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Abstract
We introduce a new approach toMonge–Ampère geometry based on techniques
from higher symplectic geometry. Our work is motivated by the application of
Monge–Ampère geometry to the Poisson equation for the pressure that arises
for incompressible Navier–Stokes flows. Whilst this equation constitutes an
elliptic problem for the pressure, it can also be viewed as a non-linear partial
differential equation connecting the pressure, the vorticity, and the rate-of-
strain. As such, it is a key diagnostic relation in the quest to understand the
formation of vortices in turbulent flows. We study this equation via an associ-
ated (higher) Lagrangian submanifold in the cotangent bundle to the config-
uration space of the fluid. Using our definition of a (higher) Monge–Ampère
structure, we study an associated metric on the cotangent bundle together with
its pull-back to the (higher) Lagrangian submanifold. The signatures of these
metrics are dictated by the relationship between vorticity and rate-of-strain,
and their scalar curvatures can be interpreted in a physical context in terms of
the accumulation of vorticity, strain, and their gradients. We show explicity, in
the case of two-dimensional flows, how topological information can be derived
from the Monge–Ampère geometry of the Lagrangian submanifold. We also
demonstrate how certain solutions to the three-dimensional incompressible
Navier–Stokes equations, such as Hill’s spherical vortex and an integrable case
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of Arnol’d–Beltrami–Childress flow, have symmetries that facilitate a formu-
lation of these solutions from the perspective of (higher) symplectic reduction.

Keywords: Monge–Ampere equations, Navier–Stokes equations,
Lagrangian submanifolds, symplectic reduction,
(pseudo-) Riemannian geometry, higher symplectic geometry,
vortex topology
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1. Introduction

The anatomy and dynamics of vortices are subjects of fundamental importance in the study of
the incompressible Euler andNavier–Stokes equations in two and three dimensions. According
to the incompressible Navier–Stokes equations on a three-dimensional Euclidean domain, the
evolution of the vorticity, ζ :=∇× v, is given by

Dζ
Dt

= σ+ ν∆ζ with
D
Dt

:=
∂

∂t
+ v ·∇ , (1.1)

where v is the fluid velocity, σ := (ζ ·∇)v is the vortex-stetching vector, ∆ is the Laplacian,
and ν is the viscosity. The equation for divergence-free flow is

∇· v = 0 . (1.2)

When the flow is inviscid, ν= 0, we obtain the Euler equations. In two dimensions, the vortex-
stretching vector is identically zero, and the vorticity is amaterially conserved scalar fieldwhen
the flow is inviscid.

The vortex-stretching vector σ can be written in terms of the rate-of-strain matrix, S, which
is the symmetric part of the velocity-gradient matrix, as follows

σ = Sζ . (1.3)

The magnitude and direction of vorticity are critical features in studies of turbulent flows in
three dimensions. If, for the moment, we focus on inviscid flows in three dimensions, then
using (1.1) and the Euler equation relating flow velocity and the pressure gradient

Dv
Dt

= −∇p , (1.4)

3
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where p is pressure, it can be shown (see e.g. [1]) that the vortex-stretching vector evolves
according to

Dσ
Dt

= −Pζ , (1.5)

where P is the Hessian of the pressure. Upon taking the divergence of (1.4) and using (1.2),
the rate-of-strain, the vorticity, and the pressure field are related by

tr(P) = ∆p =
1
2
ζ2 − tr

(
S2
)
. (1.6)

This equation holds for the incompressible Euler and Navier–Stokes equations in both two and
three dimensions. In the standard literature, (1.6) is recognised as the Poisson equation for the
pressure, and depends on time only as a parameter. Consequently, the time evolution of ∆p
will depend on whether we are considering the Euler or the Navier–Stokes equations.

Equation (1.6) has been employed in studies of the accumulation of vorticity and of the
plausible conditions under which such accumulations may be considered to be ‘a vortex’.
From (1.6) it follows that, when vorticity dominates over strain, then∆p> 0, and conversely,
when strain dominates over vorticity,∆p< 0. In two dimensions, the vorticity is a scalar field,
the rate-of-strain matrix has only two independent components (due to incompressibility) and
therefore (1.6) is a useful diagnostic relation involving the velocity gradients and the pres-
sure field, as studied in [2–4]. In three dimensions, although the components of vorticity and
strain can interact in more complicated ways to determine the sign of the Laplacian of the
pressure, (1.6) has still been widely used in studies that address the enduring question as to
what a vortex is; see e.g. [5, 6].

Equation (1.6), or rather its reformulation on an arbitrary Riemannian manifold, is a focal
point of this paper. In particular, [2–4] studied this equation in the context of incompressible
flows on a two-dimensional Euclidean domain, whereupon the velocity can be expressed in
terms of the derivatives of a stream function. Using such a representation of the velocity field,
the right-hand side of (1.6) becomes proportional to the determinant of the Hessian of the
stream function. Consequently, the Gaußian curvature of the stream function is related to the
sign of the Laplacian of pressure. When vorticity dominates over strain, the stream function,
viewed as a graph in Euclidean space, has positive Gaußian curvature, and it has negative
Gaußian curvature when strain dominates. By introducing the stream function, (1.6) can then
be viewed as a non-linear Monge–Ampère equation for this function, assuming ∆p is known
and time, t, is considered a parameter.When∆p> 0, this equation is elliptic; conversely, when
∆p< 0, the equation is hyperbolic (we shall return to these points in greater detail later in this
paper).

The appearance of a Monge–Ampère equation for two-dimensional incompressible flows
led [7] to study this problem from the point of view of the Monge–Ampère geometry of [8].
In this context, one considers a pair of differential two-forms, (ω,α), on T∗M, where M is
the configuration space of the fluid, ω is the symplectic form, and α is called the Monge–
Ampère form, which encodes (1.6). This pair of forms satisfies a non-degeneracy condition,
and such a pair is called a Monge–Ampère structure. With this geometric picture in mind,
the conditions for ellipticity and hyperbolicity noted by [2–4] then translate, via the Monge–
Ampère structure, into almost (para-)complex structures on T∗M which, in fact, extend to
almost quaternionic (para-)Hermitian structures [7, 9].

When incompressible flows in three dimensions are considered in terms of (1.6), the
absence of a stream function prohibits a generalisation of the classification of flows in terms

4
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of an elliptic or hyperbolic Monge–Ampère equation [2, 3]. Nevertheless, [10] showed how,
on a three-dimensional Euclidean domain, (1.6) can still be described using a suitably-defined
Monge–Ampère structure. This construction facilitated a generalisation of the criteria derived
by [2–4] to three-dimensional incompressible flows. In this present paper, we shall show how
these earlier results can be reformulated and unified by combining the ideas ofMonge–Ampère
geometry with that of the higher symplectic geometry of [11–13], thereby providing a general-
isation of this approach to incompressible flows on arbitrary Riemannianmanifolds of arbitrary
dimensions.

Concretely, when classifying Monge–Ampère equations in two or three independent vari-
ables, [14] introduced a certain Riemannian or Kleinian metric on T∗M, whose signature has
been related to the elliptic or hyperbolic nature of the underlying Monge–Ampère equation. In
view of this, one makes use of generalised solutions to the Monge–Ampère equation associ-
ated with a Monge–Ampère structure (ω,α), which are Lagrangian submanifolds of T∗M on
which α vanishes. The notion of a generalised solution to a partial differential equation was
first introduced in [15–17] and corresponds to admitting solutions that are multivalued or are
not globally defined. In this context, classical (global, single valued) solutions to a Monge–
Ampère equation are described precisely by the graphs of differentials of functions. We shall
adopt this view of generalised solutions when extending the aforementioned ideas to higher-
dimensional incompressible flows. In particular, beginning from a (higher) Monge–Ampère
structure, now a specific pair of differential m-forms on T∗M in the m-dimensional case, we
construct ametric on T∗M.Moreover, it will be useful to study its pull-back to a certain (higher)
Lagrangian submanifold of T∗M, noting that the submanifold is of the same dimension as the
configuration space of the fluid.

A physical motivation for considering the pull-back metric is as follows. In [1], it was
noted that (1.6) locally holds the key to the formation of vortical structures through the sign
of ∆p. The equation also plays a role in Navier–Stokes turbulence calculations in which vor-
ticity tends to accumulate on ‘thin sets’ – quasi-two-dimensional sheets that roll up into one-
dimensional tubes [18]. The topology of vortex tubes can become highly complicated, but they
are ubiquitous features of turbulent flows and have been dubbed ‘the sinews of turbulence’
in [19]. Extracting topological information from the underlying partial differential equation
of the Navier–Stokes equations is an enduring problem: for a review, see [20]. Using the
pull-back metric described above, we demonstrate, explicitly in the case of two-dimensional
incompressible flows, that a topological invariant can be associated with the Lagrangian sub-
manifold L defined by (1.6). Since L is two-dimensional in this case, when the pull-back metric
is Riemannian we can use the Gauß–Bonnet theorem to calculate an Euler number. We find
that the curvature of L is related to the physical properties of the flow in terms of gradients of
vorticity and strain.

We go on to show that certain solutions to the three-dimensional Navier–Stokes equations,
such as Burgers’ vortex, Hill’s spherical vortex, and an integrable Arnol’d–Beltrami–Childress
flow, possess symmetries that facilitate Hamiltonian reductions to two-dimensional problems.
These results extend those presented in [9]; in particular we show how such solutions can be
studied from the point of view of the higher symplectic reduction of [21]. As somewhat of an
aside for this paper, we note that helicity is described readily using the component parts of
the Monge–Ampère geometry developed herein. Further investigations using helicity or other
invariants (e.g. Maslov index) to study the topology of three-dimensional flows, within the
framework of our Monge–Ampère geometry, is a topic for future research.
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1.1. Organisation of the paper

In section 2.1, we present the Navier–Stokes equations in a covariant framework, where the
configuration space is an arbitrary Riemannian manifoldM. Whilst this introduces some addi-
tional structure, the majority of our results are couched in a covariant language and it is
therefore consistent to allow for arbitrary background geometries. Furthermore, the Poisson
equation for the pressure involves additional curvature terms when written for an arbitraryM.

Focusing on two-dimensional incompressible flows, in section 2.2 we introduce the
machinery of Monge–Ampère geometry and Monge–Ampère structures, following the geo-
metric approach as described, for example, by [8]. This allows us to formulate the Monge–
Ampère equation arising in the Poisson equation for the pressure, revisiting some of the results
of [7]. However, in addition, we describe the role of the metric structure that arises on T∗M,
as well as its pull-back to the Lagrangian submanifold L. We then use the pull-back metric on
L to show how the Gauß–Bonnet theorem, together with conditions on the projection L→M,
enable us to define the Euler number for ‘a vortex’.

Examples are then given in section 2.3, in order to illustrate the application of the foregoing
theory. These examples include a flowwith topological bifurcations and the Taylor–Green vor-
tex in two dimensions. Naturally, it is possible to find solutions to (1.6) that are not solutions
to the full dynamical equations. However, our focus for now is to take the view that the geo-
metry developed herein gives us the possibility to characterise the physical features of given
solutions, rather than to explore how the Monge–Ampère structure might facilitate the search
for new solutions.

In section 3, we move on to consider (1.6) for flows in three dimensions. Concretely, we
first revisit, in section 3.1, the two-dimensional case and note that another Monge–Ampère
structure can be defined using a different choice of symplectic structure. This choice is char-
acterised by a duality (with respect to the metric on the configuration manifold, M), which in
two-dimensions simply provides an alternative formulation to the one used before. However,
in three dimensions, the duality leads to a higher Monge–Ampère type structure defined in
terms of a pair of differential three-forms, and this naturally encodes an equation such as (1.6),
even though there is no longer an underlying Monge–Ampère equation in a single dependent
variable. In section 3.2, we introduce the relevant concepts from higher symplectic geometry,
in which the symplectic form is superseded by a closed, non-degenerate differential form of
degree higher than two.

In section 3.3, we explicitly set out the Monge–Ampère geometry of three-dimensional
flow, thereby extending the results of [9]. We explain how the curvature of L can be related,
once again, to gradients of vorticity and strain. However, because the higher Lagrangian
submanifold is now three-dimensional, we can no longer use the Gauß–Bonnet theorem to
quantify the topology of vortices. Instead, we remark that helicity, a much-studied invariant of
incompressible flows in three dimensions, can be formulated in terms of the geometric objects
we have introduced. In principle, the resulting formulation can be applied to the Navier–Stokes
equations in arbitrary dimensions.

We then illustrate the foregoing theory with examples in section 3.4. We begin by writing
out the form of the pull-back metric in terms of vorticity and rate-of-strain, via the velocity
gradient matrix, and then discuss an example based on Burgers’ vortex. This canonical model
of a vortex tube has been studied from the point-of-view of Monge–Ampère geometry in [9],
where symplectic reduction was employed to illuminate the symmetry of the model, which is
characterised physically by uniformity along the axis of rotation.

Inspired by this approach to solutions to the three-dimensional Navier–Stokes equations
with symmetry, we introduce, in section 3.5, a higher symplectic reduction of the phase space

6
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and apply this to an integrable example of the Arnol’d–Beltrami–Childress flows, and to Hill’s
spherical vortex (a special case of the Hicks–Moffatt vortex), in section 3.6.

Finally, in section 4, we summarise and draw conclusions.

2. Fluid flows and Monge–Ampère geometry

2.1. Incompressible fluid flows

To set the stage, let us summarise some facts about incompressible fluid flows. We shall be
somewhat more general in that we allow the domain of the fluid flow to be a Riemannian
manifold. This is because the equation (1.6) for the Laplacian of the pressure will be modified
by a term depending on the Ricci curvature tensor of the underlying domain.

2.1.1. Navier–Stokes equations. Consider anm-dimensional oriented Riemannianmanifold3

M with metric g̊. Let ‘d’ be the exterior derivative onM and ‘?̊g’ be the Hodge star with respect
to the metric g̊. Furthermore, let the codifferential acting on differential p-forms Ωp(M) and
the Hodge Laplacian be given by

δ̊ := (−1)m(p−1)+1
?̊gd?̊g and ∆̊H := δ̊d+ d̊δ , (2.1)

respectively. Set

|ρ|2 :=
ρ∧ ?̊gρ
volM

(2.2)

for all ρ ∈ Ωp(M), with ‘volM’ the volume form on M induced by g̊.
In the following, M is taken to be the domain of the fluid flow in which we are

interested, and the fluid flow is described by a one-parameter family of differential one-
forms v ∈ Ω1(M) on M, parametrised by t ∈ R, known as the velocity (co-)vector field. The
incompressible Navier–Stokes equations is a system consisting of a flow equation for v,

∂v
∂t

= −(−1)m ?̊g (v∧ ?̊gdv)−
1
2
d|v|2 − dp− ν∆̊Hv , (2.3a)

together with the divergence-free constraint

δ̊v = 0 . (2.3b)

Here, p ∈ C∞(M) is known as the pressure field and ν ∈ R as the viscosity, respectively.
If we coordinatise M by xi for i, j, . . .= 1, . . . ,m, then, with v= vidxi and vi =

vi(t,x1, . . . ,xm), the equations (2.3a) become

∂vi

∂t
= −vj∇̊jv

i− ∂ip+ ν
(
∆̊Bv

i− R̊ijvj
)

(2.4a)

and

∇̊iv
i = 0 , (2.4b)

3 We shall always assume that our manifolds are equipped with a good cover, by which we mean a covering by open
and contractible sets. Likewise, we shall always work in the induced topologies.
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where ∇̊i is the Levi–Civita connection for the metric g̊ij with Christoffel symbols
denoted by Γ̊ij

k. Furthermore, the components of the associated Ricci tensor and
Riemann curvature tensor are given by

R̊ij := R̊kij
k and R̊ijk

l := ∂iΓ̊jk
l− ∂jΓ̊ik

l− Γ̊ik
mΓ̊jm

l+ Γ̊jk
mΓ̊im

l , (2.5)

respectively. Letting g̊ij be the inverse of g̊ij, the Beltrami Laplacian is given by

∆̊B := g̊ij∇̊i∇̊j = ∇̊i∇̊i . (2.6)

Indices are raised and lowered using g̊ij and g̊ij respectively and we always use Einstein’s
summation convention. In deriving (2.4a), we have used the standard Weitzenböck formula

(∆̊Hρ)i1···ip = −∆̊Bρi1···ip + pR̊j[i1ρ
j
i2···ip] +

1
2
p(p− 1)̊Rjk[i1i2ρ

jk
i3···ip] (2.7)

for a differential p-form ρ= 1
p!ρi1···ipdx

i1 ∧ . . .∧ dxip on M that relates (2.1) and (2.6).
Here and in the following, parentheses (respectively, square brackets) denote
normalised symmetrisation (respectively, anti-symmetrisation) of the enclosed indices.

