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Spanning Multi-Asset Payoffs With ReLUs∗

Sébastien Bossu†, Stéphane Crépey‡, Hoang-Dung Nguyen§

August 20, 2024

Abstract

We propose a distributional formulation of the spanning problem of a multi-
asset payoff by vanilla basket options. This problem is shown to have a unique
solution if and only if the payoff function is even and absolutely homogeneous, and
we establish a Fourier-based formula to calculate the solution. Financial payoffs
are typically piecewise linear, resulting in a solution that may be derived explicitly,
yet may also be hard to exploit numerically. One-hidden-layer feedforward neural
networks instead provide a natural and efficient numerical alternative for discrete
spanning. We test this approach for a selection of archetypal payoffs and obtain
better hedging results with vanilla basket options compared to industry-favored
approaches based on single-asset vanilla hedges.

Keywords: Carr-Madan spanning formula, basket options, Fourier transform, iterated
integrals, measures, distributions, Cauchy principal value integral, one-hidden-layer
feedforward ReLU neural network, dispersion call, static hedging.

Mathematics Subject Classification: 91G20, 62G08, 62M45, 42B10, 46A11.

1 Introduction

The popular Carr and Madan (1998) spanning formula shows that perfect replication
may be achieved for single-asset options with twice differentiable payoffs, using an
infinite number of vanilla calls whose strikes span a one-dimensional continuum. In
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Target option* Notation Payoff F (x, k) AH variation†

Dispersion call/put DC/DP (
∑

j |xj | − k)± (
∑

j |xj | − |k|)±
Best-of call/put BOC/BOP (maxj xj − k)± (maxj |xj | − |k|)±
Worst-of call/put WOC/WOP (minj xj − k)± (minj |xj | − |k|)±
Best-of-binary call/put BOBC/BOBP 1±(maxj xj−k)>0 n/a

Worst-of-binary call/put WOBC/WOBP 1±(minj xj−k)>0 n/a

Table 1: Option payoffs covered in our numerics. k is the strike price, x =
(x1, x2, . . . , xd) is the vector of asset performances (price ratios or returns), z± =
max(0,±z) is the positive or negative part of z.
Notes: *All options trade on over-the-counter financial markets, either directly or as building blocks
for structured products (Bossu, 2014; Schofield, 2017). †Absolutely homogeneous (AH) variation of the
payoff formula, provided in view of Theorem 3.4.

honor of this formula, we refer to the practice of hedging a target payoff with a static
portfolio of vanilla payoffs as “spanning” throughout this paper. Bossu, Carr, and
Papanicolaou (2022) and Bossu (2022) spearheaded similar perfect spanning formulas
for ℓ2 dispersion options and more general multi-asset absolutely homogeneous payoffs,
using an infinite number of vanilla basket calls whose weights span a multidimensional
continuum. Specifically, given a target European payoff function F (x1, . . . , xd, k) of
d underlying asset performances xj (terminal price ratios or returns) and moneyness
or strike parameter k, one possible formulation of the continuum spanning problem
in strong form is to find a combination of cash, underlying asset and vanilla basket
options in respective quantities α, µj , ν(. . . ), such that

F (x1, . . . , xd, k) = α+

d∑
j=1

µjxj

+

∫
· · ·
∫
ν(w1, . . . , wd)

 d∑
j=1

wjxj − k

+

dw1 . . . dwd, for all x1, . . . , xd,

(1.1)

wherein w1, . . . , wd are the asset weights of the basket call payoff
(∑d

j=1wjxj − k
)+

.

The primary aim of this paper is to deal with the delicate mathematical regularization
aspects identified by the aforementioned authors. To this end, we introduce a weak
formulation of the continuum spanning problem to allow for distributional solutions in
a rigorous setting.

In practice, only a finite number of basket calls and puts may be traded and span-
ning is imperfect. On top of contributing to the above theory, we study how a European
multi-asset payoff may be partially hedged with a finite combination of cash, underly-
ing assets, and vanilla basket calls and puts, corresponding to a discretization of the
right-hand side of (1.1). For the selection of archetypal payoffs listed in Table 1, we use
neural network training techniques to empirically investigate how the discrete spanning
error

F (x1, . . . , xd, k)− α−
d∑

j=1

µjxj −
n∑

i=1

νi

(
w

(i)
1 x1 + · · ·+ w

(i)
d xd − ki

)+
(1.2)
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may be minimized with respect to some error metric such as MSE (mean squared
error) for optimal quantities α of cash, µj of underlying assets 1 ≤ j ≤ d, and νi

of basket option payoffs 1 ≤ i ≤ n with associated basket weights w
(i)
1 , . . . , w

(i)
d and

strike parameter ki. The expressiveness power of the neural network family is well
known in theory and in practice, and constitutes a particularly convincing paradigm
for discrete spanning since (1.2) corresponds to the prediction error of a one-hidden-
layer feedforward neural network. Incidentally, the Carr and Madan spanning formula
can also be found in the neural network literature (see Savarese, Evron, Soudry, and
Srebro, 2019, Eqns (15)–(17)).

1.1 Background and Review

The static hedging of a complex and illiquid payoff with more liquid instruments is
useful to derivatives practitioners for price discovery, trading, and risk management
applications. The topic of multi-asset payoffs has gained in popularity over the past
fifteen years in the academic literature. İlhan, Jonsson, and Sircar (2009) study the
problem of optimally hedging exotic derivatives positions with dynamic and static trad-
ing strategies when the performance is quantified by a convex risk measure. Hurd and
Zhou (2010) derive a formula for spread option pricing based on Fourier analysis of the
payoff function. Carr and Laurence (2011) express the joint implied distribution of sev-
eral underlying assets x1, . . . , xd at time T as an inverse Radon transform of basket call
prices with maturity T and derive a multi-asset version of Dupire’s formula. Alexander
and Venkatramanan (2012) derive analytic pricing approximations for European basket
and rainbow payoffs using a decomposition as sum of compound payoffs. Molchanov
and Schmutz (2014) show how the joint implied distribution may be recovered from
best-of option prices, and investigate various symmetries of multi-asset derivatives.
Cui and Xu (2022) derive a multi-asset extension of the Carr and Madan (1998) static
replication formula in the form of multiple integral of products of call payoffs. Chiu
and Cont (2023) propose a model-free approach to determine the superhedging cost
of path-dependent payoffs, including Asian options. Marinelli (2024) uses functional
analysis and the theory of distributions to recover the implied distribution and price
single-asset option payoffs with call prices.

In the machine learning literature for finance, Lokeshwar, Bhardawaj, and Jain
(2022) propose the use of neural network techniques for semi-static hedging of path-
dependent exotics with short-term options. Lyons, Nejad, and Arribas (2020) use “sig-
nature payoffs” to approximate path-dependent exotic derivatives payoffs. Antonov
and Piterbarg (2022) discuss alternatives to neural networks for financial function ap-
proximation with an emphasis on linear regression concepts.

1.2 Standing Notation and Organization of the Paper

We write 1A× (·) for (·) if the Boolean expression A is true, and 0 otherwise (even if (·)
is not defined when A is false, in accordance with the Iverson bracket definition). We
use boldface for vectors. We denote by R∗

+,R+, and R∗ the sets of positive, nonnegative
and nonzero real numbers, respectively. We write limx→0+ for the limit when x goes
to 0 in R∗

+. For any positive integer q, vector z ∈ Rq and index j ∈ 1 .. q, z ̸=j is the
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subvector excluding the jth coefficient of z, z≤j ∈ Rj is the subvector of the first j
coefficients of z, and z>j ∈ Rq−j is the subvector of the last q − j coefficients of z
(with z>q = Ø); ∥z∥1 , ∥z∥2 = |z|, and ∥z∥∞ are respectively the ℓ1, ℓ2 (Euclidean) and
ℓ∞ (maximum) norms, and for any other vector z′ ∈ Rq, z · z′ is the dot product. We
denote by F the Fourier transform operator, with i2 = −1 (see Section B for further
notation and details). Unless indicated otherwise, we work with real-valued functions,
measures, and distributions, and their corresponding vector spaces and linear forms; in
particular:

• Lp(Rq), for p ∈ [1,+∞), the space of Lebesgue-measurable functions on Rq such that

∥f∥Lp :=
( ∫

Rq |f(x)|p dx
)1/p

<∞;

• C∞(Rq), the space of infinitely differentiable functions over Rq;

• S(Rq) ⊂ C∞(Rq), the space of Schwartz functions over Rq, i.e. φ ∈ C∞(Rq) such
that φ(z) and each of its derivatives vanish faster than any inverse power of |z| as
|z| → ∞ (Ramm and Katsevich, 1996, page 395), (King, 2009, page 480);

• D(Rq) ⊂ S(Rq), the Schwartz subspace of functions with compact support;

• ⟨T, φ⟩, or ⟨Tdz, φ(z)⟩z when there may be ambiguity about the variable, the action
of a distribution T over a Schwartz function φ ∈ S(Rq) (generally, the action of a
linear form on a test function in an appropriate functional space);

• ⟨ν(dz), φ(z)⟩z :=
∫
ν(dz)φ(z), the integral of φ ∈ S(Rq) with respect to a measure

ν on Rq, whenever this integral is well defined (e.g. for ν(dz) = f(z) dz for f locally
integrable), and ν(dz), the corresponding linear form S(Rq) ∋ φ 7→ ⟨ν(dz), φ(z)⟩z;

• ⟨δa(dz), f(z)⟩z := f(a), the Dirac mass at point a ∈ Rq of any function f : Rq → C;

•
〈

dz
z−c , φ(z)

〉
z
:= −
∫∞
−∞

dz
z−cφ(z), for c ∈ R, the Cauchy integral of φ(z)

z−c , for φ ∈ S(R),

and dz
z−c the corresponding principal value distribution S(R) ∋ φ 7→

〈
dz
z−c , φ(z)

〉
z
∈ R

(see Section A for further notation and details).

The paper is organized as follows. Section 2 poses a weak, distributional formula-
tion of the continuum spanning problem and examines its correspondence with strong
formulations. Section 3 shows that a unique solution exists if and only if the payoff
function is even and absolutely homogeneous, and provides a Fourier-based formula
(3.3) for its calculation. Section 4 derives explicit solutions of function-, measure-, and
principal value-type for specific payoff examples. Section 5 showcases how feedforward
neural networks, which have a natural interpretation for discrete payoff spanning, may
constitute an effective numerical method compared to other restricted spanning strate-
gies. Section 6 gives our conclusions and perspectives for future research. The most
technical proof of the paper is built upon Sections A and B and deferred to Section C.

The theoretical Sections 2 to 4 of this paper are dense and technical, hence the
novice reader may wish to start with the numerical Section 5 which is more accessible,
before proceeding with Sections 2 to 4 whose proofs may be skipped on first reading,
with particular focus on:

• Problem 2.1 page 8 is the weak, distributional formulation of the spanning problem;

• Proposition 2.3 page 9 shows that sufficiently regular solutions coincide with the

4



strong problem;

• Theorem 3.4 page 12 shows that the weak problem has a unique solution if and only
the payoff is even and absolutely homogeneous (Definition 3.1 page 11), which can
then be calculated by the Fourier-based formula (3.3);

• Section 3.2 page 13 shows that if the payoff is smooth enough, then the strong
solution is the Radon transform of the second derivative with respect to the strike
parameter k, in agreement with earlier research;

• Proposition 4.1 page 15 derives the strong solution for a smooth payoff example;

• Proposition 4.3 page 17 gives the weak solution (Definition 4.1 page 16) for the
dispersion call payoff, while Proposition 4.5 page 19 derives the corresponding strong,
pointwise spanning formula in dimension d = 2.

2 The Continuum Spanning Problem

In dimension d = 1, the Carr and Madan (1998) spanning formula states that any
twice differentiable European payoff function F (x), x ∈ R+, can be perfectly replicated
by a “continuous portfolio” of vanilla calls in quantities F ′′(K) dK with strike prices
spanning the continuum K ∈ R+, together with fixed amounts of cash and underlying
asset positions, as

F (x) = F (0) + F ′(0)x+

∫ ∞

0
(x−K)+F ′′(K) dK, x ∈ R+. (2.1)

It is worth observing that the regularity condition on F formally excludes most financial
payoffs, such as a simple straddle payoff F (x) = |x − 1| which is not differentiable at
x = 1. To reconcile the trivial replication identity “long straddle = long 2 calls, short
1 forward contract” with the Carr-Madan formula, we may write

|x− 1| = −(x− 1) + 2(x− 1)+ = 1− x+ 2

∫ ∞

0
(x−K)+δ1(dK), x ∈ R+,

where δ1 is the Dirac mass at point K = 1 introduced in Section 1.2. Here, a theoret-
ical extension is needed to give definite meaning to such statements as “F ′′(K) dK =
2δ1(dK)” to reconcile the above identity with (2.1). This is the aim of Sections 2 to 4
of this paper, in general dimension d ≥ 1 for which solutions become nontrivial.

Bossu, Carr, and Papanicolaou (2022) and Bossu (2022) explored replication identi-
ties for European multi-asset options with absolutely homogeneous payoffs F (λx, λk) =
|λ|F (x, k), λ ∈ R∗, such as

F (x, k) =

∫
Rd

(w · x− k)+ν(dw), x ∈ Rd, (2.2)

where k is a real parameter and ν(dw) is the quantity of vanilla basket calls with basket
weights w spanning the continuum w ∈ Rd. In this multidimensional version of the
spanning problem, the cash and asset terms α+ µ · x are moved to the left-hand side
and inside the arbitrary target payoff function F (x, k) for ease of writing. Section D

5



shows how the Carr-Madan formula (2.1) may be rewritten as (2.2) for d = 1 under
specific conditions.

2.1 Technical Preliminaries

Our continuum spanning results are established in general dimension d ≥ 1 for a class
of distributions which are not necessarily of measure-type. This theoretical extension
is necessary to give precise mathematical meaning to spanning solutions found for even
simple financial payoffs, such as formula (4.7) for the dispersion call in dimension 2.

In order to obtain the weak form (2.7) of the integral equation (2.2), we need to
mollify both sides with rapidly decaying test functions φ(x, k), and replace ν(dw) by a
distribution Ndw. However, the ν(dw)-integral presents a technical difficulty because a
mollified basket call payoff

∫
Rd+1(w ·x− k)+φ(x, k) dk dx may not be rapidly decaying

as |w| → ∞, which leads us to consider more general linear forms Ndw defined on an
appropriate functional space. To address these issues, we define the function set

S0 = {ϕ0 ∈ C∞(Rd+1,C); ϕ0(x, k) = e−irkh(x) for some r ∈ R∗ and h in S(Rd)},
and vector spaces

Se = {φe even in S(Rd)},
Σe = {ψe ∈ C∞(Rd); ψe = φe − φe(0) for some φe ∈ Se}.

