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distribution of mean-field models.
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Abstract: The aim of the paper is to prove that the rates of convergence in distribution for
N -particle mean-field models are the expected one: N−1 in Law of Large Numbers regime,
and N−1/2 in Central Limit Theorem regime. These proofs require to study empirical mea-
sures of McKean-Vlasov particle systems, and conditional laws of McKean-Vlasov processes,
as measure-valued Markov processes. In particular, the expressions of the infinitesimal gen-
erators of such processes are established for measure-valued processes with general jumps.
The generators being differential operators, all the proofs rely on the analytical properties of
measure-variable functions, and the differentiation of such functions.
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Introduction

The notion of particle systems is widely studied in many frameworks due to the diversity of their
applications: biology (e.g. neural networks Fournier and Löcherbach (2016), genomics Reynaud-
Bouret and Schbath (2010), ecological networks Billiard et al. (2022)), finance (e.g. order books
Lu and Abergel (2018), high frequency data Bauwens and Hautsch (2009)), sociology (e.g. social
networks Mitchell and Cates (2009)), physics (e.g. kinetic theory Vedenyapin, Sinitsyn and Dulov
(2011)). A particular case of interest concerns mean-field particle systems, meaning systems in which
the particles interact with all the others in a similar way. The reason behind this interest is that,
the interactions and the dynamics of such systems can be somehow characterized by their empirical
measures. The advantage of studying the empirical measure rather than the particle system itself is
that, if the dynamics of the particles are characterized by R-valued processes, then the values taken
by the empirical measure belong to the set of probability measures on R, which does not depend
on the number of particles of the system. In this paper, we study large scale limit behavior, as the
number of particles goes to infinity, so it is preferable to work on spaces that are independent of
the size of the systems. In particular, the study of mean-field particle systems is closely related to
the notion of measure-valued Markov processes.

The study of measure-valued Markov processes goes back at least to Fleming and Viot (1979) to
model population genetics. In the seminal course Dawson (1993), Donald Dawson has introduced
a notion of differentiation for measure-variable functions, in order to characterize infinitesimal
generators and martingale problems in the context of measure-valued Markov processes. A variant
of the notion of the derivative introduced by Donald Dawson, has been defined by René Carmona
and François Delarue (see e.g. section 5.4.1 of Carmona and Delarue (2018)) and is referred to as the
linear derivative, and another rather different notion (at first sight) by Pierre-Louis Lions in a course
given at Collège de France (see, for example, the lecture notes of Pierre Cardaliaguet Cardaliaguet
(2013)). Since then, this topic still draws interest: for instance, recently, Guo, Pham and Wei (2023)
and Cox et al. (2021) have established Ito’s formulas for measure-valued semimartingales in different
frameworks, and the authors of Crisan and McMurray (2018) have proved some regularity properties
for stochastic flows of McKean-Vlasov processes. In this paper, we mostly use a notion of linear
derivative and state precisely the definition at Section 2.1.

There are two main contributions of this paper, that are closely related. The first one concerns the
convergence speed for large-scale limits of mean-field particle systems, and aims to improve it for the
convergence in distribution. Indeed, it is now of common knowledge that the Lp-convergence speed
of N -particle systems is of order N−1/2 in Law of Large Numbers regime (see e.g. Theorem 1.4
of Sznitman (1991), or more recently in a more general framework, Proposition 3.1 of Andreis,
Dai Pra and Fischer (2018)), whereas, to the best of our knowledge, the fact that the convergence
speed in distribution is of order N−1 (see Theorem 1.3) is new, even in the simple model studied in
Corollary 1.5. In addition, few results exist for the convergence in Central Limit Theorem regime
(e.g. Erny, Löcherbach and Loukianova (2021), and, in the more general framework of martingale
measures, Erny, Löcherbach and Loukianova (2022a)), and, as far as we know, the only rate of
convergence for this kind of model has been obtained in Erny, Löcherbach and Loukianova (2023)
for a strong convergence using coupling techniques based on the approximation theorem of Komlós,
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Major and Tusnády (1976). This convergence speed is very slow: (lnN)1/5/N1/10. Once again, we
prove that the convergence speed in distribution is the expected one, in N−1/2 (see Theorem 1.7),
and this result is even knew in simple frameworks, like the one of Corollary 1.9.