Evidently, when M is Rm with the standard Euclidean metric δij = 1 for i= j and zero oth-
erwise, the equations (2.4a) reduce to the more familiar equations

∂vi

∂t
= −vj∂jvi− ∂ip+ ν∆vi (2.8a)

and

∂iv
i = 0 , (2.8b)

where now ∆ := ∂i∂i is the standard Euclidean Laplacian.

2.1.2. Pressure constraint. Upon applying the codifferential to (2.3a) and using the
divergence-free constraint (2.3b), we obtain the so-called pressure equation

∆̊Hp = −|dv|2 + ?̊g

(
v∧ ?̊g∆̊Hv

)
− 1

2
∆̊H|v|2 . (2.9)

In local coordinates, this becomes

∆̊Bp = −
(
∇̊ivj

)(
∇̊jvi

)
− vivjR̊ij , (2.10)

where we have again used the Weitzenböck formula (2.7).
Upon setting

ζij := ∇̊[ivj] = ∂[ivj] and Sij := ∇̊(ivj) , (2.11)

which are called the vorticity two-form and the rate-of-strain tensor, respectively, the pressure
equation (2.10) can be written in a more standard form as

∆̊Bp = ζijζ
ij− SijS

ij− vivjR̊ij . (2.12)

8
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By definition, the rate-of-strain tensor vanishes if any only if the velocity vector field is a
Killing vector field.

Furthermore, because of the Poincaré lemma, on an open and contractible4 set U⊆M, the
divergence-free constraint (2.3b) can always be solved as

v = ?̊gdψ for ψ ∈ Ωm−2(U) ⇐⇒ vi =

√
det(̊g)

(m− 2)!
εi1···im−1i∂i1ψi2···im−1 , (2.13)

where εi1···im is the Levi-Civita symbol with ε1···m = 1; note that ε1···m = 1
det(̊g)ε1···m. Upon

substituting this expression into (2.10), we obtain a Monge–Ampère-type equation for ψ. For
m= 2, ψ is known as the stream function, and we obtain a Monge–Ampère equation in a
familiar setting. Generally, we may refer to ψ ∈ Ωm−2(U) as the stream (m− 2)-form.

Remark 2.1. The viscosity term in the Navier–Stokes equations (2.3a) may be modified as

∂v
∂t

= −(−1)m ?̊g (v∧ ?̊gdv)−
1
2
d|v|2 − dp− ν

[
∆̊Hv+ c R̊ic(v)

]
, (2.14)

where c ∈ R and R̊ic(ρ) := R̊ijρjdxi for any ρ ∈ Ω1(M). Evidently, in the flat case, the extra
term vanishes and this modified equation again reduces to the standard equation (2.8a). The
coordinate version (2.4a) then becomes

∂vi

∂t
= −vj∇̊jv

i− ∂ip+ ν
[
∆̊Bv

i− (c+ 1) R̊ijvj
]
. (2.15)

When c= 0, we return to the situation given by (2.3a), and this version of the Navier–Stokes
equations was perhaps first studied in the seminal work [22] and more recently in e.g. [23, 24].
The case c=−1 was discussed in e.g. [25] and the case c=−2 in e.g. [22, 26, 27] and the
references therein. For instance, under the assumption of the divergence-free constraint (2.4b),
when c=−2 and with Sij the rate-of-strain tensor (2.11), it can straightforwardly be seen that
the viscosity term can be rewritten as

∆̊Bv
i+ R̊ijvj = 2∇̊jS

ij . (2.16)

Hence, in this case, for velocity fields that preserve the metric (i.e. that are Killing), the vis-
cosity term drops out from the Navier–Stokes equations. Generally, with the c-term switched
on, the pressure equation (2.10) takes the form

∆̊Bp = −
(
∇̊ivj

)(
∇̊jvi

)
− vivjR̊ij− νc

(
R̊ijS

ij+
1
2
vi∂iR̊

)
, (2.17)

where R̊ := g̊ijR̊ij is the curvature scalar and we have used the well-known identity

∇̊i

(
R̊ij−

1
2
g̊ijR̊

)
= 0 . (2.18)

Henceforth, we shall always assume that c= 0. Our results and conclusions remain unchanged,
and all of the formulæ can easily be adjusted to accommodate the c-term.

4 In the following, we declare a neighbourhood (of a point) to be an open and contractible set.
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2.2. Geometric properties of fluids in two dimensions

One of the enduring challenges of fluid mechanics is to understand the topology of vortices.
However, no systematic method has been developed to extract topological information from
the partial differential equations governing the flow. To this end, we now make some observa-
tions about howMonge–Ampère geometry might provide new insights by focusing on incom-
pressible flows in two spatial dimensions. We start off by recalling some of the key aspects
of Monge–Ampère geometry. See also appendix B. We shall be rather brief and only list the
relevant material for our discussion, and we refer the interested reader to the text book [8] for
more details.

2.2.1. Monge–Ampère structures. Let us consider the cotangent bundle π : T∗M→M of an
m-dimensional manifold M, which we coordinatise by (xi,qi) with xi local coordinates on M
as before and qi local fibre coordinates. Then, T∗M comes with a canonical symplectic struc-
ture ω which in local coordinates is ω = dqi ∧ dxi. Following [14] (see also [28]) a differential
m-form α ∈ Ωm(T∗M) is called ω-effective whenever ω ∧α= 0. Furthermore, the pair (ω,α),
with α an ω-effective m-form, will be called a Monge–Ampère structure [29]. In this con-
text, we shall refer to α as the Monge–Ampère form. We draw attention to the purpose of the
requirement that the Monge–Ampère form α is ω-effective. This constraint removes redund-
ancy that would occur if α were an arbitrary differential m-form, two of which produce the
same Monge–Ampère equation if and only if their difference is a differential form which is
not ω-effective [14, 28]. Theorem B.1 then tells us that the ω-effective piece of a differential
m-form uniquely determines the Monge–Ampère equation.

A generalised solution for a Monge–Ampère structure (ω,α) is a Lagrangian submanifold
ι : L ↪→ T∗M with respect to ω, that is, ι∗ω = 0 and dim(L) = dim(M), for which, in addi-
tion, we have ι∗α= 0. In particular, the section dψ :M→ T∗M associated with the function
ψ ∈ C∞(M) and locally given by xi 7→ (xi,qi) = (xi,∂iψ) defines a Lagrangian submanifold
LM := dψ(M). Additionally, the requirement that a generalised solution satisfies ι∗α= 0 then
reads (dψ)∗α= 0, which in turn yields a Monge–Ampère equation for ψ. In this case, the
functions ψ ∈ C∞(M) satisfying the Monge–Ampère equation and the corresponding gen-
eralised solutions described by dψ are both referred to as classical solutions. We shall call
Monge–Ampère structures (ω,α) and (ω,α ′) symplectically equivalent whenever there is a
symplectomorphism Φ ∈ C∞(T∗M) such that α ′ =Φ∗α.

Moreover, as explained in appendix A, a Lagrangian submanifold L is locally a section
dψ : U→ T∗M for some ψ ∈ C∞(U) and U⊆M open and contractible if and only if the map
π|L := π ◦ ι : L→M is a local diffeomorphism. In this case, wemay take xi as local coordinates
on L and we have ι : xi 7→ (xi,qi) = (xi,∂iψ). However, an arbitrary generalised solution may
exhibit singular behaviour where the projection π|L fails to be an immersion [30–32] and L is
not locally described by the coordinates xi. Recent work [33] studying the semi-geostrophic
equations has shown that such projection singularities may be related to the degeneracy of a
specific metric on L. In order to isolate behaviour of Lwhich is due to the variation of vorticity
and strain, hereafter we predominantly consider solutions which are (locally) described by a
section.

2.2.2. Monge–Ampère geometry of two-dimensional fluid flows. Let us now specialise to
incompressible fluid flows inm= 2 dimensions. In this case, the components (2.5) of the Ricci
and Riemann curvature tensors simplify to

10
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R̊ij =
R̊
2
g̊ij and R̊ijk

l = R̊̊gk[jδi]
l (2.19)

respectively, where R̊ is the curvature scalar. Furthermore, we denote byHess(ψ) the Hessian
of a function ψ ∈ C∞(M). Explicitly, in local coordinates, it reads as Hess(ψ) = (∇̊i∂jψ) =

(∇̊j∂iψ). In this case, (2.13) yields

vi = −
√

det (̊g)εij∂jψ , (2.20)

and the pressure equation (2.10), on an open and contractible set U⊆M, becomes

1
2
∆̊Bp = det

(̊
g−1Hess(ψ)

)
− R̊

4
|dψ|2 ⇐⇒ 1

2
∇̊i∂ip = det

(
∇̊i∂jψ

)
− R̊

4

(
∇̊iψ

)
(∂iψ) .

(2.21)

This can be understood as a Monge–Ampère equation for the stream function and hence for
the velocity field. The vorticity two-form (2.11) can be written as

ζij =
1
2

√
det (̊g)εij ζ with ζ := ∆̊Bψ =⇒ ζijζ

ij =
1
2
ζ2 . (2.22)

Importantly, the pressure equation (2.21) arises from a Monge–Ampère structure on T∗M.
Indeed, upon fixing the notation

f̂ :=
1
2
∆̊Bp+

R̊
4
|q|2 and ∇̊qi := dqi− dxjΓ̊ji

kqk , (2.23a)

with Γ̊ij
k the Christoffel symbols for g̊ij, it is readily checked that the differential forms5

ω := ∇̊qi ∧ dxi ,

α :=

√
det (̊g)
2

[
εij∇̊qi ∧ ∇̊qj− f̂εijdx

i ∧ dxj
] (2.23b)

on T∗M form aMonge–Ampère structure on T∗M. For Lagrangian submanifolds ι : L ↪→ T∗M
which are locally dψ : U→ T∗M for some ψ ∈ C∞(U) with U⊆M open and contractible,
whilst ι∗ω = 0 is automatic, the condition ι∗α= 0 is equivalent to ψ satisfying the Monge–
Ampère equation (2.21). In conclusion, the Monge–Ampère equation (2.21) arises from the
Monge–Ampère structure (2.23b).

Note that α is non-degenerate if and only if f̂ 6= 0, and it is shown in section 3 that α is
closed. We also note that pulling back α via v= ?̊gdψ again yields (2.21); this observation
shall inform the alternative Monge–Ampère structure chosen in section 3, which naturally
generalises to higher dimensions.

2.2.3. Almost (para-)Hermitian structure. Next, following [14],6 we associate with the
Monge–Ampère structure (2.23b) an endomorphism Ĵ of the tangent bundle of T∗M
defined by

5 Note that ∇̊qi ∧ dxi = dqi ∧ dxi.
6 see also (B.2).
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α√
| f̂ |

=: Ĵ ⌙ω (2.24)

with f̂ as defined in (2.23b) and under the assumption that f̂ does not vanish. By virtue of the
results of [14], Ĵ is an almost complex structure on T∗Mwhen f̂> 0 (in which case theMonge–
Ampère equation (2.21) is elliptic) and an almost para-complex structure on T∗M when f̂< 0
(inwhich case theMonge–Ampère equation (2.21) is hyperbolic). As can be checked following
the arguments of [8, 14, 34], this structure is integrable if and only if f̂ is constant7.

Furthermore, as discussed in appendix B, we can always find a differential two-form K̂
which is of type (1, 1) with respect to Ĵ, such that K̂∧ω = 0, K̂∧ (Ĵ ⌙ω) = 0, and K̂∧ K̂ 6= 0.
Explicitly, we may take

K̂ := −
√
| f̂ | ∇̊qi ∧ ?̊gdxi . (2.25)

Since K̂(ĴX,Y) =−K̂(X, ĴY) for all X,Y ∈ X(T∗M), we are naturally led to the almost
(para-)Hermitian metric ĝ(X,Y) := K̂(X, ĴY) on T∗M for all X,Y ∈ X(T∗M), which is expli-
citly given by

ĝ =
1
2
f̂̊gijdx

i� dxj+
1
2
g̊ij∇̊qi�∇̊qj . (2.26)

Evidently, in the elliptic case, when f̂> 0, the metric ĝ is Riemannian, whilst in the hyperbolic
case, when f̂< 0, the metric is Kleinian.

2.2.4. Pull-back metric. It is easily seen that the pull-back g := ι∗ĝ of (2.26) to the
Lagrangian submanifold ι : L ↪→ T∗M via dψ is

g =
1
2
gijdx

i� dxj with gij := ζ∇̊i∂jψ , (2.27)

where we have used that

f := ι∗ f̂ =
1
2
∆̊Bp+

R̊
4
|dψ|2 = det

(
∇̊i∂jψ

)
(2.28)

by (2.21) and substituted (2.22). Clearly, in regions where the vorticity vanishes, this metric
vanishes as well. When both tr(̊gikgkj)> 0 and det(̊gikgkj)> 0, it follows that g is Riemannian.
The former condition is always satisfied since tr(̊gikgkj) = ζ2, and the latter is satisfied if and
only if f > 0. Similarly, when f < 0, g is Kleinian. Hence, the signature of g is independent of
the sign of the vorticity (2.22) and only depends on the sign of f.

Upon comparing (2.12) and (2.28), we find that f = 1
2 (ζijζ

ij− SijSij) with the indices on ζ ij
and Sij raised with the background metric. Hence, when f > 0 and the metric g is Riemannian,
vorticity dominates, yet when f < 0 and g is Kleinian, strain dominates. This statement covari-
antly extends the pressure criterion for a vortex, as given in [2, 3], to an arbitrary Riemannian
background manifold, while accounting for the underlying curvature. The standard criterion
are recovered on a flat background.

Now that we have criterion for testing the dominance of vorticity and strain of a flow on a
Riemannian manifold, we discuss how to obtain topological information about the flow.

7 This then necessarily means that the curvature of M vanishes, i.e. M is flat.
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2.2.5. Local Gauß–Bonnet theorem. Let L be a Lagrangian submanifold of T∗M, which is
locally described by sections dψU : U→ T∗M, with U⊆M open and contractible, and ψU ∈
C∞(U) the stream function onU. Furthermore, letΣ⊆ U be a compact region inU, on which
f > 0. We can then define the compact region LΣ ⊆ L by LΣ := dψU(Σ). It is now natural
to consider the question of how we might use the local Gauß–Bonnet theorem to relate the
geometry of LΣ to its topology, as given by the Euler characteristic χ(LΣ). For the reader’s
convenience, let us state this theorem, see e.g. [35, theorem 4.2] for details.

Theorem 2.2. LetΣ be a two-dimensional, compact, oriented Riemannian manifold with met-
ric g. Suppose that Σ has a boundary composed of disjoint, simple, closed, piecewise regular,
piecewise arc-length parametrised curves γα, that is, ∂Σ=

⋃
α γα. Let R be the curvature

scalar of the Levi-Civita connection of g, volΣ the volume form on Σ, and κ the geodesic
curvature. Furthermore, let ϕβ be the exterior angles at the non-smooth points of the bound-
ary ∂Σ. Then, the Euler number χ(Σ) of Σ is given by

1
2

ˆ
Σ

volΣR+
∑
α

ˆ
γα

dsκ(γα (s))+
∑
β

ϕβ = 2πχ(Σ) . (2.29)

Let Σ⊆ U⊆M be as above. Then, χ(Σ) = χ(LΣ), since π|L is now a diffeomorphism. For
instance, if such Σ is bounded by a simple, closed curve such as closed, isovortical contour,
or a closed stream-line, then Σ is homeomorphic to a disc and so, χ(LΣ) = 1.