Note that Se and Σe are isomorphic via the maps

Se ←→ Σe

φe 7−→ φe − φe(0)

ψe − lim
∞∞∞
ψe 7−→ψe,

(2.3)

wherein lim∞∞∞ ψe := lim
|w|→∞

ψe(w). This one-to-one correspondence is illustrated in the

left panel of Figure 1 for d = 1.

lim∞ ψe = −φe(0)

φe(0)

φe = ψe − lim∞ ψe

ψe = φe − φe(0)

w

−2 −1 0
1

2−2

0

2
0

1

2

k

x

(|w
x
|−
|k
|)+

,
w
it
h
w

=
1

Figure 1: d = 1. (Left) One-to-one correspondence (2.3) between the example functions
φe(w) = e−w2

and ψe(w) = e−w2 − 1. (Right) “Basket call” payoff F (x, k) = (|wx| −
|k|)+ in dimension d = 1 used in the spanning formula (2.7) with w = 1.
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The following lemma establishes that basket calls mollified by ϕ0 ∈ S0 belong
to the functional space Σe of even Schwartz functions up to a constant. Observe
the introduction of absolute values to enforce compact support with respect to k and
symmetry with respect to (x, k) (see also Remark 2.1).

Lemma 2.1. (i) For any ϕ0(x, k) = e−ikrh(x) ∈ S0 (with r ̸= 0 and h ∈ S(Rd)), the
function

ψ(w) := −r2
∫
Rd

dx

∫
R
dk
(
|w · x| − |k|

)+
ϕ0(x, k) = 2

∫
Rd

dxh(x)
(
cos(w · x)− 1

)
(2.4)

is in Σe.
(ii) The linear operator

S0 −→ Σe

ϕ0 7−→ ψe : w 7→
∫
Rd+1

(
|w · x| − |k|

)+
ϕ0(x, k) dk dx

(2.5)

is well defined.

Proof. (i) For any ϕ0(x, k) = e−ikrh(x) ∈ S0 with r ̸= 0 and h ∈ S(Rd), by definition,

− 1

r2
ψ(w) =

∫
Rd

dxh(x)

∫
R
dke−irk

(
|w · x| − |k|

)+
=

∫
Rd

dxh(x)Fk

[(
|w · x| − |k|

)+]
(r).

Substituting (B.2) for the Fourier transform of the basket call above,

ψ(w) = 2

∫
Rd

dxh(x)
(
cos(w · x)− 1

)
=

∫
Rd

eirw·xh(x) dx+

∫
Rd

e−irw·xh(x) dx− 2

∫
Rd

h(x) dx,

which establishes (2.4). From lim|w|→∞
∫
Rd e

±irw·xh(x) dx = 0 (see Remark B.2), we
get lim∞∞∞ ψ = −2

∫
Rd h(x) dx. Let φ = ψ − lim∞∞∞ ψ. Then φ(w) =

∫
Rd e

irw·xh(x) dx +∫
Rd e

−irw·xh(x) dx is even, and in S(Rd) as a property of Fourier transforms (Kanwal,
2004, Theorem 2 page 143). Therefore, φ belongs to Se, and ψ belongs to Σe in view
of the bijection (2.3).
(ii) proceeds immediately from (i) since r ̸= 0 and ψe = −ψ/r2. □

2.2 Weak Formulation of the Continuum Spanning Problem

Armed with the preceding definitions and lemma, we are ready to state the continuum
spanning problem in weak form, beginning with the following payoff regularity condition
that is assumed to hold throughout Sections 2 to 4.

Assumption 2.1. The payoff function F (x, k) is continuous in x, in k, and such that∫
Rd+1

dxdk|F (x, k)h(x)| <∞, h ∈ S(Rd). (2.6)

Observe that the above continuity assumption is less restrictive than the Carr-Madan
differentiability condition in dimension d = 1. The following distributional equation is
then a weak formulation of the continuum spanning problem.

7



Problem 2.1. Given a target payoff function F (x, k) satisfying Assumption 2.1, find
a linear form N defined on Σe such that∫

Rd

dx

∫
R
dkF (x, k)ϕ0(x, k) =〈

Ndw,

∫
Rd

dx

∫
R
dk
(
|w · x| − |k|

)+
ϕ0(x, k)

〉
w

, ϕ0 ∈ S0;
(2.7)

or, equivalently by correspondence (2.3), find a linear form T on Se such that

⟨N,ψe⟩ := ⟨T, φe⟩ , where ψe = φe − φe(0), (2.8)

solves (2.7).

Remark 2.1. (i) If such T is continuous for the topology of S(Rd), it defines a distri-
bution on Se (Kanwal, 2004, Definitions page 22).
(ii) By Lemma 2.1(ii), for any ϕ0(x, k) ∈ S0 the function w 7→

∫
Rd dx

∫
R dk

(
|w · x| −

|k|
)+
ϕ0(x, k) is indeed in Σe.

(iii) The operator Ndw represents the quantity of basket call payoffs
(
|w ·x|− |k|

)+
for

each vector w of basket weights across the Rd continuum. Note that
(
|w ·x| − |k|

)+
=(

w ·x−|k|
)+

+
(
−w ·x−|k|

)+
, which actually corresponds to two proper basket calls

with opposite basket weights w and −w and identical nonnegative strike |k| (see the
right panel in Figure 1).

2.3 Recovering Strong Solutions from Weak Solutions

Proposition 2.3 below shows how the weak formulation (2.7) coincides with a strong
formulation of the continuum spanning problem (2.2) when the solution Ndw is a
measure-type distribution ν(dw) (see Remark 2.3). We begin with the following Dirac
approximation lemma.

Lemma 2.2. Let hn ∈ D(Rd) be the sequence of functions with support inside {∥x∥∞ <
1
n} given as

hn(x) = cn

d∏
i=1

1|xi|< 1
n
exp

(
− 1

1− n2x2i

)
, (2.9)

where cn is a normalizing factor such that
∫
Rd hn(x) dx = 1. Then

∫
Rd dxhn(x)g(x)→

g(0) as n→∞, for any function g : Rd → C which is continuous at the origin.

Proof. hn(x) is in D(Rd) as normalized product of functions in D(R) (Kanwal, 2004,
Lemma 2 page 181) xi 7→ 1|xi|< 1

n
exp

(
− 1

1−n2x2
i

)
, and the support of hn is inside

{∥x∥∞ < 1
n} by (2.9). By continuity of g at the origin, for any ϵ > 0, there ex-

ists nϵ such that |g(x) − g(0)| ≤ ϵ holds on {∥x∥∞ < 1
nϵ
}. Hence, for n ≥ nϵ,∣∣∫

Rd dxhn(x)(g(x)− g(0))
∣∣ ≤ ∫{∥x∥∞< 1

nϵ
} dxhn(x)|g(x)−g(0))| ≤ ϵ since hn integrates

to 1. □

Remark 2.2. Each sequence
(
γn1|x|< 1

n
exp(− 1

1−n2x2 )
)
n
, where the constants γn are

such that the L1(R) norm is equal to 1, is a delta sequence in the sense of Walter and
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Blum (1979)—see also Kanwal (2004, Section 1.2 page 4). Replacing hn in (2.9) by
any other normalized product of delta sequences would do for our purposes.

Proposition 2.3. If a solution N to the weak spanning problem (2.7) exists in the form
of an integration operator on Σe against an even measure ν with finite second moment∫
Rd |w|2ν(dw) <∞, then the following strong, pointwise representation holds:

F (x, k) =

∫
Rd

(|w · x| − |k|)+ν(dw), (x, k) ∈ Rd × R. (2.10)

Proof. Let ϕ0(x, k) = e−irkh(x) ∈ S0 with r ̸= 0 and h ∈ S(Rd). Substituting
Ndw = ν(dw) into (2.7),∫

Rd

dx

∫
R
dkF (x, k)ϕ0(x, k) =

∫
Rd

ν(dw)

∫
Rd

dx

∫
R
dk
(
|w · x| − |k|

)+
ϕ0(x, k). (2.11)

The second moment condition on ν together with the Cauchy-Schwarz inequality im-
plies∫

Rd

dx|h(x)|
∫
Rd+1

(|w · x| − |k|)+ν(dw) dk ≤
∫
Rd

dx|h(x)|
∫
Rd

(w · x)2ν(dw)

≤
∫
Rd

dx|h(x)||x|2
∫
Rd

|w|2ν(dw),

which is finite for all h ∈ S(Rd) (Kanwal, 2004, Theorem page 141). By dominated
convergence left and right in (2.11) (due respectively to (2.6) and the above inequality),
(2.11) also holds for r formally set to 0 in ϕ0. Replacing ϕ0(x, k) with e−irkh(x) in
(2.11), where r ∈ R may now be 0, and reordering integrals,∫

R
dke−irk

∫
Rd

dxF (x, k)h(x) =

∫
R
dke−irk

∫
Rd

ν(dw)

∫
Rd

dx
(
|w · x| − |k|

)+
h(x).

Recognizing Fourier transforms over k,

Fk

[ ∫
Rd

F (x, k)h(x) dx
]
= Fk

[ ∫
Rd

dxh(x)

∫
Rd

ν(dw)
(
|w · x| − |k|

)+]
.

Since the Fourier transform with respect to k is injective on L1(R) (see Remark B.2),
we recover for all h ∈ S(Rd):∫

Rd

F (x, k)h(x) dx =

∫
Rd

dxh(x)

∫
Rd

ν(dw)
(
|w · x| − |k|

)+
(2.12)

dk-almost everywhere. For each k satisfying (2.12), by continuity in x of F (x, k) and∫
Rd ν(dw)

(
|w · x| − |k|

)+
, taking h(x) = hn(x − x0) and n → ∞ by Lemma 2.2, we

recover F (x0, k) =
∫
Rd(|w · x0| − |k|)+ν(dw) for any x0 ∈ Rd. The validity of (2.10)

then follows by continuity in k applied to both sides. □

Remark 2.3. For fixed k ≥ 0, (2.10) can be seen as a variation of (2.2) up to a doubling
factor. Indeed, substituting (|w ·x|− |k|)+ = (w ·x−k)++(−w ·x−k)+ and splitting
the integrand,

F (x, k) =

∫
Rd

(w · x− k)+ν(dw) +

∫
Rd

(−w · x− k)+ν(dw).

9



Substituting w 7→ −w then ν(−dw) = ν(dw) into the second integral above,

F (x, k) = 2

∫
Rd

(w · x− k)+ν(dw), x ∈ Rd, k ∈ R+.

If N is not induced by a measure, then integration over k and the action of N do
not necessarily commute and the proof of Proposition 2.3 no longer works. Hence, in
general, strong representations of the form “F (x, k) =

〈
Ndw,

(
|w ·x|−|k|

)+〉
w
, (x, k) ∈

Rd+1” cannot be readily obtained from (2.7). Nevertheless, we have the following
regularized representation.

Proposition 2.4. For any linear form N on Σe solving (2.7), if k 7→ F (x, k) and
its Fourier transform r 7→ Fk

[
F (x, k)

]
(r) are both in L1(R) for each x ∈ Rd, and

x 7→ Fk

[
F (x, k)

]
(r) is continuous on Rd for each r ∈ R∗, then the following strong,

pointwise representation holds dk-almost everywhere, for each x ∈ Rd:

F (x, k) = F−1
r

[
lim
n→∞

1r ̸=0

〈
Ndw,

∫
Rd

dyhn(y − x)Fκ

[(
|w · y| − |κ|

)+]
(r)

〉
w

]
(k),

where hn is the sequence of Dirac approximation functions in (2.9).

Proof. Let ϕ0(x, k) = e−irkh(x) ∈ S0 with r ̸= 0 and h ∈ S(Rd). Substituting into
(2.7),∫

Rd

dxh(x)

∫
R
dkF (x, k)e−irk =

〈
Ndw,

∫
Rd

dxh(x)

∫
R
dk
(
|w · x| − |k|

)+
e−irk

〉
w

.

Recognizing Fourier transforms, replacing x with y on both sides and k with κ on the
right-hand side,∫

Rd

dyh(y)Fk

[
F (y, k)

]
(r) =

〈
Ndw,

∫
Rd

dyh(y)Fκ

[(
|w · y| − |κ|

)+]
(r)

〉
w

.

Let x ∈ Rd. Substituting h(y) ≡ hn(y − x),∫
Rd

dyhn(y − x)Fk

[
F (y, k)

]
(r) =

〈
Ndw,

∫
Rd

dyhn(y − x)Fκ

[(
|w · y| − |κ|

)+]
(r)

〉
w

.

Taking n→ +∞, by Lemma 2.2 the limit of the left-hand side exists as Fk

[
F (x, k)

]
(r),

and thus on both sides as

Fk

[
F (x, k)

]
(r) = lim

n→+∞

〈
Ndw,

∫
Rd

dyhn(y − x)Fκ

[(
|w · y| − |κ|

)+]
(r)

〉
w

, r ̸= 0.

As such, the functions R ∋ r 7→ Fk

[
F (x, k)

]
(r) and

r 7→ 1r ̸=0 lim
n→+∞

〈
Ndw,

∫
Rd

dyhn(y − x)Fκ

[(
|w · y| − |κ|

)+]
(r)

〉
w

coincide on R∗. The inverse Fourier transform of r 7→ Fk

[
F (x, k)

]
(r) exists as k 7→

F (x, k) (see Remark B.2), hence both functions admit inverse Fourier transforms, which
coincide as functions in L1(R) and therefore dk-almost everywhere. □

3 Solution to the Continuum Spanning Problem
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In this section we establish our main theoretical result that the weak spanning equation
(2.7) has a unique solution if and only if the payoff is of class (AH) per Definition 3.1
below. The following technical lemma and corollary show that if a solution exists it is
unique.

Lemma 3.1. The following identity holds between any two bijectively related test func-
tions φe and he = −1

2F
−1φe that are both in Se:

ψe(w) := φe(w)− φe(0) =

∫
Rd

dxhe(x)

∫
R
dk e−ik

(
|w · x| − |k|

)+
. (3.1)

Proof. Let φe ∈ Se. By the Fourier inversion theorem (see Remark B.3), φe(w) =

Fx[F−1φe(x)](w) = −2
∫
Rd

e−ix·whe(x) dx. Because he is even,

φe(w) = −
∫
Rd

e−ix·whe(x) dx−
∫
Rd

eix·whe(x) dx = −2
∫
Rd

cos(x ·w)he(x) dx

=

∫
Rd

dx

∫
R
dkeikhe(x)

(
|w · x| − |k|

)+ − 2

∫
Rd

dxhe(x),

(3.2)

where we used (2.4) with r = −1 in the last step. Substituting k 7→ −k and

−2
∫
Rd

dxhe(x) =

∫
Rd

dx(F−1φe)(x) = FF−1φe(0) = φe(0),

then rearranging terms yields the required result. □

Corollary 3.2. The function space {w 7→
∫
Rd dx

∫
R dk

(
|w · x| − |k|

)+
ϕ0(x, k) ; ϕ0 ∈

S0} coincides with Σe and Problem 2.1 admits at most one solution.