The second main contribution is the study of some analytical properties of measure-variable
functions, and of some Markovian properties of Measure-valued processes. Note that, since the
infinitesimal generator is a differential operator, it is required to study a notion of differentiation for
measure-variable functions in order to study measure-valued Markov processes. It is the reason why
we need to study analytical properties of measure-variable functions to prove our main results (i.e.
Theorems 1.3 and 1.7). Most of these properties are not completely new, but are studied further in
this paper so that they can be used to obtain the aforementioned rates of convergence. For instance,
we prove Taylor-Lagrange’s inequality of any order for measure-variable functions, and we use it up
to order three (the only related known result in this context is the mean value theorem). This is not
as common as it seems since the notion of measure-variable derivative is usually limited to order
two because it is sufficient to state martingale problems and express infinitesimal generators (let
us mention Cuchiero, Larsson and Svaluto-Ferro (2019) that also studied analytical properties of
measure-variable polynomials with derivatives of any order). Concerning the Markovian properties,
we prove a Trotter-Kato’s formula, and give an explicit expression for the generators of some
measure-valued processes. The expressions of the generators extend known results: it is similar to
Guo, Pham and Wei (2023) and Cox et al. (2021) that have proved Ito’s formula for this kind of
processes. However, there are some differences: compared to Cox et al. (2021), the framework is
not the same and the dynamics sufficiently differs for the expressions of the generators to have a
different form. Our model is closer to the framework of Guo, Pham and Wei (2023) (restricting our
study to McKean-Vlasov processes, whereas in Guo, Pham and Wei (2023) general semimartingales
are considered), but we somehow generalize their results for two reasons: the first one is that
they only consider measure-valued processes that are deterministic processes defined as laws of
semimartingales, whereas we obtain a generator for stochastic processes defined as conditional laws
of McKean-Vlasov processes given one of the Brownian motion of the SDEs (as a consequence,
the expressions of our generators involve an additional term corresponding to the second order
linear derivative of the test-function, which is the only property closer to the model of Cox et al.
(2021)). The second reason is that we also give the expressions of generators of measure-valued
processes defined as empirical measures of particle systems with jumps (this framework and its
technical difficulties are mentioned in Remark 3.15 of Guo, Pham and Wei (2023)). In particular,
to the best of our knowledge, obtaining Ito’s formula or generator for a measure-valued processes
with such general jumps is new. The expressions of these generators are given at Theorems 3.6 for
the conditional laws of McKean-Vlasov processes, and 3.10 for the empirical measures of McKean-
Vlasov particle systems.

Organization of the paper. The next section introduces the notation that are used through-
out the paper. Section 1 is dedicated to the statement of the results about the convergence speed
in distribution for mean-field particle systems. The section itself is split into two subsections: Sec-
tion 1.1 for the Law of Large Numbers regime and Section 1.2 for the Central Limit Theorem
regime. In each subsection, a general statement is given as a theorem, and a particular case more
understandable requiring less technical assumptions is also given as corollary (the results of the
corollaries are still new in the literature). The goal of Section 2 is to study some analytical proper-
ties of measure-variable functions: in particular, to prove Taylor-Lagrange’s inequality, and to study
a notion of measure-variable polynomials. Section 3 aims to study some Markovian properties of
measure-valued processes: establishing Trotter-Kato’s formula, giving an expression for the genera-
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tors of such processes (in the cases of conditional law of diffusions, and empirical measures of particle
systems), and studying the regularity of their semigroups (which is required to use Trotter-Kato’s
formula jointly with Taylor-Lagrange’s inequality). The proofs of the results stated at Section 1
are given at Section 4. Finally, the Appendix gathers some technical results and technical proofs in
order to ease the reading of the paper.