2.2.6. Christoffel symbols and curvatures. Let us now give some of the formulæ needed
when evaluating (2.29). In particular, we introduce the notation

ψi1···in := ∇̊(i1 · · · ∇̊in−1∂in)ψ . (2.30)

A quick calculation shows that ψi1···in can be expressed in terms of the components of the
rate-of-strain tensor and the vorticity two-form, see (2.11) and (2.22), as

ψi1···in = −
√

det(̊g)̊g jkεj(i1∇̊i2 · · · ∇̊in−1Sin)k+
1
2
g̊(i1i2∇̊i3 · · · ∇̊in−1∂in)ζ (2.31)

for n> 1. Then, using (2.22), we can write the metric (2.27) as gij = ζg̃ij with g̃ij := ψij. Hence,
due to its conformal nature, the Christoffel symbols Γijk of gij take the form

Γij
k = Γ̃ij

k+ ∂(iδj)
k log(|ζ|)− 1

2
g̃ijg̃

kl∂l log(|ζ|) , (2.32a)

where g̃ij denotes the inverse of g̃ij, and the Γ̃ij
k are the Christoffel symbols of the Hessian

metric g̃ij,

Γ̃ij
k = Γ̊ij

k+
1
2
Υijlg̃

lk with Υijk := ψijk+
4
3
ψlR̊k(ij)

l . (2.32b)

Consequently, the curvature scalar R of gij is given by

R =
1
ζ

{
R̃− 1√

|det(g̃)|
∂i

[√
|det(g̃)| g̃ij∂j log(|ζ|)

]}
, (2.33a)
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where R̃ is the curvature scalar for g̃ij,

R̃ =
1
2
g̃ijg̊ijR̊−

1
4
g̃ijg̃klg̃mn(ΥijmΥkln−ΥikmΥjln)

+
2
3
g̃ijg̃kl[ψmn(δ

m
i R̊j(kl)

n− δmj R̊l(ik)
n)+ψm(∇̊iR̊j(kl)

m−∇̊jR̊l(ik)
m)] ,

(2.33b)

see appendix C.1 for details. Importantly, no fourth-order derivatives of the stream function
appear, and in that sense, the curvature scalar of the pull-back metric (2.27) is generated by
gradients of vorticity and strain, see (2.31). In addition, ψi occurs without any further derivat-
ives, hence the curvature scalar depends also on the components of velocity directly.

Furthermore, given an arc-length parametrised curve γ : s→ (y1(s),y2(s)) in two dimen-
sions, we may use Beltrami’s formula

κ(γ(s)) =
√
|det(g(y(s)))|εij ẏi(s)[ÿj(s)+Γkl

j(y(s))ẏk(s)ẏl(s)] , (2.34)

for the geodesic curvature κ at a point γ(s) of the curve. Here, the superposed dots indicate
derivatives with respect to the arc-length parameter s.

Let us return to our previous example, where Σ⊆ U⊆M with f > 0 and a boundary given
by a simple, regular, closed curve c : R→ U. As dψU is a diffeomorphism onU, it follows that
the boundary of LΣ := dψU(Σ) is given by γ := dψU ◦ c : R→ L, which is also a simple, regu-
lar, closed curve and may be assumed to be arclength-parametrised without loss of generality.
Consequently, (2.29) evaluates to

ˆ
γ

dsκ(γ(s)) = 2π− 1
2

ˆ
LΣ

volLΣ R , (2.35)

on LΣ, where R is given by (2.33a). That is, the mean curvature of the boundary is determined
by the average curvature of the interior. Noting (2.33a), (2.33b) and (2.34), we remark that at
a formal qualitative level, the local Gauß–Bonnet relation (2.35) is a statement to the effect
that8

mean curvature of the boundary of LΣ
= 2π−mean gradients of vorticity and strain .

(2.36)

In this sense, we can use Monge–Ampère geometry, when f > 0, to assign a topological
invariant to a ‘vortex’ described by LΣ — the image of the graph of the gradient of the stream
function, over a compact region ofM bounded by some closed stream-line. Whilst the frame-
work described here is an elaborate mechanism for determining the Euler number of a vortex
patch, it illuminates a relationship between vortex topology and the physical phenomena, such
as the gradients of vorticity and strain, that determine certain topological properties of the flow
via the topology of L and the diffeomorphic nature of the projection π|L. When π|L fails to be
a diffeomorphism, then singular behaviour may be anticipated (note the recent work by some
of the authors in [33] focuses on this problem in the context of the semi-geostrophic equations
of meteorological flows). When the pull-back metric (2.27) is Kleinian, the Gauß–Bonnet the-
orem can be extended to such cases, under certain conditions pertaining to the boundary ∂LΣ
— e.g. it should have no null segments—however, the link between topology as quantified by
the Euler characteristic and the Gauß–Bonnet theorem becomes tenuous [36, 37].

8 Recall here that the boundary of LΣ is given by the image of the boundary of Σ, that is, the image of the closed
stream-line bounding a candidate vortex in M, under dψU.
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2.3. Examples in two dimensions

We now consider some classical examples of flows on R2 with metric g̊ij = δij. As noted in
section 1, a solution for (1.6) is not necessarily one for the Navier–Stokes equations, and our
first two examples fall into this category. However, they illustrate how the topology of flows can
change with time and it is useful to view such phenomena from the point of view of Monge–
Ampère geometry. The second example can be turned into a solution to the Navier–Stokes
equations by adding higher-order terms [38], yet the basic topological features on which we
focus (as did [38]) are most clearly illustrated in the form presented below. Our final example,
the Taylor–Green vortex, is a solution to Navier–Stokes equations.

2.3.1. Preliminaries. For convenience, let us summarise the relevant simplified formulæ first,
adopting the notation x := x1 and y := x2. Working with a flat background metric, R̊= 0, and
so we find for f̂ given in (2.23b) and f given below (2.27) that

f̂ =
1
2
∆p = ∂2

xψ∂
2
yψ − (∂x∂yψ)

2
= f with ∆ := ∂2

x + ∂2
y . (2.37)

Hence, the metric (2.26) on T∗R2 takes the form

ĝ =

(
f12 0
0 12

)
(2.38)

with its signature dictated by the sign of f. This is singular if and only if f = 0, and the corres-
ponding curvature scalar (3.22) becomes

R̂ =
1
f 3

(∂xf∂xf+ ∂yf∂yf− f∆f) . (2.39)

Thus, at a stationary point of f, the sign of R̂ is determined by the sign of ∆f. Consequently,
when f accumulates and has a local maximum, ∆f< 0 and R̂> 0.

The vorticity (2.22) is simply ζ =∆ψ for the stream function ψ = ψ(x,y), so the pull-back
metric (2.27) becomes

g = ζ

(
∂2
xψ ∂x∂yψ

∂x∂yψ ∂2
yψ

)
=

ζ

2

(
ζ + 2Sxy −2Sxx
−2Sxx ζ − 2Sxy

)
, (2.40)

where Sxx =−Syy and Sxy are the components of rate-of-strain tensor (2.11), describing a

shearing deformation at an angle of 1
2 arctan

(
Sxy
Sxx

)
, without overall dilation, since our flow

is divergence-free [39, 40]. We note that g is singular when the vorticity vanishes, in addi-
tion to when the Hessian part of the metric is singular, that is, where f = 0. We shall discuss
these points in due course. We also note that when f depends on time t, then the metric (2.38)
will depend on t as a parameter. The same is true for (2.40) via the time-dependence of vorti-
city and rate-of-strain. The one-parameter family of metrics (2.38) and (2.40) will thus evolve
according to either the Euler or the Navier–Stokes equations.

Another rotational invariant of the velocity-gradient matrix

A :=

(
−∂x∂yψ −∂2

yψ
∂2
xψ ∂x∂yψ

)
, (2.41)
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the resultant deformation DR [39], occurs in the expression for the eigenvalues of (2.40),

E± =
1
2

(
ζ2 ± |ζ|DR

)
with D2

R := 4(∂x∂yψ)
2
+
(
∂2
xψ− ∂2

yψ
)2
. (2.42)

Note that D2
R = ζ2 − 4f, so the eigenvalues take the same sign for f > 0 and opposite sign for

f < 0, provided they are both non-zero. Finally, the curvature scalars (2.33a) reduce to

R =
1
ζ

{
R̃− 1√

|det(g̃) |
∂i

[√
|det(g̃) | g̃ij∂j log(|ζ|)

]}
, (2.43a)

where

g̃−1 =
1
f

(
∂2
yψ −∂x∂yψ

−∂x∂yψ ∂2
xψ

)
(2.43b)

and

R̃ = −1
4
g̃ijg̃klg̃mn (∂i∂j∂mψ∂k∂l∂nψ− ∂i∂k∂mψ∂j∂l∂nψ) . (2.43c)

As shown in (2.40), the pull-back metric can be considered a function of vorticity and rate-
of-strain, and the curvature of that metric therefore involves derivatives of these quantities. In
turbulent flows, fine-scale structure (such as vortex filaments) could imply large gradients of
vorticity and rate-of-strain, which in turn could present challenges in calculating such gradients
in numerical simulations. However, as we shall illustrate in the following section, when the
metric structure degenerates and/or the scalar curvature becomes singular, then these geometric
features are associated with topological changes in the fluid flow.

2.3.2. Larchevêque’s criterion and uniform vorticity and strain. In [2, 3] it is noted that the
stream function is uniquely defined on a simply connected domain Σ bounded by a closed
streamline when ∆p> 0 and ψ|∂Σ is known. For example, consider the stream function

ψ (t,x,y) :=
1
2

[
a(t)x2 + b(t)y2

]
, (2.44)

where a and b are functions of time t alone. The Laplacian of the pressure is ∆p= 2f = 2ab,
hence when a and b have the same sign, f > 0, vorticity dominates, and the metric ĝ given
by (2.38) is Riemannian. Similarly, when a and b have different signs, f < 0, strain dominates,
and the metric ĝ is Kleinian. Additionally, the metric is globally singular when a or b vanish,
that is, when f = 0.

The vorticity is simply ζ = a+ b and the pull-back metric (2.40) becomes

g = (a+ b)

(
a 0
0 b

)
. (2.45)

Like ĝ, its pull-back is Riemannian when f > 0, Kleinian when f < 0, and singular when f = 0,
with the following exception: the pull-back metric is also singular when the vorticity vanishes,
that is, where a=−b. In line with Larchevêque, this additional singularity falls outside of
Riemannian regions, hence the sign of vorticity remains constant where f > 0.
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Figure 1. Plot of the streamlines for stream function (2.46) with t=−1. The streamlines
around the elliptic point (0,−1) form closed contours, whilst those near the hyperbolic
point (0, 1) diverge.

2.3.3. Flowwith bifurcations. In the following example, discussed in [38] in connection with
topological fluid dynamics, the occurrence of singularities in the Monge–Ampère geometry
can be associated with important features, such as bifurcations, in the fluid flow.

In particular, following [38], we consider the stream function

ψ (t,x,y) := −x2 + 3yt+ y3 , (2.46)

shown in figure 1, where time, t, is a parameter. Using (2.46), the Poisson equation for the
pressure takes the explicit form

∂2
x ψ∂

2
yψ− (∂x∂yψ)

2
= −12y = f , (2.47)

which we can view as a variable-coefficient Monge–Ampère equation for ψ. This equation is
elliptic when y< 0, hyperbolic when y> 0, and it degenerates to parabolic form on y= 0.

The equations for the flow are

ẋ = −∂yψ = −3
(
t+ y2

)
and ẏ = ∂xψ = −2x , (2.48)

where the superposed dot indicates the derivative with respect to t. When t> 0 there are no real
fixed points9 (defined by ẋ= ẏ= 0) and when t= 0 the level set ψ= 0 has a cusp singularity
at the origin. When t< 0, the fixed points are located at (0,±

√
−t); the fixed point at (0,

√
−t)

is hyperbolic, hence streamlines in a neighbourhood of this fixed point tend to diverge, whilst
the fixed point at (0,−

√
−t) is elliptic, indicating that the flow in a neighbourhood around

this fixed point tends to swirl. This shows that for values of t at which there are fixed points,
the elliptic fixed point lies in the region where vorticity dominates, whilst the hyperbolic fixed
point resides where strain dominates. Note that f is time-independent, so these regions remain
coherent in time, regardless of the fixed points.

9 The stability matrix Ai j with δẋi = Ai jδxj is the velocity-gradient matrix Ai j := ∂jvi which, upon recalling (2.13), is
related to the Hessian of the stream function by means of Ai j = εik∂j∂kψ. It has eigenvalues ±

√
−f which are thus

purely imaginary when f > 0.
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In terms of theMonge–Ampère geometry introduced thus far, the metric ĝ on T∗R2 is given
by (2.38). The corresponding curvature scalar (2.39) is given by

R̂ = − 1
12y3

. (2.49)

Note that f vanishes at y= 0 and hence the metric ĝ is singular. Furthermore, the signs of R̂
and f coincide. More generally, for y< 0, we have f > 0 and vorticity dominates in this region,
where the metric (2.38) is Riemannian with positive curvature scalar. For y> 0, it follows
that f < 0 and strain dominates, with (2.38) becoming Kleinian with negative curvature scalar.
Furthermore, the vorticity is ζ = 2(3y− 1), hence the pull-back metric (2.40) is

g = 4(1− 3y)

(
1 0
0 −3y

)
. (2.50)

Evidently, the metric is Riemannian for y< 0 and singular when y= 0 or y= 1
3 . The former

singularity corresponds to where f = 0, with the latter occurring precisely where the vorticity
vanishes. Using (2.40), the components of strain are given by Sxx = Syy = 0 and Sxy =−3y−
1, describing shearing at an angle π

4 to the coordinate axes, near hyperbolic fixed points, in
regions where strain dominates. The corresponding curvature scalars (2.43a) are

R =
1− 9y

8y2 (1− 3y)3
and R̃ = 0 . (2.51)

This, in turn, shows that the metric singularities y= 0 and y= 1
3 are, in fact, singularities of

the scalar curvature, which is invariant under changes of coordinates on M.
The picture emerging here has some interesting features. Recall the definitions of classical

and generalised solutions from section 2.2. Then, commencing with (2.46), we note that L is a
classical solution. However, as just indicated, the metric and curvature of L have singularities,
which are related to the points at which the flow changes from elliptic to hyperbolic, and where
vorticity vanishes. We shall show next that we can describe this singular behaviour in terms of
a generalised solution to the Legendre-dual problem.

2.3.4. Legendre duals. Consider a domain Σ of the flow, with LΣ := dψ(Σ) =
{(x,y;∂xψ,∂yψ) |(x,y) ∈ Σ} the corresponding region in the Lagrangian submanifold L
described locally by dψ. Then, locally on this domain, π|L is the identity and is hence non-
singular. In [41] it is shown that

x ′ (t) =
∂ψ (t,x,y)

∂x
= v and y ′ (t) =

∂ψ (t,x,y)
∂y

= −u . (2.52)

is a local inversion and one can define the Legendre transformation [42]

ψ ′ (t,x ′,y ′) := x ′x+ y ′y−ψ (t,x,y) (2.53)

when f 6∈ {0,∞}, where finiteness of f follows from the non-singular nature of the projection
π|L. Here, x′ and y′ are the local coordinates on the Legendre-dual space and ψ ′ is known as
the Legendre-dual (stream-)function. Furthermore, in this setting we may also define the map
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π̃|L : (x,y) 7→ (∂xψ,∂yψ) = (x ′,y ′)10, with determinant f. Hence, f 6= 0 precisely when π̃|L is
non-singular, corresponding to when (2.52) is a local inversion.

It follows that the map π̃|L is singular precisely when f vanishes and (2.52) is not invertible,
in which case ψ and ψ ′ have different regularity. In particular, if ψ is a classical solution
to (2.21), the Legendre-dual ψ ′ generates a generalised solution to the dual Monge–Ampère
equation, with singular behaviour where f = 0. The dual Monge–Ampère equation is given by

f(t,x(x ′,y ′) ,y(x ′,y ′)) =
1

det(Hess(ψ ′ (t,x ′,y ′)))
. (2.54)

Consequently, vanishing f corresponds to det(Hess(ψ ′(t,x ′,y ′))) blowing up. As f is finite,
it follows that det(Hess(ψ ′(x ′,y ′))) 6= 0. The Legendrian dual to the Hessian part of the met-
ric (2.27) is

g̃ ′ =
1
2
ψ ′
ijdx

′i � dx ′j , (2.55)

where (x ′i) = (x ′,y ′) and det(g̃ ′) = 1
f . It follows that g̃ ′ is non-degenerate, however, it does

blow up when f = 0. The accompanying vorticity conformal factor ζ has the Legendrian dual

ζ ′ = f∆ ′ψ ′ , (2.56)

with∆ ′ the Laplacian with respect to (x ′,y ′). From this, it follows that g ′ = ζ ′g̃ ′ may in-fact
be singular when f = 0 or∆ ′ψ ′ = 0. The curvature scalar associated to g′ is given by (2.43a),
with objects replaced by their primed Legendre dual as appropriate and

g ′−1
=

f
(∆ ′ψ ′)

2( ∂2
y ′ψ

′ −∂x ′∂y ′ψ ′

−∂x ′∂y ′ψ ′ ∂2
x ′ψ

′

)
. (2.57)

Thus, singularities of g̃ in the (x, y) coordinates do not occur in g̃ ′ in the (x ′,y ′) coordinates
and are instead transferred to the projection π̃|L and the dual solution ψ ′, via the Legendre
transformation. By restricting our domain Σ such that f has constant sign, we can impose that
the Legendre transformation is well defined and both π̃|L and g̃ are non-singular.