Proof. This space is a subset of Σe by Lemma 2.1(ii), and a superset by Lemma 3.1.
Hence any two solutions N and N ′ to Problem 2.1 coincide on their entire domain Σe,
i.e. N = N ′. □

Definition 3.1. The payoff function F (x, k) is said to be of class (AH) if it is absolutely
homogeneous in (x, k) and even in both x and k, i.e.

F (λx, λk) = |λ|F (x, k), λ ∈ R∗, and F (x, k) = F (x,−k) = F (−x, k), (x, k) ∈ Rd+1.

Remark 3.1. Examples of absolutely homogeneous payoffs can be found in the last
column in Table 1, page 2. By continuity of F in x or k postulated in Assumption 2.1,
the payoff function must vanish at the origin, since e.g. F (0, 0) = limn→∞ F (0, 1/n) =
limn→∞ 1/nF (0, 1) = 0.

3.1 General Weak Solution

The following lemma defines two linear forms NF , TF associated with any payoff F
that will be shown in Theorem 3.4 below to uniquely solve Problem 2.1 if and only if
F is of class (AH).
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Lemma 3.3 (and definition). Given a payoff F (x, k), the associated linear forms
NF , TF below are well defined:〈

NF
dw, ψe(w)

〉
w
=
〈
TF
dw, φe(w)

〉
w
:= −1

2

∫
Rd

dxF−1φe(x)Fk[F (x, k)](1)

:= − 1

2(2π)d

∫
Rd

dx

∫
Rd

dweiw·xφe(w)

∫
R
dke−ikF (x, k),

(3.3)

for any φe ∈ Se, ψe = φe − φe(0) ∈ Σe. If, in addition,

dxFk[F (x, k)](1) = dx

(∫
R
dkF (x, k)e−ik

)
is a function-type distribution on S(Rd), then TF is a distribution on Se.

Proof. Observe that F−1φe ∈ Se for any φe ∈ Se (Milton, 1974, Theorem 3.3 and 4.1).
By Assumption 2.1,

∫
Rd dxF−1φe(x)Fk[F (x, k)](1) is therefore well defined for any

φe ∈ Se, and it is linear in φe. In addition, if (
∫
dkF (x, k)e−ik) dx is a distribution on

S(Rd) and thus on Se (Milton, 1974, Theorem 4.4), because F−1 is a continuous linear
operator on S(Rd) ⊃ Se (see Remark B.3), the right-hand side of (3.3) is continuous
with respect to φe ∈ Se, hence TF given by (3.3) defines a distribution on Se. □

Theorem 3.4. Problem 2.1 admits a solution N , or equivalently T by correspondence
(2.8), if and only if the payoff F (x, k) is of class (AH), in which case the solution is
unique and given by (3.3).

Proof. The uniqueness of a solution to Problem 2.1 was established in Corollary 3.2.
(⇒) Suppose that a solution T to (2.7)-(2.8) exists, and let ϕ0 ∈ S0 and λ ∈ R∗. The
function (x, k) 7→ ϕ0(λ

−1x, λ−1k) is again in S0 and may be substituted into (2.7) to
obtain∫

Rd

dx

∫
R
dkF (x, k)ϕ0(λ

−1x, λ−1k) =〈
Ndw,

∫
Rd

dx

∫
R
dk
(
|w · x| − |k|

)+
ϕ0(λ

−1x, λ−1k)

〉
w

.

(3.4)

By linear change of variable (x, k) 7→ (λx, λk) on both sides, and absolute homogeneity

of
(
|w · x| − |k|

)+
in (x, k),∫

Rd

dx

∫
R
dk|λ|−d−1F (λx, λk)ϕ0(x, k)

=

〈
Ndw,

∫
Rd

dx

∫
R
dk|λ|−d−1

(
|w · λx| − |λk|

)+
ϕ0(x, k)

〉
w

= |λ|−d

〈
Ndw,

∫
Rd

dx

∫
R
dk
(
|w · x| − |k|

)+
ϕ0(x, k)

〉
w

= |λ|−d

∫
Rd

dx

∫
R
dkF (x, k)ϕ0(x, k),

where we substituted (2.7) in the last step. Multiplying both sides of the above by
|λ|d+1, ∫

Rd

dx

∫
R
dkF (λxλk)ϕ0(x, k) = |λ|

∫
Rd

dx

∫
R
dkF (x, k)ϕ0(x, k), (3.5)
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which holds for any ϕ0 ∈ S0, and also for r formally set to 0 in ϕ0 as a result of
dominated convergence left and right in (3.5). By the same reasoning that concluded
the proof of Proposition 2.3, we recover F (λx, λk) = |λ|F (x, k) for all (x, k) ∈ Rd+1.
In addition, (x, k) 7→ ϕ0(x,−k) and (x, k) 7→ ϕ0(−x, k) are also in S0, and we similarly
obtain F (x, k) = F (x,−k) = F (−x, k) for (x, k) ∈ Rd+1. Therefore, F is of class (AH)
as required.

(⇐) Suppose that F is of class (AH), and let ψe ∈ Σe, φe = ψe − lim∞∞∞ ψ, and r ∈ R∗.
By absolute homogeneity of F (x, k), we may substitute F (x, k) = |r|F (r−1x, r−1k) in
(3.3) to get〈

NF
dw, ψe(w)

〉
w
= −1

2

∫
Rd

dx

∫
R
dk|r|F (r−1x, r−1k)e−ikF−1φe(x).

By linear change of variables (y, κ) = (r−1x, r−1k),〈
NF

dw, ψe(w)
〉
w
= −1

2

∫
Rd

dy

∫
R
dκ|r|d+2F (y, κ)e−irκF−1φe(ry). (3.6)

By Lemma 3.1 with he = −1
2F

−1φe, the left-hand side satisfies〈
NF

dw, ψe(w)
〉
w
=

〈
NF

dw,

∫
Rd

dx

∫
R
dk e−ikhe(x)

(
|w · x| − |k|

)+〉
w

=

〈
NF

dw, |r|d+2

∫
Rd

dy

∫
R
dκ e−irκhe(ry)

(
|w · y| − |κ|

)+〉
w

,

(3.7)

where we applied the change of variable (x, k) 7→ (y, κ) = (r−1x, r−1k) in the last step.
Connecting with (3.6) and dividing both sides by |r|d+2,∫
Rd

dy

∫
R
dκF (y, κ)e−irκhe(ry) =

〈
NF

dw,

∫
Rd

dy

∫
R
dκe−irκhe(ry)

(
|w · y| − |κ|

)+〉
w

,(3.8)

which holds for any he(ry) = −1
2F

−1φe(ry) ∈ Se. In addition, for any ho odd in S(Rd),
the even-odd product F (y, κ)ho(ry) is odd in y, so that∫

Rd

dy

∫
R
dκF (y, κ)e−irκho(ry) =

∫
R
dκe−irκ

∫
Rd

dyF (y, κ)ho(ry) = 0

as the dy integral over Rd of an odd function vanishes. Consequently, replacing he by
any odd function ho to the left-hand side of (3.8) yields 0, and the equation thus holds
for any h ∈ S(Rd), so that NF solves (2.7) as required. □

3.2 Connection With Radon Transform

In general, the integrals in (3.3) may not commute, so that the solution T (or N) is
not necessarily “of function-type”. The following proposition connects our Theorem 3.4
with earlier research based on Radon transforms and the Fourier slice inversion formula
(3.10) in the Lebesgue-integrable case. In particular, Proposition 3.5(iii) is tantamount
to saying that f(w) is the inverse Radon transform of 1

2∂
2
k2F (x, k), in agreement with

the solution derived in Bossu (2022, Section 3) for the related strong spanning problem
(2.2) when ν(dw) = f(w) dw.

Proposition 3.5. Let F be a payoff function of class (AH) which is L1(R) in k and
such that Fk[F (x, k)](1) is L

1(Rd) in x. Then:
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(i) The corresponding solution (3.3) to Problem 2.1 is of function-type TF
dw = f(w) dw,

where

f(w) = −1

2
F−1
x

[
Fk[F (x, k)](1)

]
(w); (3.9)

(ii) If F (x, k) is n-times continuously differentiable against k and all the derivatives
are L1(R) in k, then we may replace F by (−i)n∂nknF in (3.9), e.g., for n = 2,

f(w) =
1

2
F−1
x

[
Fk[∂

2
k2F (x, k)](1)

]
(w); (3.10)

(iii) If ∂kF, ∂
2
k2F exist and are L1(R) in k, and 1

2∂
2
k2F (x, k) is the Radon transform

Rg(x, k) defined below of some function g ∈ L1(Rd), then f = g almost everywhere:

Rg(x, k) :=
1x ̸=0

|xj |

∫
Rd−1

g

(
y<j ,

k − x ̸=j · y ̸=j

xj
,y>j

)
dy ̸=j , (3.11)

which is independent from the choice of j such that xj ̸= 0, for any x ̸= 0 (Rubin,
2015, page 130).

Proof. (i) All integrands being now Lebesgue-integrable, for any ψe ∈ Σe and φe such
that ψe = φe − φe(0), we may reorder integrals in (3.3) to get〈

TF
dw, φe(w)

〉
w
= −1

2

∫
Rd

dwφe(w)
1

(2π)d

∫
Rd

dxeiw·x
∫
R
dke−ikF (x, k)

= −1

2

∫
Rd

dwφe(w)F−1
x

[
Fk[F (x, k)](1)

]
(w), as required.

(ii) follows from the derivative rule for Fourier transforms applied to Fk[F (x, k)](1)
(Iosevich and Liflyand, 2014, Theorem 1.8 page 12).

(iii) Substituting 1
2∂

2
k2F (x, k) = Rg(x, k) and (3.11) into the right-hand side of (3.10),

f(w) =
1

2
F−1
x

[
Fk[∂

2
k2F (x, k)](1)

]
(w) =

1

(2π)d

∫
Rd

dxeiw·x
∫
R
dke−ik

∫
Rd

δx·y=k(dy)g(y)

=
1

(2π)d

∫
Rd

dxeiw·x
∫
R
dke−ik 1x ̸=0

|xjx |

∫
Rd−1

g

(
y<jx ,

k − x ̸=jx · y ̸=jx

xjx
,y>jx

)
dy ̸=jx ,

where jx measurably picks a nonzero coordinate of x (i.e. xjx ̸= 0), for every x ̸= 0.

By change of variable k 7→ yjx =
k−x ̸=jx ·y ̸=jx

xjx
for each x ̸= 0,

f(w) =
1

(2π)d

∫
Rd

dxeiw·x
∫
R
dyjx

∫
Rd−1

dy ̸=jxe
−ix·yg(y)

=
1

(2π)d

∫
Rd

dxeiw·x
∫
R
dye−ix·yg(y) = F−1Fg(w) = g(w) a.e.. □

4 Explicit Examples

In this section, we provide explicit solutions to Problem 2.1, encompassing the function,
measure and principal value types that may be encountered depending on the regularity
of the target payoff F .
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4.1 Smooth Payoff Function

Let Gd(x, k) = 1x ̸=0|x|e
− k2

|x|2 be a smooth payoff function. This payoff does not trade
but provides a valuable example where the solution is of function-type and available in
closed form, as shown below.

Proposition 4.1. For F = Gd, Problem 2.1 admits the unique solution TGd
dw =

gd(w) dw on Se and NGd
dw = gd(w) dw on Σe, where gd(w) = −

√
π
2 F

−1
x

[
|x|2e−

|x|2
4

]
(w).

In particular,

g1(w) = e−w2
(2w2 − 1), g2(w1, w2) =

2√
π
e−|w|2(|w|2 − 1),

g3(w1, w2, w3) =
1

π
e−|w|2(2|w|2 − 3).

(4.1)

Proof. The function Gd is of joint class C∞(Rd+1), (AH), and L1(R) in k. By Kammler

(2008, Example page 139), Fk[Gd(x, k)](1) =
√
π|x|2e−

|x|2
4 is L1(Rd) in x. Hence

F = Gd satisfies the assumptions of Proposition 3.5(i), and the corresponding solution
TGd is of function-type TGd

dw = gd(w) dw with

gd(w) = −1

2
F−1
x

[
Fk[Gd(x, k)](1)

]
(w) = −

√
π

2
F−1
x

[
|x|2e−

|x|2
4

]
(w).

The expressions for g1, g2 and g3 given in (4.1) can be obtained by Hankel transform
computations (Iosevich and Liflyand, 2014, Theorem 4.1 page 93). In addition,∫

Rd

gd(w) dw = Fgd(0) = −
√
π

2
|x|2e−

|x|2
4

∣∣∣
x=0

= 0. (4.2)

Consequently, for any pair (φe, ψe) in correspondence (2.3), we have
∫
R φe(w)gd(w) dw =∫

R ψe(w)gd(w) dw, so that NGd
dw = gd(w) dw holds on Σe as required. □

Corollary 4.2. The following strong spanning formula holds, for the solution gd given
in Proposition 4.1:

Gd(x, k) =

∫
Rd

(|x ·w| − |k|)+gd(w) dw, (x, k) ∈ Rd+1. (4.3)

Proof. Since |x|2e−
|x|2
4 ∈ S(Rd), gd(w) is also in S(Rd) and thus

∫
Rd |w|2|gd(w)| dw <

∞ (Kanwal, 2004, Theorem page 141), yielding that the even measure Ndw = gd(w) dw
has finite second moment. (4.3) then follows by an application of Propositions 4.1 and
2.3. □

Remark 4.1 (sanity check). For d = 1, we may verify by the following direct computa-
tion that, for (x, k) ∈ R∗ × R,∫

R
(|xw| − |k|)+g1(w) dw =

∫ ∞

|k|
|x|

(|x|w − |k|)g1(w) dw +

∫ − |k|
|x|

−∞
(−|x|w − |k|)g1(w) dw

= 2

∫ ∞

|k|
|x|

(|x|w − |k|)g1(w) dw =

∫ ∞

|k|
|x|

(|x|w − |k|)e−w2
(2w2 − 1) dw

15



= −e−w2
(2w2|x|+ |x| − 2kw)

∣∣∣∞|k|
|x|

= |x|e−
k2

x2 = G1(x, k),

while
∫
R(|xw|− |k|)

+g1(w) dw = G1(x, k) = 0 for x = 0. In dimension d = 2 and d = 3,
(4.3) may be verified by change of variables to polar coordinates.