Notation and convention

In the notation below, (E, d) is always a Polish space (or just a set if the notation does not need a
particular structure on E).

� For x = (x1, ..., xn) ∈ Rn, we denote ||x||1 the classical L1-norm:

||x||1 =

n∑
k=1

|xk|.

� P(E) is the set of probability measures on E, endowed with the topology of Prohorov metric
(i.e. the topology of the weak convergence).

� If X is an E-valued random variable, L(X) ∈ P(E) denote its law.
� For p ≥ 1, Pp(E) is the set of probability measures on E with a finite p-th order moment,
and P∞(E) is the intersection of every Pp(E) over all p ≥ 1. Each Pp is endowed with the
p-th order Wasserstein metric.

� For p ≥ 1 and m,µ ∈ Pp(E), the p-th order Wasserstein metric between m and µ is defined
as the best Lp-coupling between m and µ:

Wp(m,µ) = inf
L(X)=m,L(Y )=µ

E [d(X,Y )p]
1/p

.

� For m,µ ∈ P1(E), DKR(m,µ) denotes the Kantorovich-Rubinstein metric between m and µ:

DKR(m,µ) = sup
f∈Lip1

∫
E

f(x) d (m− µ) (x),

where Lip1 denotes the set of Lipschitz continuous functions f : E → R such that, for
all x, y ∈ E, |f(x)− f(y)| ≤ d(x, y). By the Kantorovich-Rubinstein duality (e.g. Remark 6.5
of Villani (2009)), DKR =W1. In the paper, we mostly use the characterization of DKR and
its notation rather than W1.

� Note that each Pp(R) is Polish by Theorem 6.18 of Villani (2009). ForM1,M2 ∈ P1(P1(R)), we
denote specifically by DKR(M1,M2) the Kantorovich-Rubinstein metric betweenM1 andM2.

� A function f : P1(R) × Rn → R is said to be Lipschitz continuous if it is Lipschitz contin-
uous w.r.t. both variables together: there exists C > 0 such that, for all m1,m2 ∈ P1(R)
and x1, x2 ∈ Rn,

|f(m1, x1)− f(m2, x2)| ≤ C (||x1 − x2||1 +DKR(m1,m2)) .

� A function f : P1(R) × Rn → R is said to be sublinear if: there exists C > 0 such that, for
all m ∈ P1(R) and x ∈ Rn,

|f(m,x)| ≤ C

(
1 + ||x||1 +

∫
R
|y|dm(y)

)
.
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� C(E) is the set of continuous functions f : E → R.
� For k ∈ N∪ {∞} and n ∈ N∗, Ck(Rn) denotes the space of functions f : Rn → R of class Ck.
� For f ∈ Ck(Rn) and α a multi-index belonging to Nn, the size of α is

|α| =
n∑

i=1

αi,

and, if |α| ≤ k, ∂αf denotes the derivative of f w.r.t. α.
� When no doubt is possible (and to make some expressions more readable), we use usual
notation for partial derivatives, for example, if g ∈ C3(R2), for all x, y ∈ R,

∂3xxyg(y, x) = ∂(1,2)g(y, x) and
(
∂2y1y2

g(y1, y2)
)
|y1=y2=x

= ∂(1,1)g(x, x),

and the same notation replacing the derived variables by their indices:

∂3xxyg(y, x) = ∂32,2,1g(y, x) = ∂(1,2)g(y, x).