2.3.5. Flow with bifurcations and Legendre duality. Returning to the stream function (2.46),
we obtain for (2.53)

ψ ′ (t,x ′,y ′) =−1
4
x ′

2 ± 2

3
√
3
(y ′ − 3t)

3
2 , (2.58a)

with

x ′ = ẏ = −2x and y ′ = −ẋ = 3y2 + 3t , (2.58b)

and

x = −1
2
x ′ =

∂ψ ′

∂x ′
and y = ±

√
1
3
(y ′ − 3t) =

∂ψ ′

∂y ′
, (2.58c)

10 Note that π̃|L = π̃ ◦ ι with π̃ : (x,y,p,q) 7→ (p,q) defined on T∗R2. Furthermore, we use that π|L is locally a
diffeomorphism to coordinatise L by (x, y) from M.
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Figure 2. A selection of plots of the Legendre-dual stream function (2.58a), at
time t=−1. The multivalued behaviour of ψ ′ is associated with the corresponding
Lagrangian submanifold ι : L ↪→ T∗R2 being a generalised solution to (2.54).

respectively. As ψ is a classical solution to our Monge–Ampère equation, it follows that
π|L is the identity on R2. However, ψ ′ is only defined for y ′ − 3t⩾ 0 and is multivalued on
momentum space, except where y ′ − 3t= 0; plots of the two sheets are shown in figure 2.

As the Jacobian of the projection π̃|L : (x,y) 7→ (∂xψ,∂yψ) is precisely the Hessian, it fol-
lows that both π̃|L and the local inversion (2.52) are singular where the Hessian is degenerate,
that is, where f = 0= y ′ − 3t. Restricting to a domain Σ on which the sign of f is constant
then amounts to choosing a sheet of ψ ′.

2.3.6. Taylor–Green vortex. In two dimensions, the stream function of the
Taylor–Green vortex [43] takes the form

ψ (t,x,y) := −F(t)cos(ax)cos(by) (2.59)

where F is a function of time t alone and a,b ∈ R are some parameters. See figure 3(a).
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Figure 3. Plots of the iso-lines of the stream function and half the Laplacian of pres-
sure for the Taylor–Green vortex with parameters a= b= 1 and F(t)≡ 1, which shall
be used for the remainder of the plots for this example. Streamlines corresponding to
values of sufficiently large magnitude are closed contours contained in regions of pos-
itive f, where vorticity dominates. The vorticity is proportional to the stream function,
ζ =−(a2 + b2)ψ.

Hence, for (2.59), we have f = 1
2a

2b2F 2[cos(2ax)+ cos(2by)], so the metric is again (2.38),
and the curvature scalar (2.39) is simply given by

R̂ =
8
(
a2 + b2

)
[1+ cos(2ax)cos(2by)]

a2b2F 2 [cos(2ax)+ cos(2by)]3
. (2.60)

See figure 4(a). Consequently, when cos(2ax)+ cos(2by)> 0, the metric is Riemannian with
a positive curvature scalar and vorticity dominates. When cos(2ax)+ cos(2by)< 0 the metric
is Kleinian with negative curvature scalar, and strain dominates. The signs of f and R̂ coincide.
Both the metric and curvature scalar are singular when abF= 0 and along the lines y= a

bx+
π
2b (2n+ 1) for all n ∈ Z (when cos(2ax)+ cos(2by) = 0), corresponding to where f = 0.

Furthermore, the vorticity is given by ζ = (a2 + b2)Fcos(ax)cos(by) so that the pull-back
metric (2.40) becomes

g =

(
a2 + b2

)
F 2

4

(
a2 [1+ cos(2ax)] [1+ cos(2by)] −absin(2ax)sin(2by)

−absin(2ax)sin(2by) b2 [1+ cos(2ax)] [1+ cos(2by)]

)
.

(2.61)

Its eigenvalues (2.42) are

E± =
F 2
(
a2 + b2

)
4

[
2
(
a2 + b2

)
cos2 (ax)cos2 (by)± |cos(ax)cos(by) |

√
Ẽ
]

(2.62a)

with

Ẽ :=
(
a4 − 6a2b2 + b4

)
[cos(2ax)+ cos(2by)]+

(
a2 + b2

)2
[1+ cos(2ax)cos(2by)] .

(2.62b)
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Figure 4. Contour plots of the curvatures (2.60) and (2.63) respectively, for the Taylor
Green vortex with parameters a= b= 1 and F(t)≡ 1.

See figure 5. The corresponding curvature scalars (2.43a) are

R =
8

F 2 (a2 + b2) [cos(2ax)+ cos(2by)]2
and R̃ = 0 . (2.63)

The curvature scalar R is singular along the same curves as R̂ but is otherwise everywhere
positive. See figure 4(b) Evidently, E+ is everywhere non-negative, so the signature of the
metric (2.61) is determined by the sign of E−. It is clear from figure 5(b) that, when cos(2ax)+
cos(2by)≷ 0, we have E− ≷ 0 and the metric g is Riemannian/Kleinian with vorticity/strain
dominating. Also, E− = 0 when cos(2ax)+ cos(2by) = 0 and we note from (2.63) that the
scalar curvature is singular at these points too. The vorticity changes sign as the contours x=
π
2a (2n+ 1) or y= π

2b (2n+ 1) are crossed, and the metric (2.61) is Kleinian on both sides; this
is consistent with the observations that the vorticity has constant sign in Riemannian regions,
where it also dominates [3].

3. Geometric properties of fluids in three dimensions

Having discussed two-dimensional fluid flows, we now consider flows in three (or even higher)
dimensions. Here, the situation is much more involved, since in the general case the flow is not
described by a stream function11. Hence, the pressure equation (2.10) cannot be converted into
a Monge–Ampère equation. Nevertheless, one can formulate the flow in terms of differential
forms, as we shall now explain. To do this, we first revisit the formulation we have just used for
two-dimensional flows, and note that an alternative description naturally presents itself. Whilst
this alternative view makes little difference to the geometric picture in two dimensions, we

11 We shall consider some examples of three-dimensional flows with symmetries, which can be described in terms of
a stream function, such as Hill’s spherical vortex.
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Figure 5. Plots of the eigenvalues (2.62a) of the pull-back metric (2.61) for the Taylor–
Green vortex with parameters a= b= 1 and F(t)≡ 1.

show that it provides a mechanism to unify what could otherwise be quite different geometric
descriptions of two-dimensional and three-dimensional flows, as was described in [9].

3.1. Two-dimensional case revisited

3.1.1. Monge–Ampère structure. In section 2.2, we have seen that theMonge–Ampère struc-
ture (2.23b) encodes incompressible fluids on a two-dimensional Riemannian manifold (M, g̊).
As before, let (xi,qi) be local coordinates on T∗M. Instead of using the standard symplectic
structure (2.23b) on T∗M, we now propose taking the ‘dual’ form

$ := ∇̊qi ∧ ?̊gdxi , (3.1)

that is, (2.25) without the pre-factor. Evidently, $ is non-degenerate12 and it is also closed as
a consequence of

d
(
∇̊qi
)

=
1
2
dxl ∧ dxkR̊kli

jqj+ dxjΓ̊ji
k ∧ ∇̊qk (3.2a)

and

d?̊gdx
i = −̊g jkΓ̊jki volM with volM :=

√
det (̊g)
2

εijdx
i ∧ dxj . (3.2b)

Hence, (3.1) defines a symplectic structure. It is then easily seen that, when ι : L ↪→ T∗M
is given by

ι : xi 7→
(
xi,qi

)
:=
(
xi,vi (x)

)
, (3.3)

12 We have already seen this in our discussion around (2.25).
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where vi = vi(x) are the components of the velocity (co-)vector field, the condition ι∗$ = 0
is equivalent to requiring the divergence-free constraint (2.4b). Thus, we again obtain a
Lagrangian submanifold L of T∗M, and this time L encodes the divergence-free constraint.

Moreover, using ?̊g(dxi ∧ dxj) =
√

det(̊g)εij and the volume form (3.2b) on M, we may
rewrite the Monge–Ampère form α defined in (2.23b) as

α =
1
2
∇̊qi ∧ ∇̊qj ∧ ?̊g

(
dxi ∧ dxj

)
− f̂volM . (3.4)

Again, using (3.2a) together with

d?̊g(dx
i ∧ dxj) = 2̊gklΓ̊kl

[i?̊gdx
j] + 2̊gk[iΓ̊kl

j]?̊gdx
l (3.5a)

and

dxk ∧ ?̊g(dxi ∧ dxj) = −2̊gk[i?̊gdx
j] (3.5b)

it is not too difficult to see that α is closed. In addition, the requirement that the pull-back
of α under (3.3) vanishes is directly equivalent to the pressure equation (2.10), provided that
we simultaneously demand that ι∗$ = 0. Notice that we also have α∧$ = 0 so that the pair
($,α) is again a Monge–Ampère structure.

3.1.2. Almost (para-)Hermitian structure. We may now follow our discussion in section 2.2
and define an endomorphism Ĵ of the tangent bundle of T∗M by

α√
| f̂ |

=: Ĵ ⌙$ (3.6)

under the assumption that f̂ does not vanish. As before, Ĵ is an almost complex structure when
f̂> 0, an almost para-complex structure when f̂< 0, and integrable if and only if f̂ is constant.
As in section 2.2, we can always find a differential two-form K̂ of type (1, 1) with respect to
Ĵ such that K̂ ∧$ = 0, K̂ ∧ (Ĵ ⌙$) = 0, and K̂ ∧ K̂ 6= 0. In particular, we choose

K̂ :=

√
| f̂ | ∇̊qi ∧ dxi , (3.7)

that is, the standard symplectic structure (2.23b) times the same function as in (2.25).
Importantly, the compatibility of K̂ and Ĵ again yields the metric (2.26). It should be noted
that the pull-back of the standard symplectic structure ω = ∇̊qi ∧ dxi from (2.23b) under (3.3)
is ι∗ω = dv and thus, this vanishes if and only if the vorticity (2.11) is zero.

Remark 3.1. In conclusion, the Monge–Ampère structure ($,α), with $ defined by (3.1)
and α written as (3.4), represents alternative means to describe two-dimensional incompress-
ible fluids. Whilst the Monge–Ampère structure (2.23b) yields manifestly the description of
the fluid flow in terms of a stream function, the advantage of this alternative Monge–Ampère
structure is that with this choice13, we can straightforwardly generalise our treatment to fluid

13 The triple of differential two-forms α, ∇̊qi ∧ dxi, and ∇̊qi ∧ ⋆̊gdxi define for f̂> 0 what is known as an almost
quaternionic Hermitian structure on T∗M and for f̂< 0 an almost quaternionic para-Hermitian structure, respectively,
with the two choices of Monge–Ampère structure we have presented corresponding to picking specific points in the
moduli space of such structures.
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flows in any dimension. Essentially, this is due to the fact that the conditions ι∗$ = 0 and
ι∗α= 0 with ι given by (3.3) (with i = 1, . . . ,m) are equivalent to the divergence-free con-
straint and the pressure equation in any dimension. However, in m> 2 dimensions, we leave
the realm of symplectic geometry as we shall explain shortly.

Remark 3.2. At this stage, it is worth noting how our above choices deviate from constructions
used in previous works. It is clear that (3.1) and (3.4) are a covariantisation of the Monge–
Ampère structure in [9, 10], with (3.6) the corresponding almost (para-)complex structure.
However, we are free to make a choice of differential two-form in (3.7), which corresponds
to a choice of almost (para)-Hermitian metric on T∗M. In particular, [9] works with the non-
degenerate bilinear form

gα (X,Y) :=
[(X ⌙α)∧ (Y ⌙$)+ (Y ⌙α)∧ (X ⌙$)]∧ volM

1
2$

2
(3.8)

for all X,Y ∈ X(T∗M). As discussed in [44, 45], the third differential two-form may be defined

by14
√
| f̂ |gα(Ĵ X,Y) for all X,Y ∈ X(T∗M) in this case. The pull-back of gα via (3.3) is then

simply the Hessian of ψ without vorticity as a conformal factor, in contrast to (2.27), where the
vorticity is made manifest. Whilst the presence of the vorticity prefactor is clearly significant
in our context, our choice is far from ad-hoc, as it arises perhaps even more naturally from the
underlying geometry than (3.8). Note also that the metric (3.8) has been linked in [46] to a met-
ric occurring in the theory of optimal mass transport in which optimal maps are characterised
by volume-maximising Lagrangian submanifolds.

3.2. Higher symplectic manifolds

The appropriate notion for our purposes is that of higher symplectic geometry. Here, we shall
be rather brief and merely summarise some of the key facts that are needed for our subsequent
discussion. For more details, we refer the interested reader to [11–13].

3.2.1. Higher symplectic vector spaces. To begin with, let V be a real vector space and$ ∈∧k+1V∗ a (k+ 1)-form. Then, $ is called non-degenerate if and only if the contraction map

V→
∧kV∗, given by v 7→ v ⌙$ for all v ∈ V, is injective. Generally, the contraction map is not

surjective; for k= 1, however, injectivity implies surjectivity by the rank–nullity theorem, and
we obtain the identification V∼= V∗ in this case.We call the pair (V,$)with$ ∈

∧k+1V∗ non-
degenerate a k-plectic vector space. When k= 1, we recover the standard case of a symplectic
vector space.

Furthermore, for U⊆ V a vector subspace of V, we define the `th orthogonal complement
U⊥,ℓ for `= 1, . . . ,k with respect to $ by

U⊥,ℓ := {v ∈ V |v ⌙u1 . . . ⌙uℓ ⌙$ = 0 for all u1, . . .uℓ ∈ U} . (3.9)

Whenever U= U⊥,ℓ for some `= 1, . . . ,k, we call the vector subspace U an
`-Lagrangian subspace of V. For k= 1, there are only 1-Lagrangian subspaces (or simply
Lagrangian subspaces), and they all have the same dimension 1

2 dim(V). For k> 1, `-
Lagrangian subspaces may have different dimensions.

14 Whilst we present these expressions in our notation, the literature only treats the Euclidean case.
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3.2.2. Higher symplectic manifolds. Let M be a manifold and $ ∈ Ωk+1(M) a differential
(k+ 1)-form which is point-wise non-degenerate. Suppose also that$ is closed. Such a man-
ifold is called a k-plectic manifold, and in this case$ is referred to as a k-plectic structure. A
diffeomorphism onM that preserves$ is called a k-plectomorphism. Furthermore, a subman-
ifold L ↪→M is called an `-Lagrangian submanifold of M if and only if TL= TL⊥,ℓ for some
`= 1, . . . ,k. Here, we have used the obvious notation

TL⊥,ℓ :=
⋃
p∈L

{
(p,Xp) |Xp ∈ (TpL)

⊥,ℓ
}
. (3.10)

3.3. Higher Monge–Ampère geometry of three-dimensional fluid flows

Having introduced the notion of k-plectic manifolds, we can now make precise the description
of higher-dimensional incompressible fluid flows.

3.3.1. Higher Monge–Ampère structure. In m= 3 dimensions, the components (2.5) of the
Riemann and Ricci curvature tensors are related by the identity

R̊ijk
l = 2R̊l[i̊gj]k− 2

(
R̊k[i−

1
2
R̊̊gk[i

)
δj]

l , (3.11)

where R̊ is the curvature scalar. Upon following our above discussion and setting

f̂ :=
1
2

(
∆̊Bp+ R̊ijqiqj

)
, (3.12a)

we consider the pair of differential three-forms

$ := ∇̊qi ∧ ?̊gdxi ,

α :=
1
2
∇̊qi ∧ ∇̊qj ∧ ?̊g

(
dxi ∧ dxj

)
− f̂volM

(3.12b)

on T∗M, where the volume form on M is now given by

volM :=

√
det (̊g)
3!