4.2 Dispersion Call

For d ≥ 1, let

Cd(x, k) =

 d∑
j=1

|xj | − |k|

+

=
(
∥x∥1 − |k|

)+
, (x, k) ∈ Rd+1 (4.4)

denote the absolutely homogeneous variation of the ℓ1 dispersion call payoff listed in
Table 1, page 2. This type of payoff trades on exotic derivatives markets (Bossu, Carr,
and Papanicolaou, 2022, Figure 1).

Definition 4.1. Let Se ⊂ Se be the Schwartz subspace generated by functions of
the form φ(w) + φ(−w) where φ ∈ S(Rd) is multiplicatively separable, i.e. φ(w) =∏d

i=1 φi(wi) for φi ∈ S(R), i = 1, . . . , d. (For d = 1, Se = Se.)
(i) By Definition A.2(iii) and Lemma A.2, we define the following maps, where c is a
constant and φi ∈ S(R) for every i, j ∈ 1 .. d:〈

δc(dwj)
∏

i∈ 1 .. d \ {j}

dwi

wi ± wj
,

d∏
i=1

φi(wi)

〉
w

:= φj(c)
∏

i∈ 1 .. d \ {j}

−
∫ ∞

−∞

dwi

wi ± c
φi(wi),

〈
dwj

wj − c
∏

i∈ 1 .. d \ {j}

dwi

wi ± wj
,

d∏
i=1

φi(wi)

〉
w

:=

−
∫ ∞

−∞

dwj

wj − c

(
φj(wj)

∏
i∈ 1 .. d \ {j}

−
∫ ∞

−∞

dwi

wi ± wj
φi(wi)

)
(4.5)

and, in line with the distributivity principle,〈(
δ1(dwj) + δ−1(dwj)

) ∏
i∈ 1 .. d \ {j}

( dwi

wi + wj
− dwi

wi − wj

)
, ϕe(w)

〉
w

:=

∑
c∈{−1,1}

(εi)i∈ 1 .. d \ {j} ∈{−1,1}d−1

εi

〈
δc(dwj)

∏
i∈ 1 .. d \ {j}

dwi

wi + εiwj
, ϕe(w)

〉
w

,

〈( dwj

wj − 1
+

dwj

wj + 1

) ∏
i∈ 1 .. d \ {j}

( dwi

wi + wj
− dwi

wi − wj

)
, ϕe(w)

〉
w

:=

∑
c∈{−1,1}

(εi)i∈ 1 .. d \ {j} ∈{−1,1}d−1

εi

〈
dwj

wj + c

∏
i∈ 1 .. d \ {j}

dwi

wi + εiwj
, ϕe(w)

〉
w

, ϕe ∈ Se,

(4.6)

which we both extend by linearity as linear forms on Se.
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(ii) We denote by T d the following linear form on Se:

• T 1
dw = 1

2δ1(dw) +
1
2δ−1(dw) ,

T 2
dw =

1

4π2

( dw1

w1 + 1
+

dw1

w1 − 1

)( dw2

w2 + w1
− dw2

w2 − w1

)
+

1

4π2

( dw2

w2 + 1
+

dw2

w2 − 1

)( dw1

w1 + w2
− dw1

w1 − w2

)
;

(4.7)

• more generally, for d = 2l − 1 odd or 2l even (with l positive integer),

T 2l−1
dw =

(−1)l−1π

(2π)d

d∑
j=1

((
δ1(dwj) + δ−1(dwj)

) ∏
i∈ 1 .. d \ {j}

(
dwi

wi + wj
− dwi

wi − wj

))

T 2l
dw =

(−1)l−1

(2π)d

d∑
j=1

(( dwi

wj − 1
+

dwi

wj + 1

) ∏
i∈ 1 .. d \ {j}

( dwi

wi + wj
− dwi

wi − wj

))
.

(4.8)

Remark 4.2. The underlying combinatorial structure of T d is apparent in (4.6). In
particular, T d embeds a sum of d× 2d products and/or iterations of Cauchy integrals.
For large d (e.g. d > 20), the corresponding quadrature would be numerically infeasible.

Proposition 4.3. For F = Cd, Problem 2.1 admits a unique solution TCd, which is a
distribution on Se, namely the continuous extension of T d − δ0 to Se. In particular,〈

TCd
dw, ϕe(w)

〉
w
=
〈
T d
dw, ϕe(w)

〉
w
− ϕe(0), ϕe ∈ Se. (4.9)

Proof. The function Cd is of class (AH) and, by equivalence of finite-dimensional
norms, there exist positive constants B,M such that∣∣∣ ∫

R
dkCd(x, k)e

−ik
∣∣∣ ≤ ∫

R
dk(∥x∥1 − |k|)

+ = ∥x∥21 ≤ B(1 + |x|)M , x ∈ Rd. (4.10)

Consequently, the function x 7→
∫
dkCd(x, k)e

−ik induces a distribution on S(Rd)
(Friedlander, 1998, Eqn. (8.3.2) page 97). Hence by Theorem 3.4 and Lemma 3.3
the corresponding unique solution TCd defines a distribution on Se. The subspace of
D(Rd) generated by functions of the form

∏d
i=1 φi(xi), φi ∈ D(R), i = 1, . . . , d, is dense

in D(Rd) (Kanwal, 2004, Lemma 2 page 181), which itself is dense in S(Rd) (Kanwal,
2004, Remark page 140). As a result, Se is dense in Se.

Turning our attention to (4.9), for ψe ∈ Σe and φe such that ψe = φe−φe(0), (3.3)
yields 〈

NCd
dw, ψe(w)

〉
w
= −1

2

∫
Rd

dx

∫
R
dkCd(x, k)e

−ikF−1φe(x)

= −1

2

∫
Rd

dxF−1φe(x)Fk

[
(∥x∥1 − |k|)

+
]
(1).

(4.11)

Substituting (B.2) with c = ∥x∥1 and r = 1,〈
NCd

dw, ψe(w)
〉
w
=

∫
Rd

dxF−1φe(x)(cos ∥x∥1 − 1) =

−
∫
Rd

dxF−1φe(x) +
1

2

∫
Rd

dxe−i∥x∥1F−1φe(x) +
1

2

∫
Rd

dxei∥x∥1F−1φe(x).

(4.12)
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As shown in Section C, for φe = ϕe ∈ Se,
1

2

∫
Rd

dxe−i∥x∥1F−1ϕe(x) +
1

2

∫
Rd

dxei∥x∥1F−1ϕe(x) =
〈
T d
dw, ϕe(w)

〉
w
. (4.13)

Plugging
∫
Rd dxF−1φe(x) = φe(0) and (4.13) into (4.12),〈

T d
dw, ϕe(w)

〉
w
− ϕe(0) =

〈
NCd

dw, ψe(w)
〉
w
=
〈
TCd
dw, φe(w)

〉
w
=
〈
TCd
dw, ϕe(w)

〉
w
,(4.14)

which proves (4.9). □

Remark 4.3 (sanity check). For d = 1 and T 1 = 1
2(δ1 + δ−1), (4.14) yields〈

NC1
dw , ψe(w)

〉
w
=
〈
T 1
dw, ϕe(w)

〉
w
− ϕe(0) =

〈
1

2

(
δ1(dw) + δ−1(dw)

)
, ϕe

〉
w

− ϕe(0)

=

〈
1

2

(
δ1(dw) + δ−1(dw)

)
, ϕe − ϕe(0)

〉
w

=
1

2

(
ψe(1) + ψe(−1)

)
,

henceNC1
dw = 1

2

(
δ1(dw)+δ−1(dw)

)
on Σe (recalling that Se = Se for d = 1). SinceNC1 is

a measure-type distribution with finite second moment 1
2

∫
Rw

2
(
δ1(dw)+δ−1(dw)

)
= 1,

we recover via Proposition 2.3 the trivial spanning identity, for (x, k) ∈ R2,

(|x| − |k|)+ =
〈
NC1

dw , (|wx| − |k|)
+
〉
w
=

1

2

(
(|x| − |k|)+ + (| − x| − |k|)+

)
. (4.15)

In higher dimension d ≥ 2, the distribution TCd is not of measure-type and there
is no strong spanning representation readily following from (2.7). However, by (B.2),

Fκ

[(
|w · y| − |κ|

)+]
(r) = 2−2 cos(rw·y)

r2
, which is continuous in y. The strong repre-

sentation from Proposition 2.4 is thus applicable and can be turned into the following
more explicit representation, derived for ease of writing in dimension d = 2 only.

Lemma 4.4. For any r ∈ R∗ and multiplicatively separable h ∈ S(R2), letting ψe(w) =∫
R2 dyh(y)Fκ [(|w · y| − |κ|)+] (r) and ϕe := ψe − lim∞ ψe, then ϕe ∈ Se and〈
T 2, ϕe

〉
− ϕe(0) =

2

r2

∫
R2

dyh(y)

− 1

4π2
−
∞∫

−∞

(
dw1

w1 + 1
+

dw1

w1 − 1

)
−
∞∫

−∞

(
dw2

w2 + w1
− dw2

w2 − w1

)
2

r2

∫
R2

dyh(y) cos(rw · y)

− 1

4π2
−
∞∫

−∞

(
dw2

w2 + 1
+

dw2

w2 − 1

)
−
∞∫

−∞

(
dw1

w1 + w2
− dw1

w1 − w2

)
2

r2

∫
R2

dyh(y) cos(rw · y).

(4.16)

Proof. By Lemma 2.1, ψe(w) is in Σe. Substituting (B.2) into the definition of ψe

yields ψe(w) = 2
r2

∫
R2 dyh(y)(1 − cos(rw · y)). By Riemann-Lebesgue’s lemma (see

Remark B.2), lim∞∞∞ ψe =
2
r2

∫
R2 dyh(y), so that

ϕe(w) = − 2

r2

∫
R2

dyh(y) cos(rw · y), (4.17)

which is in S(R2) as Fourier transform of an S(R2) function. As h(y) is multiplicatively
separable, expanding cos(rw · y) = cos(rw1y1) cos(rw2y2)− sin(rw1y1) sin(rw2y2) and
separating integrals proves that ϕe ∈ Se. Substituting (4.17) into the left-hand side of
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(4.16),〈
T 2, ϕe

〉
− ϕe(0) = −

〈
T 2
dw,

2

r2

∫
R2

dyh(y) cos(rw · y)
〉

w

+
2

r2

∫
R2

dyh(y).

Substituting (4.7) into the right-hand side yields the required result. □

Proposition 4.5. In dimension d = 2 the dispersion call payoff admits the strong
representation

(|x1|+ |x2| − |k|)+

=F−1
r

[
lim
n→∞

1r ̸=0

(
2

r2
+

1

4π2
−
∞∫

−∞

(
dw1

w1 + 1
+

dw1

w1 − 1

)
−
∞∫

−∞

( dw2

w2 + w1
− dw2

w2 − w1

)
×

(
Fκ

[∫
R2

dyhn(y − x) (|w · y| − |κ|)+
]
(r)− 2

r2

)

+
1

4π2
−
∞∫

−∞

(
dw2

w2 + 1
+

dw2

w2 − 1

)
−
∞∫

−∞

(
dw1

w1 + w2
− dw1

w1 − w2

)
×

(
Fκ

[∫
R2

dyhn(y − x) (|w · y| − |κ|)+
]
(r)− 2

r2

))]
(k),

(4.18)

dk-almost everywhere for each x ∈ R2, where hn is the sequence of Dirac approximation
functions given in (2.9).

Proof. For each y ∈ R2, the payoff function k 7→ C2(y, k) has compact support and
is thus in L1(R), while r 7→ Fk

[
C2(y, k)

]
(r) is in L1(R) by (B.2) and is continuous in

y ∈ R2 for each r ∈ R∗. Therefore, by Proposition 2.4, we have for each x ∈ R2,

C2(x, k) = F−1
r

[
lim
n→∞

1r ̸=0

〈
NC2

dw,

∫
Rd

dyhn(y − x)Fκ

[(
|w · y| − |κ|

)+]
(r)

〉
w

]
(k), (4.19)

dk-almost everywhere. Let ψn
e (w) =

∫
Rd dyhn(y−x)Fκ

[(
|w · y| − |κ|

)+]
(r) and ϕne =

ψn
e − lim∞ ψn

e . By Proposition 4.3 and Lemma 4.4 with h(y) ≡ hn(y − x) that is
multiplicatively separable,〈

NC2 , ψn
e

〉
=
〈
TC2 , ϕne

〉
=
〈
T 2, ϕne

〉
− ϕne (0).

Substituting (4.16) with h(y) = hn(y − x) and 2
r2

cos(rw · y) = 2
r2

(
1 − (1 − cos(rw ·

y))
)
= 2

r2
−Fκ

[
(|w · y| − |κ|)+

]
(r) into the right-hand side, then plugging the resulting

expression for
〈
NC2 , ψn

e

〉
into (4.19), yields

C2(x, k) =F−1
r

[
lim
n→∞

1r ̸=0

(
2

r2

∫
R2

dyhn(y − x)

− 1

4π2
−
∞∫

−∞

(
dw1

w1 + 1
+

dw1

w1 − 1

)
−
∞∫

−∞

( dw2

w2 + w1
− dw2

w2 − w1

)
×

∫
R2

dyhn(y − x)

(
2

r2
−Fκ

[
(|w · y| − |κ|)+

]
(r)

)
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− 1

4π2
−
∞∫

−∞

(
dw2

w2 + 1
+

dw2

w2 − 1

)
−
∞∫

−∞

(
dw1

w1 + w2
− dw1

w1 − w2

)
×

∫
R2

dyhn(y − x)

(
2

r2
−Fκ

[
(|w · y| − |κ|)+

]
(r)

))]
(k).

Substituting
∫
R2 dyhn(y−x) = 1, and taking Fourier transforms with respect to κ out

of the dy integrals yields the required result. □

5 Benefits of Unrestricted Neural Network Spanning Ver-
sus Other Discrete Spanning Strategies

The delicate nature of the explicit distribution derived in the previous section for the
dispersion call shows that the solution formula (3.3) for NF can be nontrivial and
requires case-by-case analysis. When the target payoff F is not smooth, even if an
analytical representation can be derived, it is likely to be numerically intractable in high
dimension (see Remark 4.2), and other numerical methods must be developed. Since the
hedging error (1.2) corresponds to the prediction error of a one-hidden-layer feedforward
neural network, training such a network may constitute an efficient alternative for
discrete spanning.

