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PROBLEM SLIDING FRANK-WOLFE (SFW) FOR BLASSO

Recovery of altered lines in blurry and/or noisy situation BLASSO

» Recovery of the number K of 2D lines, o f:(m,t) e M(X) xR~ |y— Pml3, + Mt miél f(x)
Trc

» Recovery of their amplitude o and position x, o df(m,t): (m/,t') = [, *(Pm —y)dm' + X\’

2

» Adaptable to different kernels . o O = {(m.t):|m|(X)<t< ”3,’\‘ _ ) a convex _vf(m

Algorithm used: Sliding Frank-Wolfe, by Denoyelle et al. [1]. The linear form s > d f(m, t)|s| reaches its minimum
at one extreme point of (' i.e s = (0,0) or s = 1 - /'»

(::5m, 1) for x € X. For m/ := Meai xi — ?{:1 Oéiﬁmi Xt

GENERAL MODEL

Definitions

» Step 2. in Algorithm 1 < x/ € argmax |/ (z)|
rcX (a) FW iterations (b) FW in 3D

5] space of parameters P () = (27 (y—2m?)) () = (p(x),y—2m?)s
» [1] uniformly sampled X on a grid to find the Algorithm 1 Frank-Wolfe Algorithm (FW)
max. We replaced this greedy search by finding

e M(X) space of Radon measure over X’ the local max in the Radon space (see Fig. 1b).

o 7{ =R Hilbert space of sampled realizations
1: forj =1to K., do
| 2. s/ €argmin f(m?)+df(m?)(s —m?)
» In step 7. m? T can be replaced by any point . s€C |

m € C satisfying f(m) < f(m?*!). SFW adds if df (m?)(s’ —m?) = 0 then

a non-convex minimization step updating both m* <— m’ is optimal.

A line is parametrized by 2 parameters: an angle 6 € (
relative to the vertical axis and an offset € R along the hori-
zontal axis; that is by a 2D point x = (n,0) € X (Fig. 1b).

the positions and the amplitudes of the spikes: else | , | ,
A superposition of K line atoms with different amplitudes a = - % = (2] i 27) (initial point) v/ < argmin f(m’ + (s’ —m’))
(g )i, can be modeled as the evalutation of a kernel ¢ over a T AR & ) HHHAL PO . i1 ;6 [O’;]+ (s 2
N ‘ > &’ = argmax ||y — Pm, 27 || + M| : m s
measure Me, x = 9 ;. OOz, € M(X), designated by QERJH |y %9 |4 o ond if
9: end for

> ozj“,xjle — arg max Hy—q)ma,szHJr)\Ha\h

a,X

q)ma,x:/ p(x)dmg x
X

Objectives NUMERICAL RESULTS

> Characterize the kernel ¢ : &' — # for a given model Gaussian Lines. Images have a dimension of N = 65 and contained blurred lines corrupted by

> From an observation y = ®m+w € H where w represents | | additional white noise w ~ N(0, 02). We replicated three experiments from [3].
noise, reconstruct the measure m. . | |

GAUSSIAN LINES KERNEL

A perfect line distribution ¢ «(,, 9y maps a function ¢ in the
Schwartz class S(IR?) to its integral along the geometric line

L 1,0) = {(u1,u2) € R?: (u; —n)cosd + ussinf = 0}

A Gaussian Line (GL) can be modeled as the convolution of a

perfect line 0 » with a Gaussian point spread function ¢: @) (b) (c) (d)

v Py _5 FIGURE 3 - (a) Exp. 1 (very noisy lines), (b) Exp. 2 (very close lines plus noise), (c) Exp. 3 (more lines with
TEX, ¢aL(@) =0z () * different amplitudes plus noise). The estimated lines are depicted in red. (d) Estimated parameters (0%, 7% ).

Chirp Lines. Image dimension is N = 256. A white noise w ~ N (0, 0%) is added to the 1D signal
formed by the superposition of K = 2 chirps with equal amplitudes. The Short-Time Fourier
Transform leads to a spectrogram with interference and noise following a 2 distribution.

(a) (b)

FIGURE 1 - (a) Three Gaussian Lines with parameters of Experiment
1 in the noiseless case. (b) Its Radon transform in the plane (6, 7).

SPECTROGRAM CHIRP LINES KERNEL

(c)

A linear chirp f, 5(t) = o2 (nt+51%) jg o frequency-modulated

signal with linear instantaneous frequency ¢'(t) = Bt 4+ n, repre-
sented as a line in the time-frequency plane (¢, w).

FIGURE 4 - (a) Exp. 4 in the noiseless case, (b) Exp. 4 with no interference and high amount of noise (x>
distributed), (c) Exp. 5 for crossing lines with interference and moderate noise, (d) Exp. 6 for parallel close
lined with more interference and moderate noise. The estimated lines are depicted in red.

Computed with a Gaussian window, its spectrogram has an

: : : : Error | Exp.1 Exp. 2 Exp.3 | Exp.4 | Exp.5 | Exp.6
exact formulation [2] leading to the Chirp Lines (CL) kernel: — P — p- - . p- » 5 P P P
AV 2-10 410 6-10
2102 (w—(N—1)(n+tan(0)t))> [3] AU 4.107 6-10"1 2.10"1
1+04(N—-1)2 tan? 6 ] —5 — 5
A, 1-10 410 2-10
Ay 1103|5104 | 2-100* | 6-1072 | 2-1072 | 6-107*
REFERENCES Proposed approach An 2.10 2 3-1002|2-100% | 4-100° | 6-100* | 5-1071
A, 3.100%2 | 8.10%|1-100%2 | 2-100* | 4-107% | 1-10"7
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» We enhanced the 2D line super-resolution technique initiated in [3].

» We proposed a new kernel characterizing ridges of linear chirps in the spectrogram.