εijkdx
i ∧ dxj ∧ dxk . (3.12c)

Again, $ is non-degenerate and closed by virtue of (3.2a) and so, $ defines a two-plectic
structure on T∗M. The submanifold ι : L ↪→ T∗M defined by ι∗$ = 0 with ι given by (3.3)
with i = 1,2,3 is a three-dimensional two-Lagrangian submanifold of the two-plectic mani-
fold (T∗M,$). As discussed above, the conditions ι∗$ = 0 and ι∗α= 0 are equivalent to the
divergence-free constraint (2.4b) and the pressure equation (2.10), respectively. Furthermore,
by virtue of (3.2a) and (3.5a), α is closed. It is also non-degenerate, so (T∗M,α) defines a
two-plectic manifold. Note that (3.12b) can be understood as a covariantisation of what was
given previously in [9, 10]. Note also that, for

ω = ∇̊qi ∧ dxi (3.13)

the standard symplectic structure on T∗M, $∧ω = 0 and α∧ω = 0, so $ and α are both
Monge–Ampère forms for ω.
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Importantly, the formulation (3.12b) makes it transparent that this construction works in
any dimension m> 1. Indeed, we simply need to take the appropriate volume form in α and
the function f̂ is the same in any dimension. The pull-backs ι∗$ = 0 and ι∗α= 0 then yield
the divergence-free constraint and the pressure equation. Furthermore, $ is (m− 1)-plectic,
and it defines an m-dimensional (m− 1)-Lagrangian submanifold for general m. However, in
general, whilst α is (m− 1)-plectic, it may not define an m-dimensional (m− 1)-Lagrangian
submanifold. It should also be noted that α∧$ vanishes if and only if m 6= 3.

3.3.2. Almost (para-)Hermitian structure. Next, we wish to generalise the relation (3.6).
To this end, we use the results of [47]. In particular, we note that the there is a isomorph-
ism Ω5(T∗M)∼= X(T∗M)⊗Ω6(T∗M) that is induced by the natural exterior product pairing
Ω1(T∗M)⊗Ω5(T∗M)→ Ω6(T∗M)15. Consequently, upon lettingω be the standard symplectic
structure on T∗M as in (3.13) and ε be the poly-vector field dual to the Liouville volume form
1
3!ω

3 on T∗M, that is, ε ⌙13!ω3 = 1, we may associate with the differential three-form α defined
in (3.12b) the endomorphism

Ĵ X := − 1

2
√
| f̂ |
ε ⌙(α∧X ⌙α) for all X ∈ X(T∗M) (3.14)

under the assumption that f̂ does not vanish. It then follows that Ĵ is an almost com-
plex structure on T∗M when f̂> 0 and an almost para-complex structure when f̂< 0. Since
α is closed and can also be taken as the imaginary part of a holomorphic top form
with respect to (3.14), this choice of endomorphism, in fact, defines what is known as a
nearly (para-) Calabi–Yau structure [48, 49].

Furthermore, the differential two-form K̂ defined in (3.7), now with i running from
one to three, together with (3.14), satisfies K̂(Ĵ X,Y) =−K̂(X, Ĵ Y) for all X,Y ∈ X(T∗M).
Consequently, we can define an almost (para-)Hermitianmetric ĝ on T∗Mwith respect to (3.14)
by setting ĝ(X,Y) := K̂(X, Ĵ Y) for all X,Y ∈ X(T∗M). Explicitly,

ĝ =
1
2
f̂̊gijdx

i� dxj+
1
2
g̊ij∇̊qi�∇̊qj . (3.15)

Evidently, this metric is the direct generalisation of (2.26), and it is essentially a covariantisa-
tion that follows from a bilinear form introduced in [14] (see also [10]). This thus makes K̂
of type (1, 1) with respect to (3.14). This also justifies using the same letter Ĵ in the defini-
tion (3.14) as it is a direct generalisation of (3.6).

Remark 3.3. We can make the relationship between (3.6) and (3.14) more explicit. To make
a notational distinction between the dimensions m= 2 and m= 3, we shall write (Mm, g̊m) as
well as $m and αm for (3.12b), Ĵm for (3.6) and (3.14), and ωm for the standard symplectic
structure. In addition, we let εm be the poly-vector field dual to Liouville volume form on
T∗Mm with respect to ωm.

Firstly, it is not too difficult to see that (3.6) can be rewritten as

Ĵ2X =
1√
| f̂ |
ε2 ⌙($2 ∧X ⌙α2) for all X ∈ X

(
T∗M2

)
. (3.16)

15 Explicitly, ϕ : Ω5(T∗M)→ X(T∗M)⊗Ω6(T∗M) is given by ϕ(ρ)(λ,X1, . . . ,X6) := X1 ⌙. . . ⌙X6 ⌙(ρ∧λ) for
all ρ ∈ Ω5(T∗M), λ ∈ Ω1(T∗M), and X1, . . . ,X6 ∈ X(T∗M).
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Note that ω2 ∧ω2 =$2 ∧$2 and so, ε2 is also dual to the Liouville volume form with respect
to$2. Next, let us assume thatM3 factorises asM3 =M2 ×N with N a one-dimensional man-
ifold, and we take

g̊3 = g̊2 + dx3 ⊗ dx3 , (3.17)

as themetric onM3 with g̊2 ametric onM2 and x3 a local coordinate coordinate onN. Assuming
that p ∈ C∞(M2), a short calculation then reveals that

$3 = $2 ∧ dx3 + volM2 ∧ dq3 and α3 = α2 ∧ dx3 +$2 ∧ dq3 . (3.18)

The decomposition for α3 and the effectiveness α2 ∧$2 = 0 imply that

α3 ∧ (X ⌙α3) = −2($2 ∧X ⌙α2) dq3 ∧ dx3 (3.19)

for all X ∈ X(T∗M2).16 Since ε3 = ε2 ∧ ∂
∂x3 ∧

∂
∂q3

, this then yields

ε3 ⌙(α3 ∧X ⌙α3) = −2ε2 ⌙($2 ∧X ⌙α2) . (3.20)

Consequently, combining this result with (3.14) and (3.16), we finally obtain

Ĵ3|M2 = Ĵ2 . (3.21)

Remark 3.4. The metrics (2.26) and (3.15) on T∗M are in spirit of the rescaled Sasaki metrics
studied e.g. in [50]. The main difference here is that our f̂ is a function on T∗M rather than on
M. This results in a metric (3.15) which is allowed to change type across T∗M. Furthermore,
earlier work [51] has focused on constructing almost para-Nordenian manifolds in the case
f̂> 0, preferentially selecting a structure which is almost para-complex [52], as opposed to
almost complex.

Before moving on, we conclude with some remarks concerning the curvatures of the met-
ric (3.15) on T∗M and its pull-back to L, as well as a connection with helicity.

3.3.3. Curvature. In view of our later applications, let us state the curvature scalar for the
metric (3.15). The following is derived in appendix C.2 and holds in any dimension. In partic-
ular, we have

R̂ =
1

f̂
R̊− 1

4̂f 2
R̊ijk

lR̊ijkmqkqm− (m− 1)∆̂B log
(
| f̂ |
)
− g̊ij

∂2

∂qi∂qj
log
(
| f̂ |
)

+
1

4̂f
(m− 1)(m− 2) g̊ij

(
∂

∂xi
+ Γ̊ik

lql
∂

∂qk

)
log
(
| f̂ |
)( ∂

∂xj
+ Γ̊jm

nqn
∂

∂qm

)
log
(
| f̂ |
)

+
1
4
m(m− 3) g̊ij

∂

∂qi
log
(
| f̂ |
) ∂

∂qj
log
(
| f̂ |
)
,

(3.22)

where ∆̂B is the Beltrami Laplacian for ĝ. The occurrence of the term ∆̂B log(| f̂ |) again sug-
gests that the accumulation of f̂ will determine the sign of the scalar curvature, as it does in the
two-dimensional case.

16 The horizontal lift of X to T∗M3 is trivial because of the assumed form of the metric g̊3.
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3.3.4. Pull-back metric. It is a straightforward exercise to check that the pull-back g := ι∗ĝ
of (3.15) to the 2-Lagrangian submanifold L via ι given by (3.3) with i = 1,2,3 is

g =
1
2
gijdx

i� dxj with gij := AkiAkj−
1
2
g̊ijAklA

lk . (3.23)

Here, we have made use of the velocity-gradient tensor Aij := ∇̊jvi and noted that

f := ι∗ f̂ =
1
2

(
ζijζ

ij− SijS
ij
)
= −1

2
AijA

ji (3.24)

with ζ ij the vorticity two-form and Sij the rate-of-strain tensor introduced in (2.11), and the
indices on ζ ij, Sij, and Aij raised with the background metric. Again, as in the two-dimensional
case, the pull-back metric is a quadratic function of the velocity gradient tensor and curvature
will be generated by gradients of vorticity and rate-of-strain.

3.3.5. Helicity. In two dimensions, we utilised the local Gauß–Bonnet theorem (2.29) in
order to relate the geometry of fluid flows, as described by the curvature scalar (2.33a), to
a topological invariant, namely the Euler characteristic of a given compact region. In three
dimensions, it quickly becomes apparent that this is not a suitable approach and that we require
an alternative topological quantity.

Recall that the pull-back of the standard symplectic form ω seen in (3.13), under (3.3),
is ι∗ω = dv= ζijdxi ∧ dxj with ζ ij the vorticity. The pull-back of the associated tautological
one-form θ := qidxi is simply v= vidxi. It then follows that

ι∗ (θ∧ dθ) = viζ
i volM3 with ζ i :=

√
det (̊g3)ε

ijkζjk (3.25)

the vorticity in three dimensions, derived from (2.11). Integrals of quantities of the form (3.25),
over a compact region U⊆M3, are referred to as helicity [53, 54]. Hence, in our context, viζ i

may be referred to as the helicity per volume.
Consider an inviscid, incompressible fluid, with kinematics described by the Euler

equations, on a compact region U⊆M3. Suppose also that U describes the volume contained
inside a closed orientable surface, which is moving with the fluid and has (outward) unit nor-
mal n with components denoted ni. It is shown17 in [53] that, provided the distribution of
vorticity is local and continuous, and niζ i = 0, then the integral of (3.25) is an invariant of
the Euler equations and the vorticity field within the volume is conserved. Furthermore, it is
shown that for discrete vortex filaments, this quantity can be associated18 with the topological
invariants given by the Gaußlinking number and Călugăreanu invariant [57, 58]. In [59] it was
also shown that helicities are isotopy invariants of their volume. Perhaps more significantly, a
recent work [60] has managed to demonstrate that, in ideal conditions, helicity-type quantities
can be reinterpreted as Abelian Chern–Simons actions and hence can be related to the Jones
polynomial.

In addition to the interpretation of the pull-backs of (3.12b) under (3.3) as the divergence-
free constraint and the pressure equation, we now also have that the corresponding pull-back
of the standard symplectic form encodes the helicity. Additionally, previous work relating
helicity to various topological invariants suggests that, as in two dimensions, one can relate
the topology of fluid flows to our geometric constructions.

17 In the context of magneto-hydrodynamics, the analogous result was presented in [54].
18 We point the interested reader towards [55, 56] for elaboration on these associations.
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3.4. Examples in three dimensions

In this section, we adopt the notation x := x1, y := x2, and z := x3 and consider some classical
examples of flows in R3 with background metric g̊ij = δij.

3.4.1. Preliminaries. Recall the expressions of the vorticity two-form and the rate-of-strain
tensor defined in (2.11). In view of our discussion below, we set

ζ =:

 0 ζ3 −ζ2
−ζ3 0 ζ1
ζ2 −ζ1 0

 and S =:

α σ3 σ2

σ3 β σ1

σ2 σ1 γ

 (3.26a)

and introduce the velocity-gradient matrix

A := S− ζ =

 α σ3 − ζ3 σ2 + ζ2
σ3 + ζ3 β σ1 − ζ1
σ2 − ζ2 σ1 + ζ1 γ

 . (3.26b)

Furthermore, the metric (3.15) in the then takes the form

ĝ =

(
1
2∆p13 0

0 13

)
with ∆p = −tr

(
A2
)
. (3.27)

It now follows that the pull-back metric (3.23) is

g = ATA− 1
2
tr
(
A2
)
13 . (3.28)

Whilst it is now possible to substitute (3.26b) into (3.28), the result would not be particularly
helpful. To see the structure of the pull-back metric a little more clearly, we next consider
Burgers’ canonical model of the vortex, for which the velocity-gradient matrix takes a rel-
atively simple form, and which in turn motivates our work on higher symplectic reduction.
Studying this example will show how the signature of the metric depends on relationships
between vorticity and rate-of-strain.

3.4.2. Burgers’ vortex. Earlier works [7, 9] considered a class of solutions to the three-
dimensional incompressible Euler and Navier–Stokes equations, with Euclidean background
metric, that can be reduced to solutions to the incompressible equations in two dimensions via
the Lundgren transformation [61]. Such solutions, which take the form [62]

(ẋ, ẏ, ż) := (vx (t,x,y) ,vy (t,x,y) ,zφ(t,x,y)+W(t,x,y)) (3.29)

for some functions φ and W, where the superposed dot refers to the derivative with respect
to the time t, are often referred to as two-and-a-half-dimensional flows [63]. In particular, a
geometric description of Burgers’ vortex [64] has been presented through this lens.

Consider the following idealised Burgers’ vortex [64] with the velocity components be
given by

u = αx+(σ3 − ζ3)y , v = βy+(σ3 + ζ3)x , and w = γz (3.30)
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with α, β, γ, σ3, and ζ3 constant in space. Then, the divergence-free constraint is given by
α+β+ γ = 0. In particular, we have chosen φ = γ(t) and W≡ 0 in (3.29).

Next, the velocity-gradient matrix is simply

A =

 α σ3 − ζ3 0
σ3 + ζ3 β 0

0 0 γ

 , (3.31)

and using the divergence-free constraint, it follows that

1
2
∆p = −1

2
tr
(
A2
)
= αβ+ γ (α+β)+ ζ23 −σ2

3 . (3.32)

We can now deduce that the pull-back metric (3.28) is

g =

 γβ+ 2ζ3 (σ3 + ζ3) α(σ3 − ζ3)+β (σ3 + ζ3) 0
α(σ3 − ζ3)+β (σ3 + ζ3) γα+ 2ζ3 (ζ3 −σ3) 0

0 0 αβ+(ζ3 −σ3)(ζ3 +σ3)


(3.33)

which has eigenvalues

E± =
1
2

{
4ζ23 − γ2 ±

√
γ2 (α−β)

2
+ 4
[
4σ2

3ζ
2
3 +(α+β)

2
σ2
3 +(α−β)

2
ζ23

]}
,

E3 = αβ−σ2
3 + ζ23 .

(3.34)

The top left (2× 2)-block of (3.33), with γ= 0 is precisely the pull-back metric of an incom-
pressible two-dimensional flow with velocity-gradient matrix given by the top left (2× 2)-
block of (3.31), where γ =−(α+β) = 0. Hence, setting γ 6= 0 produces compressible two-
dimensional flows, for example Burgers’ vortex after reduction as described in [9]. It follows
that when∆p> 0, E3 > 0. Furthermore, if we assume axi-symmetry by setting α= β =− 1

2γ,
then with ∆p> 0 and E3 > 0, we have E+ > 0, while E− is bounded below by −γ2. Further
investigation of such criteria might facilitate a classification of conditions under which accu-
mulations of vorticity could constitute ‘a vortex’.

With [9] in mind, we now show how higher symplectic geometry and reductions thereof,
provide a mechanism for formulating the Monge–Ampère geometry of certain exact solutions
to the incompressible Navier–Stokes equations in three dimensions.

3.5. Higher symplectic reductions

In the following, we wish to study dimensional reductions from three to two dimensions. In
particular, we shall focus on symplectic and higher symplectic reductions. This will enable us
to study fluid flows in three dimensions with symmetries that eventually can be analysed as
effective two-dimensional problems. As we shall explain, symplectic and higher symplectic
reductions yield, to the extent in which we are interested in this paper, essentially the same
geometric information in two dimensions; however, the higher symplectic reduction will yield
the two-dimensional problem directly in terms of a stream function, thus resolving the lower-
dimensional would-be divergence-free constraint automatically. Before analysing examples
in section 3.6, including the Arnol’d–Beltrami–Childress flow and Hicks–Moffatt-type vor-
tices, let us set the stage. In particular, we first recall theMarsden–Weinstein reduction process
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[65, 66], a well-known tool from symplectic geometry, for reducing spaces with symmetries.
Concretely, this reduction process can be summarised as follows.

Theorem 3.5. Let (M,ω) be a symplectic manifold. Suppose that G is a Lie group acting by
symplectomorphisms on (M,ω). Let µ :M→ g∗ be the moment map for this action with g the
Lie algebra of G. Furthermore, let c ∈ g∗ be a regular value of µ and Gc ⊆G the (coadjoint)
stabiliser group of c. We assume that Gc acts freely and properly on µ−1({c}). Set Mc :=
µ−1({c})/Gc and consider,

Then, there exists a unique symplectic structure ωc on Mc such that p∗ωc = i∗ω.