In this empirical section the strike variable k of the target payoff F (x, k) is viewed
as a fixed parameter, and we simply write F (x) for ease of notation. For two positive
integers d and n, let NN d,n denote the family of functions that take a vector x ∈ Rd

as input and return a value in R through the sequential mapping

Rd ∋ x
F̃7−→ α+ µ · x+

n∑
i=1

νi

(
ηi(w

(i) · x− ki)
)+
∈ R , (5.1)

where µ,w(i) = [w
(i)
1 , . . . w

(i)
d ]⊤ are vector versions of the quantities introduced in (1.2),

while the sign of each parameter ηi determines whether a basket call or put is used.
The sign of each parameter νi determines whether a long or short position is taken in
basket option i with strike ki > 0, in quantity |νiηi|.

Remark 5.1. When spanning with basket calls only, i.e. ηi > 0, approximating F (x) by
F̃ (x) ∈ NN d,n given by (5.1) is equivalent to discretizing (2.2) for fixed k > 0 (in other
words, ν in (2.2) would be allowed to depend on k). This can be seen by rewriting
(5.1) as

F̃ (x) = α+ µ · x+

n∑
i=1

νiηi
ki
k︸ ︷︷ ︸

=:ν′i

( k

ki
w(i)︸ ︷︷ ︸

=:w′(i)

·x− k
)+
,

(5.2)

which is a discretization of (2.2) with explicit affine terms to the right-hand side.

The family of functions (5.1) corresponds to an unrestricted one-hidden-layer resid-
ual neural network with ReLU activation function architecture characterized by the set
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of trainable parameters
θ = (W,µ,k, α,ν,η),

where W = [w(1), . . . ,w(n)]⊤ ∈ Rn×d stores the w
(i)
j in matrix form, while k ∈

(R∗
+)

n,ν ∈ Rn, and η ∈ Rn store the ki, νi and ηi in vector form. We seek an ap-
proximation

F̂ ∈ argmin
F̃∈NN d,n

Ê

[
(F (x)− F̃ (x))2

]
, (5.3)

where Ê[.] = [.]1+···+[.]m
m denotes the sample mean over m observations drawn from val-

ues of x that may be deterministically or randomly sampled. Additional methodological
details can be found in the paper’s github.

The NN spanning error F − F̂ can classically be decomposed into three components
(see Bach, 2024, Sections 4.2 and 5.1): a bias or approximation error term reflecting
the distance between F and NN d,n, an estimation or statistical error when the sample
size m is too low, and a numerical optimization error due to local minima in (5.3).
The last component is notoriously difficult to analyze. As a consequence there is no
theoretical a priori error control on the global error F − F̂ ; this error can only be
assessed empirically. When found too high, static hedging based on our NN spanning
approach should be combined with delta-hedging of the residual payoff mismatch.

Below is a summary of our main empirical results, which we compared to three
other spanning strategies (see Algorithm 1 for implementation details, involving an
activation function ψ):
• Spanning with single-asset payoffs: This “marginal” approach is attractive to prac-
titioners because single-asset vanilla options are more liquid and can often be traded
on exchanges.

• Spanning with predetermined basket payoffs, i.e. with fixed basket weights w
(i)
1 , . . . , w

(i)
d

and strikes ki: This level of control may be beneficial to practitioners in order to
define a tractable universe of spanning instruments. Another benefit of this approach
is that it can be solved using classical linear regression techniques.

• Spanning with long-only basket payoffs, i.e. the components of the basket weights
w(i) of each basket payoff 1 ≤ i ≤ n are positive.
We use the Adam stochastic gradient optimizer of Kingma and Ba (2015) provided

by the PyTorch package in Python to train our spanning networks. We divide the
dataset into 10 batches and train over 1,000 epochs for a total of 10,000 gradient steps.
The learning rate is initially set at 0.01 and decreases by a factor of 0.8 every 300
epochs. A 0.1% regularization defined as the squared Euclidean norm of all network
parameters is integrated to the loss function.
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input : {(x1, F (xm)), . . . , (xm, F (xm))}, a partition B of {1 . . .m} into subsets
batch, a number of basket payoffs n, a number of epochs E ∈ N∗, an
learning rate > 0 and a weight decay ζ . Adam optimizer default setting:
β1 = 0.9, β2 = 0.999.

output: Trained parameters θ̂ of the spanning network.
1 Define the spanning network architecture F̃ψθ ∈ NN

ψ
d,n with activation function ψ,

Rd ∋ x
F̃ψ7−→ α+ µ · x+

n∑
i=1

νi

(
ηi
(
ψ(w(i)) · x− ki

))+
∈ R

2 if unrestricted basket payoffs cf. (5.1) then
3

ψ(w(i)) = w(i)

4 else if single-asset payoffs then
5

ψ(w(i)) =
(
ω(w(i))11ω(w(i))1=∥ω(w(i))∥∞

, . . . , ω(w(i))d1ω(w(i))d=∥ω(w(i))∥∞

)
,

with

ω(w(i)) =

(
exp(w

(i)
1 )∑d

j=1 exp(w
(i)
j )

, . . . ,
exp(w

(i)
d )∑d

i=j exp(w
(i)
j )

)
6 else if predetermined basket payoffs then
7 ψ(w(i)) = w(i) with w(i) frozen in the SGD steps
8 else if long-only basket payoffs then
9

ψ(w(i)) =
(
|w(i)

1 |, . . . , |w
(i)
d |
)

10 end

11 Define the loss function MSE(θ, batch) = Êbatch

[
(F (x)− F̃ψθ (x))2

]
+ ζ∥θ∥2

12 Initialize the network parameters θ̂
13 for epoch = 1, . . . , E do
14 for batch ∈ B do

15 θ̂ ← AdamStep(learning rate, β1, β2,MSE(θ̂, batch))
16 (batched version of Algorithm 1 in Kingma and Ba (2015))

17 end
18 learning rate = 0.8× learning rate if epoch mod 300 = 0

19 end

Algorithm 1: Spanning networks trained by Adam optimizer

5.1 Spanning Metrics

We use two metrics to assess the distance between the target payoff F and a predictor
F̃ ∈ NN d,n: mean squared error MSE = Ê

[
(F (x)− F̃ (x))2

]
for the loss function, and

mean absolute error MAE = Ê
∣∣F (x) − F̃ (x)∣∣ for reporting. The choice of MAE for

reporting is motivated by its ease of financial interpretation as average absolute dollar
mismatch between the target payoff and the spanning portfolio. We considered using
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MAE loss for training, which is known to be more robust against outliers, but ultimately
retained MSE loss as we sample asset prices in compact sets which eliminates outsize
values, and MSE is more stable for gradient calculation. Figure 3 of the implementation
details in the paper’s github shows that MAE loss produces similar results.

Figure 2 shows contour plots reporting the target payoff F , its approximation F̂ ∈
NN 2,40 and the pointwise absolute spanning error |F (x1, x2) − F̂ (x1, x2)| for all call
target payoffs in Table 1 (similar results for puts can be found on github). From visual
inspection the predicted surface provided by the unrestricted neural network spanning
strategy (NN) fits the target payoff reasonably well, except in areas where the target
payoff is nondifferentiable.

(a) Dispersion call F (x1, x2) =
(
|x1|+|x2|−1

)+
. MAE = 0.035 (3.5 cents per dollar of notional).

(b) Best-of call F (x1, x2) =
(
max(x1, x2)−1

)+
. MAE = 0.011 (1.1 cents per dollar of notional).

(c) Worst of call F (x1, x2) =
(
min(x1, x2)−1

)+
. MAE = 0.008 (0.8 cents per dollar of notional).
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(d) Best of binary call F (x1, x2) = 1max(x1,x2)>1. MAE = 0.064 (6.4 cents per dollar of
notional).

(e) Worst of binary call F (x1, x2) = 1min(x1,x2)>1. MAE = 0.036 (3.6 cents per dollar of
notional).

Figure 2: Contour plots and MAEs for one call target payoff of each kind in Table 1:
(left) NN prediction,(center) absolute spanning error (right).

5.2 Limitations of Spanning with Single-Asset Payoffs

When spanning the target payoff F (x) with single-asset vanilla payoffs only, equations
(5.1)-(5.3) become

min
α,µ,ν,η,k,E

Ê

(F (x)− α− µ · x−
n∑

i=1

νi (ηi(ei · x− ki))+
)2
 ,

where ei ∈ {0, 1}d is a “one-hot” vector with all coefficients equal to 0, except the coeffi-
cient corresponding to the selected asset which is equal to 1 (the index of which remains
free for optimization), and E = [e1, . . . , en]

⊤ ∈ {0, 1}n×d is the corresponding matrix.
We solve this optimization problem numerically by Adam stochastic gradient descent
(Kingma and Ba, 2015) with a restricted neural network architecture, for the best-of
call and worst-of put payoffs on 2 to 5 underlying assets (see Table 1, page 2). Single-
asset spanning does provide some risk reduction compared to the unhedged case for
which all parameters are zero and MAE is the payoff average absolute value. However,
Figure 3 shows that the spanning error of this strategy is substantially higher than that
of our core unrestricted NN approach (5.3). Mathematically, this is hardly surprising
given that single-asset option spanning attempts to reproduce a “joint distribution”
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Figure 3: MAE comparison of the single-asset and unrestricted NN spanning strategies
for d = 2, . . . , 5 assets: best-of call (left) and worst-of put (right). Error bars are 95%
confidence intervals.

(the best-of or worst-of payoff) with “marginal distributions” only (the single-asset
payoffs).

5.3 Limitations of Spanning with Predetermined Basket Payoffs

When spanning the target payoff F (x) with predetermined basket option payoffs, the
strikes ki, call/put selectors ηi, and basket weights w(i) of each basket payoff 1 ≤ i ≤ n
are fixed and the spanning problem takes the simpler form

min
α,µ,ν

Ê

(F (x)− α− µ · x−
n∑

i=1

νi

(
ηi(w

(i) · x− ki)
)+)2

 , (5.4)

which is a classic linear least-squares regression problem. Due to parameter redundancy
we choose unit strikes ki = 1, and we also set selectors ηi = 1. The explicit solution
to (5.4) is therefore given by the regression coefficients β̂ =

[
µ
ν

]
∈ Rd+n and constant

α̂ ∈ R with

β̂ = V̂ar (z)−1 Ĉov (z, F (x)) , α̂ = Ê [F (x)]− β̂
⊤
Ê [z] ,

where z =
[
x1, . . . , xd, (w

(1) · x− 1)+, . . . , (w(n) · x− 1)+
]⊤ ∈ Rd+n is the vector of

explanatory variables (underlying assets and basket payoffs), Ĉov is the sample covari-

ance operator, and V̂ar (z) is the sample covariance matrix which must be nonsingular.
In practice, we found this calculation to be numerically unstable due to conditioning
issues: basket payoffs tend to overlap, making the columns of z loosely dependent,
particularly for large n. This issue is further compounded when the sampling of x
(and thus z) is sparse. To circumvent this practical difficulty, we used singular value
decomposition (SVD) (Golub and Van Loan, 2013, Theorems 2.5.2 and 5.5.1).

Figure 4 reports the spanning error for the best-of call on 2 to 5 underlying assets,
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Figure 4: MAE with 95% confidence intervals for the best-of call on d = 2 to 5 underly-
ing assets for methods (a) to (d), as a function of the number of basket options n. Large
errors obtained with (a) are reported in inside panels for d = 3, 4, 5 for readability.

together with 95% confidence intervals over 30 different runs that were obtained using
the following methods:

(a) SVD with regular grid sampling of basket weights w (regular+SVD);

(b) SVD with i.i.d. uniform random sampling of w (uniform+SVD);

(c) stochastic gradient descent with regular grid sampling of w (LS-GD);

(d) unrestricted neural network approach with free w initialized with i.i.d. uniform
random sampling (NN).

Each run is a new training routine with the same fixed weights w for methods (a) and
(c), and with new random weights w for methods (b) and (d). Each SGD training
(NN learning) takes a few seconds, while SVD regressions take less than a second. We
can see that all fixed-weights methods (a) to (c) resulted in substantial spanning errors
compared to (d) unrestricted NN, except perhaps in dimension d = 2 where the error
magnitude is smaller. Remarkably enough, increasing the number n of basket payoffs
does not materially reduce the spanning error for any method (a) to (d). This suggests
that only a limited number of basket payoffs may be needed to obtain a satisfactory
hedge of the best-of call, in contrast to the combinatorial issue identified in Remark
4.2. Finally, SVD methods (a) and (b) often perform poorly: when sampling w along
a regular grid, the spanning error (a) even “exploded” in dimensions d = 3, 4, 5 due to
ill-conditioning of the design matrix generated by observations of z, as shown in inner
panels.

It is worth noting that, from a neural network architecture perspective, the span-
ning problem (5.4) corresponds to a particular category of extreme learning machines
or ELMs (Huang, Zhu, and Siew, 2004, 2006). ELMs are known to be universal approx-
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imators, but they typically require a very large number n of hidden units to achieve
satisfactory performance. In the context of payoff spanning, this suggests that only
a large number n of predetermined basket payoffs in methods (a) to (c) would be
able to approach the performance of the unrestricted NN method (d), which would be
impractical for hedge execution.

5.4 Summary of Restricted and Unrestricted Spanning Results

Figure 5 reports the performance of four spanning strategies in dimension d = 5, 20 and
50 using 50 different network initializations: (i) Adam training of single asset portfolio
(NN-Single asset) as explained in Section 5.2, (ii) least-squares approach with gradient
descent (LS-GD) as explained in Section 5.3, (iii) Adam training of long only basket
portfolio (NN-Long only), and (iv) unrestricted neural network with Adam training
(NN). We can see that the spanning portfolios suggested by the neural network give
satisfying MAE results in most cases. Unrestricted NN outperforms all other strategies
in terms of MAE and standard deviation: MAE increases with the underlying asset
dimension d but remains fairly low. The low standard deviation figures also signals
that unrestricted NN is the most stable among the four strategies.
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Figure 5: Average MAE and 95% error bars over 50 runs by spanning strategy and
target payoff in dimension d = 5, 20 and 50.
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5.5 Stability Issues

In linear regression models, the loss function is convex and thus easier to optimize.
In contrast, it is nonconvex in neural network parameterizations such as (5.1)-(5.3):
optimization is more difficult, algorithms such as Adam method typically converge
to different local minima for different initializations, yet loss values usually remain
small (Choromanska, Henaff, Mathieu, Arous, and LeCun, 2015). We observed this
phenomenon in our study: the optimal neural network parameters vary with each
training, but we obtained persistently small and stable errors. Financially, this means
that spanning performance remains strong but the particular static hedge identified
based on a particular training set does not have a stable interpretative meaning with
respect to the target option.

