
example already used in Breunung et al. (2018). Let us recall why this property is essentially
linked to the CNF style. In order to derive physical characteristics of the original system, or
even just to compute numerical continuation solution on the reduced dynamics, a realification
procedure needs to be applied to the complex normal form as given e.g. in Equation (8), see for
example Haro et al. (2016); Vizzaccaro et al. (2022); Opreni et al. (2023) for general discussions.
Different realification procedures can be used, choosing for instance cartesian or polar coordinates.
A key feature of the CNF is to provide very simple expressions when realification with polar
coordinates is employed. Let us introduce the polar form of the normal coordinates as

𝑧1 =
1
2𝜌 e

𝑖𝛼 , (9a)

𝑧2 =
1
2𝜌 e

−𝑖𝛼 . (9b)

Since only one resonant monomial (𝑧𝑝+11 𝑧
𝑝
2 for the first equation and 𝑧

𝑝
1𝑧

𝑝+1
2 for the second

equation), is present for each odd order, a simple calculation shows that, whatever the order of
the expansion used for the normal form, the dynamical equation for the amplitude 𝜌 simply reads
¤𝜌 = 0. This is a direct consequence of the existence of the Lyapunov subcenter manifold (LSM)
densely filled with a family of periodic orbits that are parametrised by their amplitude 𝜌 . The
equation for the phase then contains all the important dynamical terms, and reads, for example,
up to order 11:

¤𝛼 = 𝜔 + 3ℎ
23𝜔 𝜌2 − 51ℎ2

28𝜔3 𝜌
4 + 1419ℎ3

213𝜔5 𝜌6 − 47505ℎ4
218𝜔7 𝜌8 + 438825ℎ5

221𝜔9 𝜌10. (10)

Note in this case that a simplification by 𝜌 is made in this last equation, this explains why an
odd order 2𝑝 + 1 in the normal form gives rise to a power 𝜌2𝑝 in the resulting equation for the
phase. Since 𝜌 is constant then this equation can be directly integrated and makes appear the
frequency-amplitude relationship of the conservative problem, also known as the backbone curve.
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With the help of the symbolic processor MORFE_Symbolic, high-order backbone curves can be
easily derived, an example is given below up to order 11:

𝜔𝑁𝐿 = 𝜔

(
1 + 3ℎ

23𝜔2 𝜌
2 − 51ℎ2

28𝜔4 𝜌
4 + 1419ℎ3

213𝜔6 𝜌6 − 47505ℎ4
218𝜔8 𝜌8 + 438825ℎ5

221𝜔10 𝜌10
)
. (11)

Note that this property is particularly important and meaningful since it applies to the solutions
derived by the parametrisation method using CNF. Consequently, even when dealing with FE
problems involving a very large number of degrees-of-freedom (dofs), an analytical backbone
curve can be derived when reducing the problem to a single NNM with CNF, meaning that no
extra calculation (like a continuation procedure) is needed to obtain the amplitude-frequency
relationship for the conservative problem (Breunung et al. 2018).

It is important to highlight, however, that the above backbone curve is written as a function
of the amplitude 𝜌 of the normal variables 𝑧1 and 𝑧2, and not that of the maximum value of the
physical displacement, which will be denoted 𝑢max in what follows. In order to obtain the physical
displacement amplitude, the normal coordinates polar representation can be inserted into the
nonlinear mapping displacement equation. Replacing for Equation (9) into Equation (A.1a),
limited here at order 3 for the sake of brevity, one easily obtains:

𝑢 = 𝜌 cos𝛼 + ℎ

32𝜔2 𝜌
3 cos 3𝛼 − 3ℎ

16𝜔2 𝜌
3 cos𝛼. (12)

Since all cosines are in phase, the displacement amplitude is simply given by the sum of
their coefficients obtained for 𝛼 = 0. This procedure is easily extendable to any order and is
automated in MORFE_Symbolic. Up to order 11, the relationship between the maximum physical
displacement amplitude 𝑢max and the amplitude of the normal coordinate 𝜌 finally reads:

𝑢max = 𝜌

(
1 − 5ℎ

25𝜔2 𝜌
2 + 25ℎ2

28𝜔4 𝜌
4 − 2781ℎ3

215𝜔6 𝜌6 + 90493ℎ4
220𝜔8 𝜌8 − 3234957ℎ5

225𝜔10 𝜌10
)
. (13)

With Equations (11) and (13) it is possible to find coordinate pairs (𝜔𝑁𝐿, 𝑢max) that yield
the backbone of the systems parametrized by 𝜌 . Despite the distinction between 𝑢max and 𝜌 , it
is interesting to note, nevertheless, that these two quantities coincide up to the second order,
which implies that Equation (11) can be used as an approximation for the backbone for small
displacement amplitudes.

As an illustration, let us show, for this simple example of the conservative cubic Duffing
oscillator, the convergence of the backbone curve for different orders 𝑜 of normal form expansion.
Figure 1 shows backbone curves obtained with CNF in the way described above up to order
𝑜 = 25. They are compared with the backbone in terms of 𝑢max found using an exact solution
based on Jacobi elliptic functions, available for example in Salas et al. (2014).

From Figure 1(a) it can be seen that there exists a maximum validity range for the approx-
imations given by the normal form expansion, corresponding in this case to a displacement
amplitude of approximately 𝑢max = 0.8. This is in line with the fact that the normal form relies on
a local theory, and this upper bound for validity limit has been explored for example in Lamarque
et al. (2012). Figure 1(b) shows the same backbone as a function of the amplitude 𝜌 of the normal
variable. Since Equation (13) gives 𝑢max as a function of 𝜌 , and since the analytical solution
with Jacobi elliptic functions is given for the amplitude 𝑢max, Equation (13) needs to be inverted
to plot the reference solution. This has been done in Figure 1(b) together with a first-order
approximation 𝑢max = 𝜌 which is frequently used in perturbation methods. This highlights
the difference between 𝑢max and 𝜌 as amplitudes are increasing. In this case, the first-order
approximation 𝑢max = 𝜌 can be used for amplitudes up to 𝜌 = 0.5, but higher orders cannot be
neglected after. It should be noted that Equation (13) is no longer valid once a certain level of
amplitude is reached, as can be seen by the sudden deviation of the black curve on Figure 1(b)
from where it is graphically expected to go. This deviation occurs at approximately 𝜌 = 0.9,
corresponding to 𝑢max = 0.85, and is clearly beyond the validity limit of the approximation.

As a last point of discussion, the effect of a viscous damping term in the Duffing equation is
investigated. The damping is appended to Equation (1) with a modal damping factor 𝜉 , thus
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Figure 1: Backbone curves for the Duffing oscillator up to order 𝑜 = 25 with a complex normal form style
and parameter values set as 𝜔 = 1, ℎ = 1. The backbone curves are compared with an analytical solution
based on Jacobi elliptic functions (Salas et al. 2014). (a) Comparison in terms of the maximum displacement
𝑢max. (b) Comparison as a function of the amplitude 𝜌 of the normal variable.

reading 2𝜉𝜔 ¤𝑢. The damping affects the eigenvalues which now read

𝜆1,2 = −𝜉𝜔 ± 𝑖𝜔
√︁
1 − 𝜉2 = 𝜔 (−𝜉 ± 𝑖𝛿), (14)

where 𝛿 =
√︁
1 − 𝜉2 has been introduced in order to ease the analytical expressions. A small

damping assumption is made such that (i) underdamped oscillations are considered (𝜉 < 1), and
(ii) the resonance check in the normal form procedure is done on the imaginary (oscillatory) parts
only, as proposed in Touzé et al. (2006); Haller et al. (2016); Vizzaccaro et al. (2022) for nonlinear
vibratory systems. Then the CNF up to order seven becomes:

¤𝑧1 = (i𝛿𝜔 − 𝜉𝜔) 𝑧1 + i
3ℎ
2𝛿𝜔 𝑧21𝑧2 − i

3ℎ2
(
17 − 14𝜉2 + 4i𝜉𝛿

)
8𝜔3𝛿2 (−2i𝛿 + 𝜉) 𝑧31𝑧

2
2

− 𝑖
3ℎ3

(
378𝜉6 − 48𝜉4 − 1420𝜉2 − 531𝑖𝛿𝜉 + 378𝑖𝛿𝜉5 − 207𝑖𝛿𝜉3 + 946

)
64𝜔5𝛿3 (9𝜉4 − 9𝜉2 − 4) 𝑧41𝑧

3
2, (15)

the second equation for 𝑧2 being the complex conjugate of this one. As one can see, taking the
damping into account leads to a direct and easy interpretation. The linear term follows the
change in the eigenvalue. The same resonant monomials are present in the normal form since
the resonance relationships are verified based on the assumption of small damping. Only the
coefficients are slightly modified by the damping ratio 𝜉 . Proceeding with realification, as done in
the undamped case, it is possible to find the following two equations, by considering the real and
imaginary parts of Equation (15) once 𝑧1 and 𝑧2 are substituted by their polar representation:

¤𝜌 = −𝜉𝜔𝜌 + 32𝜉ℎ2
(
2𝜉2 − 3

)
27𝛿2𝜔3 (1 + 3𝛿2) 𝜌

5 − 33𝜉ℎ3
(
42𝜉4 − 23𝜉2 − 59

)
212𝛿2𝜔5 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌

7 (16a)

¤𝛼 = 𝛿𝜔 + 3ℎ
23𝛿𝜔 𝜌2 + 3ℎ2

(
12𝜉2 − 17

)
26𝛿𝜔3 (1 + 3𝛿2) 𝜌

4 + 3ℎ3
(
189𝜉6 − 24𝜉4 − 710𝜉2 + 473

)
211𝛿𝜔5 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌6. (16b)

Equation (16a) gives the decay rate of the oscillation amplitude. It should be noted that up to
the first order, the equation can be integrated to give the usual exponential decay predicted by
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the linear theory. A nonlinear damping ratio 𝜉𝑁𝐿 can thus be defined by dividing Equation (16a)
by −𝜌𝜔 . A nonlinear instantaneous frequency 𝜔𝑁𝐿 can also be derived from Equation (16b)
through ¤𝛼 = 𝜔𝑁𝐿 , yielding the two equations

𝜉𝑁𝐿 = 𝜉

(
1 − 32ℎ2

(
2𝜉2 − 3

)
27𝛿2𝜔4 (1 + 3𝛿2) 𝜌

4 − 33ℎ3
(
42𝜉4 − 23𝜉2 − 59

)
212𝛿2𝜔6 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌

6
)

(17a)

𝜔𝑁𝐿 = 𝛿𝜔

(
1 + 3ℎ

23𝛿2𝜔2 𝜌
2 + 3ℎ2

(
12𝜉2 − 17

)
26𝛿2𝜔4 (1 + 3𝛿2) 𝜌

4 + 3ℎ3
(
189𝜉6 − 24𝜉4 − 710𝜉2 + 473

)
211𝛿2𝜔6 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌6

)
. (17b)

Equation (17b) can be viewed as a damped backbone curve, that smoothly perturbs from
the undamped case when 𝜉 ≠ 0 (Touzé et al. 2006a; Llave et al. 2019). It gives an analytical
formula for taking the damping into account in the backbone curve and quantitatively compares
conservative and damped cases. Equation (17a) underlines that the linear viscous damping creates
a nonlinear decay rate. Its effect will however appear at large amplitudes since the first order in 𝜌
is a power 4.

In order to better understand the evolution of the above quantities, the terms inside the
brackets in Equations (17a) and (17b) are plotted as a function of 𝜌 for 𝜔 = 1 and ℎ = 1 in
Figure 2(a) and Figure 2(b). From the figures, it is possible to notice that the inclusion of damping
does not alter significantly the shape of the backbones up to 𝜌 = 0.8, which corresponds to the
validity limit of the asymptotic expansion.

It is also worth mentioning that, as opposed to the undamped case, obtaining the maximum
physical displacement 𝑢max as a function of amplitude 𝜌 is not feasible analytically. This is so
because the coefficients of the nonlinear mappings become complex. Both cosines and sines
appear in the equation for 𝑢 (𝜌) (analogous to Equation (12)), hence no simple analytical solution
exists for 𝑢max.
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Figure 2: (a) Damped backbone curve and (b) nonlinear damping ratio for the Duffing oscillator with
increasing values of the damping ratio 𝜉 . The results are obtained using a complex normal form style, and
parameter values were set as 𝜔 = 1 and ℎ = 1.

As a summary, the CNF shares a number of advantageous characteristics. It has a lot of
symmetries, leads to the most parsimonious representation of the normal dynamics, and analytical
backbone curves are directly attainable with polar realification. The only drawback is that the
normal dynamics is expressed with complex coordinates. In order to propose normal form
calculations that stay in a real formulation, different variants have thus been proposed in the past.
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2.2 The real normal form
The real normal form (RNF) has been first introduced by Neild and Wagg (Neild et al. 2011;
Neild et al. 2015; Liu et al. 2019; Nasir et al. 2021; Wagg 2022), and reformulated in the context
of the parametrisation method in Vizzaccaro et al. (2022); Opreni et al. (2023). Note that the
denomination RNF is not used by Neild and Wagg who called the method DNF for direct normal
form, see e.g. Elliott et al. (2018). In their case, the adjective direct was used to mean that the
normal form technique is directly applied to second-order problems in time that are under study
for mechanical vibration. Also in their approach, the developments were slightly different from
the one presented herein since the target was to obtain time-domain approximations of the
solutions. On the other hand, the method has been named RNF in Vizzaccaro et al. (2022) in order
to keep the adjective direct to specify calculations that can be operated from the physical space
and not the modal space.

The main idea of the RNF consists of keeping two monomials as resonant in Equation (3a).
In addition to the term 𝑧21𝑧2, which is trivially resonant and kept in the CNF, the monomial
𝑧1𝑧

2
2 is also defined as a resonant one. The origin of this choice lies in the fact that the goal of

the calculation proposed in Neild et al. (2011); Neild et al. (2015) was to apply the normal form
computation to second-order problem, which gives additional constraint to the developments.
Since the second derivative of the mapping with respect to time needs to be computed, the
homological equations need to be written with these terms, thus making naturally appear squares
of the eigenfrequencies in the resonance relationships. This can also be seen in the homological
equations derived in Vizzaccaro et al. (2022) that have been rewritten only for the displacement
mapping, by using the relationship that exists at any order between the displacement and
the velocity mappings. In this case, the ill-conditioning of the term in front of the mapping,
which is due to resonance relationships, appears with squared values. Rewriting the resonance
relationships Equation (7) with squares leads to:

(𝜆𝑘 )2 =
(

𝑛∑︁
𝑖=1

𝑚𝑖𝜆𝑖

)2
, with 𝑚𝑖 ≥ 0 and

𝑛∑︁
𝑖=1

𝑚𝑖 = 𝑝, (18)

which is indeed the resonance relationship used to derive the RNF. For the sake of illustration,
the RNF of the Duffing equation is here given up to order 7, it reads

¤𝑧1 = i𝜔𝑧1 + i
3ℎ
2𝜔 𝑧21𝑧2 + i

3ℎ
2𝜔 𝑧1𝑧

2
2 − i

15ℎ2
24𝜔3 𝑧

3
1𝑧

2
2 − i

3ℎ2
23𝜔3 𝑧

2
1𝑧

3
2 + i

267ℎ3
27𝜔5 𝑧

4
1𝑧

3
2 − i

3ℎ3
27𝜔5 𝑧

3
1𝑧

4
2, (19a)

¤𝑧2 = −i𝜔𝑧2 − i
3ℎ
2𝜔 𝑧21𝑧2 − i

3ℎ
2𝜔 𝑧1𝑧

2
2 + i

3ℎ2
23𝜔3 𝑧

3
1𝑧

2
2 + i

15ℎ2
24𝜔3 𝑧

2
1𝑧

3
2 + i

3ℎ3
27𝜔5 𝑧

4
1𝑧

3
2 − i

267ℎ3
27𝜔5 𝑧

3
1𝑧

4
2, (19b)

while the nonlinear mapping is given in Appendix B. As a consequence of the choice retained for
fulfilling the resonance relationship, the same monomials now appear on the two lines of the
normal dynamics. Interestingly, the cubic order terms share the same coefficients. This property
is useful in order to retrieve an oscillator equation when coming back to real coordinates using a
cartesian representation. Let us define the cartesian real coordinates (𝑎1, 𝑎2) as

𝑎1 = 𝑧1 + 𝑧2, (20a)

𝑎2 =
𝑧1 − 𝑧2

𝑖
. (20b)

By stopping the RNF developments in Equation (19) at order three, one can see that the dynamics
for 𝑎1 is simple and reads ¤𝑎1 = −𝜔𝑎2. Consequently, an oscillator equation can be written for the
cartesian coordinates (𝑎1, 𝑎2) as

¥𝑎1 + 𝜔2𝑎1 + 3ℎ
4 (𝑎31 + 𝑎1

¤𝑎21
𝜔2 ) = 0. (21)

Whereas the CNF was conveniently realified with polar coordinates, the RNF is better suited
for realification using cartesian coordinates, thanks to the symmetry properties appearing in the
coefficients of Equation (19). Unfortunately the nice property ¤𝑎1 = −𝜔𝑎2 is completely linked to
the fact that cubic coefficients are all equal. From order 5, this property is lost, but realification is
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still easy to manage since the two different coefficients sum up and hence can be factorized. At
order 7, one obtains:

¤𝑎1 = −𝜔𝑎2 + 9ℎ2
256𝜔3𝑎

4
1𝑎2 +

9ℎ2
128𝜔3𝑎

2
1𝑎

3
2 +

9ℎ2
256𝜔3𝑎

5
2

− 135ℎ3
4096𝜔5𝑎

6
1𝑎2 −

405ℎ3
4096𝜔5𝑎

4
1𝑎

3
2 −

405ℎ3
4096𝜔5𝑎

2
1𝑎

5
2 −

135ℎ3
4096𝜔5𝑎

7
2, (22a)

¤𝑎2 = 𝜔𝑎1 + 3ℎ
4𝜔𝑎31 +

3ℎ
4𝜔𝑎1𝑎

2
2 −

21ℎ2
256𝜔3𝑎

5
1 −

21ℎ2
128𝜔3𝑎

3
1𝑎

2
2 −

21ℎ2
256𝜔3𝑎1𝑎

4
2

+ 33ℎ3
1024𝜔5𝑎

7
1 +

99ℎ3
1024𝜔5𝑎

5
1𝑎

2
2 +

99ℎ3
1024𝜔5𝑎

3
1𝑎

4
2 +

33ℎ3
1024𝜔5𝑎1𝑎

6
2. (22b)

From these two equations, one can try to recover an oscillator-like equation. Deriving the
first equation with respect to time, replacing ¤𝑎2 by the second expression, and stopping the
developments at order 5, one obtains:

¥𝑎1 + 𝜔2𝑎1 + 3ℎ
4

(
𝑎31 + 𝑎1𝑎

2
2
) − 15ℎ2

128𝜔2
(
𝑎51 + 2𝑎31𝑎22 + 𝑎1𝑎

4
2
)
= 0. (23)

This underlines that, from order 5, a closed-form expression involving only 𝑎1 is not possible any-
more such that two equations need to be kept with both 𝑎1 and 𝑎2. Equation (22) or Equation (23)
can then be solved with a perturbative approach or a numerical continuation method to derive
the backbone curve.

All these results show that the RNF can be advantageously used with cartesian coordinates
for realification. It can be easily automatized since the choice of resonant monomials derives
from a broader interpretation of the resonance relationship. Arbitrary order solutions are at hand
and can be computed thanks to MORFE_Symbolic. However, the resulting equations are not
oscillator-like from order 5. Besides, it seems that no simple and exact solution allows giving an
analytical backbone curve at arbitrary order, as was the case for the CNF. To draw out such a
solution a few more assumptions need to be made, following for example the approximations
used in Neild et al. (2011); Neild et al. (2015). This is illustrated in Appendix B.

2.3 The oscillator normal form
The oscillator normal form (ONF) has been first introduced in Touzé (2003); Touzé et al. (2004);
Touzé et al. (2006); Touzé (2014), with the main idea of keeping oscillator equations without using
any complex formulation. To that purpose, the linear part is not made diagonal with complex
entries, but stays under its anti-diagonal formulation, see Touzé et al. (2004). To better understand
how the ONF can be interpreted from the previous example where complexification is used, the
key point is to understand that all complex monomials appearing due to the complexification
of a real one, need to be kept in the analysis, in order to make possible the come back to
oscillator-like equations. For the Duffing equation, the real monomial 𝑢3 in Equation (1) gives rise
to 8 monomials for 𝑦1 and 𝑦2 as shown in Equation (3). Since all these are mandatorily needed to
be able to reconstruct 𝑢3, it means that no terms in Equation (6) will be cancelled. The choice
𝑎11 = 𝑎12 = 𝑎13 = 𝑎14 = 0 is selected. As a consequence, the Duffing equation Equation (1) is
under its oscillator normal form. In ONF, the trivially resonant monomial is 𝑢3 and cannot be
cancelled, but many other terms, which are not linked to trivial resonances, can be cancelled in
the process. In particular, all quadratic terms are not resonant and can be eliminated thanks to a
nonlinear change of coordinate, see Touzé et al. (2004) for general discussions and Touzé (2014)
for examples and classification of nonlinear terms thanks to this interpretation of the resonance
relationship.