To discuss symmetry reductions of higher-dimensional fluid flows which are described dir-
ectly in terms of higher Monge–Ampère structures, we would like to generalise this result to
the higher symplectic geometry summarised in section 3. Fortunately for us, theorem 3.5 has
been generalised to the k-plectic case rather recently as follows [21].

Theorem 3.6. Let (M,$) be a k-plectic manifold. Suppose that G is a Lie group acting by k-
plectomorphisms on (M,$). Let µ :M→

∧k−1T∗M⊗ g∗ be the moment map for this action
with g the Lie algebra of G. Furthermore, let c ∈ Ωk−1(M,g∗) be closed and define

µ−1({c}) := {x ∈M |µ(x) = cx} ,
Gc := {g ∈G

∣∣g−1
∗ X1 ⌙. . . ⌙g−1

∗ Xk−1 ⌙Ad∗gcg−1x = X1 ⌙. . . ⌙Xk−1 ⌙cx
for all x ∈Mand for all X1, . . . ,Xk−1 ∈ TxM} .

(3.36)

Suppose that µ−1({c}) is an embedded submanifold of M and thatGc acts freely and properly
on µ−1({c}). Set Mc := µ−1({c})/Gc and consider,

(3.37)

Then, there exists a unique closed differential form $c ∈ Ωk+1(Mc) on Mc such that
p∗$c = i∗$.

Evidently, for k= 1 this result reduces to theorem 3.5. It is important to stress that for k> 1, the
differential form$c ∈ Ωk+1(Mc) might be degenerate. For full details of the above, see [21].

3.5.1. Setting for dimensional reduction. In remark 3.3, we have already discussed a simple
dimensional reduction of the Monge–Ampère structure (3.12b) by assuming that the three-
dimensional background manifold M3 is a direct product of a two-dimensional manifold M2
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and a one-dimensional manifold N. Let us now assume it is of warped-product form instead,
that is, we take

g̊3 = g̊2 + e2φ dx3 ⊗ dx3 (3.38)

with ϕ ∈ C∞(M2) as the metric onM3 where g̊2 is a metric onM2 and x3 local coordinates on
N, respectively. Put differently, we assume that there is a one-parameter family of isometries,
and we choose adapted coordinates. Now let i, j, . . .= 1,2, such that

g̊2 =
1
2
g̊ijdx

i� dxj . (3.39)

Hence, the only non-vanishing Christoffel symbols for the metric g̊3 are Γ̊ijk, which are pre-
cisely the Christoffel symbols for g̊2, alongside

Γ̊33
i = −e2φg̊ij∂jϕ and Γ̊i3

3 = ∂iϕ . (3.40)

Next, consider the differential forms (3.12b) on Mm for m= 2,3. As in remark 3.3, let us
denote them by $m and αm, and let us also use a similar notation for other quantities. Then,
under the assumption that p ∈ C∞(M2), some algebra reveals that

$3 = eφ$2 ∧ dx3 + e−φ volM2 ∧ ∇̊q3 ,
α3 = eφ(α2 − ĥ+volM2)∧ dx3 + e−φ ($2 − q3dx

3 ∧ ?̊g2dϕ)∧ ∇̊q3
(3.41a)

with

ĥ± :=
1
2
[∇̊iϕ∂ip− (∇̊i∇̊jϕ±∇̊iϕ∇̊jϕ)qiqj− e−2φ(∆̊Bϕ±∇̊iϕ∂iϕ)q

2
3] , (3.41b)

where again all differential operators in ĥ± are with respect to the metric g̊2.
Furthermore, we obtain

$ ′
2 :=

∂

∂x3
⌙$3

= eφ($2 + qi∇̊iϕvolM2) ,

α ′
2 :=

∂

∂x3
⌙α3

= eφ[α2 − (ĥ+ + e−2φ∇̊iϕ∂iϕq
2
3)volM2 + qi∇̊iϕ$2] + e−φq3dq3 ∧ ?̊g2dϕ .

(3.42)

A short calculation then shows that both $ ′
2 and α ′

2 are closed. In fact, using (3.2b), we also
have that

$ ′
2 = d(?̊g2e

φ qidx
i) . (3.43)
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3.5.2. Symplectic reduction of the higher Monge–Ampère structure. Given that $ ′
2 and α ′

2
are closed, Cartan’s formula for Lie derivatives then immediately yields that L ∂

∂x3
$3 = 0=

L ∂

∂x3
α3. Consequently, we can consider a dimensional reduction following theorem 3.5. In

particular, we take the symplectic form

ω3 := dqi ∧ dxi− d(λq3)∧ dx3 , (3.44)

where λ ∈ C∞(M2) is assumed to be non-vanishing. Evidently, ∂
∂x3 ⌙ω3 = d(λq3), so the cor-

responding moment map is µ(x,q) = λq3. Hence,

µ−1 ({c}) =
{
(x,q) |q3 = cλ−1

}
(3.45)

for any regular value c ∈ R. Consequently, µ−1({c})/Gc is locally given by (xi,x3,qi,q3) =
(xi,const,qi,q3 = q3(xi)). Next, by virtue of theorem 3.5, we obtain the symplectic form

ωc := dqi ∧ dxi (3.46)

on µ−1({c})/Gc
∼= T∗M2 which satisfies p∗ωc = i∗ω3, as well as two closed differential two-

forms given by

$̃2 := eφ
(
$2 + qi∇̊iϕvolM2

)
,

α̃2 := eφ
{
α2 −

[
ĥ+ + e−2φ

(
∇̊iϕ∂iϕq

2
3 − q3∇̊iϕ∂iq3

)]
volM2 + qi∇̊iϕ$2

}
,

(3.47)

which are simply the differential two-forms from (3.42) with q3 understood as a function of x1

and x2. Upon requiring the vanishing of the pull-back of $̃2 and α̃2 along (3.3) together with
the relabeling the function q3 by v3, we obtain

∇̊iv
i = −vi∂iϕ ,

∆̊Bp+ ∇̊iv
j∇̊jv

i+
1
2
|v|2R̊ = −̊gij∂iϕ∂jp+ vivj∇̊i∂jϕ

+ e−2φ
[(

∆̊Bϕ− g̊ij∂iϕ∂jϕ
)
v23 + 2v3̊g

ij∂iϕ∂jv3
]
.

(3.48)

These are precisely the divergence-free constraint (2.4b) and the pressure equation (2.10) when
adapted to the warped product metric (3.38), under the assumption that p is independent of x3.
Evidently, when ϕ= 0, we obtain the standard situation of an incompressible fluid flow in two
dimensions from section 2.2, and v3 is not constrained by (3.48).

Next, let X be a vector field on µ−1({c})/Gc
∼= T∗M2 and consider its horizontal lift X̃ to

T∗M3 using the Levi–Civita connection for the metric (3.38),

X̃ := X+X ⌙dxiΓ̊i33q3
∂

∂q3
= X+X ⌙dϕq3

∂

∂q3
. (3.49)

Using that

X̃ ⌙̊∇q3 = 0 and $2 ∧
(
α2 − ĥ+ volM2

)
= 0 , (3.50)

we obtain

α3 ∧
(
X̃ ⌙α3

)
= −2$2 ∧X ⌙

(
α2 − ĥ+ volM2

)
∧ ∇̊q3 ∧ dx3 . (3.51)
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Consequently, the endomorphism (3.14) becomes

Ĵ3X̃ =
1√

|̂f2 + ĥ+|
ε2 ⌙

[
$2 ∧X ⌙

(
α2 − ĥ+ volM2

)]
, (3.52)

where ε2 is the dual to the Liouville volume form on T∗M2; see also remark 3.3. Hence, we
obtain an endomorphism Ĵ2 on µ−1({c})/Gc that is precisely of the form (3.16) (or, equival-
ently of the form (3.6)) when using the Monge–Ampère structure

(
$2,α2 − ĥ+ volM2

)
. Here,

ĥ+ is considered to be a function of (xi,qi) only, sinceµ−1({c})/Gc
∼= T∗M2, with q3 = v3(xi).

Note α2 − ĥ+ volM2 is simply α2 with f̂2 replaced with f̂2 + ĥ+. Also, whilst$2 is a symplectic
form on T∗M2, α2 − ĥ+ volM2 fails to be closed and is degenerate when f̂2 + ĥ+ = 0. Next, we
consider (3.7) and set

K̂2 :=

√
|̂f2 + ĥ+| ∇̊qi ∧ dxi . (3.53)

Then, as before, K̂2(Ĵ2X,Y) =−K̂2(X, Ĵ2Y) for all vector fields X and Y on µ−1({c})/Gc so
that ĝ2(X,Y) := K̂2(X, Ĵ2Y) is an almost (para-)Hermitian metric on µ−1({c})/Gc. Explicitly,

ĝ2 =
1
2

(̂
f2 + ĥ+

)
g̊ijdx

i� dxj+
1
2
g̊ij∇̊qi�∇̊qj . (3.54)

3.5.3. Higher symplectic reduction of the higher Monge–Ampère structure. Let us now dis-
cuss the two-plectic reduction of the Monge–Ampère structure (3.12b) following theorem 3.6.
In particular, by virtue of exactness (3.43), we can take

µ(x,q) = ?̊g2e
φ qidx

i (3.55)

as the moment map which, of course, is defined up to a shift by an exact form. Then, for
ψ ∈ C∞(M2), it follows the µ−1({−dψ}) is non-empty and given by

µ−1 ({−dψ}) =
{
(x,q)

∣∣qi =−
√

det (̊g2)e
−φεij̊g

jk∂kψ
}
. (3.56)

Consequently, the quotient µ−1({−dψ})/G−dψ is locally given by (xi,x3,qi,q3) =(
xi,const,−

√
det(̊g2)e−φεij̊g jk∂kψ,q3

)
. Furthermore, we obtain

$−dψ := e−φvolM2 ∧ dq3 (3.57)

on µ−1({−dψ})/G−dψ, which satisfies p∗$−dψ = i∗$3. In addition, whilst the pull-back of
$ ′

2 given in (3.42) to µ−1({−dψ}) vanishes identically, there is a closed differential two-form
α−dψ on µ−1({−dψ})/G−dψ given by

α−dψ := eφ
[
det
(
∇̊iqj

)
−
(̂
f2 + ĥ−

)]∣∣∣
qi=−

√
det(̊g2)e−φεij̊g jk∂kψ

volM2 + e−φq3dq3 ∧ ?̊g2dϕ

(3.58)

and which satisfies p∗α−dψ = i∗α ′
2. The function ĥ− used here was defined in (3.41b). Finally,

upon requiring the vanishing of the pull-back of α−dψ along

ι : xi 7→
(
xi,q3

)
:=
(
xi,v3

(
xi
))
, (3.59)
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we obtain the system (3.48) with vi given by

vi = −
√

det (̊g2)e
−φεij̊g

jk∂kψ . (3.60)

Evidently, the first equation of (3.48) can be rewritten as ∇̊i(eφ vi) = 0, and by the Poincaré
lemma, any solution to ∇̊i(eφ vi) = 0 is locally of the form (3.60) for some ψ ∈ C∞(M2).
Hence, the two-plectic reduction of the Monge–Ampère structure directly yields the two-
dimensional fluid flow in terms of the stream function. Indeed, as already indicated, the sym-
plectic reduction provides all of the geometric information that two-plectic reduction does,
at least to the extent in which we are interested in this paper, thus enabling the analysis of
singularities and curvature scalars as in two-dimensions. However, should one only require a
description of the reduced kinematics, k-plectic reduction is certainly a more elegant, compact
tool.

Before discussing specific examples, let us close this section by stating that the pull-back
of the metric (3.54) along

ι̃ : xi 7→
(
xi,qi,q3

)
:=
(
xi,−

√
det (̊g2)e

−φεij̊g
jk∂kψ,v3

(
xi
))

(3.61)

given by (3.56) and (3.59), is

g2 =
1
2

(
∆̊Bψ∇̊i∂jψ+Tij

)
e−2φdxi� dxj (3.62a)

with

Tij := g̊ij{∇̊lϕ∂lψ(∇̊kϕ∂kψ− ∆̊Bψ)− (∇̊kϕ∂kϕ)(∇̊lψ∂lψ)

+ ∇̊kϕ[∇̊lψ ∇̊k∂lψ+ v3(∂kv3 − v3∂kϕ)]}
+ ∂iϕ∂jϕ(∇̊kψ∂kψ)−∇̊kψ[∂iϕ∇̊j∂kψ+ ∂jϕ∇̊i∂kψ] .

(3.62b)

Evidently, Tij = 0 when ϕ= 0, in which case we recover the metric (2.27).
Alternatively, we may write the above formula in such a way that the term f̂2 + ĥ+ remains

explicit

g2 =
1
2
gijdx

i� dxj (3.63a)

with

gij = ι̃∗(̂f2 + ĥ+)̊gij

+ e−2φ{(∇̊k∂iψ)(∇̊k∂jψ)+ (∂iϕ)(∂jϕ)(∇̊kψ)(∂kψ)− 2(∂kψ)[(∇̊k∂(iψ)(∂j)ϕ)]} .
(3.63b)

It follows from (3.61) that ι̃∗ f̂2 = f2 if and only if ϕ= 0. Again, we note from (3.62a)
and (3.62a) that the pull-back metric is a quadratic function of the velocity gradients.

Remark 3.7. Recall that we define

f̂m :=
1
2

(
∆̊Bp+ R̊ijq

i qj
)
, (3.64)
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where the differential operators are taken with respect to the metric g̊m and i, j = 1,2, . . . ,m,
as in (2.23a) and (3.12a). For fluid flows on three-dimensional background manifolds with
warped-product metric (3.38), assuming both p,v3 ∈ C∞(M2), it follows that

f̂3 = f̂2 + ĥ+ , (3.65)

with ĥ+ as defined in (3.41b). Hence, for three-dimensional flowswith symmetry ∂
∂x3 , the func-

tion f̂2 + ĥ+ should be interpreted as the diagnostic quantity f̂3, where the former representation
highlights the deviation from the diagnostic quantity f̂2 for two-dimensional incompressible
fluid flows.

In computing the pull-back of (3.65) along (3.61)19, similar representations of the traces
of the squares of the vorticity two-form and the rate-of-strain tensor (2.11) are also enlight-
ening. Let ζmij and Smij respectively denote the vorticity two-form and the rate-of-strain tensor
in m dimensions, where i, j = 1,2, . . .m and the covariant derivatives occurring in (2.11) are
understood to be with respect to g̊m. Then,

ζ3IJζ
IJ
3 = ζ2ijζ

ij
2 +

1
2
(∂i v3)

(
∇̊i v3

)
e−2φ (3.66a)

and

S3IJS
IJ
3 = S2ijS

ij
2 + e−2φ

[
1
2
(∂i v3)

(
∇̊i v3

)
− (∂i v3)

(
∇̊iϕ

)
v3 +(∂iϕ)

(
∇̊iϕ

)
v23

]
+
(
vi∇̊iϕ

)2
,

(3.66b)

where the indices I,J= 1,2,3 and i, j = 1,2. Like f̂2 + ĥ+, these expressions do not depend
on the coordinate x3, however unlike f̂2, the quantities ζ2ij and S

2
ij retain some dependence on

the three-dimensional geometry via ϕ, since vi must satisfy (3.48).

Remark 3.8. The reduction presented explicitly in this work assumes a one-dimensional sym-
metry ∂

∂x3 of the underlyingmanifoldM3, dictated by complete x3 independence of the velocity
components. In contrast, by applying the above approach to cases where the symmetry lies in
X(T∗M3), flows where v3(x) depends linearly on x3 may also be considered. In particular, it
was shown in [9] that Burgers’ vortex, a flow of the form (3.29) withW≡ 0 and φ = φ(t), has
a symmetry generated by ∂

∂x3 +φ ∂
∂q3

, hence admits a Hamiltonian reduction.

3.6. Examples of higher symplectic reductions

Let us now discuss a few examples of the reduction processes as outlined in section 3.5.