Figures 6 and 7 show how the optimizer solution for the dispersion call approaches
the theoretical solution that we derived in Proposition 4.3 in dimensions d = 1, 2.
Our results are indeed remarkably consistent with the accumulation of basket call
quantities νi predicted by theory. In dimension d = 1 our numerical results perfectly
match the exact solution (4.15) (see also Remark 4.3) after we process the learning with
an ℓ2 regularization (Figure 6, right panel). In dimension d = 2 our numerical results
after regularization are also consistent with the accumulation of basket calls around
discontinuity points w1 = ±1 and w2 = ±1 predicted by the theoretical formulas (4.7)
and (4.18) (Figure 7, right panel).
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Figure 6: Scatter plots of the optimal basket call quantity νi against the optimal basket
weight w′(i) (see (5.2)) predicted by (5.1)-(5.3) for the single-asset dispersion call payoff
F (x) = (|x| − 1)+ when n = 10 and the training asset price x is sampled in [−2, 2].
(Left) without regularization; (Right) with regularization.
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Figure 7: Scatter plots of the optimal basket call weights (w
′(i)
1 , w

′(i)
2 ) (see. (5.2))

predicted by (5.1)-(5.3) for the two-asset dispersion call with payoff F (x1, x2) =
(|x1|+|x2|−1)+ when n = 50. The training asset prices (x1, x2) are sampled in [−1, 1]2.
The blue and red points represent respectively long (νi > 0) and short (νi < 0) po-
sitions while point sizes reflect absolute quantities |νi|. (Left) without regularization;
(Right) with regularization.

6 Conclusion and Perspectives

Identifying static hedges for exotic option payoffs is important for both theory and
practice. Theorem 3.4 expands on existing continuum replication theory of European
option payoffs with vanilla options to formulate a general and rigorous solution of the
continuum spanning problem. As an application, Proposition 4.3 derives the continuum
solution replicating the industry ℓ1 dispersion call. In addition to the derivation of
explicit solutions for other absolutely homogeneous payoffs such as best-of and worst-
of options, other formulations of the continuum spanning problem are open for future
research: for example, letting ν in (1.1) depend on k, or integrating the spanning
portfolio over k, may relax the absolute homogeneity restriction to yield solutions for
non-homogeneous payoffs.

Leveraging the parallel between vanilla basket calls and ReLU functions, we exam-
ined how neural networks can be used to numerically solve the corresponding discrete
spanning problem and identify finite static hedges, in comparison to other restricted
spanning strategies and optimization schemes such as least-squares SVD. Our empiri-
cal study suggests that our unrestricted NN approach yields superior results in terms
of static hedging error for any dimension 2 to 50. This approach may be of practical
interest for the exotic derivatives industry, particularly if combined with delta-hedging
of the residual payoff mismatch, which could be investigated in future research.
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A Cauchy Integral

For a function φ ∈ L1(R) and a constant c ∈ R, the singular integral∫ +∞

−∞

φ(w)

w − c
dw = lim

α→0+

∫ c−α

−∞

φ(w)

w − c
dw + lim

β→0+

∫ +∞

c+β

φ(w)

w − c
dw

may not exist when α and β tend to 0+ independently . However, the integral exists
restricted to the diagonal α = β (Estrada and Kanwal, 2000, Section 1.5).

Definition A.1. The diagonal limit

lim
ϵ→0+

(∫ c−ϵ

−∞

φ(w)

w − c
dw +

∫ +∞

c+ϵ

φ(w)

w − c
dw

)
= lim

ϵ→0+

∫
ϵ<|w−c|

φ(w)

w − c
dw ∈ R, (A.1)

denoted by −
∫ +∞
−∞

dw
w−cφ(w), is called the Cauchy principal value integral of φ(w)

w−c against
dw.

Definition A.2. (i) The Hilbert transform (up to a multiplicative factor π, see King
(2009, Section 3.1 page 83))

−
∫ ∞

−∞

dw

w − c
φ(w), φ ∈ S(R), (A.2)

is a distribution on S(R) (Reed and Simon, 1980, Proposition 6 page 136), which we
denote by dw

w−c in abstract distribution notation.
(ii) The linear form

−
∫
R2

( dw1

w1 − c1
dw2

w2 − c2

)
φ(w1, w2) := −

∫ ∞

−∞

dw1

w1 − c1

(
−
∫ ∞

−∞

dw2

w1 − c2
φ(w1, w2)

)
, φ ∈ S(R2)

is a well defined distribution on S(R2), known as the tensor (or direct) product of the
distributions dw1

w1−c1
and dw2

w2−c2
on S(R2), which is commutative (Kanwal, 2004, page

185).
(iii) The previous construction can be iterated to define the distribution

∏
j∈1..q

dwk
wj−cj

for any q ≥ 1 and (cj) ∈ Rq as

−
∫
Rq

( ∏
j∈1 .. q

dwj

wj − cj

)
φ(w), φ ∈ S(Rq). (A.3)

We may also define, in line with the distributivity principle of commutative products,

−
∫
Rq

( ∏
j∈1 .. q

( dwj

wj − cj
+

dwj

wj + cj

))
φ(w) :=

∑
(εj)∈{−1,1}q

−
∫
Rq

( ∏
j∈1 .. q

dwj

wj + εjcj

)
φ(w), (A.4)

as a distribution on S(Rq), abstractly denoted
∏

j∈1 .. q

(
dwj

wj−cj
+

dwj

wj+cj

)
.

Remark A.1. In view of the above definitions and properties, we may commute Cauchy
integrals to write

−
∫
Rq

( ∏
j ∈ 1 .. q

( dwj

wj − cj
+

dwj

wj + cj

))
φ(w) =

−
∫
Rq−1

( ∏
j ∈ 2 .. q

( dwj

wj − cj
+

dwj

wj + cj

))
−
∫
R

( dw1

w1 − c1
+

dw1

w1 + c1

)
φ(w).

(A.5)

31



This is in line with the definition of the tensor product of the distribution ( dw1
w1−c1

+

dw1
w1+c1

) with
∏

j ∈ 2 .. q

(
dwj

wj−cj
+

dwj

wj+cj

)
, equal to

∏
j ∈ 1 .. q

(
dwj

wj−cj
+

dwj

wj+cj

)
(Kanwal, 2004,

page 185); in bracket notation,〈 ∏
j ∈ 1 .. q

(
dwj

wj − cj
+

dwj

wj + cj

)
, φ(w)

〉
wȷ;ȷ∈ 1 .. q

=

〈 ∏
j ∈ 2 .. q

(
dwj

wj − cj
+

dwj

wj + cj

)
,

〈
dw1

w1 − c1
+

dw1

w1 + c1
, φ(w)

〉
w1

〉
wȷ;ȷ∈ 2 .. q

.

The following technical lemmas establish properties related to Cauchy integrals that
will be used in Section C.

Lemma A.1. For any functions φj ∈ S(R), j = 1, . . . , q, there exists a constant C > 0
such that∣∣∣∣∣∣
∫
ϵ<|w2−w1|

dw2

w2 − w1

(
· · ·
∫
ϵ<|wq−w1|

dwq

wq − w1

q∏
j=1

φj(wj)
)∣∣∣∣∣∣ ≤ C|φ1(w1)|, w1 ∈ R, 0 < ϵ < 1,

where the constant C may depend on φ but not on w1 or ϵ.

Proof. Factoring φ1(w1) out and separating integrals,∫
ϵ<|w2−w1|

dw2

w2 − w1

(
· · ·
∫
ϵ<|wq−w1|

dwq

wq − w1

q∏
j=1

φj(wj)
)

= φ1(w1)

q∏
j=2

∫
ϵ<|wj−w1|

dwj
φj(wj)

wj − w1
.

(A.6)

For j = 2, . . . , q,∫
ϵ<|wj−w1|

dwj

wj − w1
φj(wj) =

∫
ϵ<|wj−w1|<1

dwj

wj − w1
φj(wj) +

∫
|wj−w1|≥1

dwj

wj − w1
φj(wj)

=

∫
ϵ<|wj−w1|<1

dwj

wj − w1

(
φj(wj)− φj(w1)

)
+

∫
|wj−w1|≥1

dwj

wj − w1
φj(wj),

where we used φj(w1)
∫
ϵ<|wj−w1|<1

dwj

wj−w1
= 0 in the last step (as integral of an odd

function over a symmetric domain). Since φj ∈ S(R), φ′
j is bounded and by the mean

value inequality, |φj(wj)− φj(w1)| ≤ |wj − w1| sup |φ′
j |, whence∣∣∣∣∣

∫
ϵ<|wj−w1|<1

dwj

wj − w1

(
φj(wj)− φj(w1)

)∣∣∣∣∣ ≤ 2 sup
∣∣φ′

j

∣∣ . (A.7)

Turning our attention to the second integral,∣∣∣∣∣
∫
|wj−w1|≥1

dwj

wj − w1
φj(wj)

∣∣∣∣∣ ≤
∫
R
dwj

∣∣φj(wj)
∣∣ = ∥φj∥L1(R) < +∞, (A.8)

since φj ∈ S(R). Combining (A.7) and (A.8) yields
∣∣∣∫ϵ<|wj−w1|

dwj

wj−w1
φj(wj)

∣∣∣ < +∞, j =
2, . . . , q. In view of (A.6) the lemma is thus proven. □
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Lemma A.2. For any c ∈ R and functions φj ∈ S(R), j = 1, . . . , q,

−
∫ ∞

−∞

dw1

w1 − c

(
φ1(w1)

q∏
j=2

−
∫ ∞

−∞

dwj

wj − w1
φj(wj)

)
(A.9)

is well defined.

Proof. By Definitions A.1 and A.2,

φ1(w1)

q∏
j=2

−
∫ ∞

−∞

dwj

wj − w1
φj(wj) = φ1(w1)

q∏
j=2

lim
ϵ→0+

∫
ϵ<|wj−w1|

dwj

wj − w1
φj(wj),

which in view of Lemma A.1 is Lebesgue-integrable with respect to w1. Hence (A.9) is
well defined in accordance with (A.1). □

Lemma A.3. For any φ1, φ2 ∈ S(R),∫
R
dw1−

∫
R

dw2

w1 − w2
φ1(w1)φ2(w2) =

∫
R
dw2−

∫
R

dw1

w1 − w2
φ1(w1)φ2(w2). (A.10)

Proof. By Lemma A.1, both sides of (A.10) are well defined. By Definition A.1,
dominated convergence, Fubini’s theorem, and dominated convergence again,∫

R
dw1−

∫
R

dw2

w1 − w2
φ1(w1)φ2(w2) =

∫
R
dw1 lim

ϵ→0+

∫
R
dw2

φ1(w1)φ2(w2)1ϵ<|w1−w2|

w1 − w2

= lim
ϵ→0+

∫
R
dw1

∫
R

dw2φ1(w1)φ2(w2)1ϵ<|w1−w2|

w1 − w2
= lim

ϵ→0+

∫
R
dw2

∫
R

dw1φ1(w1)φ2(w2)1ϵ<|w1−w2|

w1 − w2

=

∫
R
dw2 lim

ϵ→0+

∫
R

dw1

w1 − w2
φ1(w1)φ2(w2)1ϵ<|w1−w2| =

∫
R
dw2−

∫
R

dw1

w1 − w2
φ1(w1)φ2(w2). □

B Fourier Transform

Definition B.1. For f ∈ L1(Rq), the Fourier and inverse Fourier transforms Ff and
F−1f of f are the following functions on Rq (King, 2009, Section 2.6 and 15.6):

Ff(z) =
∫
Rq

f(s)e−iz·s ds, F−1f(s) =
1

(2π)q

∫
Rq

f(z)eis·z dz. (B.1)

When f depends on several variables, we write e.g. Fx[f(x, y)](t) to indicate that the
transform is taken with respect to specific variables only.

Example B.1. For c ∈ R, we compute

Fk

[(
|c| − |k|

)+]
(r) =

∫
R
dke−irk

(
|c| − |k|

)+
=

∫ |c|

−|c|
dke−irk(|c| − |k|

)
=∫ |c|

0
dk
(
e−irk + eirk

)
(|c| − k

)
=

1

r2
(2− 2 cos(rc)) =

1

r2
(2− eirc − e−irc).

Since
∫
R

dr
r2

(
2− 2 cos(rc)

)
= 2π|c|, we have

Fk

[(
|c| − |k|

)+]
(r) =

2− 2 cos(rc)

r2
∈ L1(R). (B.2)
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Remark B.2. The Fourier transform is injective on L1(Rq) (Knapp, 2007, Corollary
8.5). If f ∈ L1(Rq), then g = Ff is bounded, uniformly continuous and vanishes at
infinity (Knapp, 2007, Proposition 8.1 and Theorem 8.3). If, in addition, g ∈ L1(Rq),
then F−1g = f (Knapp, 2007, Theorem 8.4).

Remark B.3. F and F−1 are continuous automorphisms of S(Rq) (Kanwal, 2004, The-
orem 2 page 143), hence φ = FF−1φ = F−1Fφ, for φ ∈ S(Rq).

Definition B.2. For a distribution T on S(Rq), its Fourier and inverse Fourier trans-
forms FT and F−1T are the distributions on S(Rq) given as (Kanwal, 2004, Theorem
3 page 147), (King, 2009, Section 10.4 and 10.10)

⟨(FT )ds, φ(s)⟩s = ⟨Tdz,Fφ(z)⟩z ,
〈
(F−1T )dz, φ(z)

〉
z
=
〈
Tds,F−1φ(s)

〉
s
, φ ∈ S(Rq).

(B.3)

Example B.4. Below are two well-known examples of distributional Fourier transforms
(King, 2009, page 489), (Kammler, 2008, page 415):

Fx[sgnx dx]dλ =
2

i

dλ

λ
, Fx[cosx dx](dλ) = δ1(dλ) + δ−1(dλ),

i.e., for φ ∈ S(R),

⟨Fx[sgnx dx]dλ, φ(λ)⟩λ =

∫
R
dx sgnx

∫
R
dλe−iλxφ(λ) =

2

i
−
∫ ∞

−∞

dλ

λ
φ(λ), (B.4)

⟨Fx[cosx dx](dλ), φ(λ)⟩λ =

∫
R
dx cosx

∫
R
dλe−iλxφ(λ) = πφ(1) + πφ(−1). (B.5)

C Proof of (4.13)

Lemma C.1. The measure dxδ∥x∥1(dk) + dxδ−∥x∥1(dk) is equal to

dk(1|xd|<|k| dxd)(1|xd−1|<|k|−|xd| dxd−1) . . . (1|x2|<|k|−∥x>2∥1 dx2)(
δ|k|−∥x>1∥1(dx1) + δ−|k|+∥x>1∥1(dx1)

)
=: δD(d(x, k)).