One of the main advantages of the ONF is thus to keep oscillator-like equations throughout
the process. The nonlinear change of coordinate is given between two real coordinates that are
homogeneous to a displacement and a velocity, whereas this interpretation is lost when using
complex formulations. This choice came along with other advantages. For example, only the ONF
allows drawing out a term-by-term comparison of the NNM calculation using either the center
manifold technique as proposed by Shaw and Pierre, or the normal form approach, see e.g. Touzé
et al. (2004); Touzé et al. (2021) for such discussions. Thanks to the ONF, a direct comparison with
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the quadratic manifold method with modal derivatives has also been made possible. Indeed, since
real coordinates are used in the two approaches, term-by-term comparisons are at hand, which
allows understanding that the quadratic manifold is a simplification of the general formula given
by ONF, see Vizzaccaro et al. (2021); Shen et al. (2021); Touzé et al. (2021) for more details. A final
advantage of the ONF is that it can be rewritten from physical coordinates, which allows deriving
a non-intrusive version of the reduction technique using the normal form, which has been named
DNF for direct normal form, see Vizzaccaro et al. (2021); Opreni et al. (2021).

However, numerous drawbacks are linked to this formulation. First, it is difficult to translate
the choice on the resonant monomial as a broader algebraic interpretation of the resonance
relationships, as it has been possible for the RNF with Equation (18). As a consequence, it appears
very difficult (and maybe not possible) to generalize the ONF to arbitrary order and automate
its computation. As an illustration of these complications, one can refer to Shami et al. (2022)
to see how the ONF with resonant quadratic terms can be computed up to order three. As a
consequence, the ONF will not be much commented on in the rest of this paper, and is not
included in MORFE_Symbolic.

3 High-order solutions for single-degree-of-freedom systems
with forcing and damping

This section extends the analysis using normal form expansions to illustrate how this formalism
allows an understanding of the main features of nonlinear oscillations. Primary and secondary
resonances will be analyzed. The first case under study is a Duffing oscillator with quadratic and
cubic nonlinearities, derived to explain how the even order nonlinear terms can be cancelled and
how the high-order terms on the backbone can be analyzed in terms of hardening/softening
behaviour.

3.1 Duffing oscillator with quadratic and cubic nonlinearities
In this section, the results of the previous section are generalized to a Duffing equation with
quadratic and cubic nonlinearities:

¥𝑢 + 𝜔2𝑢 + 𝑔𝑢2 + ℎ𝑢3 = 0. (24)

Using the automated symbolic development provided by MORFE_Symbolic, the complex
normal form (CNF) can be written up to arbitrary order. The first step consists in diagonalizing
the linear part using Equation (2), then the nonlinear mappings and the reduced dynamics are
computed. For the sake of illustration, the normal dynamics up to order 7 is shown here:

¤𝑧1 = i𝜔𝑧1 + i
−10𝑔2 + 9ℎ𝜔2

6𝜔3 𝑧21𝑧2 + i
−3140𝑔4 + 8388𝑔2ℎ𝜔2 − 1377ℎ2𝜔4

432𝜔7 𝑧31𝑧
2
2

+ i
−523960𝑔6 + 2186724𝑔4ℎ𝜔2 − 1913274𝑔2ℎ2𝜔4 + 114939ℎ3𝜔6

10368𝜔11 𝑧41𝑧
3
2 . (25)

while the associated nonlinear mapping is reported in Appendix C. For the sake of brevity,
only the equation for 𝑧1 is shown in Equation (25), the second equation for 𝑧2 being simply its
complex conjugate. Rewriting the real coefficients appearing in Equation (25) as 𝑓 (𝑝 ) , for odd 𝑝
corresponding to the odd monomial remaining:

¤𝑧1 = i𝑓 (1)𝑧1 + i𝑓 (3)𝑧21𝑧2 + i𝑓 (5)𝑧31𝑧
2
2 + . . . , (26)

the backbone is analytic and reads, using a polar representation for (𝑧1, 𝑧2) as in Section Section 2.1,
Equation (9):

𝜔𝑁𝐿 = 𝑓 (1) + 𝑓 (3)
(𝜌
2

)2
+ 𝑓 (5)

(𝜌
2

)4
+ . . . (27)

Given the expressions of the coefficients 𝑓 (𝑝 ) shown in Equation (25), one can see that, if one
assumes 𝑔 ≥ 0 and ℎ ≥ 0, the quadratic and cubic nonlinearities play opposite roles in defining
the hardening/softening behaviour. This has been used for a long time to predict, only from the
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sign of 𝑓 (3) , the type of nonlinearity for structures, using for example the oscillator normal form,
see e.g. Touzé et al. (2004); Touzé et al. (2006); Touzé et al. (2006); Touzé et al. (2008). Arbitrary
order expansions allow a finer understanding of the hard/soft transition, and have already been
used for rotating beams in Martin et al. (2023).

Figure 3 shows the behaviour of the coefficients 𝑓 (𝑝 ) for 𝑝 = 3, 5, 7 and 9. 𝑓 (3) changes sign
only once (for the case under study, with ℎ = 1 fixed and varying 𝑔), meaning that the transition
from hardening to softening behaviour occurs at 𝑔 = 3

√︁
ℎ/10. On the other hand, higher-order

coefficients are polynomials of higher degrees in the coefficients 𝑔 and ℎ and thus have numerous
zeros, see Figure 3(a-b). Figure 3(c) shows the backbone curves obtained just before and after the
transition of the cubic coefficient (while the next orders don’t change sign), namely for 𝑔 = 0.85
(𝑓 (3) > 0, and 𝑓 (5) > 0, 𝑓 (7) < 0, 𝑓 (9) < 0), and 𝑔 = 1 (𝑓 (3) < 0, and 𝑓 (5) > 0, 𝑓 (7) < 0, 𝑓 (9) < 0).
A reference solution obtained numerically by continuation is compared to two truncations,
respectively to orders 7 and 9, of the analytical backbone curve. For 𝑔 = 0.85, the negative signs of
𝑓 (7) and 𝑓 (9) change the high amplitude behaviour of orders 7 and 9 truncations that depart from
reference, needing orders higher than 9 to achieve convergence up to the selected amplitudes. For
𝑔 = 1, the positive coefficient 𝑓 (5) plays the major role since 𝑓 (3) is close to zero.

Two other cases where the dominant behaviour is softening are shown in Figure 3(d) for
𝑔 = 1.5 and 𝑔 = 1.65, around the change of sign of 𝑓 (5) . Again, in such a situation, the mixed signs
of the different truncations ask for high-order development to reach convergence. Nevertheless,
the qualitative change of behaviours is captured. Also, the validity limit of the normal form
development is probably impacted by the different values of quadratic and cubic coefficients.
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Figure 3: Hardening/softening behaviour for the Duffing oscillator with quadratic and cubic nonlinearities.
A complex normal form style is used with parameter values set as 𝜔 = 1, ℎ = 1. (a) behaviour of the
coefficients 𝑓 (𝑝 ) as a function of 𝑔. (b) zoom on the area highlighted by the black dashed box in (a). (c-d)
Backbone curves for different values of 𝑔. A reference solution obtained by numerical continuation is
compared to the backbone curves obtained with CNF up to orders 𝑜 = 7 and 𝑜 = 9.

For the sake of completeness, the RNF and ONF analysis are reported in Appendix D. In these
two cases, automatic analysis of the backbone curve up to high order is more difficult.

3.2 Effect of forcing and damping
In this section, an analysis of the forced and damped Duffing oscillator with high-order normal
form expansions is developed. The goal is to cover the usual results analyzed in nonlinear
vibration theory by considering primary and secondary resonance, and the emphasis is put on
showing how the normal form procedure allows generalizing perturbative results of current use
in nonlinear vibration theory. All these results will then be helpful to understand and analyze
reduced-order models with a single nonlinear normal mode assumption. The starting point is
thus a forced-damped Duffing oscillator:

¥𝑢 + 𝜔2𝑢 + 2𝜉𝜔 ¤𝑢 + ℎ𝑢3 = 𝜅

2

(
e+𝑖Ω𝑡 + e−𝑖Ω𝑡

)
, (28)

12



André de F. Stabile et al. Normal form analysis of nonlinear oscillator equations

where the forcing has already been rewritten with complex notation, while a viscous damping is
introduced with the damping ratio 𝜉 . We start by considering the case of a forcing frequency Ω
which is far from the primary and secondary resonances.

3.2.1 Non-resonant excitation
The case of an out-of-resonance forcing frequency Ω leads to a minimal number of resonant
monomials in the normal form, since only the trivial resonances are considered. Thanks to the
efficient treatment of the non-autonomous forcing term presented in Vizzaccaro et al. (2023), an
arbitrary order expansion in terms of the power of the non-autonomous term is also implemented
in MORFE_Symbolic. This key feature allows computing and analyzing the high-order terms
produced by the forcing in the normal form, a case that is not considered for example in Breunung
et al. (2018); Opreni et al. (2023); Jain et al. (2022), where only linear terms of the forcing are
included.

The method proposed in Vizzaccaro et al. (2023) to deal with the forcing term is to make the
system autonomous by adding two additional coordinates, namely 𝑧3 = e+𝑖Ω𝑡 and 𝑧4 = e−𝑖Ω𝑡 ,
augmenting the size of the original system but excluding the added variables from the sought
change of coordinates. This leads to an efficient reformulation of the parametrisation method
asking for slight modifications in the algorithm as compared to the autonomous case. When
a single master mode (NNM) is selected, the reduced dynamics depends on four coordinates
(𝑧1, 𝑧2, 𝑧3, 𝑧4), which can be easily reduced to (𝑧1, 𝑧2) only by replacing 𝑧3 = e+𝑖Ω𝑡 and 𝑧4 = e−𝑖Ω𝑡 .

Another key feature of the method proposed in Opreni et al. 2023; Vizzaccaro et al. 2023, to
handle the external periodic forcing, is to compute the parametrisation for only one value of the
external forcing. Rigorously speaking, the parametrisation needs to be computed for each forcing
frequency, as proposed for example in Jiang et al. 2005, to produce exact solutions. However, to
alleviate the associated computational burden, the parametrisation can be computed for a single
excitation frequency Ω𝑝 , and this ROM can be used to draw out rapidly frequency response
curves (FRC), assuming that the dependence upon Ω is small. This strategy is also adopted here
to propose analytical solutions obtained with symbolic computations that lend themselves well to
analysis.

The complex normal form (CNF) up to order three for the forced, undamped (𝜉 = 0) Duffing
oscillator Equation (28), and for this out-of-resonance case, is computed at a single excitation
frequency Ω𝑝 = Ω. It reads

¤𝑧1 = i𝜔𝑧1 + i
3ℎ
2𝜔𝑧21𝑧2 + i

3ℎ𝜅2
4𝜔 (Ω2 − 𝜔2)2𝑧1𝑧3𝑧4, (29)

where again only the first equation is shown, the second equation for 𝑧2 being the complex
conjugate. At this order, only two resonant monomials are present in the CNF. The first one, 𝑧21𝑧2,
has already been commented in Section Section 2.1 in Equation (8). The second one, 𝑧1𝑧3𝑧4,
depends on the forcing, and scales as the amplitude of the forcing squared, 𝜅2. This monomial
is very interesting since it appears only due to the complete treatment of the forcing shown
in Vizzaccaro et al. (2023). Since 𝑧3 = e+𝑖Ω𝑡 and 𝑧4 = e−𝑖Ω𝑡 , the monomial can be interpreted as
having a direct consequence on the nonlinear oscillation frequency. In particular, it shows the
dependence of the free oscillation frequencies upon the forcing amplitude. For such conservative
dynamics, the system’s response is characterized by a quasi-periodic behaviour, stemming from
the contributions of the free oscillations and of the forced response, whose effect is completely
embedded into the nonlinear mapping equations. As commented next, the free oscillation term
is generally related to the transient and is damped out when losses are taken into account.
Interestingly, the monomial 𝑧1𝑧3𝑧4 corresponds to a trivial resonance and will thus be present in
all normal form dynamics that will be considered in the next sections (primary and secondary
resonance). It will be thus further analyzed, in particular for secondary resonances, since in
this case the forcing is not assumed to be small such that the dependence of the oscillation
frequencies upon forcing amplitude is not negligible.

The nonlinear mapping up to order 3, leading to Equation (29), reads:

𝑢 = 𝑧1 + 𝑧2 + ℎ

8𝜔2𝑧
3
1 −

3ℎ
4𝜔2𝑧

2
1𝑧2 −

3ℎ
4𝜔2𝑧1𝑧

2
2 +

ℎ

8𝜔2𝑧
3
2 −

𝜅

2 (Ω2 − 𝜔2) (𝑧3 + 𝑧4)
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− 3ℎ𝜅
2 (Ω2 − 𝜔2) (Ω + 𝜔) (Ω + 3𝜔)𝑧

2
1𝑧3 −

3ℎ𝜅
2 (Ω2 − 𝜔2) (Ω − 𝜔) (Ω − 3𝜔)𝑧

2
1𝑧4

− 3ℎ𝜅
(Ω2 − 𝜔2)2

𝑧1𝑧2(𝑧3 + 𝑧4). (30)

The velocity mapping is not shown here for the sake of brevity, and also because it can be
retrieved from the derivation of Equation (30) with respect to time, see the remark in Appendix A.
Note also that Equation (30) has been truncated to O(𝜅2) terms only for the sake of brevity.

Equation (30) shows that one recovers the autonomous deformation of the associated invariant
manifolds, already present in Equation (A.1), but also non-autonomous deformations, driven by
the added coordinates 𝑧3 and 𝑧4. The linear terms in 𝑧3 and 𝑧4 in the first line of Equation (30)
accounts for a rigid-body rotation of the invariant manifold, already commented in Opreni et al.
(2023). Then the terms of the next two lines show that together with this rigid-body motion, the
manifold shows deformations along the phase of the forcing.

The symbolic code MORFE_Symbolic can be used to derive higher-order approximations of
the normal form and nonlinear change of coordinates in this case of a non-resonant excitation.
Interestingly, since only trivially resonant monomials are in the normal form, the dynamics will
be composed of two different terms. First, the autonomous terms with resonant monomials will
strictly follow those appearing in the unforced case, see Equation (8) for an example up to order 9.
In addition to these, all the trivially resonant monomials will reappear, multiplied by a factor of
the form 𝑧

𝑝
3𝑧

𝑝
4 with 𝑝 ≥ 1. Higher order results are not shown here but can be automatically

produced via MORFE_Symbolic.
Finally, the effect of the viscous damping term is investigated to close this case of non-resonant

excitation. With the damping, the eigenvalues of Equation (28) reads 𝜆1,2 = −𝜉𝜔 ± 𝑖𝜔
√︁
1 − 𝜉2 =

𝜔 (−𝜉 ± 𝑖𝛿), see Equation (14). The CNF up to order three for the non-resonant response reads:

¤𝑧1 = (i𝛿𝜔 − 𝜉𝜔) 𝑧1 + i
3ℎ
2𝛿𝜔 𝑧21𝑧2 +

3𝑖ℎ𝜅2
4𝛿𝜔 ((Ω2 − 𝜔2)2 + 4𝜉2𝜔2Ω2)𝑧1𝑧3𝑧4, (31)

the second equation for 𝑧2 being the complex conjugate of this one. The real part in the first
monomial shows that these oscillations will be damped out. Consequently, as commented
in Opreni et al. (2023), the reduced dynamics is trivial and all the effects are embedded in the
nonlinear mapping, where only the terms related to 𝑧3 and 𝑧4 will remain.

3.2.2 Primary resonance
The case of a resonant forcing with Ω ≃ 𝜔 is here detailed. In this case of primary resonance, it
has been selected to compute the parametrisation at the value of the damped oscillation frequency
𝛿𝜔 (imaginary part of the eigenvalue), such that Ω𝑝 = 𝛿𝜔 . With this choice and taking the
damping into account, the complex normal form (CNF) at primary resonance up to order 3 reads:

¤𝑧1 = 𝑓1𝑧1 + 𝑓2𝑧
2
1𝑧2 + 𝑓3𝑧3 + 𝑓4𝑧

2
1𝑧4 + 𝑓5𝑧1𝑧2𝑧3 + 𝑓6𝑧1𝑧3𝑧4 + 𝑓7𝑧2𝑧

2
3 + 𝑓8𝑧

2
3𝑧4, (32)

where only the first equation is given, the second on 𝑧2 being the complex conjugate. The
coefficients 𝑓𝑗 , 𝑗 = 1, . . . , 8, read:

𝑓1 = 𝜆1, 𝑓2 = 𝑖
3ℎ
2𝛿𝜔 , 𝑓3 = −𝑖 𝜅

4𝛿𝜔 , 𝑓4 = 𝑖
3ℎ𝜅

8𝛿2𝜔3 (2𝛿 + 𝑖𝜉) (33a)

𝑓5 = 𝑖
3ℎ𝜅

4𝛿2𝜔3 (2𝛿 − 𝑖𝜉) , 𝑓6 = 𝑖
3ℎ𝜅2

16𝛿3𝜔5 (4𝛿2 + 𝜉2) , (33b)

𝑓7 = 𝑖
3ℎ𝜅2

32𝛿3𝜔5 (2𝛿 − 𝑖𝜉)2 , 𝑓8 = 𝑖
3ℎ𝜅3

128𝛿4𝜔7 (2𝛿 − 𝑖𝜉)2 (2𝛿 + 𝑖𝜉) . (33c)

One should notice at this point that, differently from the non-resonant case, the coefficients
of the normal form are not a function of the forcing frequency Ω. This is the consequence of the
choice Ω𝑝 = 𝛿𝜔 . One could have made a different choice here by selecting for example Ω𝑝 = 𝜔 ,
which appears closer to the assumption made in perturbative techniques. Indeed, these two
choices are almost indistinguishable for most practical cases where the small damping assumption
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is met such that 𝛿 ≈ 1. Since the analysis developed here does not necessarily assume small
damping, it appeared more coherent to expand around Ω𝑝 = 𝛿𝜔 , which also leads to simpler
expressions for the coefficients. For comparison purposes, the coefficients obtained with the
expansion around Ω𝑝 = 𝜔 are given in Appendix E.

The first two monomials in Equation (32) are respectively the linear term and the cubic
nonlinear stiffness that were already present without forcing. The third term corresponds to
the direct resonant forcing. The next two monomials, 𝑧21𝑧4 and 𝑧1𝑧2𝑧3, correspond to nonlinear
parametric-like excitation terms. In the sequence, 𝑧1𝑧3𝑧4, is the trivially resonant monomial
already commented in the previous section. Its coefficient 𝑓6 scales as O(𝜅2), like the next
monomial that will create a second harmonic forcing through 𝑧23. Finally, the last coefficient 𝑓8
scales as O(𝜅3) and is a higher-order effect of the direct forcing.

These reduced dynamics are automatically derived in the context of the parametrisation
method up to high-order and are used to analyze the primary resonance of finite element models,
see e.g. Vizzaccaro et al. (2022); Opreni et al. (2023); Vizzaccaro et al. (2023); Jain et al. (2022); Li
et al. (2022). The purpose here is to give some insights into these results, which are obtained
using high-order solutions that are realified with polar or cartesian representations, by analyzing
the wealth of all the terms involved in the solution. Note that for obtaining the normal form
given in Equation (32), no specific assumptions on damping or forcing have been made and the
solutions are not stopped at first order for these two terms, a scheme that is generally assumed
in perturbative solutions. Hence the solution given by Equation (32) contains a priori more
information.