� For a function f : P1(R)× R → R and m ∈ P1(R), x ∈ R, we use the notation

∂(0,1)f(m,x) = ∂xf(m,x) and ∂(0,2)f(m,x) = ∂2xxf(m,x),

but, in this context where f depends on variables of different nature (i.e. belonging to P1(R)
and R) the index of the measure-variable is always zero. For technical reasons, the meaning
would not be clear otherwise in general (see Corollary 2.25 for a statement where it makes
sense). However, to state one of our assumptions, we need to introduce a notion of mixed
derivatives at Definition 2.11 related to this remark.

� Ck
b (Rn) is the subspace of Ck(Rn) containing the functions f such that: for all multi-index α

of size non-greater than k,
sup
x∈Rn

|∂αf(x)| <∞.

� Ck
c (Rn) is the subspace of Ck

b (Rn) containing the compactly supported functions.
� For f ∈ Ck

b (Rn), we denote

||f ||k =
∑
|α|≤k

sup
x∈Rn

|∂αf(x)|.

� A tuple x ∈ En is always indexed from 1 to n: x = (x1, ..., xn),
� For x ∈ En and 1 ≤ k ≤ n, x\k denotes the tuple x without the index k:

x\k = (x1, ..., xk−1, xk+1, ..., xn) ∈ En−1,

and, for y ∈ E, (x\ky) denotes the tuple x where xk is replaced by y:

x\ky = (x1, ..., xk−1, y, xk+1, ..., xn) ∈ En.

In addition, for k ̸= l, and y1, y2 ∈ E, we use the notation x\(k,l) for x without the indices k
and l, and (x\(k,l)(y1, y2)) for the tuple x where xk is replaced by y1 and xl by y2.
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For example, this notation is used in the following context: if f ∈ C0
b (R3), m ∈ P(R) and y ∈

R,

3∑
k=1

∫
R2

f(x\ky)dm⊗2(x\k) =
∫
R2

f(y, x2, x3)dm
⊗2(x2, x3)

+

∫
R2

f(x1, y, x3)dm
⊗2(x1, x3) +

∫
R2

f(x1, x2, y)dm
⊗2(x1, x2).

� For n ∈ N∗ and F : P1(R)× Rn → R and x ∈ Rn, we denote by Fx the following function

Fx : m ∈ P1(R) 7−→ Fx(m) = F (m,x).

� For m ∈ P(R) and λ ∈ R, we denote by S(m,λ) the probability measure m shifted by λ:

S(m,λ) : A ∈ B(R) 7−→ m ({x− λ : x ∈ A}) .

� We use C to denote any arbitrary positive constant. The value of C can change from line to
line inside an equation. In addition, if C depends on non-model parameters θ, we denote it
by Cθ.

1. Main results on the convergence speed of mean-field models

Our main results consist in obtaining new explicit convergence speeds in distribution for well-known
mean-field particle systems. Section 1.1 treats the case of the linear regime (i.e. Law of Large Num-
bers regime) where the interaction strength for the N -particle system is of order N−1. Section 1.2
handles the diffusive regime (i.e. Central Limit Theorem regime) with centered interaction strength
of order N−1/2. As it can be expected, the convergence speed is N−1 for the linear regime, and
N−1/2 for the diffusive one.

In each of both following subsections, a theorem is given for a general model, and a corollary is
stated for a simpler model. The assumptions of the theorems require some technical definitions given
at Section 2 to be stated formally, which is not the case for the hypotheses of the corollaries. Despite
concerning well-known models, which can be considered elementary, the results of the corollaries
are new.

1.1. Mean-field model in linear regime

In this section, we introduce for any N ∈ N∗, the processes XN,k (1 ≤ k ≤ N) solutions to

dXN,k
t =b

(
µN
t , X

N,k
t

)
dt+ σ

(
µN
t , X

N,k
t

)
dBk

t + ς
(
µN
t , X

N,k
t

)
dWt (1)

+
1

N

N∑
l=1

∫
R+

h
(
µN
t−, X

N,l
t−

)
1{z≤f(µN

t−,XN,l
t− )}dπ

l(t, z),

where Bk (k ≥ 1) and W are standard Brownian motions of dimension one, πl (l ≥ 1) are Poisson

measures on R2
+ with Lebesgue intensity, and XN,k

0 (1 ≤ k ≤ N) are i.i.d. such that W , Bk (k ≥ 1),
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πl (l ≥ 1) and XN,k
0 (1 ≤ k ≤ N) are mutually independent, and

µN
t =

1

N

N∑
k=1

δXN,k
t

.