(C.1)

Proof. Let f : Rd+1 → C be any δD-integrable function. By sifting property of the
Dirac mass distributions δ∥x∥1(dk) and δ−∥x∥1(dk),∫

Rd+1

(
dxδ∥x∥1(dk) + dxδ−∥x∥1

)
f(x, k) =

∫
Rd

dxf(x, ∥x∥1) +
∫
Rd

dxf(x,−∥x∥1).(C.2)

Splitting the first right-hand side integral above,∫
Rd

dxf(x, ∥x∥1) =
∫
Rd−1

dx>1

∫ ∞

0
dx1f(x, ∥x>1∥1 + x1)

+

∫
Rd−1

dx>1

∫ 0

−∞
dx1f(x, ∥x>1∥1 − x1).

(C.3)

By change of variables (x1, . . . , xd) 7→ (k = ∥x>1∥1 + x1, x2, . . . , xd) in the first right-
hand side integral above, and change of variables (x1, . . . , xd) 7→ (k = ∥x>1∥1 −
x1, x2, . . . , xd) in the second integral, where both Jacobians are 1, and adapting in-
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tegral regions,∫
Rd

dxf(x, ∥x∥1) =
∫ ∞

0
dk

∫ k

−k
dxd· · ·

∫ k−∥x>2∥1

−k+∥x>2∥1
dx2f(k − ∥x>1∥1 ,x>1, k)

+

∫ ∞

0
dk

∫ k

−k
dxd· · ·

∫ k−∥x>2∥1

−k+∥x>2∥1
dx2f(∥x>1∥1 − k,x>1, k).

(C.4)

Following similar steps, the second right-hand side integral in (C.2) may be rewritten
as∫

Rd

dxf(x,−∥x∥1) =
∫ 0

−∞
dk

∫ −k

k
dxd· · ·

∫ −k−∥x>2∥1

k+∥x>2∥1
dx2f(−∥x>1∥1 − k,x>1, k)

+

∫ 0

−∞
dk

∫ −k

k
dxd· · ·

∫ −k−∥x>2∥1

k+∥x>2∥1
dx2f(k + ∥x>1∥1 ,x>1, k).

(C.5)

Combining (C.4) and (C.5) and piecing dk integrals together,∫
Rd+1

(
dxδ∥x∥1(dk) + dxδ−∥x∥1

)
f(x, k)

=

∫ ∞

−∞
dk

∫ |k|

−|k|
dxd· · ·

∫ |k|−∥x>2∥1

−|k|+∥x>2∥1
dx2f(|k| − ∥x>1∥1 ,x>1, k)

+

∫ ∞

−∞
dk

∫ |k|

−|k|
dxd· · ·

∫ |k|−∥x>2∥1

−|k|+∥x>2∥1
dx2f(∥x>1∥1 − |k|,x>1, k)

=

∫
R
dk

∫ |k|

−|k|
dxd· · ·

∫ |k|−∥x>2∥1

−|k|+∥x>2∥1
dx2

∫
R
dx1δ|k|−∥x>1∥1(dx1)f(x1,x>1, k)

+

∫
R
dk

∫ |k|

−|k|
dxd· · ·

∫ |k|−∥x>2∥1

−|k|+∥x>2∥1
dx2

∫
R
dx1δ−|k|+∥x>1∥1(dx1)f(x1,x>1, k)

=

∫
Rd+1

δD(d(x, k))f(x, k),

where we used the sifting property again in the second equality. □

By sifting property of the Dirac mass distribution, the left-hand side in (4.13)
satisfies for any ϕe ∈ Se∫

Rd

dxe−i∥x∥1F−1ϕe(x) +

∫
Rd

dxei∥x∥1F−1ϕe(x)

=

∫
Rd

dx

∫
R
δ∥x∥1(dk)e

−ikF−1ϕe(x) +

∫
Rd

dx

∫
R
δ−∥x∥1(dk)e

−ikF−1ϕe(x)

=

∫
Rd+1

δD(d(x, k))e
−ikF−1ϕe(x),

where we used Lemma C.1 in the last step. Therefore, showing (4.13) reduces to proving
that

1

2

∫
Rd+1

δD(d(x, k))e
−ikF−1ϕe(x) =

〈
T d
dw, ϕe(w)

〉
w
, (C.6)

where T d is defined by (4.8). This is done in the remaining subsections by an induction
procedure in line with the combinatorial structure of T d highlighted in Remark 4.2.
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C.1 Dimension d = 1

By definition of δD in (C.1),∫
R2

δD(d(x, k))e
−ikF−1ϕe(x) =

∫
R
dke−ik

∫
R

(
δk(dx) + δ−k(dx)

)
F−1ϕe(x)

= Fk[F−1ϕe(k) + F−1ϕe(−k)](1) = ϕe(1) + ϕe(−1)
= ⟨δ1(dw) + δ−1(dw), ϕe(w)⟩w = 2

〈
T 1
dw, ϕe(w)

〉
w
,

which is (C.6) for d = 1.

C.2 Dimension d = 2

Lemma C.2 below is necessary to initialize the proof by induction of Lemma C.3 in
general dimension d ≥ 2. We also include the proof of (C.6) for d = 2 in this section
for ease of reading.

Lemma C.2. For d = 2 and φ ∈ S(R2), let

Ψ±(k) :=
〈
(1|x2|<|k| dx2)δ±|k|∓|x2|(dx1),F

−1φ(x)
〉
x1,x2

.

If φ = ϕe ∈ Se , then

Ψ+(k) + Ψ−(k) =
1

2π2

∫
R
dw1 sin(w1|k|)−

∫
R

( dw2

w2 + w1
− dw2

w2 − w1

)
ϕe(w1, w2)

+
1

2π2

∫
R
dw2 sin(w2|k|)−

∫
R

( dw1

w1 + w2
− dw1

w1 − w2

)
ϕe(w1, w2).

(C.7)

Proof. For φ ∈ S(R2), we have

Ψ+(k) =
〈
(1|x2|<|k| dx2),

〈
δ|k|−|x2|(dx1),F

−1φ(x)
〉
x1

〉
x2

=

∫
R
dx21|x2|<|k|F−1φ(|k| − |x2|, x2)

=
1

(2π)2

∫
|x2|<|k|

dx2

∫
R2

dw2 dw1e
iw1(|k|−|x2|)+iw2x2φ(w1, w2).

Splitting the dx2 integral at the origin, then by dominated convergence

Ψ+(k) =
1

(2π)2

∫ |k|

0
dx2

∫
R2

dw2 dw1e
ix2(w2−w1)eiw1|k|φ(w1, w2)

+
1

(2π)2

∫ 0

−|k|
dx2

∫
R2

dw2 dw1e
ix2(w2+w1)eiw1|k|φ(w1, w2)

=
1

(2π)2

∫ |k|

0
dx2

(
lim
ϵ→0+

∫
R2\{|w2−w1|≤ϵ}

dw2 dw1e
ix2(w2−w1)eiw1|k|φ(w1, w2)

)
+

1

(2π)2

∫ 0

−|k|
dx2

(
lim
ϵ→0+

∫
R2\{|w2−w1|≤ϵ}

dw2 dw1e
ix2(w2+w1)eiw1|k|φ(w1, w2)

)
.

(C.8)
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Since φ ∈ S(R2), for any ϵ ≥ 0, there exists B > 0 such that∣∣∣∣∣
∫
R2\{|w2−w1|≤ϵ}

dw2 dw1φ(w1, w2)e
ix2(w2±w1)eiw1|k|

∣∣∣∣∣
≤
∫
R2\{|w2−w1|≤ϵ}

dw2 dw1

∣∣∣φ(w1, w2)e
ix2(w2±w1)eiw1|k|

∣∣∣
≤
∫
R2\{|w2−w1|≤ϵ}

dw2 dw1

∣∣φ(w1, w2)
∣∣ < B <∞,

and the integral
∫ ±|k|
0 B dx2 is finite for any |k| <∞. Hence, by dominated convergence

and Fubini’s theorem,

Ψ+(k) =
1

(2π)2
lim
ϵ→0+

∫
R2\{|w2−w1|≤ϵ}

dw2 dw1φ(w1, w2)

∫ |k|

0
dx2e

ix2(w2−w1)eiw1|k|

+
1

(2π)2
lim
ϵ→0+

∫
R2\{|w2+w1|≤ϵ}

dw2 dw1φ(w1, w2)

∫ 0

−|k|
dx2e

ix2(w2+w1)eiw1|k|.

Solving integrals with respect to x2,

Ψ+(k) =
1

(2π)2
lim
ϵ→0+

∫
R2\{|w2−w1|≤ϵ}

dw2 dw1φ(w1, w2)
−iei|k|w2 + ieiw1|k|

w2 − w1

+
1

(2π)2
lim
ϵ→0+

∫
R2\{|w2+w1|≤ϵ}

dw2 dw1φ(w1, w2)
ie−i|k|w2 − ieiw1|k|

w2 + w1
.

Similar steps would show that

Ψ−(k) =
1

(2π)2
lim
ϵ→0+

∫
R2\{|w2−w1|≤ϵ}

dw2 dw1φ(w1, w2)
ie−i|k|w2 − ie−iw1|k|

w2 − w1

+
1

(2π)2
lim
ϵ→0+

∫
R2\{|w2+w1|≤ϵ}

dw2 dw1φ(w1, w2)
−iei|k|w2 + ie−iw1|k|

w2 + w1
.

Plugging Euler’s sine formula into the above expressions and combining,

Ψ+(k) + Ψ−(k)

=
1

2π2
lim
ϵ→0+

∫
R
dw2 sin(w2)

(∫
ϵ<|w1+w2|

dw1

w1 + w2
φ(w1, w2)−

∫
ϵ<|w1−w2|

dw1

w1 − w2
φ(w1, w2)

)
+

1

2π2
lim
ϵ→0+

∫
R
dw1 sin(w1)

(∫
ϵ<|w2+w1|

dw2

w2 + w1
φ(w1, w2)−

∫
ϵ<|w2−w1|

dw2

w2 − w1
φ(w1, w2)

)
.

(C.9)

For φ(w1, w2) = φ1(w2)φ2(w1) with φ1, φ2 ∈ S(R), in view of Lemma A.1, we have by
dominated convergence

lim
ϵ→0+

∫
R
dw2 sin(w2)

∫
ϵ<|w1+w2|

dw1

w1 + w2
φ(w1, w2)

=

∫
R
dw2 sin(w2) lim

ϵ→0+

∫
ϵ<|w1+w2|

dw1

w1 + w2
φ(w1, w2) =

∫
R
dw2 sin(w2)−

∫
R

dw1

w1 + w2
φ(w1, w2).

Following similar steps for the remaining terms in (C.9), we recover (C.7) for φ(w1, w2) =
φ1(w2)φ2(w1) with φ1, φ2 ∈ S(R), from which the result for φ = ϕe ∈ Se follows by
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linearity. □

We are now in a position to prove (C.6) for d = 2. By definition of δD in (C.1),

δD(d(x, k)) = dk(1|x2|<|k| dx2)(δ|k|−|x2| + δ−|k|+|x2|)(dx1).

Therefore, by Lemma C.2,∫
R3

δD(d(x, k))e
−ikF−1ϕe(x) =

∫
R
dke−ik(Ψ+(k) + Ψ−(k)) =

1

2π2

∫
R
dke−ik

∫
R
dw1 sin(w1|k|)−

∫
R

( dw2

w2 + w1
− dw2

w2 − w1

)
ϕe(w1, w2)

+
1

2π2

∫
R
dke−ik

∫
R
dw2 sin(w2|k|)−

∫
R

( dw1

w1 + w2
− dw1

w1 − w2

)
ϕe(w1, w2).

(C.10)

Let f(w1) := −
∫
R

(
dw2

w2+w1
− dw2

w2−w1

)
ϕe(w1, w2). Substituting Euler’s sine formula, then

splitting the integrand while applying the change of variable k 7→ −k to the second
resulting integral, the first term in (C.10) may be rewritten as

i

4π2

∫
R
dke−ik sgn(k)

∫
R
dw1(e

−iw1k − eiw1k)f(w1)

=
i

4π2

(∫ ∞

−∞
dk sgn(k)

∫
R
dw1e

−ik(w1+1)f(w1) +

∫ ∞

−∞
dk sgn(k)

∫
R
dw1e

−ik(w1−1)f(w1)

)
=

1

2π2
−
∫
R

( dw1

w1 + 1
+

dw1

w1 − 1

)
f(w1),

where we substituted (B.4) in the last step. In addition,

1

2π2
−
∫
R

( dw1

w1 + 1
+

dw1

w1 − 1

)
f(w1) =

1

2π2
−
∫
R

( dw1

w1 + 1
+

dw1

w1 − 1

)
−
∫
R

( dw2

w2 + w1
− dw2

w2 − w1

)
ϕe(w1, w2).

(C.11)

Following similar steps for the remaining terms to the right-hand side of (C.10), we
may conclude in view of the definition (4.7) of T2 that

1

2

∫
R3

δD(d(x, k))e
−ikF−1ϕe(x) =

〈
T 2
dw, ϕe(w)

〉
w
,

which is (C.6) for d = 2.

C.3 General Dimension d ≥ 2

For ϕe ∈ Se, k ∈ R, let Ψd(k) ≡ Ψd(x>d, k) result from the following finite recurrence:

Ψ1(x>1, k) =
〈
(δ|k|−∥x>1∥1 + δ−|k|+∥x>1∥1)(dx1),F

−1ϕe(x1,x>1)
〉
x1

,x>1 ∈ Rd−1,

Ψl(x>l, k) =
〈
1|xl|<|k|−∥x>l∥1 dxl,Ψl−1(xl,x>l, k)

〉
xl

, x>l ∈ Rd−l, l = 2, . . . , d.
(C.12)
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Lemma C.3. For any ϕe ∈ Se, l = 2 . . . , d, and (x, k) ∈ Rd+1 such that |x>l| ≤ |k|,

Ψl(x>l, k) =
2

(2π)l

l∑
j=1

∫
R
dwj scl

(
wj(|k| − ∥x>l∥1)

)
×

−
∫
Rl−1

( ∏
i∈ 1 .. l \ {j}

( dwi

wi + wj
− dwi

wi − wj

))
Φl(w≤l,x>l),

(C.13)

where Φl(w≤l,x>l) := F−1
w>l

[ϕe(w)](w1, . . . , wl,x>l) ∈ Se, and scl(·) = (−1)
l−1
2 cos(·) if

l is odd, (−1)
l−2
2 sin(·) if l is even.