To give more insights to Equation (32), polar coordinates are introduced as

𝑧1,2 =
𝜌

2 e±𝑖𝜃 , 𝑧3,4 = e±𝑖Ω𝑡 . (34)

An autonomous system can be derived for the amplitude 𝜌 and the phase𝜓 , defined as𝜓 = 𝜃 − 𝜙 ,
where 𝜙 = Ω𝑡 is introduced to make the system autonomous thanks to ¤𝜙 = Ω. The resulting
system reads

¤𝜌 = 𝐴0 +𝐴𝑐
1 cos𝜓 +𝐴𝑠

1 sin𝜓 +𝐴𝑐
2 cos (2𝜓 ) +𝐴𝑠

2 sin (2𝜓 ), (35a)
𝜌 ¤𝜓 = 𝐵0 + 𝐵𝑐1 cos𝜓 + 𝐵𝑠1 sin𝜓 + 𝐵𝑐2 cos (2𝜓 ) + 𝐵𝑠2 sin (2𝜓 ) . (35b)

The coefficients in Equation (35) have explicit expressions as functions of the coefficients 𝑓𝑗 in
Equation (32), which have been split according to their real part 𝑓 𝑅𝑖 and imaginary part 𝑓 𝐼𝑖 . The
expressions read:

𝐴0 = 𝜌 𝑓 𝑅1 + 𝜌3

4 𝑓 𝑅2 + 𝜌 𝑓 𝑅6 , 𝐵0 = 𝜌 𝑓 𝐼1 + 𝜌3

4 𝑓 𝐼2 + 𝜌 𝑓 𝐼6 − 𝜌Ω,

𝐴𝑐
1 = 2𝑓 𝑅3 + 𝜌2

2 𝑓 𝑅4 + 𝜌2

2 𝑓 𝑅5 + 2𝑓 𝑅8 , 𝐴𝑠
1 = 2𝑓 𝐼3 − 𝜌2

2 𝑓 𝐼4 + 𝜌2

2 𝑓 𝐼5 + 2𝑓 𝐼8 ,

𝐵𝑐1 = 2𝑓 𝐼3 + 𝜌2

2 𝑓 𝐼4 + 𝜌2

2 𝑓 𝐼5 + 2𝑓 𝐼8 , 𝐵𝑠1 = −2𝑓 𝑅3 + 𝜌2

2 𝑓 𝑅4 − 𝜌2

2 𝑓 𝑅5 − 2𝑓 𝑅8 ,

𝐴𝑐
2 = 𝜌 𝑓 𝑅7 , 𝐴𝑠

2 = 𝜌 𝑓 𝐼7 ,

𝐵𝑐2 = 𝜌 𝑓 𝐼7 , 𝐵𝑠2 = −𝜌 𝑓 𝑅7 .

(36)

Deriving a closed-form expression for the FRC from the fixed points of Equation (35) is
difficult because of the presence of the second harmonic excitation, which creates the terms with
arguments 2𝜓 . From the analysis of the monomials in Equation (32), the second harmonic terms
are only created by 𝑧23, such that the coefficients 𝐴𝑐

2, 𝐴𝑠
2, 𝐵𝑐2 and 𝐵𝑠2 are directly proportional to 𝑓7.

To simplify the analysis, the usual assumption that a small forcing is enough to lead to large
amplitude solutions in case of primary resonance, can be done, such that one could neglect the
terms in 𝜅2 and 𝜅3 in Equation (32). With this assumption, which leads to disregarding 𝑓6, 𝑓7 and
𝑓8, and using sin2 + cos2 = 1, one can obtain the following relationship as an expression for the
frequency response curve:(

𝐴0
𝐴𝑠
1
+ 𝐴𝑐

1
𝐴𝑠
1

𝐴0𝐵
𝑠
1 −𝐴𝑠

1𝐵0

𝐴𝑠
1𝐵

𝑐
1 −𝐴𝑐

1𝐵
𝑠
1

)2
+

(
𝐴0𝐵

𝑠
1 −𝐴𝑠

1𝐵0

𝐴𝑠
1𝐵

𝑐
1 −𝐴𝑐

1𝐵
𝑠
1

)2
= 1. (37)
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This equation is still too cumbersome in order to give an explicit expression of the amplitude
𝜌 as a function of the excitation frequency Ω for direct comparisons with a perturbative solution.
To do so, one can assume that the damping 𝜉 is small, as it is usually done in a perturbative
scheme. Neglecting all high-order terms of the damping in the expressions of the coefficients 𝑓𝑗 ,
𝑗 = 1, . . . , 5; leads to these expressions:

𝑓 𝑅1 = −𝜉𝜔, 𝑓 𝐼1 = 𝜔, 𝑓 𝑅2 = 0, 𝑓 𝐼2 =
3ℎ
2𝜔 , 𝑓 𝑅3 = 0, (38a)

𝑓 𝐼3 = − 𝜅

4𝜔 , 𝑓 𝑅4 = 0, 𝑓 𝐼4 =
3ℎ𝜅
16𝜔3 , 𝑓 𝑅5 = 0, 𝑓 𝐼5 =

3ℎ𝜅
8𝜔3 , (38b)

such that an explicit expression for the FRC, with a small damping assumption, reads

𝜌Ω = 𝜌𝜔 + 𝜌3
3ℎ
8𝜔 ± 9ℎ𝜌2 − 16𝜔2

3ℎ𝜌2 − 16𝜔2

√︄(
3ℎ𝜌2 − 16𝜔2

32𝜔3 𝜅

)2
− 𝜌2𝜉2𝜔2. (39)

This expression is still more complete than the one given by a first-order perturbative solution
like the method of multiple scales (MMS). In particular, it involves 𝑓4 and 𝑓5 coefficients, which
are linked to the monomials 𝑧21𝑧4 and 𝑧1𝑧2𝑧3 in Equation (32). Note that these two monomials
refer to a nonlinear parametric excitation that is generally overlooked. Neglecting these two
terms leads to considering only the first three monomials in Equation (32), and to the classical
first-order perturbative solution of the FRC, see e.g. Nayfeh et al. (1979). This can be justified
on the coefficients by assuming the same hypotheses as in the perturbative solution. Namely
that, additionally to 𝜅 and 𝜉 , the nonlinear coefficient ℎ is also small, such that when expanding
Equation (39) in power series and considering only the leading order terms, the classical result is
found:

Ω = 𝜔 + 𝜌2
3ℎ
8𝜔 ±

√︄
𝜅2

4𝜌2𝜔2 − 𝜉2𝜔2. (40)
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Figure 4: FRCs for the primary resonance of the damped cubic Duffing oscillator. Parameter values are
𝜔 = 1.5, ℎ = 1, 𝜉 = 0.02 and 𝜅 = 0.1. (a) Comparison of the analytical FRCs given by Equations (37), (39)
and (40) and one obtained by symbolically solving for the fixed points of Equation (35) after replacing
the numerical values of the parameters. (b) Comparison of numerically computed FRCs, obtained from
MORFE_Symbolic using Matcont (Dhooge et al. 2004), with a reference solution, also obtained by
continuation, and with the first-order multiple scale solution given by Equation (40), denoted as MMS.

This development shows the wealth of the automated high-order solution provided by the
complex normal form, which can be simplified in order to retrieve the results of the first-order
multiple scales expansion. Of course, higher-order perturbative expansions should give back the
same term, but the change of paradigm in the approach proposed here is to give automatically
high-order expansions that can then be analyzed by introducing asymptotic and ordering between
the different terms, leading to explicit analytical expressions in the simplest cases.

Figure 4 illustrates the previous derivations by comparing analytical and numerical results.
Figure 4(a) first compares analytical expressions based on the different approximations. The first-
order multiple scales solution, Equation (40), is compared to the solution given by Equation (39),
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for classical parameter values corresponding to usual assumptions: 𝜔 = 1.5, ℎ = 1, small damping
with 𝜉 = 0.02, and 𝜅 = 0.1, leading to a maximal vibration amplitude 𝜌 close to 1, in order to
see the effect of moderate amplitudes. It shows that neglecting the two monomials 𝑧21𝑧4 and
𝑧1𝑧2𝑧3 in Equation (32) has an important effect on the prediction of the maximum amplitude,
underlining that, when 𝜌 is close to 1, a first-order perturbative solution is not accurate enough.
The explicit expression Equation (39) is also compared to the implicit analytical expression given
by Equation (37) and with an implicit solution for the fixed points of Equation (35), computed
symbolically after replacing numerical values for the system parameters, showing that, at this
level of amplitude and for these parameter values, the assumptions leading to Equation (39) are
accurate enough.

Figure 4(b) now compares numerical solutions to show the convergence of the high-order
normal form, as well as the effect of the nonlinear mapping. For the sake of illustration, the
first-order multiple scales solution is also shown. Whereas the amplitude reported in Figure 4(a)
is that of the normal coordinate 𝜌 , Figure 4(b) is given for the maximum displacement of the
physical coordinate 𝑢, denoted as 𝑢max. Note that, as compared to the calculations for the
backbone curves shown in Section Section 2.1, it is not possible here to recover an easy analytic
expression relating 𝜌 to the physical displacement through the nonlinear mapping, because the
forcing terms are not in phase with the autonomous ones. It should be highlighted, however, that
the analytical expression (first-order perturbative solution) given by Equation (40) assumes (at
first order), 𝑢max = 𝜌 . The numerical solutions are computed numerically with a continuation
procedure embedded in the package Matcont (Dhooge et al. 2004). Three different truncations of
the normal form expansion are shown. Following Vizzaccaro et al. (2023), the selected truncation
order is denoted as O(𝑧𝑝 , 𝜀𝑞), meaning a maximal order 𝑝 in the 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) coordinate
and 𝑞 for the non-autonomous (𝑧3, 𝑧4) variables. In this example, the case 𝑝 = 𝑞 is selected for
convenience, and 𝑝 = 𝑞 = 3 corresponds to Equation (32). These results show that, for such level
of amplitude, the first-order multiple scales solution is far from the full-order solution. The order
3 expansion is also not accurate enough, while convergence is almost achieved at order 7. Besides,
the effect of the nonlinear mapping is very important, as can be seen by comparing the order 3
solutions when parameterised in amplitude by 𝜌 or the maximum displacement 𝑢max.

All this development underlines the wealth of the symbolic solution, that can be analyzed in
order to produce, whenever possible, analytical expressions that can be more complete than
first-order perturbative solution, as well as the fact that, when amplitudes are close to 1, one
needs to resort to numerical approximations since low-order approximations are not enough
accurate.

3.2.3 Superharmonic resonance
In this section, the 3:1 superharmonic resonance of the Duffing oscillator is investigated thanks to
high-order normal form approximations and analytical expressions. Equation (28) is considered
as starting point and the forcing frequency Ω is such that Ω ≃ 𝜔/3. The complex normal form
(CNF) up to order three is obtained thanks to MORFE_Symbolic, and the expansion point for
computing the parametrisation has been selected as Ω𝑝 = 𝜔/3. The choice Ω𝑝 = 𝛿𝜔/3 has not
been selected in this case since it does not bring substantial simplifications to the coefficients. It
reads:

¤𝑧1 = 𝜆1𝑧1 + i
3ℎ
2𝛿𝜔 𝑧21𝑧2 +

243𝑖ℎ𝜅2
16𝛿𝜔5 (9𝜉2 + 16)𝑧1𝑧3𝑧4 −

729ℎ𝜅3
128𝛿𝜔7(3𝜉 − 4𝑖)3𝑧

3
3, (41)

where the notations of the previous sections are used, and the second equation for 𝑧2 has
been omitted since it is the complex conjugate. The associated nonlinear mapping is given
in Appendix G for the sake of completeness. As compared to the primary resonance, Equation (41)
contains fewer terms. On the other hand, only one more resonant monomial as compared to the
non-resonant case shown in Equation (29), is present. The added monomial is 𝑧33, which is indeed
the resonant term due to 3:1 superharmonic resonance, since 𝑧3 = e𝑖Ω𝑡 and Ω ≃ 𝜔/3.

At this order three of the development, no terms in the reduced dynamics involve powers
of the forcing coordinates, such as 𝑧23 that was for example in Equation (32) for the primary
resonance. Consequently, no higher harmonics of the forcing will appear in the solution, such
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that analytical expressions for the frequency response curve could be easily derived at this order.
Using the polar coordinates, redefining the phase as𝜓 = 𝜃 − 3𝜙 in order to render the system
autonomous, and searching for fixed points such that ¤𝜌 = ¤𝜓 = 0, the following relationship is
easily derived:

𝐵𝑟 +𝐴𝑖 sin (𝜓 ) +𝐴𝑟 cos (𝜓 ) = 0, (42a)
𝐵𝑖 −𝐴𝑟 sin (𝜓 ) +𝐴𝑖 cos (𝜓 ) = 0, (42b)

where 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 have explicit expressions as functions of the coefficients of the normal
dynamics Equation (41):

𝐴𝑟 =
6561ℎ𝜅3𝜉

(
16 − 3𝜉2

)
64𝛿 (9𝜉2 + 16)3𝜔7

, 𝐴𝑖 = − 729ℎ𝜅3
(
27 − 6𝛿2

)
16𝛿 (9𝜉2 + 16)3𝜔7

𝐵𝑟 = −𝜌𝜉𝜔, 𝐵𝑖 = 𝜌𝛿𝜔 − 3𝜌Ω + 𝜌3
3ℎ
8𝛿𝜔 + 𝜌

243ℎ𝜅2
16𝛿 (9𝜉2 + 16)𝜔5 .

(43)

Squaring each line of Equation (42), summing and using sin2𝜓 + cos2𝜓 = 1 in order to eliminate
the angle𝜓 leads to the following relationship that gives the frequency response function, i.e. the
amplitude 𝜌 as a function of the forcing frequency Ω:

𝐴2
𝑖 +𝐴2

𝑟 = 𝐵2
𝑖 + 𝐵2

𝑟 . (44)

From this last equation, one can derive an explicit expression for the frequency response curve,
upon substitution of the coefficients from Equation (43), yielding:

3𝜌Ω = 𝜌𝛿𝜔 + 𝜌3
3ℎ

23𝛿𝜔 + 𝜌
35ℎ𝜅2

24𝛿 (9𝜉2 + 16)𝜔5 ±
√︄

96ℎ2𝜅6

46𝛿2𝜔14 (9𝜉2 + 16)3
− 𝜌2𝜉2𝜔2. (45)

This expression for the FRC of the superharmonic case is very close to the one obtained using a
first-order multiple scales expansion. It is however more general since no assumption about small
damping has been made yet. Using a first-order expansion on the damping term 𝜉 , following the
guideline used in the previous section, one obtains:

3𝜌Ω = 𝜌𝜔 + 𝜌3
3ℎ
23𝜔 + 𝜌

35ℎ𝜅2
28𝜔5 ±

√︂
96ℎ2𝜅6
88𝜔14 − 𝜌2𝜉2𝜔2, (46)

this last expression being exactly equivalent to the one reported in Nayfeh et al. (1979) using the
first-order method of multiple scales (MMS). At this level of the asymptotic expansion (order 3),
the normal form of the superharmonic solution is thus equivalent to a first-order perturbative
solution. This is logical because in the present situation, the amplitude 𝜅 can no longer be
considered as small, an effect that is accounted for in the multiple scales solution by assuming that
the forcing appears at the order zero of the solution, since a secondary resonance is considered.

The terms which are outside the square root in Equation (45), represent a shift of the
traditional backbone curve with forcing amplitude. Interestingly, this dependence only comes
from the monomial 𝑧1𝑧3𝑧4. The expression of this curve reads:

3𝜔𝑁𝐿 = 𝛿𝜔 + 𝜌2
3ℎ

23𝛿𝜔 + 35ℎ𝜅2
24𝛿 (9𝜉2 + 16)𝜔5 . (47)

When 𝜅 = 0, this last equation recovers the backbone curve of the primary resonance (see Equa-
tion (17b) truncated at the third-order), which is simply shifted to one-third of the eigenfrequency.
For a fixed value of 𝜅 ≠ 0, it aligns to a backbone passing through the maximum of the FRC, as
illustrated in Figure 5(a).

Additionally, it is possible to derive an expression for the curve joining the maxima of the
superharmonic FRCs, which can be viewed as a generalized backbone curve for this resonance
scenario. It is obtained as a curve parameterised by 𝜅: for each forcing amplitude, one finds
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the 𝜌 value such that the frequency in Equation (45) is single-valued, and uses it to find its
corresponding Ω thanks to Equation (47), yielding:

𝜌 (𝜅) =
√︃

96ℎ2𝜅6

46𝛿2𝜔16𝜉2 (9𝜉2+16)3 ,

Ω(𝜅) = 𝛿𝜔
3 + 311ℎ3𝜅6

215𝛿3𝜔17𝜉2 (9𝜉2+16)3 +
34ℎ𝜅2

16𝛿 (9𝜉2+16)𝜔5 .
(48)

Equations (45) and (46) are used to plot the FRCs in Figure 5(a) for three different values of
forcing amplitude: 𝜅 = 0.5, 0.7, 0.9. The other parameters are fixed as 𝜔 = 1, 𝜉 = 0.2, ℎ = 3. The
figure also shows different shifted backbones for the problem. The generalized backbone curve,
following the peaks of the FRCs and given by Equation (48), is shown in red dash-dotted line. In
Figure 5(a), the two expressions for the FRC, respectively without assumption on the damping,
Equation (45), or assuming a first-order, Equation (46), are also shown, underlining the minimal
difference that is brought about by considering accurately the damping ratio as compared to the
first-order perturbative solution.

The curves are also plotted in 3D space in Figure 5(b), by adding the forcing amplitude 𝜅 as
an additional coordinate. A frequency response manifold, given by Equation (44), is represented
in order to highlight the set on which the solutions are. The generalized backbone curve given by
Equation (48) is represented as the black line joining all the maxima of this surface.
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Figure 5: FRCs for the 3:1 superharmonic resonance of the damped cubic Duffing oscillator. The results
are obtained using a complex normal form style, and parameter values are set as 𝜔 = 1, ℎ = 3, 𝜉 = 0.2.
(a) FRCs in the frequency-amplitude of the normal coordinate plane. Note how the forcing-dependent
backbones follow the shift of the curves with increasing 𝜅 . (b) Three-dimensional view of the FRCs and of
the frequency response manifold. The curve that unites the peaks of the FRCs is also shown in black.

Figure 6 completes the analysis for this case, presenting the FRCs in terms of physical
displacement amplitude, 𝑢max, and for higher orders of parametrisation. The curves therein are
obtained, such as in the primary resonance case, by numerical continuation with the package
Matcont (Dhooge et al. 2004), since it is not possible to find an analytical expression relating 𝑢max
to 𝜌 . The figure also shows the multiple scales solution given by Nayfeh et al. (1979). It should be
noted that, in contrast with the case of primary resonance, this solution does not simply assumes
that 𝑢max = 𝜌 . Indeed, the time series of the displacement is given as

𝑢 = 𝜌 cos (3Ω𝑡 − 𝛾) + 𝜅

𝜔2 − Ω2 cosΩ𝑡, (49)

with 𝛾 being a phase defined in the reference. The curve corresponding to this solution was
found by calculating the maxima of this expression over a period of oscillation for different
values of 𝜌 . One should remark that, since the damping is small, the difference between this
curve and the one of the O(𝑧3, 𝜀3) parametrisation is only due to the nonlinear mappings relating
𝑢 to 𝜌 . Consequently, even though the same FRC in terms of 𝜌 is found for both of them, the
approximation given by the normal form computation up to order 3 is more accurate in this case,
thanks to the correction brought about by the mapping. Nevertheless, an order three expansion is
still not enough as compared to the response of the full system, such that higher order terms
need to be taken into account to converge to the exact solution, which happens at order seven.
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Figure 6: FRCs for the 3:1 superharmonic resonance of the damped cubic Duffing oscillator. Parameter
values are 𝜔 = 1.5, ℎ = 1, 𝜉 = 0.002 and 𝜅 = 0.5. Comparison of numerically computed FRCs, obtained
from MORFE_Symbolic and solved using numerical continuation, with a reference solution, also obtained
by continuation but on the original equations, and with the first-order multiple scales solution (MMS).

3.2.4 Subharmonic resonance
In this section, the 1:3 subharmonic resonance, where the excitation frequency is in the vicinity
of three times the natural frequency 𝜔 , is investigated, for the Duffing equation with cubic
nonlinearity, Equation (28). The complex normal form (CNF) up to the third order for both
autonomous and non-autonomous variables, with the expansion point for the parametrisation
being Ω𝑝 = 3𝜔 , reads:

¤𝑧1 = 𝜆1𝑧1 + 3𝑖ℎ
2𝛿𝜔 𝑧21𝑧2 +

3𝑖ℎ𝜅2
16𝛿𝜔5 (16 + 9𝜉2)𝑧1𝑧3𝑧4 −

3ℎ𝜅 (3𝜉 − 4𝑖)
8𝛿𝜔3(16 + 9𝜉2)𝑧

2
2𝑧3. (50)

Again, the equation for 𝑧2 is not reported for the sake of brevity, being the complex conjugate.
The nonlinear mapping up to order 3 is reported in Appendix H. The normal form dynamics
looks similar to the superharmonic case, only the last monomial being changed, since now
the resonant monomial with the assumption Ω ≃ 3𝜔 is 𝑧22𝑧3. The term 𝑧21𝑧2 refers to the cubic
nonlinearity, while the second monomial 𝑧1𝑧3𝑧4 is the trivially resonant term, scaling as the
square of the forcing amplitude 𝜅2, and making clearly appear the hard non-resonant excitation
that is key for secondary resonances.