3.6.1. Arnol’d–Beltrami–Childress flow. Let us consider flows on M3 := R3 equipped with
the standard Euclidean metric

g̊3 := g̊2 + dz⊗ dz with g̊2 := dx⊗ dx+ dy⊗ dy , (3.67)

which corresponds to the case when ϕ= 0. Then, ĥ± = 0 and our symplectic reduction yields
an incompressible fluid flow in two dimensions, on an Euclidean background. In summary, the

19 This is equivalent to computing (3.24) for flows with symmetry ∂
∂x3

.
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equation (3.47) reduce to $̃2 =$2, and α̃2 = α2, with the divergence-free constraint and the
pressure equation (3.48) respectively given by

∂xvx+ ∂yvy = 0 (3.68a)

and

∆p = 2(∂xvx∂yvy− ∂xvy∂yvx) with ∆ := ∂2
x + ∂2

y , (3.68b)

where vx and vy are functions of x and y only.
Additionally, performing the two-plectic reduction to obtain velocity components vx and vy

satisfying (3.68a), in terms of a stream function in two dimensions, yields the same result as
applying the Poincaré lemma to (3.68a) itself, that is,

qx := vx = −∂yψ and qy := vy = ∂xψ (3.69)

for some stream function ψ = ψ(x,y). The corresponding differential form (3.58) is

α−dψ =

[
∂2
xψ∂

2
yψ− (∂x∂yψ)

2 − 1
2
∆p

]
dx∧ dy . (3.70)

This is unchanged when pulled back along (x,y) 7→ (x,y,qz) := (x,y,vz(x,y)), so imposing a
vanishing pull-back condition is equivalent to the Monge–Ampère equation

1
2
∆p = ∂2

xψ∂
2
yψ− (∂x∂yψ)

2
, (3.71)

which is, in turn, precisely (3.68b) with vx and vy evaluated as per (3.69). Hence, one is free to
choose a pair of z-independent functions ψ and vz in order to recover an incompressible fluid
flow in R3 that reduces to an incompressible flow on the (x, y)-plane.

Making the choice

vz (x,y) = ψ (x,y) := Acos(y)+Bsin(x) (3.72)

for A,B ∈ R some constants, see figure 6(a), and computing (3.69), we recover the velocity
field for the integrable case of Arnol’d–Beltrami–Childress flow [67],

(vx,vy,vz) = (ẋ, ẏ, ż) = (Asin(y) ,Bcos(x) ,Acos(y)+Bsin(x)) . (3.73)

Next, following [67], upon taking the quotient of vx and vy, this system integrates to vz =
Acos(y)+Bsin(x) = const. Furthermore, (3.71) becomes

f̂2 =
1
2
∆p = ABsin(x)cos(y) , (3.74)

and this is displayed in figure 6(b).
Since ĥ+ = 0 and M2 = R2, it follows that the metric (3.54) on the reduced phase space

µ−1({c})/Gc
∼= T∗R2 is precisely (2.38). Hence, we may follow exactly the treatment

from section 2.3. Therefore, the curvature scalar R̂2 for the metric (3.54) follows directly
from (2.39),

R̂2 =
sin2 (x)+ cos2 (y)

ABsin3 (x)cos3 (y)
, (3.75)
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Figure 6. Plots of the iso-lines of the stream function (3.72) and reduced Laplacian
of pressure (3.74) for an integrable Arnol’d–Beltrami–Childress flow with parameters
A= 1.5 and B= 1.

and as in previous examples, for f̂2 ≷ 0 themetric ĝ2 is Riemannian/Kleinian and the associated
curvature is positive/negative. Again, when f̂2 = 0, both the metric and the curvature scalar are
singular.

In turn, the pull-back metric (3.62a), with vx and vy as given in (3.73), is

g2 = [Acos(y)+Bsin(x)]

(
Bsin(x) 0

0 Acos(y)

)
, (3.76)

where the vorticity is ζ =−Acos(y)−Bsin(x). Thismetric is again singular when f̂2 = 0, how-
ever it also exhibits a further singularity when Acos(y)+Bsin(x) = 0, which is precisely the
shear layer featuring in the streamlines of figure 6(a) and which also corresponds to vanishing
vorticity. The curvature scalar R2 associated with (3.76) is then

R2 =
Bsin(x)

[
sin2 (x)+ 3cos2 (y)

]
+Acos(y)

[
cos2 (y)+ 3sin2 (x)

]
2sin2 (x)cos2 (y) [Bsin(x)+Acos(y)]3

. (3.77)

The lines x= nπ and y=
(
n+ 1

2

)
π for all n ∈ Z, along which f 2 = 0, are singularities of

both the metric g and its curvature R, as was the case for the metric (3.54). Additionally, the
presence of Acos(y)+Bsin(x) in the denominator illustrates that the shear layer is a curvature
singularity. See figure 7(b). This curvature singularity arises due to the vanishing vorticity
and is otherwise unseen by the pressure criterion. The shear layer is a separatrix between
topologically distinct flows and in this case coincides with where the eigenvalues of the pull-
back metric (3.76) both change sign, while the signature of the pull-back metric is unchanged.
See figure 8.

3.6.2. Hicks–Moffatt vortex. We now discuss another important class of examples—vortices
of Hicks–Moffatt type [53, 68]. Consider flows on M := (R+ ×R)×r2 S

1 equipped with

g̊3 := g̊2 + r2dθ⊗ dθ with g̊2 := dr⊗ dr+ dz⊗ dz , (3.78)
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Figure 7. Contour plots of the curvatures (3.75) (left) and (3.77) (right) respectively, for
the Arnol’d–Beltrami–Childress flow with parameters A= 1.5 and B= 1. The ellipse
highlighted on the left is the domain bounded by the closed streamline ψ =− 27

16 , which

is contained in a region on which the metrics ĝ2 and g are Riemannian, and f̂2 > 0.

where r ∈ R+, z ∈ R, and θ ∈ [0,2π), that is, standard cylindrical coordinates. Then,

ϕ = log(r) and ĥ+ =
1
2r
∂rp (3.79)

with p= p(r,z) in (3.41a). Hence, the equations (3.47) reduce to

$̃2 = r

(
$2 +

1
r
qr dr∧ dz

)
,

α̃2 = r

{
α2 −

[
1
2r
∂rp+

1
r2

(
1
r2
q2θ −

1
r
qθ∂rqθ

)]
dr∧ dz+

1
r
qr$2

}
.

(3.80)

Furthermore, the requirements that the pull-backs of $̃2 and α̃2 under (3.3) vanish become

1
r
∂r (rvr)+ ∂zvz = 0 , (3.81a)

and

1
r
∂r (r∂rp)+ ∂2

z p = 2

[
∂rvr∂zvz− ∂rvz∂zvr−

1
r2
v2r −

1
r4

(
v2θ −

r
2
∂rv

2
θ

)]
, (3.81b)

which are the equations (3.48) for the metric (3.78), with vθ = vθ(r,z) arbitrary. Evidently, the
first equation is simply the divergence of v for such a vθ and the left hand side of the second
equation is the Laplacian of p= p(r,z), both expressed in cylindrical polar coordinates.

Turning now to the two-plectic reduction, note that we can take the moment map (3.55)
to be

µ(x,q) = rqrdz− rqzdr . (3.82)
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Figure 8. Plots of the eigenvalues of the pull-backmetric (3.76) with g2 = diag(E+,E−)
of the Arnol’d–Beltrami–Childress flow with parameters A= 1.5 and B= 1. The signs
of both eigenvalues change across the shear layer, where the vorticity prefactor changes
sign, hence the signature of the metric is unchanged across this singularity.

It then follows that, locally on µ−1({−dψ})/G−dψ, we have

qr := vr = −1
r
∂zψ and qz := vz =

1
r
∂rψ , (3.83)

which can be interpreted as expressions for the velocity components in the r and z directions,
in terms of a stream function ψ = ψ(r,z) in two dimensions. Consequently, these solve the
adapted divergence-free constraint (3.81a). In fact, imposing that the pull-back of the closed
differential form (3.58) along (r,z) 7→ (r,z,qθ) := (r,z,vθ(r,z)) vanishes, we find

1
2

[
1
r
∂r (r∂rp)+ ∂2

z p

]
=

1
r2

[
∂2
rψ∂

2
zψ− (∂r∂zψ)

2
]
− 1
r4

(∂zψ)
2

+
1
r3
(
∂zψ∂r∂zψ− ∂rψ∂

2
zψ
)
− 1
r4

(
v2θ −

r
2
∂rv

2
θ

)
,

(3.84)

that is, (3.81a) with vr and vz given in terms of ψ as in (3.83). One is free to choose ψ and vθ,
provided they satisfy (3.84). Furthermore, (3.81a) is trivially satisfied for any such choices,
given (3.83).

In what follows, we fix of ψ and vθ corresponding to vortices of Hicks–Moffatt type. In
particular, we shall discuss a class of spherical vortices with swirl parameter κ, normalising
the radius of the sphere to 1 for convenience. For an in-depth review of such vortices, we direct
the interested reader to [69].

Firstly, consider a unit sphere inR3 and set σ(r,z) :=
√
r2 + z2 in cylindrical polar coordin-

ates, as above. Fix the angular velocity to be

vθ,κ (r,z) =
κψ

r
, (3.85)
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on the whole domain. We then fix the stream function on the interior and exterior of the sphere,
such that they coincide on the boundary. In particular, on the interior we set

ψint,κ (r,z) :=
3
2
r2
(
b(κ)− c(κ)

J 3
2
(κσ)

(κσ)
3
2

)
, (3.86a)

with

b(κ) :=
J 3

2
(κ)

κJ 5
2
(κ)

and c(κ) :=

√
κ

J 5
2
(κ)

, (3.86b)

where Jn(x) is the nth order Bessel function with argument x20. See figure 9 for plots of the
interior solution. On the exterior of the sphere, one chooses the stream function to be independ-
ent of the swirl parameter and to match the interior solution on the boundary of the sphere,
given by σ2 = 1; for example, we choose

ψext (r,z) :=
1
2
r2
(
1− 1

σ3

)
, (3.87)

so that the flow far from the sphere is uniform with unit speed directed along the z axis,
with non-zero velocity in the θ-direction when κ 6= 0. It is important to observe that the heli-
city (3.25) is non-zero if and only if the flow has non-zero swirl [71, 72].

Let us now focus on the limiting case κ= 0 when the flow has vanishing helicity. This cor-
responds to Hill’s spherical vortex [73]. The θ-component of velocity, (3.85) then becomes
vθ,0(r,z) = 0. Firstly, note that for the exterior solution, (3.87) remains the same. Henceforth,
we focus our attention on the interior alone. The interior solution, for which the stream func-
tion (3.86a) is given by

ψint,0 (r,z) :=
3
4
r2
(
r2 + z2 − 1

)
. (3.88)

See figure 10(a).
Upon applying (3.81a), we obtain the velocity components

vr = −3
2
rz and vz =

3
2

(
2r2 + z2 − 1

)
, (3.89)

Then, it follows from (3.84) that the Laplacian of pressure is given by

f̂2 + ĥ+ =
1
2

(
∂2
r p+ ∂2

z p+
1
r
∂rp

)
=

9
4

(
4r2 − 3z2

)
. (3.90)

See figure 10(b).
The metric (3.54) takes the form

ĝ2 =

((̂
f2 + ĥ+

)
12 0

0 12

)
. (3.91)

20 Such an explicit solution was found in the context of magneto-hydrodynamics [70]. In the context of Navier–Stokes,
solutions to this type are also referred to as Hill’s spherical vortex with swirl.
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Figure 9. A selection of plots for the Hicks–Moffatt vortex interior solution with swirl
parameter κ= 10. Since f̂3 = f̂2 + ĥ+ in this case, the quantity shown in (b) is precisely
the difference between those shown in (c) and (d).

and R̂2 is given by (2.39), with f replaced by f̂2 + ĥ+. Namely

R̂2 =
56
(
4r2 + 3z2

)
9(4r2 − 3z2)3

, (3.92)

which is plotted in figure 11(a). When 4r2 > 3z2, then f̂2 + ĥ+ > 0, the metric is Riemannian,
and the curvature scalar is positive. Similarly, the metric is Kleinian and the curvature scalar
negative when f̂2 + ĥ+ < 0 and 4r2 < 3z2. Furthermore, the metric is singular when 4r2 = 3z2,
that is, when f̂2 + ĥ+ = 0 and it is clear that this singularity is also one for the curvature.

The pull-back metric (3.62a) becomes

g2 =
9
4

(
20r2 − 2z2 9rz

9rz 5r2 + z2

)
. (3.93)
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Figure 10. Plots of the iso-lines of the stream function (3.88) and the function (3.90)
respectively, for the interior of Hill’s spherical vortex.

Figure 11. Contour plots of the curvatures (3.92) (left) and (3.95) (right) respectively,
for the interior of Hill’s spherical vortex. Note that the curvature singularities in these
two plots do not coincide, in contrast to earlier examples.

Its eigenvalues, displayed in figure 12, are given by

E± =
9
8

(
25r2 − z2 ± 3σ

√
(25r2 + z2)

)
. (3.94)

Furthermore, the curvature scalar R2 associated with (3.93) is

R2 =
28
(
50r4 + z4

)
9(100r4 − 71r2z2 − 2z4)2

. (3.95)
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Figure 12. Plots of the eigenvalues (3.94) of the pull-back metric (3.93) for the interior
solution of Hill’s spherical vortex.

Both the curvature R2 and eigenvalue E+ are non-negative, with E+ vanishing only at the
origin. Additionally, R2 is singular precisely when E− vanishes, that is, where the metric is
singular. See figure 11(b).

4. Summary and conclusions

We have developed a framework for studying the Poisson equation for the pressure, for incom-
pressible flows, by formulating the concept of higher Monge–Ampère geometry. Earlier work
has been revisited and the definition ofMonge–Ampère structures extended, using higher sym-
plectic geometry, to facilitate a study of equations in three (or more) independent variables that
are not necessarily of explicit Monge–Ampère type.

In contrast to the earlier work, the focal point of our investigations has shifted from the
perspective of symplectic geometry to that of Riemannian and Kleinian geometries, as defined
by a metric and its pull-back to higher Lagrangian submanifolds. This change of viewpoint has
illuminated some seemingly important connections between fluid flows dominated by either
vorticity or strain and the geometry of Lagrangian submanifolds. From the examples studied
thus far, regions of the flow one might label ‘a vortex’ are characterised by Monge–Ampère
structures with Riemannianmetrics, whereas those regions in which strain dominates, are char-
acterised by Kleinian metrics. Where vorticity or strain accumulate, the higher Lagrangian
submanifold develops curvature, and the singular behaviour of the pull-back metric and the
scalar curvature arising from (1.6) appears to delineate regions of the flow with distinct topo-
logical characteristics. Furthermore, where vorticity dominates over the strain, the metric is
typically Riemannian with positive curvature scalar.

We have focused on the Ricci scalar curvature, simply because, as an invariant, it is a natural
starting point for attempting to identify the salient connections between the characteristics of
the fluid flow and the geometry of the Lagrangian submanifolds. However, the Ricci curvature
itself may reveal further insights.

We have also noted that there is typically a one-parameter family of metrics, with time t
acting as the parameter. The evolution of the metrics, as the parameter t increases, will depend
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on whether the evolution of the dynamics is governed by the incompressible Euler or by the
incompressible Navier–Stokes equations. It is through such a time evolution that the geometry
we have introduced will reflect the differences in the solutions to these two sets of equations.
It is therefore intriguing to speculate as to whether Monge–Ampère structures may reveal
information on the existence and/or regularity of solutions to the Euler and Navier–Stokes
equations, via a notional geometric flow. A connection betweenMonge–Ampère geometry and
optimal transport [74], in terms of a metric whose properties relate to regularity of solutions
to Monge–Ampère equations has been made in [46].

Possible future directions include a systematic study of the fully three-dimensional solu-
tions to the Navier–Stokes equations and the associated metrics, with particular emphasis on
topological properties of the higher Lagrangian submanifolds that might be characterised by
the metrics and their curvature.

A recent companion study to this paper, [33], has also explored the connections between
Monge–Ampère structures and the geometry of Lagrangian submanifolds arising in a more
conventional application of Monge–Ampère geometry, in which a fully non-linear Monge–
Ampère equation lies at the heart of a model used in the study of geophysical flows. Emphasis
in that paper is placed on the projection betweenM and L, and singularities thereof. This is an
important issue to follow up in the context of the results presented here.
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Appendix A. Lagrangian submanifolds

Let M be an m-dimensional manifold and π : T∗M→M its cotangent bundle. We call a sub-
manifold ι : L ↪→ T∗M locally a section if and only if, for each y ∈ L, there exists a neigh-
bourhood Vy ⊆ L of y, an open and contractible set Uy ⊆M, and a function ψy ∈ C∞(Uy)
such that ι(Vy) = dψy(Uy). Next, let UM ⊆M be open and contractible and let (xi,qi) with
i, j, . . .= 1, . . . ,m be local coordinates on π−1(UM)⊆ T∗M with xi local coordinates onM and
qi local fibre coordinates, respectively. Consider a Lagrangian submanifold ι : L ↪→ T∗M with
respect to the standard symplectic form ω := dqi ∧ dxi.
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Proposition A.1. The Lagrangian submanifold L is locally a section dψ : UM → T∗M for some
ψ ∈ C∞(UM) if and only if π|L := π ◦ ι : L→M is a local diffeomorphism.