The main result of this section concerns the convergence of the particle systems above to the
limit process X̄ solution to the SDE below as N goes to infinity.

dX̄t = b
(
µ̄t, X̄t

)
dt+ σ

(
µ̄t, X̄t

)
dBt + ς

(
µ̄t, X̄t

)
dWt +

∫
R
h (µ̄t, x) f (µ̄t, x) dµ̄t(x)dt, (2)

where B,W are independent standard Brownian motions of dimension one, µ̄0 is P1(R)-valued
random variable (so the dynamics in (2) is defined conditionally on µ̄0) independent of the Brownian
motions such that, conditionally on µ̄0, X̄0 is µ̄0-distributed, and

µ̄t = L
(
X̄t|Wt

)
,

with W the filtration of W .
The reason of the technical phrasing concerning the initial condition of the SDE (2) is explained

formally in Remark 1.4. Roughly speaking, if the probability measure µ̄0 was deterministic and not
a Dirac mass, then, the rate of convergence in distribution in Theorem 1.3 would be at best N−1/2,
what would make the result useless compared to the existing literature (see Remark 1.2 below).

Note that, since our main result handles convergence in distribution, the process X̄ does not
need to be defined on the same space as the particle systems XN , and the Brownian motions may
be different or not w.l.o.g.

For the previous equations to be well-posed, we assume the following.

Assumption 1. For any m1,m2 ∈ P1(R), and x1, x2 ∈ R,

|b(m1, x1)− b(m2, x2)|+ |σ(m1, x1)− σ(m2, x2)|+ |ς(m1, x1)− ς(m2, x2)|
≤ C (|x1 − x2|+DKR(m1,m2)) ,

and∫ +∞

0

∣∣h(m1, x1)1{z≤f(m1,x1)} − h(m2, x2)1{z≤f(m2,x2)}
∣∣ dz

≤ C (|x1 − x2|+DKR(m1,m2)) .

In addition, we also suppose that, for any p ∈ N∗, there exists some Cp > 0 such that, for
all m ∈ P1(R), x ∈ R,

|(x+ h(m,x))
p − xp| f(m,x) ≤ Cp

(
1 + |x|p +

∫
R
|y|pdm(y)

)
.

Remark 1.1. The last condition of Assumption 1 is guaranteed if, for example, one of the two
following properties hold:

� the function h is sublinear and the function f is bounded,
� or the function h is bounded and the function f is sublinear.
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We also make the following hypothesis concerning the initial conditions.

Assumption 2. For every N ∈ N∗, the variables XN,k
0 (1 ≤ k ≤ N) are i.i.d.

All the initial conditions X̄0 and XN,k
0 (N ∈ N∗ and 1 ≤ k ≤ N) have a finite fourth order

moment, uniformly bounded w.r.t. N :

E
[∫

R
|x|4dµ̄0(x)

]
<∞ and sup

N∈N∗
E
[∣∣∣XN,1

0

∣∣∣4] <∞.

Under Assumptions 1 and 2, it is known that the SDEs (1) and (2) are well-posed (see e.g.
Theorem 2.1 of Graham (1992)) in the following sense: there exist unique strong solutions (XN,k)k
and X̄ of the respective SDEs that satisfy, for all T > 0, 1 ≤ k ≤ N,∫

P1(R)
Em

[
sup
t≤T

∣∣X̄t

∣∣4] d (L (µ̄0)) (m) <∞ and sup
N∈N∗

E
[
sup
t≤T

∣∣∣XN,k
t

∣∣∣4] <∞, (3)

with Em the expectation under which the law of X̄0 is m.
Note that, a priori, uniqueness only holds for processes that satisfy the above controls, which

are not a priori estimates. The controls (3) can be guaranteed on the solutions that are built via
Banach-Picard schemes for example (see the Step 1 of the proof of Lemma 3.8 at Appendix B for
the SDE (2)).