Proceeding similarly as in the superharmonic case to find an analytic expression for the FRC,
the system to solve can be put in the following form, this time with𝜓 = 3𝜃 − 𝜑 :

𝐵𝑟 +𝐴𝑖 sin (𝜓 ) +𝐴𝑟 cos (𝜓 ) = 0, (51)
𝐵𝑖 −𝐴𝑟 sin (𝜓 ) +𝐴𝑖 cos (𝜓 ) = 0, (52)

with:

𝐴𝑟 = −𝜌2 32ℎ𝜅𝜉
24𝛿𝜔3 (16 + 9𝜉2) , 𝐴𝑖 = 𝜌2

3ℎ𝜅
22𝛿𝜔3 (16 + 9𝜉2) , (53a)

𝐵𝑟 = −𝜌𝜉𝜔, 𝐵𝑖 = 𝜌𝛿𝜔 − 𝜌
Ω

3 + 𝜌3
3ℎ

23𝛿𝜔 + 𝜌
3ℎ𝜅2

24𝛿𝜔5 (16 + 9𝜉2) . (53b)

Solving the system, it is possible to find the following expression for the FRC:

𝐴2
𝑖 +𝐴2

𝑟 = 𝐵2
𝑖 + 𝐵2

𝑟 . (54)

Substituting coefficients 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 into this expression yields a biquadratic equation
in 𝜌 . A peculiarity of the subharmonic resonance is to give rise to detached solution branches or
isola, that are not connected to the main solution branch (Nayfeh et al. 1979). Consequently,
deriving the existence condition for such solutions is important in this context. The derivation of
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this condition from the biquadratic equation is reported in Appendix I. Only the result is shown
here, the boundary for the region where solutions can exist being given by:

Ω = 3𝛿𝜔 + 63ℎ𝜅2
27𝛿𝜔5 (16 + 9𝜉2) +

25𝛿𝜔7𝜉
2 (
16 + 9𝜉2

)
ℎ𝜅2

. (55)

From Equation (54) it is also possible to derive an explicit expression for the FRC:

Ω

3 = 𝛿𝜔 + 3ℎ
23𝛿𝜔 𝜌2 + 3ℎ𝜅2

24𝛿𝜔5 (16 + 9𝜉2) ±
√︄

32ℎ2𝜅2
28𝛿2𝜔6 (16 + 9𝜉2) 𝜌

2 − 𝜉2𝜔2. (56)

As in the superharmonic case, the terms outside the square root in Equation (56) can be
interpreted to understand the shift of the primary resonance backbone curve for this subharmonic
scenario, including the effect of the monomial 𝑧1𝑧3𝑧4. Its expression is given by:

𝜔𝑁𝐿

3 = 𝛿𝜔 + 3ℎ
23𝛿𝜔 𝜌2 + 3ℎ𝜅2

24𝛿𝜔5 (16 + 9𝜉2) . (57)

Also, by requiring Equation (56) to be single-valued, a generalized backbone curve joining the
FRCs minima can be obtained as:

𝜌 (𝜅) = 24𝜔4𝛿𝜉
√
16+9𝜉2

3ℎ𝜅 ,

Ω(𝜅) = 3𝛿𝜔 + 25𝜔7𝛿𝜉2(16+9𝜉2)
ℎ𝜅2 + 32ℎ𝜅2

24𝛿𝜔5 (16+9𝜉2 ) .
(58)

The FRC can be further simplified by adopting a small damping hypothesis. Similarly to the
previous superharmonic case, this assumption allows one to recover exactly the solution given by
the first-order multiple scales development (Nayfeh et al. 1979), reading:

Ω

3 = 𝜔 + 3ℎ
23𝜔 𝜌2 + 3ℎ𝜅2

28𝜔5 ±
√︂

32ℎ2𝜅2
212𝛿2𝜔6 𝜌

2 − 𝜉2𝜔2. (59)

The small damping assumption allows for an additional simplification in the expression of
the boundary of the existence region, Equation (55), that also results in the same formula as the
one found with a first-order multiple scales solution:

Ω = 3𝜔 + 63ℎ𝜅2
211𝜔5 + 29𝜔7𝜉2

ℎ𝜅2
. (60)

It should be noted that Equation (60) is quite close to the second expression in Equation (58)
once it is simplified to retain only first-order terms in the damping:

Ω = 3𝜔 + 32ℎ𝜅2
28𝛿𝜔5 + 29𝜔7𝜉2

ℎ𝜅2
. (61)

The two curves have different interpretations, however. While Equation (60) gives the possible
combinations of parameters Ω and 𝜅 such that non-trivial solutions might exist, Equation (61)
only gives the frequency value at which the minimum of the FRC occurs as a function of 𝜅 . Both
expressions are plotted in Figure 7(a), with parameter values fixed as 𝜔 = 1.5, ℎ = 1 and 𝜉 = 0.02.
It is worth mentioning that the curve defining the FRC minima lies inside the existence region
given by Equation (60), as should be expected.

Equations (56) and (59) are used to plot the FRCs in Figure 7(b). For the figure, the forcing
amplitude assumed three values: 𝜅 = 5, 10, 15, each of which is associated with blue, dark green
and light green curves, respectively, while the other parameters remained the same as in the
previous plot. The figure also shows the shifted backbones given by Equation (57) for the three
different forcing values; and for 𝜅 = 0, with the curve depicted in cyan. The generalized backbone
joining the minima of the FRCs, whose expression is found in Equation (58), is also shown, in red
dash-dotted line.

Numerical results are also presented for this situation in Figure 8, where the FRCs in terms of
physical displacement amplitude 𝑢max are plotted. Once again, numerical continuation package
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Figure 7: 1:3 subharmonic resonance of the damped cubic Duffing oscillator. Results obtained using a
complex normal form style, with parameter values as 𝜔 = 1.5, ℎ = 1 and 𝜉 = 0.02. (a) Comparison of the
existence condition and the curve following the FRCs minima in (Ω, 𝜅2) space. (b) FRCs for 𝜅 = 5, 10, 15.
The figure also shows the shifted backbones and generalized backbone joining the FRCs minima.

Matcont (Dhooge et al. 2004) is employed to find the FRCs stemming from MORFE_Symbolic
and that of the full system. Additionally, a first-order multiple scales solution is also presented.
Its displacement time series is obtained from

𝑢 = 𝜌 cos 13 (Ω𝑡 − 𝛾) + 𝜅

𝜔2 − Ω2 cosΩ𝑡, (62)

with 𝛾 defined in Nayfeh et al. (1979). The difference between the multiple scales solution and
the one from the O(𝑧3, 𝜀3) parametrisation is even more pronounced in this case, as compared
to the superharmonic resonance scenario. Again, the nonlinear mappings arising from the
parametrisation method prove essential to obtain accurate approximations of the full system.
Comparing the curves from the figure, it can be seen that convergence is more difficult to reach.
However, an order 9 parametrisation seems to be an acceptable approximation to the reference
curve.
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Figure 8: FRCs for the 1:3 subharmonic resonance of the damped cubic Duffing oscillator. Parameter
values are 𝜔 = 1.5, ℎ = 1, 𝜉 = 0.002 and 𝜅 = 1. Comparison of numerically computed FRCs, obtained from
MORFE_Symbolic with higher orders and solved by continuation, with a reference solution, also obtained
by continuation, and with the first-order multiple scales solution (MMS).

3.3 Parametric excitation
In this section, the case of a parametric excitation is considered. The starting point is a damped
cubic Duffing equation with a forcing on the right-hand side that depends on the displacement,
reading:

¥𝑢 + 𝜔2𝑢 + 2𝜉𝜔 ¤𝑢 + ℎ𝑢3 = 𝜅𝑢 cosΩ𝑡 . (63)
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There exist several parametric instabilities for different values of the excitation frequency Ω, that
are generally reported in a so-called Strutt-Ince stability diagram, see e.g. Nayfeh et al. (1979);
Grandi et al. (2021). Here, the analysis is restricted to the primary parametric resonance when the
excitation frequency is close to twice the eigenfrequency, Ω ≃ 2𝜔 . The package MORFE_Symbolic
relies on the generic treatment of non-autonomous terms proposed in Vizzaccaro et al. (2023),
which can handle a first-order differential-algebraic equation (DAE). Also, the starting point
assumes that a quadratic recast of the equations of motion has been operated, by adding new
variables to express the initial problem with only quadratic nonlinearities (Guillot et al. 2019).
Equation (63) is thus rewritten as follows to be automatically treated by MORFE_Symbolic:

¤𝑢 = 𝑣, (64a)
¤𝑣 = −𝜔2𝑢 − 2𝜉𝜔𝑣 − ℎ𝑢𝑟1 + 𝑢𝑟2, (64b)
0 = 𝑟1 − 𝑢2, (64c)

0 = 𝑟2 − 𝜅

2 (𝑧3 + 𝑧4) , (64d)

¤𝑧3 = 𝑖Ω𝑧3, (64e)
¤𝑧4 = −𝑖Ω𝑧4. (64f)

The complex normal form (CNF), up to the third order, is given in the equation that follows. The
expansion point for the parametrisation is selected as Ω𝑝 = 2𝜔 .

¤𝑧1 = 𝑓1𝑧1 + 𝑓2𝑧
2
1𝑧2 + 𝑓3𝑧2𝑧3 + 𝑓4𝑧1𝑧3𝑧4. (65)

Again, one can see that, as compared to the out-of-resonance scenario shown in Equation (31),
the only added monomial to be considered for the parametric excitation is 𝑧2𝑧3, which is indeed
resonant since Ω ≃ 2𝜔 . The coefficients 𝑓𝑗 , 𝑗 = 1, . . . , 4, introduced in Equation (65), read

𝑓1 = 𝜆1 = −𝜉𝜔 + 𝑖𝜔𝛿, 𝑓2 = 𝑖
3ℎ
2𝛿𝜔 , (66a)

𝑓3 = −𝑖 𝜅

22𝛿𝜔 , 𝑓4 = 𝑖
𝜅2(𝛿 − 1)
25𝜔3𝜉2𝛿2

. (66b)

Note in particular that in the present case, 𝑓2, 𝑓3 and 𝑓4 are purely imaginary, which is a consequence
of the starting point Equation (63). However, in a more general context of parametrically excited
systems, these coefficients can have a non-vanishing real part. This is observed for example in the
case of continuous structures where an external forcing leads to a parametric excitation, as the
case studied for example in Opreni et al. (2023) (beam with in-plane forcing where the parametric
excitation leads to transverse vibrations), and in Frangi et al. (2023) (parametric excitation due to
electro-mechanical coupling). Hence for the sake of generality, all the introduced coefficients will
be considered as complex, with 𝑓𝑗 = 𝑓 𝑅𝑗 + 𝑖 𝑓 𝐼𝑗 to distinguish real and imaginary parts. This point
will be further addressed in Section Section 4.2 where a parametrically excited two-dofs system is
considered. Note finally that 𝑓4 scales as 𝜅2, it is thus a second-order term with respect to the
forcing, which is neglected with first-order assumptions used in Breunung et al. (2018); Jain et al.
(2022); Opreni et al. (2023), and also neglected in first-order perturbative solutions, such as the
MMS and the method of varying amplitude, as can be seen in Benacchio et al. (2022).

Substituting 𝑧1 = 𝜌
2 𝑒

𝑖𝜃 and 𝑧2 = 𝜌
2 𝑒

−𝑖𝜃 , defining𝜓 = 2𝜃 − Ω𝑡 = 2𝜃 − 𝜑 to make the system
autonomous, one obtains a first-order autonomous dynamical system as:

¤𝜌 = 𝐵𝑟 +𝐴𝑟 cos𝜓 +𝐴𝑖 sin𝜓, (67a)
𝜌

2
¤𝜓 = 𝐵𝑖 −𝐴𝑟 sin𝜓 +𝐴𝑖 cos𝜓 . (67b)

where the introduced coefficients are written as a function of the real and imaginary parts of the
𝑓𝑗 (respectively denoted as 𝑓 𝑅𝑗 and 𝑓 𝐼𝑗 ) as:

𝐴𝑟 = 𝜌 𝑓 𝑅3 , 𝐵𝑟 = 𝜌 𝑓 𝑅1 + 𝜌3

4 𝑓 𝑅2 + 𝜌 𝑓 𝑅4 , (68a)
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𝐴𝑖 = 𝜌 𝑓 𝐼3 , 𝐵𝑖 = 𝜌 𝑓 𝐼1 − 𝜌
Ω

2 + 𝜌3

4 𝑓 𝐼2 + 𝜌 𝑓 𝐼4 . (68b)

Following the same reasoning as the previous superharmonic and subharmonic cases, an
implicit expression for the branches of solutions (FRC) reads:

𝐴2
𝑟 +𝐴2

𝑖 = 𝐵2
𝑟 + 𝐵2

𝑖 . (69)

Once the values of 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 are substituted for, it is possible to factor out 𝜌 from all
the terms, resulting in an equation of the form 𝜌 𝑓 (Ω, 𝜌) = 0. Thus, 𝜌 = 0 is always a fixed point
of the system, which is a known result in parametrically excited systems (Nayfeh et al. 1979). The
non-zero solution in amplitude 𝜌 , yielding an explicit expression for the bifurcated solution
branches, can be found by solving for 𝑓 (Ω, 𝜌) = 0, which gives:

Ω2

4 − 𝑔𝐼 (𝜌)Ω + |𝑔(𝜌) |2 − |𝑓3 |2 = 0, (70)

where the complex 𝑔(𝜌) = 𝑔𝑅 (𝜌) + 𝑖𝑔𝐼 (𝜌) has been introduced as:

𝑔(𝜌) = 𝑓 𝑅1 + 𝜌2

4 𝑓 𝑅2 + 𝑓 𝑅4 + 𝑖
(
𝑓 𝐼1 + 𝜌2

4 𝑓 𝐼2 + 𝑓 𝐼4

)
. (71)

The solutions to Equation (70) read:

Ω = 2
(
𝑓 𝐼1 + 𝜌2

4 𝑓 𝐼2 + 𝑓 𝐼4

)
± 2

√︄
|𝑓3 |2 −

(
𝑓 𝑅1 + 𝜌2

4 𝑓 𝑅2 + 𝑓 𝑅4

)2
, (72)

which is an explicit expression for the FRC of the parametric excitation. In the present case for
the coefficients 𝑓𝑗 given in Equation (66), this equation writes:

Ω = 2𝜔𝛿
(
1 + 3ℎ

23𝛿2𝜔2 𝜌
2 + 𝜅2(𝛿 − 1)

25𝜔4𝛿3𝜉2

)
± 2

√︂
𝜅2

24𝜔2𝛿2
− 𝜉2𝜔2. (73)

To retrieve the solution given by a first-order multiple scales development from Equation (73), a
small damping assumption is needed. With this approximation, where only the leading order
term in 𝜉 is kept and 𝛿 = 1 is set, the third term scaling as 𝜅2 in the first bracket disappears. This
is a logical consequence since this term comes from the monomial 𝑧1𝑧3𝑧4 and is a second-order
term for the forcing, which is neglected in the first-order MMS. The FRC then reads:

Ω = 2𝜔𝛿
(
1 + 3ℎ

23𝛿2𝜔2 𝜌
2
)
± 2

√︂
𝜅2

24𝜔2𝛿2
− 𝜉2𝜔2. (74)

The bifurcation points from which the non-zero solution will emerge are found by letting
𝜌 = 0 in Equation (73). Let us call Ω𝑎,𝑏 these two period-doubling points, where a Hopf bifurcation
occurs since a fixed point loses stability in favour of a limit cycle. They read, for the simple case
of Equation (63)

Ω𝑎,𝑏 = 2𝜔𝛿
(
1 + 𝜅2(𝛿 − 1)

25𝜔4𝛿3𝜉2

)
± 2

√︂
𝜅2

24𝜔2𝛿2
− 𝜉2𝜔2. (75)

These two equations can be represented as a function of the forcing amplitude 𝜅 and give the
marginal stability curves (or Floquet tongues) where the parametric excitation gives rise to
non-zero solutions. They are presented in Figure 9(a) for different values of 𝜉 , and retrieve the
usual result with the minimum of these tongues increasing with the damping ratio. Interestingly,
the curves are not symmetric, a feature already reported with MMS solutions, see e.g. Thomsen
(2003), such that their shapes in the low-frequency range lead to crossing points, see Figure 9(a).
About the bifurcated branches, their stability can be analyzed through a linear stability analysis.
The detailed calculations for this case are presented in Appendix J.
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A further level of refinement of the solution can be obtained by pushing the normal form
development up to order four. In this case, the expression giving rise to the FRC becomes more
complicated, but has the same form as Equation (37). For the sake of conciseness, the explicit
expressions are not reported here, but are compared to the solutions given by Equations (73)
and (74) in Figure 9(b), where the stability calculations developed in Appendix J are also included
by indicating the unstable sections of the FRC with dashed lines. In the figure, the influence of
different terms on the FRC expression can be appreciated. While passing from the multiple scales
solution to the complete order three normal form development, the effect of the 𝑧1𝑧3𝑧4 monomial
is given by a shift in the midpoint between the two bifurcation points, generated by the term
proportional to 𝜅2 inside the bracket in Equation (74). Additionally, the effect of not considering
small damping (𝛿2 ≈ 1) is responsible for a relative displacement of the bifurcation points, see
Figure 9(b). Interestingly, the two bifurcated branches of the FRC do not close with a third-order
approximation in the normal form. This can be easily seen from the equations since the term
under the square root is constant, see also Figure 9(b). This result is however particular to the
starting point used in this study and the fact that the 𝑓𝑗 coefficients reported in Equation (66)
are purely imaginary. A case with non-vanishing real parts is shown in Section Section 4.2 to
extend the analysis. Note that, in the presented first-order perturbative solution, the solution
branches are closing by using the actual forcing frequency Ω in the equations, as done for
example in Thomsen (2003) for the MMS and in Benacchio et al. (2022) for the method of varying
amplitude, a particular feature of these methods. In the present formulation, where the expansion
is centered around fixed frequency Ω𝑝 , a fourth-order normal form needs to be computed in
order to recover the awaited solution with closing bifurcated branches.
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Figure 9: Parametric excitation with parameter values set as 𝜔 = 1 and ℎ = 1, and a complex normal form
analysis. (a) Marginal stability curves or Floquet tongues for 𝜉 = 0, 0.05, 0.1, 0.2. (b) FRCs for different
levels of approximation. The damping factor is set as 𝜉 = 0.2 and the forcing amplitude as 𝜅 = 1.

This resonance scenario is also studied numerically in Figure 10. The FRCs for the physical
maximal displacement 𝑢max are obtained from the output of MORFE_Symbolic, which is then
solved numerically with a continuation procedure using the package Matcont (Dhooge et al.
2004). They are compared to the full system solutions, taken as reference, and obtained by
numerical continuation directly on the initial problem. Two sets of parameter values are selected
to highlight different features of the solutions. In Figure 10(a), parameter values are set as 𝜔 = 1,
ℎ = 1, 𝜉 = 0.02 and 𝜅 = 0.043. In this case, the order 3 solution is omitted, since its bifurcated
branches don’t close. Full convergence is obtained for an order 11 development. In Figure 10(b),
the values of both the forcing and damping are severely increased to 𝜅 = 0.9 and 𝜉 = 0.2, while
keeping 𝜔 = 1 and ℎ = 1. This choice has been selected in order to better underline their effect
on the bifurcation point and illustrate how these particular features are retrieved by the CNF
solution. The numerical results show that the prediction of the bifurcation point given by the
CNF is confirmed. MMS solutions and order three developments completely overpredict the
maximum amplitude, such that higher orders are mandatorily needed. One can note however
that, with this choice of parameters, the CNF does not converge to the exact solution. Even
though all the features are correctly retrieved, an underestimation in the maximum amplitude
persists, underlining that the validity limits of the method have been reached. Also, a small shift
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in the bifurcation points that could not be captured by the CNF is visible.
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Figure 10: FRCs for the parametric resonance of the damped cubic Mathieu oscillator. Common
parameters for both figures are 𝜔 = 1 and ℎ = 1. Comparison of numerically computed FRCs, obtained
from MORFE_Symbolic, with a reference solution obtained by numerical continuation. (a) Backbones for
small levels of forcing and damping, with 𝜉 = 0.01 and 𝜅 = 0.043. (a) Backbones for higher levels of forcing
and damping, with 𝜉 = 0.2 and 𝜅 = 0.9.

4 Theoretical results, high-order developments on two-dofs sys-
tems

This section aims to illustrate, with simple examples involving a two-degrees-of-freedom system,
how the presence of a slave mode can modify the dynamics of the master mode. Three different
cases with a master reduced dynamics considering a single NNM will be considered. First, a
generic two-dofs system without internal resonance is considered in order to highlight the effects
of the linear and nonlinear characteristics of the slave mode on the dynamics of the master. Then
a parametrically excited two-dofs system is considered. Finally, an illustrative example is used to
highlight the previous findings.