Proof. We proceed by induction on l ≥ 2. Note that Φ2 ∈ Se. For any fixed

x ∈ Rd, an application of Lemma C.2 to (w1, w2)
ϕe7−→ Φ2(w1, w2,x>2) and to the strike

κ := |k| − ∥x>2∥1 ≥ 0 yields

Ψ2(x>2, k) =
1

2π2

2∑
j=1

∫
R
dwj sin(wjκ)×

−
∫
R

( ∏
i∈ 1 .. 2 \ {j}

( dwi

wi + wj
− dwi

wi − wj

))
Φ2(w1, w2,x>2),

(C.14)

which is (C.13) for l = 2. It remains to prove that if (C.13) is satisfied for some index
l = 2, . . . , d− 1, then it also holds at index l + 1, i.e.

Ψl+1(x>l+1, k) =
2

(2π)l+1

l+1∑
j=1

∫
R
dwj scl+1(wj(|k| − ∥x>l+1∥1))×

−
∫
Rl

( ∏
ȷ∈ 1 .. (l+1) \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
Φl+1(w≤l+1,x>l+1).

(C.15)

Assuming (C.13) for some l ≥ 2, let us thus prove (C.15), first in the case where l is

even. Then scl(·) = (−1)
l−2
2 sin(·) and

Ψl+1(x>l+1, k) =
〈
1|xl+1|<|k|−∥x>l+1∥1 dxl+1,Ψl(x>l, k)

〉
xl+1

=
(−1)

l−2
2 2

(2π)l
×[∫ |k|−∥x>l+1∥1

0
dxl+1

l∑
j=1

∫
R
dwj sin(wj(|k| − ∥x>l+1∥1 − xl+1))×

−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
Φl(w≤l,x>l)

+

∫ 0

−|k|+∥x>l+1∥1
dxl+1

l∑
j=1

∫
R
dwj sin(wj(|k| − ∥x>l+1∥1 + xl+1))×

−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
Φl(w≤l,x>l)

]
.

(C.16)
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Substituting Euler’s sine formula into the above together with

Φl(w≤l,x>l) =
1

2π

∫
R
dwl+1e

−ixl+1wl+1Φl+1(w≤l+1,x>l+1)

=
1

2π
lim
ϵ→0+

∫
ϵ<|wl+1±wj |

dwl+1e
−ixl+1wl+1Φl+1(w≤l+1,x>l+1),

which stems from slicing the Fourier transform Φl(w≤l,x>l) along xl+1, then using
dominated convergence, the first term inside the square bracket in (C.16) may be
rewritten as

i

4π

∫ |k|−∥x>l+1∥1

0
dxl+1

l∑
j=1

∫
R
dwj−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
×

lim
ϵ→0+

∫
ϵ<|wl+1−wj |

dwl+1e
−ixl+1wl+1e−iwj(|k|−∥x>l+1∥1−xl+1)Φl+1(w≤l+1,x>l+1)

− i

4π

∫ |k|−∥x>l+1∥1

0
dxl+1

l∑
j=1

∫
R
dwj−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
×

lim
ϵ→0+

∫
ϵ<|wl+1+wj |

dwl+1e
−ixl+1wl+1eiwj(|k|−∥x>l+1∥1−xl+1)Φl+1(w≤l+1,x>l+1).

(C.17)

By a combination of Definition A.1, dominated convergence and Fubini’s theorem sim-
ilarly to the proof of Lemma C.2, we may bring the outer dxl+1-integrals above inside
all others. As such, the first term in (C.17) is equal to

i

4π

l∑
j=1

∫
R
dwj −

∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))(
lim
ϵ→0+

∫
ϵ<|wl+1+wj |

dwl+1×

∫ |k|−∥x>l+1∥1

0
dxl+1e

−ixl+1(wl+1−wj)−iwj(|k|−∥x>l+1∥1)Φl+1(w≤l+1,x>l+1)

)

=
1

4π

l∑
j=1

∫
R
dwj −

∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))(
lim
ϵ→0+

∫
ϵ<|wl+1−wj |

dwl+1×

eiwl+1(|k|−∥x>l+1∥1) − eiwj(|k|−∥x>l+1∥1)

wj − wl+1
Φl+1(w≤l+1,x>l+1)

)
,

where we solved the dxl+1 integral in the last step. Following the same steps for the
second term in (C.17), and then the second term within square brackets in (C.16), we
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obtain

Ψl+1(x>l+1, k) =
(−1)

l−2
2

(2π)l+1

l∑
j=1

∫
R
dwj−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
×

(
− lim

ϵ→0+

∫
ϵ<|wl+1−wj |

dwl+1
eiwl+1(|k|−∥x>l+1∥1) − eiwj(|k|−∥x>l+1∥1)

wl+1 − wj
Φl+1(w≤l+1,x>l+1)

+ lim
ϵ→0+

∫
ϵ<|wl+1+wj |

dwl+1
eiwl+1(|k|−∥x>l+1∥1) − e−iwj(|k|−∥x>l+1∥1)

wl+1 + wj
Φl+1(w≤l+1,x>l+1)

− lim
ϵ→0+

∫
ϵ<|wl+1−wj |

dwl+1
e−iwl+1(|k|−∥x>l+1∥1) − e−iwj(|k|−∥x>l+1∥1)

wl+1 − wj
Φl+1(w≤l+1,x>l+1)

+ lim
ϵ→0+

∫
ϵ<|wl+1+wj |

dwl+1
e−iwl+1(|k|−∥x>l+1∥1) − eiwj(|k|−∥x>l+1∥1)

wl+1 + wj
Φl+1(w≤l+1,x>l+1)

)
.

Splitting and rearranging integrands, substituting Euler’s cosine formula, and recog-
nizing Cauchy principal integrals,

Ψl+1(x>l+1, k) =
(−1)

l−2
2

(2π)l+1

l∑
j=1

∫
R
dwj−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
×

(
−
∫
R

dwl+1

wl+1 + wj
cos(wl+1(|k| − ∥x>l+1∥1))Φl+1(w≤l+1,x>l+1)

−−
∫
R

dwl+1

wl+1 − wj
cos(wl+1(|k| − ∥x>l+1∥1))Φl+1(w≤l+1,x>l+1)

−−
∫
R

dwl+1

wl+1 + wj
cos(wj(|k| − ∥x>l+1∥1))Φl+1(w≤l+1,x>l+1)

+−
∫
R

dwl+1

wl+1 − wj
cos(wj(|k| − ∥x>l+1∥1))Φl+1(w≤l+1,x>l+1)

)
.

By (A.4) for q = 2, this is equal to

Ψl+1(x>l+1, k) =
(−1)

l−2
2

(2π)l+1

l∑
j=1

∫
R
dwj−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
×

(
−
∫
R

( dwl+1

wl+1 + wj
− dwl+1

wl+1 − wj

)
cos(wl+1(|k| − ∥x>l+1∥1))Φl+1(w≤l+1,x>l+1)

−−
∫
R

( dwl+1

wl+1 + wj
− dwl+1

wl+1 − wj

)
cos(wj(|k| − ∥x>l+1∥1))Φl+1(w≤l+1,x>l+1)

)
.

(C.18)
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By (A.5), the first term above corresponding to cos(wl+1 . . . ) may be rewritten as

(−1)
l−2
2

(2π)l+1

l∑
j=1

∫
R
dwj−
∫
R

( dwl+1

wl+1 + wj
− dwl+1

wl+1 − wj

)
×

−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
cos(wl+1(|k| − ∥x>l+1∥1))Φl+1(w≤l+1,x>l+1)

=
(−1)

l−2
2

(2π)l+1

l∑
j=1

∫
R
dwl+1 cos(wl+1(|k| − ∥x>l+1∥1))×

−
∫
R

( dwj

wj + wl+1
+

dwj

wj − wl+1

)
−
∫
Rl−1

( ∏
ȷ∈ 1 .. l \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
Φl+1(w≤l+1,x>l+1),

(C.19)

where the equality follows from Lemma A.3 applied to the variables wl+1 and wj . By
reflective change of variables (wj , wl+1) 7→ (−wj ,−wl+1) to change minus signs into plus
signs within Cauchy integrals, the second term in (C.18) corresponding to cos(wj . . . )
may be rewritten as

(−1)
l−2
2

(2π)l+1

l∑
j=1

∫
R
dwj cos(wj(|k| − ∥x>l+1∥1))×

−
∫
Rl

( ∏
ȷ∈ 1 .. (l+1) \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
Φl+1(w≤l+1,x>l+1).

(C.20)

Substituting (C.19) and (C.20) into (C.18) yields

Ψl+1(x>l+1, k) =
(−1)

l−2
2

(2π)l+1

l+1∑
j=1

∫
R
dwj cos(wj(|k| − ∥x>l+1∥1))×

−
∫
Rl

( ∏
ȷ∈ 1 .. (l+1) \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
Φl+1(w≤l+1,x>l+1),

thereby proving that (C.15) holds for l even. If l is odd, then scl(·) = (−1)
l−1
2 cos(·)

and following similar steps would prove (C.15), thereby establishing the identity (C.13)
for any l ∈ 2 .. d. □

We are now in position to prove (C.6) for any d ≥ 2. By definition of δD in (C.1),∫
Rd+1

δD(d(x, k))e
−ikF−1ϕe(x) =

∫
R
dke−ikΨd(k), (C.21)

where Ψd(k) ≡ Ψd(x>d, k) as defined by the recurrence (C.12). By Lemma C.3,

Ψd(k) =
2

(2π)d

d∑
j=1

∫
R
dwj scd(wj |k|)−

∫
Rd−1

( ∏
ȷ∈ 1 .. d \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
ϕe(w).(C.22)
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Substituting (C.22) into (C.21),∫
Rd+1

δD(d(x, k))e
−ikF−1ϕe(x) =

2

(2π)d

d∑
j=1

∫
R
dke−ik×∫

R
dwj scd(wj |k|)−

∫
Rd−1

( ∏
ȷ∈ 1 .. d \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
ϕe(w).

(C.23)

In odd dimension d ≥ 3, substituting (B.5) yields (C.6) as required. In even dimen-

sion, replacing scd(·) = (−1)
d−2
2 sin(·) into (C.23) yields∫

Rd+1

δD(d(x, k))e
−ikF−1ϕe(x) =

(−1)
d−2
2 2

(2π)d

d∑
j=1

∫
R
dke−ik

∫
R
dwj sin(wj |k|)×

−
∫
Rd−1

( ∏
ȷ∈ 1 .. d \ {j}

( dwȷ

wȷ + wj
− dwȷ

wȷ − wj

))
ϕe(w)

︸ ︷︷ ︸
=:fj(wj)

,

by which we recognize the same integrals as in (C.10). Substituting Euler’s sine formula,
then splitting the integrand while applying the change of variable k 7→ −k to the second
resulting integral,∫

Rd+1

δD(d(x, k))e
−ikF−1ϕe(x)

=
i(−1)

d−2
2

(2π)d

d∑
j=1

∫
R
dke−ik sgn(k)

∫
R
dwj(e

−iwjk − eiwjk)fj(wj)

=
i(−1)

d−2
2

(2π)d

d∑
j=1

(∫ ∞

−∞
dk sgn(k)

∫
R
dwje

−ik(wj+1)fj(wj)+

∫ ∞

−∞
dk sgn(k)

∫
R
dwje

−ik(wj−1)fj(wj)

)

=
(−1)

d−2
2 2

(2π)d

d∑
j=1

−
∫
R

( dwj

wj + 1
+

dwj

wj − 1

)
fj(wj),

where we substituted (B.4) in the last step. Substituting fj(wj) into the above equation,
we recover∫

Rd+1

δD(d(x, k))e
−ikF−1ϕe(x) =

(−1)
d−2
2 2

(2π)d
×

d∑
j=1

−
∫
R

( dwj

wj − 1
+

dwj

wj + 1

)
−
∫
Rd−1

( ∏
ȷ∈ 1 .. d \ {j}

( dwȷ

wj + wȷ
− dwȷ

wȷ − wj

))
ϕe(w),

which is (C.6).
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D Correspondence Between Carr-Madan Spanning and
Basket Call Spanning in Dimension d = 1

Proposition D.1. In dimension d = 1 and for k > 0, the Carr-Madan spanning
formula (2.1) of a twice differentiable payoff F (x) ≡ F (x, k) such that F (λx, λk) =
λF (x, k) for all λ > 0, and ∂xF (0, k) = ∂2x2F (0, k) = 0, can be rewritten in the form
(2.2) for x ≥ 0, with

ν(dw) =
1

w3
(∂2x2F )

(
1

w
, 1

)
dw. (D.1)

Proof. By change of variable K 7→ w = k/K in (2.1),

F (x) =

∫ ∞

0

k

w2

(
x− k

w

)+

(∂2x2F )

(
k

w
, k

)
dw =

∫ ∞

0

k

w3
(wx− k)+ (∂2x2F )

(
k

w
, k

)
dw

=

∫ ∞

−∞

k

w3
(wx− k)+ (∂2x2F )

(
k

w
, k

)
dw, x ∈ R+, (D.2)

where we used in the last step that (wx − k)+ = 0 for w < 0 < k
x . Differentiating

F (λx, λk) = λF (x, k) twice with respect to x yields ∂2x2F (λx, λk) = λ−1∂2x2F (x, k),
whence

k

w3
(∂2x2F )

(
k

w
, k

)
=

1

w3
(∂2x2F )

(
1

w
, 1

)
, k > 0. (D.3)

Substituting the above into (D.2), we recover (2.2) for x ≥ 0 and ν(dw) given by (D.1).
□

Example D.1. Consider the one-dimensional smooth payoff F (x, k) = G1(x, k) =

1x ̸=0

√
x2e−

k2

x2 , k > 0, x ∈ R+ (see Propositions 4.1-4.2). We have

∂xG1(x, k) = 1x ̸=0
e−

k2

x2 (2k2 + x2)

x
√
x2

, ∂2x2G1(x, k) = 1x ̸=0
2k2e−

k2

x2 (2k2 − x2)
x4
√
x2

,

hence G1(0, k) = ∂xG1(0, k) = 0. The Carr-Madan spanning formula for G1 then reads

G1(x, k) =

∫ ∞

0
(x−K)+

2k2e−
k2

K2 (2k2 −K2)

K4
√
K2

dK.

Equivalently, Proposition D.1 yields

G1(x, k) =

∫ ∞

−∞
(wx− k)+2e−w2

(2w2 − 1) dw, k > 0, x ∈ R+,

which is a representation of the form (2.2) (with (wx− k)+ = 0 for w < 0).
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