Remark 1.2. It is now classical (see e.g. Proposition 3.1 of Andreis, Dai Pra and Fischer (2018))
that, if we define X̄k as the solution of (2) w.r.t. the same Brownian motion W as in (1) and Bk

instead of B, then, the particle systems (XN,k)k converges in L1 to the limit system (X̄k)k in the
following sense: for all T > 0, there exists CT > 0 such that, for all 1 ≤ k ≤ N,

E
[
sup
t≤T

∣∣∣XN,k
t − X̄k

t

∣∣∣] ≤ CTN
−1/2.

In particular, this result can be used to prove the convergence in distribution of µN to µ̄, but it
cannot allow to prove that the convergence speed is N−1.

Our first main result requires an additional technical assumption. This assumption relies on the
notion of differentiability of measure-variable functions as it is defined in Section 2.1. Corollary 1.5
is a particular case of Theorem 1.3 that does not need this technical assumption.

Assumption 3. The functions b, σ, ς, β and f ·h admit fifth order mixed derivatives (in the sense of
Definition 2.11) and all their mixed derivatives of orders from one to five are bounded. In addition,
if g : P1(R) × R → R is any of the previous functions, then, there exists C > 0 such that for
all x ∈ R, the function gx belongs to C2

b (P1(R)) (the set is introduced in Definition 2.8), and

sup
m∈P1(R)
y1,y2∈R

∣∣∂2y1y2
δ2(gx)(m, y1, y2)

∣∣ ≤ C(1 + |x|).

Theorem 1.3. Grant Assumptions 1, 2 and 3. Then, for all T > 0, there exists CT > 0 such
that, for any measure-variable polynomial G of order four (in the sense of Definition 2.30), for
all N ∈ N∗,

sup
t≤T

∣∣E [G (µN
t

)]
− E [G (µ̄t)]

∣∣ ≤ CT ||G||2

(
DKR

(
L

(
1

N

N∑
k=1

δXN,k
0

)
,L(µ̄0)

)
+

1

N

)
,
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where ||G||2 is a bound of the mixed derivatives of G up to order two (defined at Definition 2.14).

Remark 1.4. Let us explain precisely why considering a standard phrasing for the initial condition
of (2) would make Theorem 1.3 useless. Usually, one would have considered an initial condition X̄0

for the SDE (2) with deterministic law µ̄0. However, if µ̄0 was a deterministic element of P1(R),
then, we would have

L(µ̄0) = δµ̄0
,

which would imply

DKR

(
L

(
1

N

N∑
k=1

δXN,k
0

)
,L(µ̄0)

)
= E

[
DKR

(
1

N

N∑
k=1

δXN,k
0

, µ̄0

)]
.

Then, by Theorem 3.1 of Bobkov and Ledoux (2019), the rate of convergence of the quantity

above would necessarily be, at best, N−1/2 (except in the trivial case, where L(X̄0) = L(XN,k
0 ) = δx0

for some x0 ∈ R, where the quantity would be zero), which would make the convergence speed of
Theorem 1.3 not better than what can be proved with existing techniques.