4.1 Case without internal resonance
A two-dofs system with quadratic and cubic nonlinearities is considered as the starting point:

¥𝑢1 + 𝜔2
1𝑢1 + 𝑔111𝑢21 + 𝑔112𝑢1𝑢2 + 𝑔122𝑢22 + ℎ1111𝑢31 + ℎ1112𝑢21𝑢2 + ℎ1122𝑢1𝑢22 + ℎ1222𝑢32 = 0, (76a)

¥𝑢2 + 𝜔2
2𝑢2 + 𝑔211𝑢21 + 𝑔212𝑢1𝑢2 + 𝑔222𝑢22 + ℎ2111𝑢31 + ℎ2112𝑢21𝑢2 + ℎ2122𝑢1𝑢22 + ℎ2222𝑢32 = 0. (76b)

Note that this represents the conservative dynamics. When needed, modal damping ratio under
the form 2𝜉 𝑗𝜔 𝑗 ¤𝑢 𝑗 , for 𝑗 = 1, 2, can be added to take losses into account. Also, external forcing can
be appended to the right-hand sides. Since the internal forces of mechanical systems generally
derive from a potential energy, some symmetry relationships exist between the quadratic and
cubic coefficients, see e.g. Appendix E in Touzé et al. (2021) for a general discussion. In the
present case, one has, for the quadratic coefficients

𝑔112 = 2𝑔211, and 𝑔212 = 2𝑔122, (77)

meaning that only four free coefficients are at hand for quadratic terms. Of the 8 possible cubic
nonlinear coefficients, only 5 are free since the following three relationships are fulfilled:

ℎ1112 = 3ℎ2111, ℎ1122 = ℎ2112, and ℎ2122 = 3ℎ1222. (78)

Let us assume that mode 1 is the master mode, and that no internal resonance exists between 𝜔1
and 𝜔2. In that case, the reduced dynamics contains a single pair of master coordinates, (𝑧1, 𝑧2).
Since the analytical expressions begin to be too cumbersome for an easy interpretation, let us
begin with the case of a system with only cubic nonlinearities, such that all 𝑔𝑝𝑖 𝑗 coefficients vanish,
for 𝑝, 𝑖, 𝑗 = 1, 2. The reduced dynamics, up to order 5, reads:

¤𝑧1 = i𝜔1𝑧1 + i
3ℎ1111
2𝜔1

𝑧21𝑧2 + 3i
(

(41𝜔2
1 − 5𝜔2

2)
(
ℎ2111

)2
𝜔1(9𝜔2

1 − 𝜔2
2) (𝜔2

1 − 𝜔2
2)

− 17
(
ℎ1111

)2
16𝜔3

1

)
𝑧31𝑧

2
2 . (79)
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This result has been obtained with MORFE_Symbolic using the complex normal form style, and
the assumptions given by Equation (78) have been taken into account. The nonlinear mappings
relating the original coordinates (𝑢1, 𝑣1, 𝑢2, 𝑣2) to the normal complex master variables (𝑧1, 𝑧2),
are reported in Appendix K.

It is interesting to observe that only two cubic coefficients appear in the reduced dynamics:
ℎ1111 and ℎ2111. While ℎ1111 refers only to the cubic term in 𝑢1 and logically appears in Equation (79),
the other cubic coefficient which plays a role is ℎ2111. Because of the symmetry relationship Equa-
tion (78), this coefficient is related to two different monomials: the invariant-breaking term 𝑢31 in
the second equation, and 𝑢21𝑢2 in the first equation. The invariant-breaking term is the only
one (in such two-dofs scenario) responsible for the loss of invariance of the linear eigenspace.
Consequently, only ℎ2111 is responsible for the curvatures of the invariant manifold in phase space.
This is also evidenced in the equations governing the geometry of the manifolds, which are
contained in the nonlinear mappings reported in Appendix K. Indeed, one can see that enforcing
ℎ2111 = 0 in Equation (K.1) leads to 𝑢2 = 𝑣2 = 0, showing that the manifold has no extra curvatures
in the direction of the second mode. Finally, looking in detail into the analytical equations of the
nonlinear mappings shown in Appendix K, one can see that these expressions only depend on
ℎ1111, ℎ2111, and ℎ1122. Again, it appears logical that ℎ1122 is involved since it is linked in the first
equation to the second trivially resonant monomial 𝑢1𝑢22 (but also to monomial 𝑢21𝑢2 in the second
equation due to symmetry), following the terminology introduced in Touzé et al. (2004); Touzé
(2014); Touzé et al. (2021). Interestingly, the present calculations underline that up to order 5 this
term has an effect only on the nonlinear mappings, but not on the reduced dynamics. However,
once higher-order developments are pursued, the other missing coefficients start to appear, first
in the nonlinear mappings and then in the reduced dynamics equations. As a final remark on
higher orders, one can also easily conclude that the monomials present in the reduced dynamics
are the same as the ones examined for the Duffing equation, due to the simple rule of construction
of the resonance. In the present case, only terms of the form 𝑧

𝑝+1
1 𝑧

𝑝
2 , with 𝑝 ≥ 1, will stay in the

reduced dynamics, while the coefficients are modified by the presence of the second oscillator.
Thanks to the property of the CNF already underlined in Section 2.1, the backbone curve is

analytic up to the desired order. Since the coefficients are lengthy for orders higher than 5, only
the fifth-order is shown here, but of course, closed-form expressions are readily available for
high-order terms:

𝜔𝑁𝐿

𝜔1
= 1 + 3

8
ℎ1111
𝜔2
1
𝜌2 + 3

16

(
41𝜔2

1 − 5𝜔2
2

(9𝜔2
1 − 𝜔2

2) (𝜔2
1 − 𝜔2

2)

(
ℎ2111
𝜔2
1

)2
− 17
16

(
ℎ1111
𝜔2
1

)2)
𝜌4. (80)

Interestingly, the coefficient ℎ2111 which appears in the cubic term might have an effect on the
hardening/softening behaviour at large amplitude. If the first-order term is unequivocally dictated
by the value of ℎ1111, one can see that the next order depends in a complicated manner also on
ℎ2111, 𝜔1 and 𝜔2. This is illustrated in Figure 11(a) where three different scenarios have been
tested. In each case, a high-order backbone curve is computed from the expressions obtained
with the parametrisation method up to order 25, and is compared to a reference solution obtained
by a numerical continuation technique.

The first case is where the invariant-breaking term vanishes, i.e. ℎ2111 = 0. In such a case, the
backbone follows that of a single-dof Duffing equation. Then two other cases are selected, using
ℎ2111 = 1, 𝜔1 = 1, and either 𝜔2 = 1.57, or 𝜔2 = 0.637. The slave mode’s eigenfrequencies were
purposefully selected such that no low-order resonance relationships are verified. Figure 11(a)
shows the obtained results. When 𝜔2 = 1.57, some terms in the quintic coefficient shown in
Equation (80) are negative, such that the hardening behaviour turns back to softening at higher
amplitudes. This effect is correctly captured by the asymptotic solution to order 25 which is close
to the numerical solution up to amplitudes around 0.65. In this case, the validity limit of the
asymptotic approach seems to decrease as compared to the case ℎ2111 = 0. On the other hand,
when the slave mode has the lowest eigenfrequency with 𝜔2 = 0.637, the hardening behaviour is
enhanced by the higher-order terms. In this case, the validity limit seems to be even smaller since
the order 25 solution departs from the reference from amplitudes around 0.45.

Let us now consider the effect of the quadratic terms by considering all quadratic and cubic
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Figure 11: Backbones up to order 25 for the 2-dofs system without internal resonance. The curves were
obtained using a complex normal form style, and parameter values were fixed as 𝜔1 = 1, ℎ1111 = 1, ℎ2111, 𝑔111
and 𝑔211 varying, and all other nonlinear stiffness coefficients zero (other than the ones fixed by symetry
conditions). The backbones given by the parametrisation method are compared with reference solutions
obtained using the numerical continuation package Matcont (Dhooge et al. 2004). (a) Oscillator with
only cubic coefficients. (b) Oscillator with quadratic and cubic coefficients. Additional parameters fixed:
𝜔2 = 1.57, ℎ2111 = 1.

coefficients in Equation (76). Since the full analytical expressions begin to be lengthy, only the
third-order reduced dynamics with CNF is reported to see how the quadratic coefficients aggregate
to form the third-order coefficient in the normal form that dictates the hardening/softening
behaviour. It reads:

¤𝑧1 = i𝜔1𝑧1 + i𝜔1

(
3
2
ℎ1111
𝜔2
1

− 5
3

(
𝑔111
𝜔2
1

)2
− 8𝜔2

1 − 3𝜔2
2

4𝜔2
1 − 𝜔2

2

(
𝑔211
𝜔1𝜔2

)2)
𝑧21𝑧2. (81)

One can see that, at this order, two quadratic coefficients are of special interest. First, the
“self-quadratic” one, 𝑔111, which is present in a single-dof Duffing analysis, see Section Section 3.1.
Second, the invariant-breaking quadratic coefficient 𝑔211. One can also note that the denominator
of the invariant breaking term vanishes when a 2:1 internal resonance such that 𝜔2 = 2𝜔1 is met,
a feature already discussed in Touzé et al. (2004); Touzé et al. (2006).

Figure 11(b) illustrates this effect of the quadratic terms by considering the increase of both
𝑔111 and 𝑔211 with the same trend, by imposing 𝑔111 = 𝑔211, and increasing them from 0.5 to 1.5.
As awaited, the quadratic nonlinearity favours the softening behaviour, and one can see that
the types of behaviour ranged by this choice are various and generally well reproduced by the
normal form analysis, up to a certain amplitude that should correspond to the validity limit of the
asymptotic development.

4.2 Parametrically excited system
This section considers a simplified two-dofs system which is representative of a flat structure
externally excited with an in-plane force, which leads to transverse vibrations through a
parametric excitation. In such a case, studied numerically with a cantilever beam in Opreni et al.
(2023), the external forcing transforms to a parametric excitation in the reduced dynamics. The
simplest system that can reproduce such an effect needs to contain a quadratic coupling between
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Figure 12: Externally forced 2-dofs system leading to a parametric resonance, Equation (82). Comparison
of the results obtained with a third-order complex normal form style and the method of multiple scales
(MMS). Parameter values set as 𝜔2 = 1.57, 𝜉 = 0.2, ℎ = 0.5, 𝑔 = 5 and 𝜅 = 0.2.

master and slave modes, as is the case in beam structures for example (Vizzaccaro et al. 2020;
Givois et al. 2019). The model introduced in Vizzaccaro et al. (2021) is thus selected here, it reads:

¥𝑢1 + 2𝜉 ¤𝑢1 + 𝑢1 + 2𝑔𝑢1𝑢2 + ℎ𝑢31 = 0, (82a)
¥𝑢2 + 2𝜉𝜔2 ¤𝑢2 + 𝜔2

2𝑢2 + 𝑔𝑢21 = 𝜅 cosΩ𝑡, (82b)

where the forcing frequency Ω is selected in the vicinity of twice the eigenfrequency of the master
mode (normalized at 1 here), Ω ≈ 2, in order to activate the principal parametric resonance.
Additionally, a small damping assumption is introduced to simplify the coefficients. In this case,
the reduced dynamics up to the third order, with a parametrisation computed with the choice
Ω𝑝 = 2, writes:

¤𝑧1 = 𝑓1𝑧1 + 𝑓2𝑧
2
1𝑧2 + 𝑓3𝑧2𝑧3 + 𝑓4𝑧1𝑧3𝑧4, (83)

with the coefficients 𝑓𝑗 , 𝑗 = 1, . . . , 4 reading as:

𝑓1 = i − 𝜉, 𝑓3 =
𝑔𝜅 (𝑖 − 𝜉)

2 (𝑖𝜉 + 1) (𝜔2 − 2) (4𝑖𝜉 + 𝜔2 + 2) , 𝑓4 = −𝑔
2𝜅2 (2𝑖 − 7𝜉)
32(𝜔2

2 − 4)2 (84a)

𝑓2 =
(𝑖 − 𝜉) (−16𝑔2𝑖𝜉𝜔2 + 32𝑔2𝑖𝜉 − 6𝑔2𝜔2

2 + 16𝑔2 − 12ℎ𝑖𝜉𝜔3
2 + 24ℎ𝑖𝜉𝜔2

2 − 3ℎ𝜔4
2 + 12ℎ𝜔2

2
)

2𝜔2
2 (𝑖𝜉 + 1) (𝜔2 − 2) (4𝑖𝜉 + 𝜔2 + 2) . (84b)

The reduced dynamics equation is, as expected, the same as the one shown in Equation (65).
In this situation, however, the coefficients 𝑓𝑗 , and in particular 𝑓2, have non-vanishing real parts.
As a consequence, the term under the square root in Equation (72) depends on 𝜌 and the FRC
closes at order three. This situation is illustrated in Figure 12.

From the figure, one can also note that for the selected parameter values the bifurcated
branches of the FRC display a softening behaviour. Inspecting Equation (72) shows that the
hardening/softening behaviour is governed by the imaginary part 𝑓 𝐼2 of the coefficient 𝑓2. In the
present case, it can be written explicitly as:

𝑓 𝐼2 = 𝑔2
3𝜔2

2 − 8
𝜔2
2
(
4 − 𝜔2

2
) − 3ℎ

2 . (85)

Consequently, the hardening/softening transition occurs for this specific case when 𝑓 𝐼2 vanishes,
and a hardening behaviour is obtained for ℎ < 𝑔2

6𝜔2
2−16

3𝜔2
2 (4−𝜔2

2) . Again, the wealth of the proposed
ROMs can be here underlined since they provide physical insights and predictive interpretations
that can be directly checked on the numerical results. Otherwise, the same comments made in
Section Section 3.3 also apply here. The slight shift of the bifurcation points between the multiple
scales solution and the order 3 normal form development is also retrieved and is illustrated in
Figure 12. A stability analysis similar to the one given in Appendix J could also be applied here,
but is not done for concision, and therefore not reported in the figure.
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4.3 Illustrative example: a mass connected to two nonlinear springs
This last section aims at illustrating some of the results presented in the paper to the case of a
2 dofs system consisting of a mass connected to two elastic nonlinear springs. This example
has been introduced in Touzé et al. (2004) and then used in several articles as a benchmark
study (Touzé et al. 2006a; Lamarque et al. 2012; Breunung et al. 2018; Liu et al. 2019). The
equations of motion read:

¥𝑢1 + 𝜔2
1𝑢1 +

𝜔2
1
2

(
3𝑢21 + 𝑢22

) + 𝜔2
2𝑢1𝑢2 +

𝜔2
1 + 𝜔2

2
2 𝑢1

(
𝑢21 + 𝑢22

)
= 0 (86a)

¥𝑢2 + 𝜔2
2𝑢2 +

𝜔2
2
2

(
3𝑢22 + 𝑢21

) + 𝜔2
1𝑢1𝑢2 +

𝜔2
1 + 𝜔2

2
2 𝑢2

(
𝑢21 + 𝑢22

)
= 0. (86b)

It should be highlighted that the nonlinear stiffness coefficients can be written as a function of the
eigenfrequencies of the system, leading to simplified expressions for the coefficients appearing in
the high-order normal forms. Up to order 5, it reads, using again the CNF and showing only the
equation for 𝑧1:

¤𝑧1 = i𝜔1𝑧1 + i
4𝜔1

(−3𝜔2
1 + 𝜔2

2
)

4𝜔2
1 − 𝜔2

2
𝑧21𝑧2

+ i
𝜔1

(−9072𝜔10
1 + 27180𝜔8

1𝜔
2
2 − 19624𝜔6

1𝜔
4
2 + 5835𝜔4

1𝜔
6
2 − 754𝜔2

1𝜔
8
2 + 35𝜔10

2
)

576𝜔10
1 − 1072𝜔8

1𝜔
2
2 + 652𝜔6

1𝜔
4
2 − 177𝜔4

1𝜔
6
2 + 22𝜔2

1𝜔
8
2 − 𝜔10

2
𝑧31𝑧

2
2 (87)

Furthermore, using polar realification, an analytic expression for the backbone can be found
as

𝜔𝑁𝐿 = 𝜔1 +
−3𝜔3

1 + 𝜔1𝜔
2
2

4𝜔2
1 − 𝜔2

2
𝜌21

+ −9072𝜔11
1 + 27180𝜔9

1𝜔
2
2 − 19624𝜔7

1𝜔
4
2 + 5835𝜔5

1𝜔
6
2 − 754𝜔3

1𝜔
8
2 + 35𝜔1𝜔

10
2

16(4𝜔2
1 − 𝜔2

2)3(9𝜔2
1 − 𝜔2

2) (𝜔2
1 − 𝜔2

2)
𝜌41 . (88)

Let us denote as 𝑓 (𝑝 ) the coefficient of the monomial of order 𝑝 in the normal form. The third-
order term, which governs the first curvature of the backbone curve and the hardening/softening
behaviour, has already been analyzed in Touzé et al. (2004) with the oscillator normal form,
leading to the same coefficient as 𝑓 (3) reported here with the CNF. Thanks to the high-order
expansions, the analysis can be pushed further by considering the variations of 𝑓 (5) , whose
expression is reported in Equation (87), and 𝑓 (7) , not shown here for the sake of brevity, whose
variations are represented in Figure 13 for 𝜔1 = 1 and varying 𝜔2.
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Figure 13: Behaviour of the normal form coefficients 𝑓 (3) , 𝑓 (5) and 𝑓 (7) for the two-dofs system given in
Equation (86) as a function of 𝜔2, with 𝜔1 = 1.

From the figure, it is easy to predict the type of nonlinearity for the order 7 backbone curve.
Taking for instance 𝜔2 = 1.5, the system shows a softening behaviour, since all three coefficients
𝑓 (3) , 𝑓 (5) , and 𝑓 (7) , are negative. On the contrary, for 𝜔2 = 2.5, since 𝑓 (3) and 𝑓 (5) are positive,
the backbone will first display a hardening behaviour, turning to softening for large amplitudes
since 𝑓 (7) is highly negative and will dominate.
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Figure 13 also illustrates that the coefficients have a singular behaviour when internal
resonances are crossed, a typical feature resulting from the small denominator problem. The
third-order coefficient 𝑓 (3) displays a singularity when a 1:2 internal resonance 𝜔2 = 2𝜔1 appears,
a behaviour already analyzed e.g. in Rega et al. (2000); Touzé et al. (2004); Touzé et al. (2006);
Arafat et al. (2003). Interestingly, the order five coefficient 𝑓 (5) shows in addition a singularity
for the first third-order resonances, namely the 1:1 and the 1:3 resonances defined by 𝜔2 = 𝜔1
and 𝜔2 = 3𝜔1. This is a direct consequence that the order five coefficient is built from the
elimination of the cubic terms. Continuing further, the order seven coefficient 𝑓 (7) has an
additional singularity at the 1:4 resonance 𝜔2 = 4𝜔1, following the cancellation of the quartic
terms in the normal form. Finally, it is also possible to notice that for 𝜔2 > 4 the values of the
coefficients remain virtually constant, and the backbone behaviour is hardening at low amplitudes
followed by softening at high amplitudes.
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Figure 14: Phase space representation for the two-dofs system given by Equation (86). (a) Comparison
of periodic orbits calculated with an order 20 parametrisation and the invariant manifold obtained by
numerical continuation for 𝜔1 = 1 and 𝜔2 = 1.57. (b) Comparison of the manifolds of order 3 and 15
obtained by the parametrisation method with the one found by continuation for 𝜔1 =

√
0.5 and 𝜔2 =

√
6.

The black point represents the origin. (c-d) Cross-sections at 𝑣1 = 0.1 and 𝑢1 = −0.2, respectively, obtained
from case (b). Solutions of order 3, 5, 7 and 15 are compared to the numerical continuation reference.

Whereas most of the reported analyses have been focused on FRCs, this section closes with
numerous illustrative examples highlighting the behaviour of the invariant manifold serving as a
reduced-order subspace in the method. First, the convergence in terms of the geometry and the
effect of higher-order terms on the computed curvatures are illustrated.

Figure 14(a) compares the exact shape of the invariant manifold, which has been computed
by numerical continuation, to periodic orbits calculated using an order 20 parametrisation, with
𝜔1 = 1 and 𝜔2 = 1.57. It can be seen that the orbits show an almost perfect agreement with
the manifold in a region surrounding the fixed point located at the origin. In the same spirit,
Figure 14(b) compares the numerical manifold obtained by continuation for 𝜔1 =

√
0.5 and

𝜔2 =
√
6, depicted in blue, to different orders of the asymptotic expansions: order 3 in orange, and

order 15, in pink. It clearly highlights that, with increasing orders, the asymptotically computed
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manifolds can retrieve the complex curvatures of the exact solution. To aid the visualization,
section cuts of Figure 14(b) are presented in Figures 14(c) and 14(d), where orders 5 and 7
solutions are also included to better appreciate the convergence. Note that Figure 14(d) shows a
cross-section at 𝑢1 = −0.2 which is quite far from the origin, hence explaining the observed
discrepancies.
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Figure 15: Influence of damping on the invariant manifolds for the mass connected to two springs.
(a) Comparison of the order 15 damped (blue) and undamped (yellow) manifolds obtained by the
parametrisation method with CNF style, for 𝜔1 =

√
0.5, 𝜔2 =

√
6 and 𝜉1 = 𝜉2 = 0.1. Two periodic orbits, in

red, are also shown for the full conservative system as well as a damped orbit of the full system, in blue.
The black point represents the origin. (b-c) Cuts at 𝑣1 = 0 and 𝑢1 = −0.2, respectively, obtained from (a).