Proof. Suppose that L is locally a section and consider a point y ∈ L. Evidently, Vy and
ι(Vy) are diffeomorphic. Furthermore, as the restriction π|dψy(Uy) is the inverse of dψy : Uy →
dψy(Uy)⊆ T∗M, it follows that Uy and dψy(Uy) are diffeomorphic. As dψy(Uy) = ι(Vy), it
then follows thatUy and Vy are diffeomorphic, with diffeomorphism given by π|L|Vy : Vy → Uy

and ι−1 ◦ dψy : Uy → Vy. Since this holds for all y ∈ L, it follows that π|L : L→M is a local
diffeomorphism.

Conversely, suppose that π|L : L→M is a local diffeomorphism and let y ∈ L be arbitrary.
By the local diffeomorphism property of π|L : L→M, there exists a neighbourhood Vy ⊆ L of
y such that π|L(Vy) =: Uy is open and contractible in M and π|L|Vy is a diffeomorphism onto

its image. Let yi be local coordinates on Vy. Then, Vy 3 yi
π|L7→ xi(y) ∈ Uy. Again by the local

diffeomorphism properties of π|L, we have locally the invertibility of the Jacobian ∂xi

∂yj and the

inverse relation yi = yi(x). Hence, the embedding ι : L ↪→ T∗M becomes

ι : yi 7→
(
xi (y) ,qi (y)

)
=
(
xi,qi (y(x))

)
=:
(
xi,pi (x)

)
(A.1)

in local coordinates. Furthermore, since L is Lagrangian with respect to ω = dqi ∧ dxi, we find

∂xi

∂yj
∂qi
∂yk

=
∂xi

∂yk
∂qi
∂yj

(A.2)

upon computing ι∗ω = 0.21 Hence,

∂xi

∂yl

(
∂pj
∂xi

− ∂pi
∂xj

)
=

∂xi

∂yl

(
∂yk

∂xi
∂qj
∂yk

− ∂yk

∂xj
∂qi
∂yk

)
=

∂qj
∂yl

− ∂yk

∂xj
∂xi

∂yl
∂qi
∂yk

=
∂qj
∂yl

− ∂yk

∂xj
∂xi

∂yk
∂qi
∂yl

=
∂qj
∂yl

−
∂qj
∂yl

= 0 .

(A.3)

Therefore,

∂pj
∂xi

− ∂pi
∂xj

= 0 , (A.4)

that is, the one-form η := pidxi is closed. Consequently, by the Poincaré lemma, there is a
function ψy ∈ C∞(Uy) so that η = dψy (and therefore pi = ∂iψy). It follows that dψy(Uy) =
ι(Vy). As this holds for any y ∈ L, it follows that L is locally a section.

When π|L : L→M is a local diffeomorphism, we may choose coordinates on L so that π|L
becomes locally the identity in those coordinates. Put differently, we may take the xi as local
coordinates on L in that case.

21 Note that ι∗
(

∂
∂yi

)
= ∂xj

∂yi
∂
∂xj

+
∂qj
∂yi

∂
∂qj

.
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Appendix B. Non-degenerate Monge–Ampère structures

Let (M,ω) be a 2m-dimensional almost symplectic manifold. Following [28], a differential
p-form is called ω-effective if and only if ω−1 ⌙α= 0. Whenever p=m this is equivalent to
requiring α∧ω = 0 . Then, we have the Hodge–Lepage–Lychagin theorem [28] (see also the
text book [8] for a comprehensive treatment):

Theorem B.1. Let (M,ω) be an almost symplectic manifold. Then, any differential p-form
α ∈ Ωp(M) has a unique decomposition

α = α0 +α1 ∧ω+α2 ∧ω ∧ω+ · · · (B.1)

into ω-effective differential (p− 2k)-forms αk ∈ Ωp−2k(M). Furthermore, if two ω-effective p-
forms vanish on the same p-dimensional isotropic submanifolds, they must be proportional.

Let now M be four-dimensional and (ω,α) a Monge–Ampère structure on M, that is, α ∈
Ω2(M) with α∧ω = 0 and suppose that the Pfaffian Pf(α) ∈ C∞(M), defined by α∧α=
Pf(α)ω ∧ω, is non-zero. We then set [14]

α√
|Pf(α) |

=: Jα ⌙ω , (B.2)

for Jα an endomorphism of the tangent bundle. This yields the identity

Jα ⌙(α∧ω) =
√
|Pf(α) |

(
J2α ⌙ω+

Pf(α)
|Pf(α) |

ω

)
∧ω . (B.3)

Upon combining this identity with the ω-effectiveness of α and the non-degeneracy of
ω, we immediately see that Jα is an almost complex (respectively, para-complex) structure
when Pf(α)> 0 (respectively, Pf(α)< 0). The differential forms ω and Jα ⌙ω define the non-
degenerate differential (2, 0)- and (0, 2)-forms with respect to Jα. Then, we have the following
result:

Proposition B.2. For Jα as defined in (B.2) there exists a differential (1, 1)-form K on M such
that K∧K 6= 0, K∧ω = 0, and K∧ (Jα ⌙ω) = 0.

Proof. Note that ω and Jα ⌙ω are linearly independent. Next, let ρ ∈ Ω2(M) be such that
{ω,Jα ⌙ω,ρ} is linearly independent. By theorem B.1, we have a unique decomposition
ρ= ρ0 +λ0ω with ρ0 ∧ω = 0 and λ0 ∈ C∞(M). Since (Jα ⌙ω)∧ (Jα ⌙ω) 6= 0, we may
again apply theorem B.1 to obtain the unique decomposition ρ0 = ρ1 +λ1(Jα ⌙ω) with λ1 ∈
C∞(M) such that ρ1 ∧ (Jα ⌙ω) = 0. Since (Jα ⌙ω)∧ω = 0, we also have ρ1 ∧ω = 0. Hence,
{ω,Jα ⌙ω,ρ1} is linearly independent, and we must also have that ρ1 ∧ ρ1 6= 0 since the exter-
ior product yields a non-degenerate metric on

∧2T∗M. In summary, we have thus obtained a
K := ρ1 such that K∧K 6= 0, K∧ω = 0, and K∧ (Jα ⌙ω) = 0.

Finally, since ω and Jα ⌙ω combine to give non-degenerate differential (2, 0)- and (0, 2)-
form, Ω(2,0) and Ω(0,2), and since K∧ω = 0 and K∧ (Jα ⌙ω) = 0, we conclude that K∧
Ω(2,0) = 0 and K∧Ω(0,2) = 0. Since Ω(2,0) ∧Ω(0,2) 6= 0, K must be of type (1, 1) with respect
to Jα.
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Appendix C. Connections and curvatures

C.1. Pull-back metric in two dimensions

In what follows, we shall provide some more details on the computation of the Levi–Civita
connection and curvature scalar associated with the metric (2.27) from section 2.2. Firstly,
recall that using (2.22), the metric (2.27) can be written in the form

gij = ζg̃ij with g̃ij = ψij , (C.1)

where the indices on ψ ∈ C∞(M) are interpreted via (2.30). As g is, up to a sign, a conformal
scaling of the Hessian metric with respect to ψ when ζ 6= 0, we wish to exploit this to write
the connection and curvature scalar of g in terms of those for g̃.

C.1.1. Connection. We begin by observing that

∇̊iψjk = ψijk+
1
3

([
∇̊i,∇̊j

]
ψk+

[
∇̊i,∇̊k

]
ψj

)
= ψijk−

1
3

(
R̊ijk

l+ R̊ikj
l
)
ψl (C.2)

and so,

∇̊iψjk+ ∇̊jψik−∇̊kψij = ψijk+
4
3
R̊k(ij)

lψl . (C.3)

Consequently, the Christoffel symbols for g̃ are given by

Γ̃ij
k =

1
2
g̃kl (∂ig̃jl+ ∂jg̃il− ∂lg̃ij)

= Γ̊ij
k+

1
2
g̃kl
(
∇̊iψjl+ ∇̊jψil−∇̊lψij

)
= Γ̊ij

k+
1
2
Υijlg̃

lk ,

(C.4)

where we have used (C.3) and introduced the notation

Υijk := ψijk+
4
3
R̊k(ij)

lψl . (C.5)

This thus verifies (2.32b). The Christoffel symbols (2.32a) then follow from the usual argu-
ment for conformal rescalings (see e.g. [75]).

C.1.2. Curvature. Let us now compute the curvature scalar for (2.27). Firstly, we note that

R̃ijk
l = ∂iΓ̃jk

l− ∂jΓ̃ik
l− Γ̃ik

mΓ̃jm
l+ Γ̃jk

mΓ̃im
l

= R̊ijk
l+

1
2

(
∇̊iΥjk

l−∇̊jΥik
l− 1

2
Υik

mΥjm
l+

1
2
Υjk

mΥim
l

)
,

(C.6)

where we have used (C.4) and set Υij
k := Υijlg̃lk. Next, it is not too difficult to see that

∇̊ig̃
jk = −g̃jlg̃km

(
ψilm−

2
3
R̊i(lm)

nψn

)
. (C.7)
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and

∇̊iψjkl = ψijkl− 2R̊i( jk
mψl)m−

1
2
ψm∇̊( jR̊|i|kl)

m . (C.8)

Using these two relations, we find that Υjk
l = g̃lmΥjkm,

∇̊iΥjk
l = −g̃lr(ψirs−

2
3
R̊i(rs)

nψn)Υjk
s+

4
3
g̃lm(̊Rm( jk)

nψin+ψn∇̊iR̊m( jk)
n)

+ g̃lm(ψijkm−
1
2
ψn∇̊( jR̊|i|km)

n− 2R̊i( jk
nψm)n) .

(C.9)

Upon substituting this expression and (C.5) into (C.6), the curvature scalar (2.33b) then follows
directly from the traces R̃= g̃ijR̃kijk. Finally, the curvature scalar (2.33a) then follows from the
usual argument for conformal rescalings (see e.g. [75]).

C.2. Phase space curvature

We now compute the curvature of the metric (2.26). Before we do so, however, let us recap
the vielbein formalism as it is more efficient than working in a coordinate basis.

C.2.1. Vielbein formalism. Let (M, g) be an m-dimensional (semi-)Riemannian manifold
coordinatised by xi with i, j, . . .= 1, . . . ,m. Then

g =
1
2
gijdx

i� dxj . (C.10)

We denote the vielbeins by Ea = Eai∂i ∈ X(M) for a,b, . . .= 1, . . . ,m, with (Eai) ∈
C∞(M,GL(m)). Dually, we have ea = dxieia ∈ Ω1(M), with (eia) ∈ C∞(M,GL(m)), satis-
fying Ea ⌙eb = δa

b. Consequently, we have

Ea
iei

b = δa
b and ei

aEa
j = δi

j , (C.11)

and therefore

g =
1
2
eb� eaηab , (C.12)

with ηab = diag(−1, . . . ,−1,1, . . . ,1).
The structure functions Cabc ∈ C∞(M) are given by

[Ea,Eb] = Cab
cEc , (C.13)

or, dually,

dea =
1
2
ec ∧ ebCbca . (C.14)

The torsion and curvature two-forms,

Ta =
1
2
ec ∧ ebTbca and Ra

b =
1
2
ed ∧ ecRcdab , (C.15)
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are defined by the Cartan structure equations

dea− eb ∧ωba =:−Ta and dωa
b−ωa

c ∧ωcb =:−Rab , (C.16)

where ωab = ecωcab is the connection one-form. The associated Ricci tensor and the curvature
scalar are then given by

Rab := Rcab
c and R := ηbaRab . (C.17)

Furthermore, metric compatibility amounts to requiring

ωab = −ωba with ωab := ωa
cηcb . (C.18)

Imposing (C.18) and the torsion freeness constraint Ta = 0 yields the Levi-Civita connec-
tion and a short calculation shows that this connection is given by

ωab
c =

1
2
(Ccab+Ccba+Cab

c) (C.19)

with indices raised and lowered using ηab. In this case, the curvature scalar (C.17) is

R = 2EaC
a
b
b−Cab

bCac
c− 1

2
CabcC

acb− 1
4
CabcC

abc . (C.20)

C.2.2. Connection. Let now (M, g̊) be a Riemannianmanifold, and consider themetric (3.15)
on T∗M now assumed to be in 2m dimensions. Furthermore, let

E̊a := E̊a
i ∂

∂xi
and e̊a := dxie̊i

a (C.21)

be the vielbeins and dual vielbeins on (M, g̊) with structure functions C̊abc, and set

(
êA
)
= (êa, êa) :=

(√
| f̂ |dxie̊ia, E̊ai ∇̊qi

)
,

(η̂AB) =

(
η̂ab η̂a

b

η̂ab η̂ab

)
:=

(
sgn
(̂
f
)
1m 0

0 1m

) (C.22)

for multi-indices A,B, . . .. Then, the metric (3.15) becomes

ĝ =
1
2
êB� êAη̂AB . (C.23)

Note that e̊ia and E̊ai only depend on the base manifold coordinates xi and not on the fibre
coordinates qi.

Next, dually, we have ÊA ⌙̂eB = δA
B with (ÊA) = (Êa, Êa) and

Êa :=
1√
| f̂ |
E̊a

i

(
∂

∂xi
+ Γ̊ij

kqk
∂

∂qj

)
and Êa := e̊i

a ∂

∂qi
. (C.24)
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After a straightforward calculation, we obtain for [ÊA, ÊB] = ĈABCÊC the relations

[Êa, Êb] =
1√
| f̂ |
C̊ab

cÊc− Ê[a log(| f̂ |)Êb] +
1

| f̂ |
R̊abc

dqdÊ
c ,

[Êa, Ê
b] =

1
2
Êb log(| f̂ |)Êa−

1√
| f̂ |
ω̊ac

bÊc ,

[Êa, Êb] = 0 ,

(C.25)

where we have set qa := E̊ai qi and used the identities

ω̊ab
c = E̊a

iE̊b
j

(
Γ̊ij

ke̊k
c− ∂

∂xi
e̊j
c

)
and R̊abc

d = E̊a
iE̊b

jE̊c
kR̊ijk

le̊l
d . (C.26)

Reading off the structure functions ĈABC from these relations and using the formula (C.19),
the Levi-Civita connection ω̂ABC for the metric (3.15) can be written in terms of the Levi-Civita
connection ω̊abc for the background metric g̊ as

ω̂AB
C =

1
2
(ĈCAB+ ĈCBA+ ĈAB

C) . (C.27)

C.2.3. Curvature. Upon combining (C.25) and (C.27) with (C.20), the curvature scalar of the
metric (3.15) is given by

R̂ =
1

f̂
R̊− 1

4̂f 2
R̊abc

dR̊abceqdqe− (m− 1)∆̂B log(| f̂ |)− δabÊ
aÊb log(| f̂ |)

+
sgn( f̂)

4
(m− 1)(m− 2)δabÊa log(| f̂ |)Êb log(| f̂ |)

+
1
4
m(m− 3)δabÊ

a log(| f̂ |)Êb log(| f̂ |) ,

(C.28)

where ∆̂B is the Beltrami Laplacian for ĝ. Here, R̊abcd is the Riemann curvature tensor for
the background metric g̊ and R̊ the associated curvature scalar. In our coordinate basis, this
becomes

R̂ =
1

f̂
R̊− 1

4̂f 2
R̊ijk

lR̊ijkmqkqm− (m− 1)∆̂B log(| f̂ |)− g̊ij
∂2

∂qi∂qj
log(| f̂ |)

+
1

4̂f
(m− 1)(m− 2)̊gij

(
∂

∂xi
+ Γ̊ik

lql
∂

∂qk

)
log(| f̂ |)

(
∂

∂xj
+ Γ̊jm

nqn
∂

∂qm

)
log(| f̂ |)

+
1
4
m(m− 3)̊gij

∂

∂qi
log(| f̂ |) ∂

∂qj
log(| f̂ |) ,

(C.29)

where we have used (C.24). This verifies (3.22).
Finally, we note that in the case of the flat backgroundmetric g̊ij = δij, we have f̂ = f = 1

2∆p
with ∆ the standard Laplacian on Rm and so, the formula (C.29) simplifies to

R̂ =
m− 1
4f 3

[(6−m)∂if∂
if− 4f∆f] . (C.30)
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[57] Călugăreanu G 1959 L’intégral de Gauss et I’analyse des noeuds tridimensionnels Rev. Math. Pures
Appl. 4 5
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