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PROBLEM
Recovery of altered lines in blurry and/or noisy situation

▶ Recovery of the number K of 2D lines,

▶ Recovery of their amplitude αk and position xk,

▶ Adaptable to different kernels φ.

Algorithm used: Sliding Frank-Wolfe, by Denoyelle et al. [1].

GENERAL MODEL
Definitions

• X = R×
(
−π

2 ,−
π
2

]
space of parameters

• H = RN2

Hilbert space of sampled realizations

• M(X ) space of Radon measure over X

A line is parametrized by 2 parameters: an angle θ ∈
(
−π

2 ,−
π
2

]
relative to the vertical axis and an offset η ∈ R along the hori-
zontal axis; that is by a 2D point x = (η, θ) ∈ X (Fig. 1b).

A superposition ofK line atoms with different amplitudes α =
(αk)

K
k=1 can be modeled as the evalutation of a kernel φ over a

measure mα,x =
∑K

k=1 αkδxk
∈M(X ), designated by

Φma,x =

∫
X
φ(x)dma,x =

K∑
k=1

αkφ(xk)

Objectives

▶ Characterize the kernel φ : X → H for a given model

▶ From an observation y = Φm+w ∈ Hwherew represents
noise, reconstruct the measure m.

GAUSSIAN LINES KERNEL
A perfect line distribution δL (η,θ) maps a function ψ in the
Schwartz class S(R2) to its integral along the geometric line

L (η, θ) = {(u1, u2) ∈ R2 : (u1 − η) cos θ + u2 sin θ = 0}

A Gaussian Line (GL) can be modeled as the convolution of a
perfect line δL with a Gaussian point spread function ϕ:

∀x ∈ X , φGL(x) = δL (x) ∗ ϕ
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FIGURE 1 – (a) Three Gaussian Lines with parameters of Experiment
1 in the noiseless case. (b) Its Radon transform in the plane (θ, η).

SPECTROGRAM CHIRP LINES KERNEL

A linear chirp fη,β(t) = e2iπ(ηt+
β
2 t2) is a frequency-modulated

signal with linear instantaneous frequency ϕ′(t) = βt + η, repre-
sented as a line in the time-frequency plane (t, ω).

Computed with a Gaussian window, its spectrogram has an
exact formulation [2] leading to the Chirp Lines (CL) kernel:

φCL(η, θ) := (t, ω) 7→ σθ,N e
− 2πσ2(ω−(N−1)(η+tan(θ)t))2

1+σ4(N−1)2 tan2 θ

SLIDING FRANK–WOLFE (SFW) FOR BLASSO
BLASSO

• f : (m, t) ∈M(X )× R 7→ ∥y − Φm∥2H + λt

• df(m, t) : (m′, t′) 7→
∫
X Φ∗(Φm− y) dm′ + λt′

• C = {(m, t) : |m|(X ) ≤ t ≤ ∥y∥2

2λ = r} a convex.

The linear form s 7→ df(m, t)[s] reaches its minimum
at one extreme point of C i.e s = (0, 0) or s = r ·
(±δx, 1) for x ∈ X . For mj := mαj ,xj =

∑j
k=1 α

j
kδxj

k
:

▶ Step 2. in Algorithm 1 ⇔ xj
∗ ∈ argmax

x∈X
|ηj(x)|

ληj(x) = (Φ∗(y−Φmj))(x) = ⟨φ(x), y−Φmj⟩H
▶ [1] uniformly sampled X on a grid to find the

max. We replaced this greedy search by finding
the local max in the Radon space (see Fig. 1b).

▶ In step 7. mj+1 can be replaced by any point
m̂ ∈ C satisfying f(m̂) ≤ f(mj+1). SFW adds
a non-convex minimization step updating both
the positions and the amplitudes of the spikes:

▷ x̃j = (xj
1, . . . ,x

j
j ,x

j
∗) (initial point)

▷ α̃j = argmax
α∈Rj+1

∥y − Φmα,x̃j∥+ λ∥α∥1

▷ αj+1,xj+1 = argmax
α,x̃

∥y−Φmα,x̃∥+λ∥α∥1

min
x∈C

f(x)

(a) FW iterations (b) FW in 3D

Algorithm 1 Frank–Wolfe Algorithm (FW)

1: for j = 1 to Kmax do
2: sj ∈ argmin

s∈C
f(mj)+df(mj)(s−mj)

3: if df(mj)(sj −mj) = 0 then
4: m⋆ ← mj is optimal.
5: else
6: γj ← argmin

γ∈[0,1]

f(mj + γ(sj −mj))

7: mj+1 ← mj + γj(sj −mj)
8: end if
9: end for

NUMERICAL RESULTS
Gaussian Lines. Images have a dimension of N = 65 and contained blurred lines corrupted by
additional white noise w ∼ N (0, σ2). We replicated three experiments from [3].
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FIGURE 3 – (a) Exp. 1 (very noisy lines), (b) Exp. 2 (very close lines plus noise), (c) Exp. 3 (more lines with
different amplitudes plus noise). The estimated lines are depicted in red. (d) Estimated parameters (θk, ηk).

Chirp Lines. Image dimension is N = 256. A white noise w ∼ N (0, σ2) is added to the 1D signal
formed by the superposition of K = 2 chirps with equal amplitudes. The Short-Time Fourier
Transform leads to a spectrogram with interference and noise following a χ2 distribution.
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FIGURE 4 – (a) Exp. 4 in the noiseless case, (b) Exp. 4 with no interference and high amount of noise (χ2

distributed), (c) Exp. 5 for crossing lines with interference and moderate noise, (d) Exp. 6 for parallel close
lined with more interference and moderate noise. The estimated lines are depicted in red.

Error Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

[3]
∆θ 2 · 10−2 4 · 10−3 6 · 10−3

∆η 4 · 10−2 6 · 10−1 2 · 10−1

∆α 1 · 10−1 4 · 10−2 2 · 10−2

Proposed approach
∆θ 1 · 10−3 5 · 10−4 2 · 10−4 6 · 10−3 2 · 10−3 6 · 10−4

∆η 2 · 10−2 3 · 10−2 2 · 10−2 4 · 10−3 6 · 10−4 5 · 10−4

∆α 3 · 10−2 8 · 10−3 1 · 10−2 2 · 10−1 4 · 10−2 1 · 10−2

TABLE 1 – Errors on estimated parameters

CONCLUSION
▶ We enhanced the 2D line super-resolution technique initiated in [3].

▶ We proposed a new kernel characterizing ridges of linear chirps in the spectrogram.

▶ Perspective: reconstruct the ridges of more complex signals by local approximation.
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