The next case illustrates how the linear viscous damping terms might affect the shape of the
invariant manifolds, thus highlighting the difference between a conservative and a damped
manifold. Viscous damping of the form 2𝜉𝑖𝜔𝑖 , 𝑖 = {1, 2}, is appended to Equation (86). Figure 15
shows the invariant manifolds computed by the parametrisation method with CNF, with system’s
parameters fixed as 𝜔1 =

√
0.5, 𝜔2 =

√
6 and 𝜉1 = 𝜉2 = 0.1. In Figure 15(a) the damped manifold,

in blue, is compared with the one obtained without damping, in yellow. It is possible to notice
that in the dissipative case, the curvatures of the manifold are importantly attenuated, which can
be better appreciated by inspecting Figures 15(b) and 15(c), which show cross-sections of the
manifolds.

Lastly, the effect of the external forcing on the manifolds is examined in Figure 16, to illustrate
the behaviour of time-dependent invariant manifolds in the context of model order reduction.
Two different orders of truncations relative to the forcing term, are considered. A first case
where a first-order assumption on the forcing is adopted, following Opreni et al. (2023); Jain et al.
(2022) (first column, Figures 16(a), 16(c) and 16(e), O(𝑧3, 𝜀1) truncation). In the second case, an
O(𝑧3, 𝜀3) truncation is shown, highlighting the higher-order effects of the non-autonomous
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terms computed thanks to the development shown in Vizzaccaro et al. (2023) (second column,
Figures 16(b), 16(d) and 16(f)).

Additionally, three cases relative to the forcing configuration, are examined. In the first
one, corresponding to Figures 16(a) and 16(b), the forcing is perfectly aligned with the master
eigenspace. This case is obtained by setting a harmonic forcing only on Equation (86a). In this
situation, when the development of the nonautonomous terms stops at order 1, the manifolds
exhibit a rigid body rotation along a path that remains on the master eigenplane, as shown
in Opreni et al. (2023) and illustrated in Figure 16(a). Once high-order forcing terms are considered,
however, the rotation of the fixed point shows slight deviations from the linear eigenplane due to
the higher-order effects. Additionally the motion of the manifold is no longer a rigid body one,
and shows important deformations, as can be seen in Figure 16(b).

The second case corresponds to a forcing that is now orthogonal to the master eigenspace,
obtained by setting a harmonic forcing only on Equation (86b). The first-order development for
the non-autonomous part predicts a rigid body motion of the manifold along a circular motion on
the slave eigenplane (Opreni et al. 2023), which when projected into the adopted representation
space corresponds to a straight vertical line, as seen in Figure 16(c). With the inclusion of the
high-order forcing terms once again the manifold deforms, and the motion path along the phase
space is no longer circular. Its projection to the representation space, nevertheless, still remains a
straight line, as can be seen in Figure 16(d), which indicates that it is entirely contained in the
slave eigenspace.

Finally, Figures 16(e) and 16(f) showcase the general case where the forcing is neither
orthogonal nor parallel to the master eigenspace. In this situation, as can be observed from the
figures, the motion of the manifolds is a combination of the two previous situations.

5 Conclusion
High-order, automated solutions for nonlinear vibrations, have been derived and analyzed thanks
to a symbolic version of the parametrisation method for invariant manifold, implemented in the
package MORFE_Symbolic. The contribution aims to show how this general method can be
used efficiently to derive several useful results to understand the reduced dynamics of large
dimensional systems. It also underlines the existing continuity between low-order analytical
perturbative solutions and high-order numerical solutions. When the solutions are analytically
tractable, we have shown how they can easily reduce to known results obtained with perturbative
methods, and how they extend by considering more effects with fewer assumptions. Indeed, a key
feature of the parametrisation method is to offer high-order expansions with a single assumption
on the smallness of the amplitudes. This is in contrast with perturbative solutions where a scaling
of the different terms (nonlinearity, forcing, damping) needs to be introduced with an 𝜀 parameter
at the first step. This is not needed here and falls automatically from the analysis.

Most of the analyses have been led here using the complex normal form (CNF), after explaining
the differences between three variants of normal forms that have been derived in the nonlinear
vibration literature. The symbolic package also allows one to derive the solutions obtained
with graph style, a feature that has not been investigated here but which can be automatically
computed to compare with normal form style. Analysis on primary, secondary and parametric
resonance have been exhibited, and the scope has been limited to cases where the master
dynamics contains a single master mode, but of course, the results can be extended and take into
account many more scenarios.

In the course of the developments, the wealth of the computed solutions has been regularly
commented on, showing how they generalize previously known results limited to first orders,
and how they can converge to the exact solution by considering the effects of the higher
orders. We believe that systematically using the complex normal form, in combination with
the parametrisation method, defines a new powerful grammar for solving nonlinear vibration
problems, from low-order analytical solutions to high-order numerical solutions. Besides, normal
forms can be used for system identification since providing the skeleton of the dynamics and the
simplest dynamical system reproducing a given resonance scenario.

The only limitation of the approach is the validity limit in terms of amplitude, which has
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Figure 16: Influence of forcing on the invariant manifolds for the mass connected to two springs. In all
figures parameter values are fixed as 𝜔1 = 1, 𝜔2 = 1.57 and 𝜉1 = 𝜉2 = 0.01, and a primary resonance
situation is considered. For figures (a), (c) and (e) 𝜅 = 1 and an O(𝑧3, 𝜀1) truncation is chosen, while for
figures (b), (d) and (f) 𝜅 = 0.2 and an O(𝑧3, 𝜀3) is adopted. (a-b) Forcing perfectly aligned with the master
mode. (c-d) Forcing perfectly orthogonal to the master mode. (e-f) Forcing in both master and slave modes.

been commented on here and there in the analysis. Future work will thus consider extending the
presented results to other resonance scenarios, to build a dictionary of reference solutions. As an
example, general solutions for 1:2 internal resonance could be derived to generalize the results
shown in Gobat et al. (2021), and resonant phase lags could also be obtained with high-order
solutions to generalize the results shown in Volvert et al. (2022). Finally, the question of accurately
estimating the validity limits of the method in terms of amplitudes should be tackled to provide
the analyst with a priori and a posteriori amplitude bounds.
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allowing one to get from Equation (3) to the normal form, up to order 7, reads:
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As an interesting general remark, the relationship ¤𝑢 = 𝑣 correctly translates in the nonlinear
change of coordinates. Indeed, taking the derivative of Equation (A.1a) with respect to time,
eliminating the time dependence thanks to the reduced dynamics given by Equation (8), then one
exactly retrieves Equation (A.1b). This remark is general and can be verified in each of the treated
examples, whatever the style used. It is a direct consequence of the fact that the initial problem
is second-order in time, such that the velocity mapping can be expressed as a function of the
displacement mapping, see e.g. Vizzaccaro et al. (2022); Opreni et al. (2023); Vizzaccaro et al.
(2023) for general discussions related to this point.

It is also possible to obtain the nonlinear mappings relating normal and modal coordinates,
which are here given for the sake of completeness:
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Note that the symbolic code MORFE_Symbolic allows producing these equations up to an
arbitrary order, shown here only up to order 7 for the sake of brevity.

B Additional results for the real normal form of the Duffing
oscillator

In this appendix, more details on the real normal form (RNF) are given. First, for the sake of
completeness and in order to draw out comparisons with CNF, the nonlinear mapping between
the original and normal coordinates, is given up to order 7:
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These equations can be directly compared to those for the CNF shown in Equation (A.1).
Since more monomials have been considered resonant and kept in the normal form for the RNF
as compared to the CNF, the immediate consequence is that the nonlinear mapping for the CNF
contains fewer terms.

The next added information about the RNF is some calculations and approximations in order
to derive an analytical backbone curve. To that purpose, the idea is to use assumptions and
calculation procedures used in Neild et al. (2011); Neild et al. (2015), that have been reinterpreted
and reworked from the formalism derived in the present paper. The two main ideas used in Neild
et al. (2011); Neild et al. (2015) consists of using a mixed formulation with the initial coordinates
(𝑢, 𝑣) and the normal coordinates (𝑧1, 𝑧2), and then to introduce a small bookkeeping parameter
𝜀 and asymptotic expansions to solve for the backbone order by order. Another key point is also
to re-introduce oscillator-like equations with second-order derivatives in time. To that purpose,
Equation (B.1b) up to order 5 can be differentiated with respect to time, yielding

¤𝑣 = ¥𝑢 = 𝑖𝜔 ( ¤𝑧1 − ¤𝑧2) + 𝑖 9ℎ8𝜔
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)
. (B.2)

Then, considering that the reduced dynamics up to order 5 is given by
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and introducing it on the previous equation while neglecting terms of order higher than 5, the
following relationship can be found:
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In this last equation, the first term in bracket is exactly equal to 𝑢 while the second to 𝑢3,
meaning that this equation is a rewriting of the original problem (Duffing equation) where the
nonlinear mapping between the initial and normal coordinates has been made explicit. In order
to derive an analytical backbone curve, polar coordinates can be introduced as 𝑧1 = 𝜌

2 𝑒
𝑖𝜔𝑁𝐿𝑡 and

𝑧2 =
𝜌
2 𝑒

−𝑖𝜔𝑁𝐿𝑡 , with 𝜌 and 𝜔𝑁𝐿 constant in time, and where the phase of the harmonics was
taken to be zero. Additionally, in the spirit of perturbation methods, a bookkeeping parameter 𝜀
is introduced, in order to scale different orders of magnitude. Specifically, it is assumed that 𝜌 is
of O(𝜀), while 𝜔2

𝑁𝐿 can be decomposed in the spirit of a perturbative solution as
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Inserting these assumptions into Equation (B.1a) and taking two time derivatives yields
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(
𝑒5𝑖𝜔𝑁𝐿𝑡 − 21𝑒3𝑖𝜔𝑁𝐿𝑡 − 21𝑒−3𝑖𝜔𝑁𝐿𝑡 + 𝑒−5𝑖𝜔𝑁𝐿𝑡

)
, (B.6)

and

¥𝑢 = − 𝜀
𝜌

2𝜔
2
1,0

(
𝑒𝑖𝜔𝑁𝐿𝑡 + 𝑒−𝑖𝜔𝑁𝐿𝑡

) − 𝜀2
𝜌

2𝜔
2
1,1

(
𝑒𝑖𝜔𝑁𝐿𝑡 + 𝑒−𝑖𝜔𝑁𝐿𝑡

)
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− 𝜀3
[
𝜌

2𝜔
2
1,2

(
𝑒𝑖𝜔𝑁𝐿𝑡 + 𝑒−𝑖𝜔𝑁𝐿𝑡

) + 9ℎ𝜌3

64𝜔2𝜔
2
1,0

(
𝑒3𝑖𝜔𝑁𝐿𝑡 + 𝑒−3𝑖𝜔𝑁𝐿𝑡

) ]
− 𝜀4

[
𝜌

2𝜔
2
1,3

(
𝑒𝑖𝜔𝑁𝐿𝑡 + 𝑒−𝑖𝜔𝑁𝐿𝑡

) + 9ℎ𝜌3

64𝜔2𝜔
2
1,1

(
𝑒3𝑖𝜔𝑁𝐿𝑡 + 𝑒−3𝑖𝜔𝑁𝐿𝑡

) ]
− 𝜀5

[
𝜌

2𝜔
2
1,4

(
𝑒𝑖𝜔𝑁𝐿𝑡 + 𝑒−𝑖𝜔𝑁𝐿𝑡

) + (
9ℎ2𝜌3

64𝜔2 𝜔
2
1,2 +

189ℎ2𝜌5

2048𝜔4 𝜔
2
1,0

)
(
𝑒3𝑖𝜔𝑁𝐿𝑡 + 𝑒−3𝑖𝜔𝑁𝐿𝑡

) + 25ℎ2𝜌5

2048𝜔4𝜔
2
1,0

(
𝑒5𝑖𝜔𝑁𝐿𝑡 + 𝑒−5𝑖𝜔𝑁𝐿𝑡

) ]
. (B.7)

These expressions can be inserted, together with the polar representation of the normal
variables, into Equation (B.4). Then, by equating the different 𝜀 orders, one obtains

𝜀 : 𝜔2
1,0 = 𝜔2 (B.8)

𝜀2 : 𝜔2
1,1 = 0 (B.9)

𝜀3 : 𝜔2
1,2 =

3ℎ
4 𝜌2 (B.10)

𝜀4 : 𝜔2
1,3 = 0 (B.11)

𝜀5 : 𝜔2
1,4 =

3ℎ2
128𝜔2 𝜌

4 (B.12)

A direct solution to these equations yields the following backbone curve:

𝜔2
𝑁𝐿 = 𝜔2 + 3ℎ

4 𝜌2 + 3ℎ2
128𝜔2 𝜌

4. (B.13)

This expression coincides with the one given in Neild et al. (2015). Interestingly, this solving
procedure yields a backbone curve that is directly expressed with the square of the radian
eigenfrequencies, a distinctive feature from other perturbative techniques, which appears to stem
directly from the treatment of the second-order time derivative and the choice of the RNF. Also,
in comparison to the backbone curve given by the CNF shown in Equation (11), where each new
order appears with alternate signs, here only positive coefficients are present, meaning that
another approximation seems to be given. Note however that the procedure to compute the
backbone with the RNF is tedious and difficult to automatize, as compared to the analytical
solution provided with the CNF. Hence a complete comparison of both methods at arbitrary order
is not pushed further here.

C Nonlinear mapping, complex normal form for the Duffing
oscillator with quadratic and cubic terms

For the sake of completeness, the nonlinear mapping for the Duffing equation with quadratic and
cubic nonlinearity, Equation (24), is here reported, up to order 5. Higher order terms can be
derived automatically and symbolically with MORFE_Symbolic.

𝑢 = 𝑧1 + 𝑧2 + 𝑔

3𝜔2𝑧
2
1 −

2𝑔
𝜔2𝑧1𝑧2 +

𝑔

3𝜔2𝑧
2
2 +

2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧31 +
10𝑔2 − 9ℎ𝜔2

12𝜔4 𝑧21𝑧2

+ 10𝑔2 − 9ℎ𝜔2

12𝜔4 𝑧1𝑧
2
2 +

2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧32 +
2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧41 +
178𝑔3 − 333𝑔ℎ𝜔2

108𝜔6 𝑧31𝑧2

+ −68𝑔3 + 117𝑔ℎ𝜔2

9𝜔6 𝑧21𝑧
2
2 +

178𝑔3 − 333𝑔ℎ𝜔2

108𝜔6 𝑧1𝑧
3
2 +

2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧42

+ 20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧51 +
436𝑔4 − 444𝑔2ℎ𝜔2 − 351ℎ2𝜔4

576𝜔8 𝑧41𝑧2

+ 3740𝑔4 − 9468𝑔2ℎ𝜔2 + 1863ℎ2𝜔4

864𝜔8 𝑧31𝑧
2
2 +

3740𝑔4 − 9468𝑔2ℎ𝜔2 + 1863ℎ2𝜔4

864𝜔8 𝑧21𝑧
3
2

+ 436𝑔4 − 444𝑔2ℎ𝜔2 − 351ℎ2𝜔4

576𝜔8 𝑧1𝑧
4
2 +

20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧52 (C.1a)
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𝑣 = i𝜔𝑧1 − i𝜔𝑧2 + i
2𝑔
3𝜔𝑧21 − i

2𝑔
3𝜔𝑧22 +

2i𝑔2 + 3iℎ𝜔2

8𝜔3 𝑧31 +
−10i𝑔2 + 9iℎ𝜔2

12𝜔3 𝑧21𝑧2

+ 10i𝑔2 − 9iℎ𝜔2

12𝜔3 𝑧1𝑧
2
2 +

−2i𝑔2 − 3iℎ𝜔2

8𝜔3 𝑧32 +
2i𝑔3 + 9i𝑔ℎ𝜔2

27𝜔5 𝑧41 +
118i𝑔3 − 279i𝑔ℎ𝜔2

54𝜔5 𝑧31𝑧2

+ −118i𝑔3 + 279i𝑔ℎ𝜔2

54𝜔5 𝑧1𝑧
3
2 +

−2i𝑔3 − 9i𝑔ℎ𝜔2

27𝜔5 𝑧42 +
100i𝑔4 + 900i𝑔2ℎ𝜔2 + 405iℎ2𝜔4

5184𝜔7 𝑧51

+ 356i𝑔4 − 492i𝑔2ℎ𝜔2 − 243iℎ2𝜔4

192𝜔7 𝑧41𝑧2 +
−3740i𝑔4 + 9468i𝑔2ℎ𝜔2 − 1863iℎ2𝜔4

864𝜔7 𝑧31𝑧
2
2

+ 3740i𝑔4 − 9468i𝑔2ℎ𝜔2 + 1863iℎ2𝜔4

864𝜔7 𝑧21𝑧
3
2 +

−356i𝑔4 + 492i𝑔2ℎ𝜔2 + 243iℎ2𝜔4

192𝜔7 𝑧1𝑧
4
2

+ −100i𝑔4 − 900i𝑔2ℎ𝜔2 − 405iℎ2𝜔4

5184𝜔7 𝑧52 (C.1b)

Comparing these equations to Equation (A.1), one can see how the quadratic term complexifies
the result in terms of the nonlinear mapping, which now contains all even and odd powers. Also,
letting 𝑔 = 0 in Equation (C.1), one directly retrieves Equation (A.1) as awaited.

D RNF and ONF developments for the Duffing oscillator with
quadratic and cubic terms

This appendix completes the analysis led on the Duffing oscillator with quadratic and cubic terms,
Equation (24), by providing the results that can be obtained when analyzing with either real
normal form (RNF) or oscillator normal form (ONF). The case of the RNF is first considered, and
the reduced dynamics up to order 5 reads:

¤𝑧1 = i𝜔𝑧1 + i
−10𝑔2 + 9ℎ𝜔2

6𝜔3 𝑧21𝑧2 + i
−10𝑔2 + 9ℎ𝜔2

6𝜔3 𝑧1𝑧
2
2

+ i
−1940𝑔4 + 6228𝑔2ℎ𝜔2 − 405ℎ2𝜔4

432𝜔7 𝑧31𝑧
2
2

+ i
−1060𝑔4 + 3060𝑔2ℎ𝜔2 − 81ℎ2𝜔4

216𝜔7 𝑧21𝑧
3
2, (D.1)

with the second one being its complex conjugate. Additionally, the displacement nonlinear
mapping is

𝑢 = 𝑧1 + 𝑧2 + 𝑔

3𝜔2𝑧
2
1 −

2𝑔
𝜔2𝑧1𝑧2 +

𝑔

3𝜔2𝑧
2
2 +

2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧31 +
2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧32 +
2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧41

+ 358𝑔3 − 495𝑔ℎ𝜔2

108𝜔6 𝑧31𝑧2 +
−26𝑔3 + 42𝑔ℎ𝜔2

3𝜔6 𝑧21𝑧
2
2 +

358𝑔3 − 495𝑔ℎ𝜔2

108𝜔6 𝑧1𝑧
3
2 +

2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧42

+ 20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧51 +
212𝑔4 − 268𝑔2ℎ𝜔2 − 63ℎ2𝜔4

192𝜔8 𝑧41𝑧2

+ 212𝑔4 − 268𝑔2ℎ𝜔2 − 63ℎ2𝜔4

192𝜔8 𝑧1𝑧
4
2 +

20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧52, (D.2)

while the velocity one is simply given by its time derivative.
As compared to the results given by the CNF reported in Section Section 3.1, one can observe

that the cubic coefficient for both CNF and RNF has the same expression, such that the prediction
of the transition hardening/softening behaviour shall happen for 𝑔2 = 9ℎ𝜔2/10. However, for
the next order, one can observe in Equation (D.1) that the two quintic coefficients in front of
𝑧31𝑧

2
2 and 𝑧21𝑧32 do not have the same expression. combined with the fact that deriving an explicit

analytical backbone curve for the RNF for arbitrary order needs to employ further assumptions,
see the analysis reported in Appendix B, one can conclude that it is more difficult to analyze the
successive sign change of the different coefficients to infer the trend of the backbone curve in the
RNF as compared to CNF.

For the ONF, the result reported here is limited to the third-order because its automation
appears cumbersome to code and has not been implemented in MORFE_Symbolic. Indeed,
attempts to compute higher orders even in simple cases have shown that the processing of the
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term is more complex, see e.g. Shami et al. (2022) for an example of processing the cubic terms
with a second-order internal resonance. On the other hand, calculations up to order three have
global analytical expressions reported in Touzé et al. (2004); Touzé et al. (2006). Using these
general formula, one arrives for Equation (24) to the following nonlinear change of coordinates:

𝑢 = 𝑈 − 𝑔

3𝜔2𝑈
2 − 2𝑔

3𝜔4𝑉
2, (D.3)

while the second equation of the nonlinear mapping for 𝑣 is not reported for the sake of brevity,
since it can be easily recovered using 𝑣 = ¤𝑢. The dynamics in the normal coordinates (𝑈 ,𝑉 ) up
to order three reads:

¥𝑈 + 𝜔2𝑈 +
(
ℎ − 2𝑔2

3𝜔2

)
𝑈 3 − 4𝑔2

3𝜔4𝑈𝑉
2 = 0. (D.4)

Since oscillator equations are enforced by the method, twomonomials are present in Equation (D.4),
𝑈 3 and𝑈𝑉 2. A backbone curve for Equation (D.4) can be derived with a first-order perturbative
method, yielding the nonlinear oscillation frequency 𝜔𝑁𝐿 as a function of the amplitude 𝑎
as (Touzé et al. 2004):

𝜔𝑁𝐿 = 𝜔 (1 + Γ𝑎2), (D.5)

where Γ combines the two coefficients of the cubic monomials and reads:

Γ =
−10𝑔2 + 9ℎ𝜔2

24𝜔4 . (D.6)

The prediction of hardening/softening behaviour transition point for the first-order term of the
backbone curve is thus also predicted with ONF to occur at 𝑔2 = 9ℎ𝜔2/10.

E Reduced dynamics coefficients, complex normal form for the
forced-damped cubic Duffing oscillator at primary resonance
computed at another excitation frequency Ω𝑝

This appendix gives coefficients of the complex normal form ’CNF) of the forced-damped cubic
Duffing oscillator in a primary resonance scenario. Differently from the main text where the
parametrisation has been computed at the value Ω𝑝 = 𝛿𝜔 , here we show the analytical obtained
result when the parametrisation is computed for Ω𝑝 = 𝜔 . The eight coefficients of the resonant
monomials shown in Eq. (32) then reads:

𝑓1 = 𝜆1, 𝑓2 = 𝑖
3ℎ
2𝛿𝜔 , 𝑓3 = −𝑖 𝜅

4𝛿𝜔 , 𝑓4 =
3ℎ𝜅 (1 − 𝛿 + 𝑖𝜉)

16𝜉𝛿2𝜔3 (E.1a)

𝑓5 = −3ℎ𝜅 (1 − 𝛿 − 𝑖𝜉)
8𝜉𝛿2𝜔3 , 𝑓6 =

3𝑖ℎ𝜅2 (1 − 𝛿)
32𝜉2𝛿3𝜔5 , (E.1b)

𝑓7 = −3𝑖ℎ𝜅
2 (−𝜉2 + 𝑖𝛿𝜉 − 𝛿 − 𝑖𝜉 + 1

)
64𝜉2𝛿3𝜔5 , 𝑓8 =

3ℎ𝜅3
(
𝜉2 − 𝑖𝛿𝜉 + 2𝛿 + 𝑖𝜉 − 2

)
512𝜉3𝛿4𝜔7 . (E.1c)

One should notice that considering a small damping hypotheses, these coefficients are
equivalent to those given by Equation (33). However in the general case the expression slightly
differ and are longer in the present case.

F Nonlinear mapping, complex normal form for the forced-
damped cubic Duffing oscillator: primary resonance

This appendix gives the nonlinear mappings for the forced cubic Duffing oscillator in a situa-
tion of primary resonance. The parametrisation is pushed to order 3 only, but higher order
parametrisations can be easily obtained with MORFE_Symbolic.

𝑢 = 𝑧1 + 𝑧2 − i
𝜅

4𝜉𝜔2𝑧3 + i
𝜅

4𝜉𝜔2𝑧4 +
ℎ

9𝛿2𝜔2 + 12i𝛿𝜉𝜔2 − 3𝜉2𝜔2 − 𝜔2𝑧
3
1
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+ −3ℎ𝛿 + 3iℎ𝜉
𝛿3𝜔2 − i𝛿2𝜉𝜔2 + 𝛿𝜉2𝜔2 + 3𝛿𝜔2 − i𝜉3𝜔2 + i𝜉𝜔2𝑧

2
1𝑧2

− 3iℎ𝜅
16𝛿2𝜉𝜔4 + 16i𝛿𝜉2𝜔4 + 16𝛿𝜉𝜔4 + 8i𝜉2𝜔4𝑧

2
1𝑧3

+ 3iℎ𝜅
16𝛿2𝜉𝜔4 + 16i𝛿𝜉2𝜔4 − 16𝛿𝜉𝜔4 − 8i𝜉2𝜔4𝑧

2
1𝑧4

+ −3ℎ𝛿 − 3iℎ𝜉
𝛿3𝜔2 + i𝛿2𝜉𝜔2 + 𝛿𝜉2𝜔2 + 3𝛿𝜔2 + i𝜉3𝜔2 − i𝜉𝜔2𝑧1𝑧

2
2 −

3ℎ𝜅
4𝜉2𝜔4𝑧1𝑧2𝑧3 −

3ℎ𝜅
4𝜉2𝜔4𝑧1𝑧2𝑧4

− 3ℎ𝜅2
16𝛿2𝜉2𝜔6 + 64𝛿𝜉2𝜔6 + 16𝜉4𝜔6 + 48𝜉2𝜔6𝑧1𝑧

2
3

+ −3ℎ𝛿𝜅2 + 3iℎ𝜅2𝜉
8𝛿3𝜉2𝜔6 − 24i𝛿2𝜉3𝜔6 − 24𝛿𝜉4𝜔6 + 24𝛿𝜉2𝜔6 + 8i𝜉5𝜔6 − 8i𝜉3𝜔6𝑧1𝑧3𝑧4

− 3ℎ𝜅2
16𝛿2𝜉2𝜔6 − 64𝛿𝜉2𝜔6 + 16𝜉4𝜔6 + 48𝜉2𝜔6𝑧1𝑧

2
4 +

ℎ

9𝛿2𝜔2 − 12i𝛿𝜉𝜔2 − 3𝜉2𝜔2 − 𝜔2𝑧
3
2

− 3iℎ𝜅
16𝛿2𝜉𝜔4 − 16i𝛿𝜉2𝜔4 − 16𝛿𝜉𝜔4 + 8i𝜉2𝜔4𝑧

2
2𝑧3

+ 3iℎ𝜅
16𝛿2𝜉𝜔4 − 16i𝛿𝜉2𝜔4 + 16𝛿𝜉𝜔4 − 8i𝜉2𝜔4𝑧

2
2𝑧4

− 3ℎ𝜅2
16𝛿2𝜉2𝜔6 − 64𝛿𝜉2𝜔6 + 16𝜉4𝜔6 + 48𝜉2𝜔6𝑧2𝑧

2
3

+ −3ℎ𝛿𝜅2 − 3iℎ𝜅2𝜉
8𝛿3𝜉2𝜔6 + 24i𝛿2𝜉3𝜔6 − 24𝛿𝜉4𝜔6 + 24𝛿𝜉2𝜔6 − 8i𝜉5𝜔6 + 8i𝜉3𝜔6𝑧2𝑧3𝑧4

− 3ℎ𝜅2
16𝛿2𝜉2𝜔6 + 64𝛿𝜉2𝜔6 + 16𝜉4𝜔6 + 48𝜉2𝜔6𝑧2𝑧

2
4 −

ℎ𝜅3

384𝜉4𝜔8 + 512i𝜉3𝜔8𝑧
3
3

+ 3ℎ𝜅3
128𝜉4𝜔8𝑧

2
3𝑧4 +

3ℎ𝜅3
128𝜉4𝜔8𝑧3𝑧

2
4 −

ℎ𝜅3

384𝜉4𝜔8 − 512i𝜉3𝜔8𝑧
3
4 (F.1)

𝑣 =
i𝜔

𝛿 − i𝜉
𝑧1 − i𝜔

𝛿 + i𝜉
𝑧2 + 𝜅

4𝜉𝜔 𝑧3 + 𝜅

4𝜉𝜔 𝑧4 + 3iℎ𝛿 − 3ℎ𝜉
9𝛿2𝜔 + 12i𝛿𝜉𝜔 − 3𝜉2𝜔 − 𝜔

𝑧31

+ 3iℎ𝛿2 + 6ℎ𝛿𝜉 − 3iℎ𝜉2
𝛿3𝜔 − i𝛿2𝜉𝜔 + 𝛿𝜉2𝜔 + 3𝛿𝜔 − i𝜉3𝜔 + i𝜉𝜔

𝑧21𝑧2

+ 6ℎ𝛿𝜅 + 6iℎ𝜅𝜉 + 3ℎ𝜅
16𝛿2𝜉𝜔3 + 16i𝛿𝜉2𝜔3 + 16𝛿𝜉𝜔3 + 8i𝜉2𝜔3𝑧

2
1𝑧3

+ −6ℎ𝛿𝜅 − 6iℎ𝜅𝜉 + 3ℎ𝜅
16𝛿2𝜉𝜔3 + 16i𝛿𝜉2𝜔3 − 16𝛿𝜉𝜔3 − 8i𝜉2𝜔3𝑧

2
1𝑧4

+ −3iℎ𝛿2 + 6ℎ𝛿𝜉 + 3iℎ𝜉2
𝛿3𝜔 + i𝛿2𝜉𝜔 + 𝛿𝜉2𝜔 + 3𝛿𝜔 + i𝜉3𝜔 − i𝜉𝜔

𝑧1𝑧
2
2

+ 6ℎ𝜅𝜉 − 3iℎ𝜅
4𝜉2𝜔3 𝑧1𝑧2𝑧3 + 6ℎ𝜅𝜉 + 3iℎ𝜅

4𝜉2𝜔3 𝑧1𝑧2𝑧4

+ −3iℎ𝛿𝜅2 + 3ℎ𝜅2𝜉 − 6iℎ𝜅2
16𝛿2𝜉2𝜔5 + 64𝛿𝜉2𝜔5 + 16𝜉4𝜔5 + 48𝜉2𝜔5𝑧1𝑧

2
3

+ 3iℎ𝛿2𝜅2 + 6ℎ𝛿𝜅2𝜉 − 3iℎ𝜅2𝜉2
8𝛿3𝜉2𝜔5 − 24i𝛿2𝜉3𝜔5 − 24𝛿𝜉4𝜔5 + 24𝛿𝜉2𝜔5 + 8i𝜉5𝜔5 − 8i𝜉3𝜔5𝑧1𝑧3𝑧4

+ −3iℎ𝛿𝜅2 + 3ℎ𝜅2𝜉 + 6iℎ𝜅2
16𝛿2𝜉2𝜔5 − 64𝛿𝜉2𝜔5 + 16𝜉4𝜔5 + 48𝜉2𝜔5𝑧1𝑧

2
4 +

−3iℎ𝛿 − 3ℎ𝜉
9𝛿2𝜔 − 12i𝛿𝜉𝜔 − 3𝜉2𝜔 − 𝜔

𝑧32

+ −6ℎ𝛿𝜅 + 6iℎ𝜅𝜉 + 3ℎ𝜅
16𝛿2𝜉𝜔3 − 16i𝛿𝜉2𝜔3 − 16𝛿𝜉𝜔3 + 8i𝜉2𝜔3𝑧

2
2𝑧3

+ 6ℎ𝛿𝜅 − 6iℎ𝜅𝜉 + 3ℎ𝜅
16𝛿2𝜉𝜔3 − 16i𝛿𝜉2𝜔3 + 16𝛿𝜉𝜔3 − 8i𝜉2𝜔3𝑧

2
2𝑧4

+ 3iℎ𝛿𝜅2 + 3ℎ𝜅2𝜉 − 6iℎ𝜅2
16𝛿2𝜉2𝜔5 − 64𝛿𝜉2𝜔5 + 16𝜉4𝜔5 + 48𝜉2𝜔5𝑧2𝑧

2
3
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+ −3iℎ𝛿2𝜅2 + 6ℎ𝛿𝜅2𝜉 + 3iℎ𝜅2𝜉2
8𝛿3𝜉2𝜔5 + 24i𝛿2𝜉3𝜔5 − 24𝛿𝜉4𝜔5 + 24𝛿𝜉2𝜔5 − 8i𝜉5𝜔5 + 8i𝜉3𝜔5𝑧2𝑧3𝑧4

+ 3iℎ𝛿𝜅2 + 3ℎ𝜅2𝜉 + 6iℎ𝜅2
16𝛿2𝜉2𝜔5 + 64𝛿𝜉2𝜔5 + 16𝜉4𝜔5 + 48𝜉2𝜔5𝑧2𝑧

2
4 −

3iℎ𝜅3
384𝜉4𝜔7 + 512i𝜉3𝜔7𝑧

3
3

+ i
3ℎ𝜅3

128𝜉4𝜔7𝑧
2
3𝑧4 − i

3ℎ𝜅3
128𝜉4𝜔7𝑧3𝑧

2
4 +

3iℎ𝜅3
384𝜉4𝜔7 − 512i𝜉3𝜔7𝑧

3
4 (F.2)

G Nonlinear mapping, complex normal form for the forced cubic
Duffing oscillator for the 3:1 superharmonic resonance

This appendix gives the nonlinear displacement mapping for the forced cubic Duffing oscillator
when a 3:1 superharmonic forcing is considered. The parametrisation is pushed to order 3 only,
but higher order parametrisations can be easily obtained with MORFE_Symbolic. The velocity
mapping can be obtained as the derivative of the displacement.

𝑢 = 𝑧1 + 𝑧2 − 9i𝜅
12𝜉𝜔2 − 16i𝜔2𝑧3 +

9i𝜅
12𝜉𝜔2 + 16i𝜔2𝑧4 +

ℎ

9𝛿2𝜔2 + 12i𝛿𝜉𝜔2 − 3𝜉2𝜔2 − 𝜔2𝑧
3
1

+ −3ℎ𝛿 + 3iℎ𝜉
𝛿3𝜔2 − i𝛿2𝜉𝜔2 + 𝛿𝜉2𝜔2 + 3𝛿𝜔2 − i𝜉3𝜔2 + i𝜉𝜔2𝑧

2
1𝑧2

− 243iℎ𝜅
432𝛿2𝜉𝜔4 − 576i𝛿2𝜔4 + 432i𝛿𝜉2𝜔4 + 720𝛿𝜉𝜔4 − 192i𝛿𝜔4 + 72i𝜉2𝜔4 + 128i𝜔4𝑧

2
1𝑧3

+ 243iℎ𝜅
432𝛿2𝜉𝜔4 + 576i𝛿2𝜔4 + 432i𝛿𝜉2𝜔4 − 720𝛿𝜉𝜔4 − 192i𝛿𝜔4 − 72i𝜉2𝜔4 − 128i𝜔4𝑧

2
1𝑧4

+ −3ℎ𝛿 − 3iℎ𝜉
𝛿3𝜔2 + i𝛿2𝜉𝜔2 + 𝛿𝜉2𝜔2 + 3𝛿𝜔2 + i𝜉3𝜔2 − i𝜉𝜔2𝑧1𝑧

2
2

− 243ℎ𝜅
36𝜉2𝜔4 + 64𝜔4𝑧1𝑧2𝑧3 −

243ℎ𝜅
36𝜉2𝜔4 + 64𝜔4𝑧1𝑧2𝑧4

− 2187ℎ𝜅2
𝐶1

𝑧1𝑧
2
3 +

−243ℎ𝛿𝜅2 + 243iℎ𝜅2𝜉
𝐶2

𝑧1𝑧3𝑧4 − 2187ℎ𝜅2
𝐶3

𝑧1𝑧
2
4

+ ℎ

9𝛿2𝜔2 − 12i𝛿𝜉𝜔2 − 3𝜉2𝜔2 − 𝜔2𝑧
3
2

− 243iℎ𝜅
432𝛿2𝜉𝜔4 − 576i𝛿2𝜔4 − 432i𝛿𝜉2𝜔4 − 720𝛿𝜉𝜔4 + 192i𝛿𝜔4 + 72i𝜉2𝜔4 + 128i𝜔4𝑧

2
2𝑧3

+ 243iℎ𝜅
432𝛿2𝜉𝜔4 + 576i𝛿2𝜔4 − 432i𝛿𝜉2𝜔4 + 720𝛿𝜉𝜔4 + 192i𝛿𝜔4 − 72i𝜉2𝜔4 − 128i𝜔4𝑧

2
2𝑧4

− 2187ℎ𝜅2
𝐶4

𝑧2𝑧
2
3 +

−243ℎ𝛿𝜅2 − 243iℎ𝜅2𝜉
𝐶5

𝑧2𝑧3𝑧4 − 2187ℎ𝜅2
𝐶6

𝑧2𝑧
2
4 +

729ℎ𝛿𝜅3 − 729iℎ𝜅3𝜉
𝐶7

𝑧33

+ 19683ℎ𝜅3
10368𝜉4𝜔8 − 27648i𝜉3𝜔8 − 49152i𝜉𝜔8 − 32768𝜔8𝑧

2
3𝑧4

+ 19683ℎ𝜅3
10368𝜉4𝜔8 + 27648i𝜉3𝜔8 + 49152i𝜉𝜔8 − 32768𝜔8𝑧3𝑧

2
4

+ 729ℎ𝛿𝜅3 + 729iℎ𝜅3𝜉
𝐶8

𝑧34 (G.1)

With the coefficients on the denominators given by:

𝐶1 = 1296𝛿2𝜉2𝜔6 − 3456i𝛿2𝜉𝜔6 − 2304𝛿2𝜔6 + 1728𝛿𝜉2𝜔6 − 4608i𝛿𝜉𝜔6 − 3072𝛿𝜔6

+ 1296𝜉4𝜔6 − 3456i𝜉3𝜔6 − 3024𝜉2𝜔6 + 1920i𝜉𝜔6 + 1280𝜔6 (G.2)
𝐶2 = 72𝛿3𝜉2𝜔6 + 128𝛿3𝜔6 − 216i𝛿2𝜉3𝜔6 − 384i𝛿2𝜉𝜔6 − 216𝛿𝜉4𝜔6 − 168𝛿𝜉2𝜔6

+ 384𝛿𝜔6 + 72i𝜉5𝜔6 + 56i𝜉3𝜔6 − 128i𝜉𝜔6 (G.3)
𝐶3 = 1296𝛿2𝜉2𝜔6 + 3456i𝛿2𝜉𝜔6 − 2304𝛿2𝜔6 − 1728𝛿𝜉2𝜔6 − 4608i𝛿𝜉𝜔6 + 3072𝛿𝜔6

+ 1296𝜉4𝜔6 + 3456i𝜉3𝜔6 − 3024𝜉2𝜔6 − 1920i𝜉𝜔6 + 1280𝜔6 (G.4)
𝐶4 = 1296𝛿2𝜉2𝜔6 − 3456i𝛿2𝜉𝜔6 − 2304𝛿2𝜔6 − 1728𝛿𝜉2𝜔6 + 4608i𝛿𝜉𝜔6 + 3072𝛿𝜔6
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+ 1296𝜉4𝜔6 − 3456i𝜉3𝜔6 − 3024𝜉2𝜔6 + 1920i𝜉𝜔6 + 1280𝜔6 (G.5)
𝐶5 = 72𝛿3𝜉2𝜔6 + 128𝛿3𝜔6 + 216i𝛿2𝜉3𝜔6 + 384i𝛿2𝜉𝜔6 − 216𝛿𝜉4𝜔6 − 168𝛿𝜉2𝜔6

+ 384𝛿𝜔6 − 72i𝜉5𝜔6 − 56i𝜉3𝜔6 + 128i𝜉𝜔6 (G.6)
𝐶6 = 1296𝛿2𝜉2𝜔6 + 3456i𝛿2𝜉𝜔6 − 2304𝛿2𝜔6 + 1728𝛿𝜉2𝜔6 + 4608i𝛿𝜉𝜔6 − 3072𝛿𝜔6

+ 1296𝜉4𝜔6 + 3456i𝜉3𝜔6 − 3024𝜉2𝜔6 − 1920i𝜉𝜔6 + 1280𝜔6 (G.7)
𝐶7 = 3456𝛿2𝜉4𝜔8 − 12096i𝛿2𝜉3𝜔8 − 11520𝛿2𝜉2𝜔8 − 1024i𝛿2𝜉𝜔8 − 4096𝛿2𝜔8

− 6912i𝛿𝜉5𝜔8 − 24192𝛿𝜉4𝜔8 + 26496i𝛿𝜉3𝜔8 + 11776𝛿𝜉2𝜔8 − 10240i𝛿𝜉𝜔8

− 8192𝛿𝜔8 − 3456𝜉6𝜔8 + 12096i𝜉5𝜔8 + 14976𝜉4𝜔8 − 11072i𝜉3𝜔8 − 7424𝜉2𝜔8

− 1024i𝜉𝜔8 − 4096𝜔8 (G.8)
𝐶8 = 3456𝛿2𝜉4𝜔8 + 12096i𝛿2𝜉3𝜔8 − 11520𝛿2𝜉2𝜔8 + 1024i𝛿2𝜉𝜔8 − 4096𝛿2𝜔8

+ 6912i𝛿𝜉5𝜔8 − 24192𝛿𝜉4𝜔8 − 26496i𝛿𝜉3𝜔8 + 11776𝛿𝜉2𝜔8 + 10240i𝛿𝜉𝜔8

− 8192𝛿𝜔8 − 3456𝜉6𝜔8 − 12096i𝜉5𝜔8 + 14976𝜉4𝜔8 + 11072i𝜉3𝜔8 − 7424𝜉2𝜔8

+ 1024i𝜉𝜔8 − 4096𝜔8 (G.9)

H Nonlinear mapping, complex normal form for the forced cubic
Duffing oscillator for the 1:3 subharmonic resonance

This appendix gives the nonlinear displacement mapping for the forced cubic Duffing oscillator
when a 1:3 subharmonic forcing is considered. The parametrisation is pushed to order 3 only, but
higher order parametrisations can be easily obtained with MORFE_Symbolic. The velocity
mapping can be obtained as the derivative of the displacement.

𝑢 = 𝑧1 + 𝑧2 − i𝜅
12𝜉𝜔2 + 16i𝜔2𝑧3 +

i𝜅
12𝜉𝜔2 − 16i𝜔2𝑧4 +

ℎ

9𝛿2𝜔2 + 12i𝛿𝜉𝜔2 − 3𝜉2𝜔2 − 𝜔2𝑧
3
1

+ −3ℎ𝛿 + 3iℎ𝜉
𝛿3𝜔2 − i𝛿2𝜉𝜔2 + 𝛿𝜉2𝜔2 + 3𝛿𝜔2 − i𝜉3𝜔2 + i𝜉𝜔2𝑧

2
1𝑧2

− 3iℎ𝜅
48𝛿2𝜉𝜔4 + 64i𝛿2𝜔4 + 48i𝛿𝜉2𝜔4 + 80𝛿𝜉𝜔4 + 192i𝛿𝜔4 + 72i𝜉2𝜔4 + 128i𝜔4𝑧

2
1𝑧3

+ 3iℎ𝛿𝜅 − 3ℎ𝜅𝜉
𝐶1

𝑧21𝑧4

+ −3ℎ𝛿 − 3iℎ𝜉
𝛿3𝜔2 + i𝛿2𝜉𝜔2 + 𝛿𝜉2𝜔2 + 3𝛿𝜔2 + i𝜉3𝜔2 − i𝜉𝜔2𝑧1𝑧

2
2

− 3ℎ𝜅
36𝜉2𝜔4 + 64𝜔4𝑧1𝑧2𝑧3 −

3ℎ𝜅
36𝜉2𝜔4 + 64𝜔4𝑧1𝑧2𝑧4

− 3ℎ𝜅2
𝐶2

𝑧1𝑧
2
3 +

−3ℎ𝛿𝜅2 + 3iℎ𝜅2𝜉
𝐶3

𝑧1𝑧3𝑧4 − 3ℎ𝜅2
𝐶4

𝑧1𝑧
2
4

+ ℎ

9𝛿2𝜔2 − 12i𝛿𝜉𝜔2 − 3𝜉2𝜔2 − 𝜔2𝑧
3
2

+ −3iℎ𝛿𝜅 − 3ℎ𝜅𝜉
𝐶5

𝑧22𝑧3

+ 3iℎ𝜅
48𝛿2𝜉𝜔4 − 64i𝛿2𝜔4 − 48i𝛿𝜉2𝜔4 + 80𝛿𝜉𝜔4 − 192i𝛿𝜔4 − 72i𝜉2𝜔4 − 128i𝜔4𝑧

2
2𝑧4

− 3ℎ𝜅2
𝐶6

𝑧2𝑧
2
3 +

−3ℎ𝛿𝜅2 − 3iℎ𝜅2𝜉
𝐶7

𝑧2𝑧3𝑧4 − 3ℎ𝜅2
𝐶8

𝑧2𝑧
2
4

− ℎ𝜅3

31104𝜉4𝜔8 + 262656i𝜉3𝜔8 − 718848𝜉2𝜔8 − 811008i𝜉𝜔8 + 327680𝜔8𝑧
3
3

+ 3ℎ𝜅3
10368𝜉4𝜔8 + 27648i𝜉3𝜔8 + 49152i𝜉𝜔8 − 32768𝜔8𝑧

2
3𝑧4

+ 3ℎ𝜅3
10368𝜉4𝜔8 − 27648i𝜉3𝜔8 − 49152i𝜉𝜔8 − 32768𝜔8𝑧3𝑧

2
4
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− ℎ𝜅3

31104𝜉4𝜔8 − 262656i𝜉3𝜔8 − 718848𝜉2𝜔8 + 811008i𝜉𝜔8 + 327680𝜔8𝑧
3
4 (H.1)

With the coefficients on the denominators given by:

𝐶1 = 24𝛿3𝜉𝜔4 − 32i𝛿3𝜔4 + 48i𝛿2𝜉2𝜔4 + 28𝛿2𝜉𝜔4 + 48i𝛿2𝜔4 − 24𝛿𝜉3𝜔4 − 40i𝛿𝜉2𝜔4

− 96𝛿𝜉𝜔4 + 36𝜉3𝜔4 − 48i𝜉2𝜔4 − 36𝜉𝜔4 + 48i𝜔4 (H.2)
𝐶2 = 144𝛿2𝜉2𝜔6 + 384i𝛿2𝜉𝜔6 − 256𝛿2𝜔6 + 1728𝛿𝜉2𝜔6 + 4608i𝛿𝜉𝜔6 − 3072𝛿𝜔6

+ 144𝜉4𝜔6 + 384i𝜉3𝜔6 + 4784𝜉2𝜔6 + 13440i𝜉𝜔6 − 8960𝜔6 (H.3)
𝐶3 = 72𝛿3𝜉2𝜔6 + 128𝛿3𝜔6 − 216i𝛿2𝜉3𝜔6 − 384i𝛿2𝜉𝜔6 − 216𝛿𝜉4𝜔6 − 168𝛿𝜉2𝜔6

+ 384𝛿𝜔6 + 72i𝜉5𝜔6 + 56i𝜉3𝜔6 − 128i𝜉𝜔6 (H.4)
𝐶4 = 144𝛿2𝜉2𝜔6 − 384i𝛿2𝜉𝜔6 − 256𝛿2𝜔6 − 1728𝛿𝜉2𝜔6 + 4608i𝛿𝜉𝜔6 + 3072𝛿𝜔6

+ 144𝜉4𝜔6 − 384i𝜉3𝜔6 + 4784𝜉2𝜔6 − 13440i𝜉𝜔6 − 8960𝜔6 (H.5)
𝐶5 = 24𝛿3𝜉𝜔4 + 32i𝛿3𝜔4 − 48i𝛿2𝜉2𝜔4 + 28𝛿2𝜉𝜔4 − 48i𝛿2𝜔4 − 24𝛿𝜉3𝜔4 + 40i𝛿𝜉2𝜔4

− 96𝛿𝜉𝜔4 + 36𝜉3𝜔4 + 48i𝜉2𝜔4 − 36𝜉𝜔4 − 48i𝜔4 (H.6)
𝐶6 = 144𝛿2𝜉2𝜔6 + 384i𝛿2𝜉𝜔6 − 256𝛿2𝜔6 − 1728𝛿𝜉2𝜔6 − 4608i𝛿𝜉𝜔6 + 3072𝛿𝜔6

+ 144𝜉4𝜔6 + 384i𝜉3𝜔6 + 4784𝜉2𝜔6 + 13440i𝜉𝜔6 − 8960𝜔6 (H.7)
𝐶7 = 72𝛿3𝜉2𝜔6 + 128𝛿3𝜔6 + 216i𝛿2𝜉3𝜔6 + 384i𝛿2𝜉𝜔6 − 216𝛿𝜉4𝜔6 − 168𝛿𝜉2𝜔6

+ 384𝛿𝜔6 − 72i𝜉5𝜔6 − 56i𝜉3𝜔6 + 128i𝜉𝜔6 (H.8)
𝐶8 = 144𝛿2𝜉2𝜔6 − 384i𝛿2𝜉𝜔6 − 256𝛿2𝜔6 + 1728𝛿𝜉2𝜔6 − 4608i𝛿𝜉𝜔6 − 3072𝛿𝜔6

+ 144𝜉4𝜔6 − 384i𝜉3𝜔6 + 4784𝜉2𝜔6 − 13440i𝜉𝜔6 − 8960𝜔6 (H.9)

I Detailed calculation of the existence region for the 1:3 subhar-
monic resonance

This Appendix is concerned with the derivation of the expression that gives the boundary of the
region such that nontrivial solutions exist for the 1:3 subharmonic resonance of the cubic Duffing
oscillator. The starting point is Equation (54). Upon substitution of coefficients 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 ,
it is possible to find a biquadratic equation in 𝜌 :

9ℎ2
64𝛿2𝜔2︸  ︷︷  ︸

𝑎

𝜌4 +
[
3ℎ
4𝛿𝜔

(
𝛿𝜔 − Ω

3

)
+ 27ℎ2𝜅2
256𝛿2𝜔6 (16 + 9𝜉2)

]
︸                                               ︷︷                                               ︸

𝑏

𝜌2

+
(
𝛿𝜔 − Ω

3

)2
+ 9ℎ2𝜅4

256𝛿2𝜔10 (16 + 9𝜉2)2
+ 3ℎ𝜅2
8𝛿𝜔5 (16 + 9𝜉2)

(
𝛿𝜔 − Ω

3

)
+ 𝜉2𝜔2︸                                                                                           ︷︷                                                                                           ︸

𝑐

. (I.1)

For the existence of real solutions, two conditions have to be satisfied, namely 𝑏 < 0 and
Δ = 𝑏2 − 4𝑎𝑐 ≥ 0. After algebraic manipulations, the first condition yields

Ω > 3𝛿𝜔 + 27ℎ𝜅2
64𝛿𝜔2 (16 + 9𝜉2) , (I.2)

while the second gives

63ℎ2

1024𝛿2𝜔10 (16 + 9𝜉2)2
𝜅4 − ℎ (Ω − 3𝛿𝜔)

16𝛿𝜔5 (16 + 9𝜉2)𝜅
2 + 2𝜉2𝜔2 ≤ 0, (I.3)

which is in itself a biquadratic inequality in 𝜅 . The above expression is negative once 𝜅 is between
its two roots, such that the boundary of the existence region is given by

63ℎ𝜅2
64𝛿𝜉𝜔6 (16 + 9𝜉2) =

Ω − 3𝛿𝜔
𝜉𝜔

±
√︄

(Ω − 3𝛿𝜔)2
𝜉2𝜔2 − 63. (I.4)

47



André de F. Stabile et al. Normal form analysis of nonlinear oscillator equations

Explicitly isolating Ω gives the sought expression for existence condition of subharmonic
resonance as:

Ω = 3𝛿𝜔 + 63ℎ𝜅2
128𝛿𝜔5 (16 + 9𝜉2) +

32𝛿𝜔7𝜉2
(
16 + 9𝜉2

)
ℎ𝜅2

. (I.5)

As a last comment, it should be noted that Equation (I.5) automatically guarantees that
Equation (I.2) is verified.

J Linear stability analysis for the parametrically excited oscillator
This Appendix is concerned with the linear stability analysis of the bifurcated branches for the
case of parametric excitation, see Equation (63) in Section Section 3.3. The dynamical system
from Equation (67) serves as the starting point. Assuming 𝜌 ≠ 0, substituting the coefficients
from Equation (68), and considering the fixed points ¤𝜌 = ¤𝜓 = 0, it can be rewritten as

𝜌 𝑓 𝑅1 + 𝜌3

4 𝑓 𝑅2 + 𝜌 𝑓 𝑅4 + 𝜌 𝑓 𝑅3 cos𝜓 + 𝜌 𝑓 𝐼3 sin𝜓 = 0 (J.1a)

2𝑓 𝐼1 − Ω + 𝜌2

2 𝑓 𝐼2 + 2𝑓 𝐼4 − 2𝑓 𝑅3 sin𝜓 + 2𝑓 𝐼3 cos𝜓 = 0. (J.1b)

Then, in order to perform the linear stability analysis, the Jacobian of the vector field defining
the dynamical system from Equation (67) is calculated:

J =

[
𝑓 𝑅1 + 3𝜌2

4 𝑓 𝑅2 + 𝑓 𝑅4 + 𝑓 𝑅3 cos𝜓 + 𝑓 𝐼3 sin𝜓 −𝜌 𝑓 𝑅3 sin𝜓 + 𝜌 𝑓 𝐼3 cos𝜓
𝜌𝑓 𝐼2 −2𝑓 𝑅3 cos𝜓 − 2𝑓 𝐼3 sin𝜓

]
(J.2a)

=


0 𝜌

(
Ω
2 − 𝛿𝜔 − 𝜌2 3ℎ

8𝛿𝜔 − 𝜅2 (𝛿−1)
32𝜔2𝜉3𝛿2

)
𝜌 3ℎ
2𝛿𝜔 −2𝜉𝜔

 , (J.2b)

where the coefficient expressions from Equation (66) have been substituted and Equation (J.1) has
been used in order to simplify the Jacobian. Then, calculating its eigenvalues corresponds to
solving the following two quadratic equations in 𝜆:

𝜆2 + 2𝜉𝜔𝜆 ± 𝜌2
3ℎ
2𝛿𝜔

√︂
𝜅2

16𝜔2𝛿2
− 𝜉2𝜔2, (J.3)

which has been obtained from det(J − 𝜆I) = 0 by substituting Ω from Equation (73). If the plus
sign is considered first, one has

𝜆 = −𝜉𝜔 ±
√︄
𝜉2𝜔2 + 𝜌2

3ℎ
2𝛿𝜔

√︂
𝜅2

16𝜔2𝛿2
− 𝜉2𝜔2. (J.4)

In this case, the real part of at least one eigenvalue is always positive, since the term under the
square root is larger than 𝜉𝜔 . Thus, the right branch of the FRC, corresponding to the plus sign
in Equation (73), is unstable. Analogously, for the minus sign case, the eigenvalues are

𝜆 = −𝜉𝜔 ±
√︄
𝜉2𝜔2 − 𝜌2

3ℎ
2𝛿𝜔

√︂
𝜅2

16𝜔2𝛿2
− 𝜉2𝜔2. (J.5)

Therefore, using a similar argument, the left branch of the FRC is stable. From the stability of the
bifurcated branches, the one from the main branch can be deduced: it is unstable between the
bifurcation points and stable outside them. Note that the above analysis assumes a hardening
Duffing oscillator with ℎ > 0. In the softening case with ℎ < 0, the FRC is bent to the left, and the
analysis before has just to be changed: the unstable branch corresponds to the left bifurcation
point, with smaller frequency, while the stable branch corresponds to the right point with higher
frequency.
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K Nonlinear mappings for the two dofs system, free of internal
resonance

The nonlinear mappings for the two dofs system with only cubic coefficients and no internal
resonance are given below. Calculations were pursued up to order 5, and only displacement
mappings are given since velocity ones can be obtained as their time derivatives.

𝑢1 = 𝑧1 + 𝑧2 +
ℎ1111
8𝜔2

1
𝑧31 −

3ℎ1111
4𝜔2

1
𝑧21𝑧2 −

3ℎ1111
4𝜔2

1
𝑧1𝑧

2
2 +

ℎ1111
8𝜔2

1
𝑧32

+ 8ℎ2111
2
𝜔2
1 + 9ℎ1111

2
𝜔2
1 − ℎ1111

2
𝜔2
2

576𝜔6
1 − 64𝜔4

1𝜔
2
2

𝑧51

+ 696ℎ2111
2
𝜔4
1 − 120ℎ2111

2
𝜔2
1𝜔

2
2 − 351ℎ1111

2
𝜔4
1 + 390ℎ1111

2
𝜔2
1𝜔

2
2 − 39ℎ1111

2
𝜔4
2

576𝜔8
1 − 640𝜔6

1𝜔
2
2 + 64𝜔4

1𝜔
4
2

𝑧41𝑧2

+ −1968ℎ2111
2
𝜔4
1 + 240ℎ2111

2
𝜔2
1𝜔

2
2 + 621ℎ1111

2
𝜔4
1 − 690ℎ1111

2
𝜔2
1𝜔

2
2 + 69ℎ1111

2
𝜔4
2

288𝜔8
1 − 320𝜔6

1𝜔
2
2 + 32𝜔4

1𝜔
4
2

𝑧31𝑧
2
2

+ −1968ℎ2111
2
𝜔4
1 + 240ℎ2111

2
𝜔2
1𝜔

2
2 + 621ℎ1111

2
𝜔4
1 − 690ℎ1111

2
𝜔2
1𝜔

2
2 + 69ℎ1111

2
𝜔4
2

288𝜔8
1 − 320𝜔6

1𝜔
2
2 + 32𝜔4

1𝜔
4
2

𝑧21𝑧
3
2

+ 696ℎ2111
2
𝜔4
1 − 120ℎ2111

2
𝜔2
1𝜔

2
2 − 351ℎ1111

2
𝜔4
1 + 390ℎ1111

2
𝜔2
1𝜔

2
2 − 39ℎ1111

2
𝜔4
2

576𝜔8
1 − 640𝜔6

1𝜔
2
2 + 64𝜔4

1𝜔
4
2

𝑧1𝑧
4
2

+ 8ℎ2111
2
𝜔2
1 + 9ℎ1111

2
𝜔2
1 − ℎ1111

2
𝜔2
2

576𝜔6
1 − 64𝜔4

1𝜔
2
2

𝑧52 (K.1a)

𝑢2 =
ℎ2111

9𝜔2
1 − 𝜔2

2
𝑧31 +

3ℎ2111
𝜔2
1 − 𝜔2

2
𝑧21𝑧2 +

3ℎ2111
𝜔2
1 − 𝜔2

2
𝑧1𝑧

2
2 +

ℎ2111
9𝜔2

1 − 𝜔2
2
𝑧32

+ 27ℎ2111ℎ1111𝜔2
1 − 3ℎ2111ℎ1111𝜔2

2 + 8ℎ2111ℎ1122𝜔2
1

1800𝜔6
1 − 272𝜔4

1𝜔
2
2 + 8𝜔2

1𝜔
4
2

𝑧51

+ 𝐶1

162𝜔8
1 − 198𝜔6

1𝜔
2
2 + 38𝜔4

1𝜔
4
2 − 2𝜔2

1𝜔
6
2
𝑧41𝑧2

𝐶2

72𝜔8
1 − 152𝜔6

1𝜔
2
2 + 88𝜔4

1𝜔
4
2 − 8𝜔2

1𝜔
6
2
𝑧31𝑧

2
2

+ 𝐶2

72𝜔8
1 − 152𝜔6

1𝜔
2
2 + 88𝜔4

1𝜔
4
2 − 8𝜔2

1𝜔
6
2
𝑧21𝑧

3
2 +

𝐶1

162𝜔8
1 − 198𝜔6

1𝜔
2
2 + 38𝜔4

1𝜔
4
2 − 2𝜔2

1𝜔
6
2
𝑧1𝑧

4
2

+ 27ℎ2111ℎ1111𝜔2
1 − 3ℎ2111ℎ1111𝜔2

2 + 8ℎ2111ℎ1122𝜔2
1

1800𝜔6
1 − 272𝜔4

1𝜔
2
2 + 8𝜔2

1𝜔
4
2

𝑧52 (K.1b)

With the coefficients on the numerators given by:

𝐶1 = −81ℎ2111ℎ1111𝜔4
1 + 84ℎ2111ℎ1111𝜔2

1𝜔
2
2 − 3ℎ2111ℎ1111𝜔4

2 + 58ℎ2111ℎ1122𝜔4
1

− 10ℎ2111ℎ1122𝜔2
1𝜔

2
2 (K.2)

𝐶2 = −1107ℎ2111ℎ1111𝜔4
1 + 582ℎ2111ℎ1111𝜔2

1𝜔
2
2 − 51ℎ2111ℎ1111𝜔4

2 + 656ℎ2111ℎ1122𝜔4
1

− 80ℎ2111ℎ1122𝜔2
1𝜔

2
2 (K.3)
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