As mentioned previously, let us study a particular case of this model and state a corollary
of Theorem 1.3 that can be understood without the technical definitions of Section 2. So let us
introduce the following particle systems: for N ∈ N∗ and 1 ≤ k ≤ N ,

dY N,k
t = b̃

(
Y N,k
t

)
dt+ σ̃

(
Y N,k
t

)
dBk

t +
1

N

N∑
l=1

∫
R+

1{z≤f̃(XN,l
t− )}dπ

l(t, z), (4)

where Bk (k ≥ 1) are standard Brownian motions, πl (l ≥ 1) are Poisson measures with Lebesgue

intensity, such that the Brownian motions and the Poisson measures are independent, and Y N,k
0 = x0

(1 ≤ k ≤ N) for some deterministic x0 ∈ R.
And let us define the following limit process

dȲt = b̃
(
Ȳt
)
dt+ σ̃

(
Ȳt
)
dBt + E

[
f̃(Ȳt)

]
dt, (5)

with B a standard Brownian motion and Ȳ0 = x0.

Corollary 1.5. Assume that the functions b̃, σ̃ and f̃ are C5 and that their derivatives of orders
from one to five are bounded. Then, for all T > 0, there exists CT > 0 such that, for any φ ∈ C4

b (R),
for all N ∈ N∗,

sup
t≤T

∣∣∣E [φ(Y N,1
t

)]
− E

[
φ
(
Ȳt
)]∣∣∣ ≤ CT (||φ||∞ + ||φ′||∞ + ||φ′′||∞)N−1.

1.2. Mean-field model in diffusive regime

This section is similar as the previous one, for a different type of model. In the N -particle system (1),
the interaction strength is N−1, whereas, in the model of this section, it is of order N−1/2. For this
kind of model to converge as the number of particles tends to infinity, the interactions between
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particles need to be centered. So, the dynamics depends on a probability measure called ν, that
satisfies ∫

R
u dν(u) = 0 and

∫
R
|u|3dν(u) <∞.

Formally, for any N ∈ N∗, we introduce XN,k (1 ≤ k ≤ N) as solutions to

dXN,k
t =b

(
µN
t , X

N,k
t

)
dt+ σ

(
µN
t , X

N,k
t

)
dBk

t (6)

+
1√
N

N∑
l=1

∫
R+×R

u · h
(
µN
t−, X

N,l
t−

)
1{z≤f(µN

t−,XN,l
t− )}dπ

l(t, z, u),

where Bk (k ≥ 1) are standard Brownian motions of dimension one, πl (l ≥ 1) are Poisson measures

on R2
+ × R with intensity dt · dz · dν(u), and XN,k

0 (1 ≤ k ≤ N) are i.i.d. such that Bk (k ≥ 1), πl

(l ≥ 1) and XN,k
0 (1 ≤ k ≤ N) are mutually independent, and

µN
t =

1

N

N∑
k=1

δXN,k
t

.

The main result of this section states the rate of convergence in distribution of the N -particle
system (6) to the limit process X̄ solution to the following SDE:

dX̄t =b
(
µ̄t, X̄t

)
dt+ σ

(
µ̄t, X̄t

)
dBt (7)

+

(∫
R
u2dν(u)

)1/2(∫
R
h(µ̄t, x)

2f(µ̄t, x)dµ̄t(x)

)1/2

dWt,

where B,W are standard Brownian motions of dimension one, µ̄0 is P1(R)-valued random variable
such that B,W, µ̄0 are independent, conditionally on µ̄0, X̄0 is µ̄0-distributed, and

µ̄t = L
(
X̄t|Wt

)
,

with W the filtration of W .

Remark 1.6. The convergence in distribution of µN to µ̄ has already been proved in Erny, Löcherbach
and Loukianova (2022a) in a more general framework (cf Theorem 2.6 for the general case, and
Example 1 for a model closer to the one of this section). But the technics used in the proofs did not
allow to obtain an explicit convergence speed.

For the main result in the diffusive regime, we need the following assumption that slightly differs
from Assumption 3.

Assumption 4. the functions b, σ and m 7→ (
∫
R h(m,x)

2f(m,x)dm(x))1/2 admit fifth order mixed
derivatives (in the sense of Definition 2.11) and all their mixed derivatives of orders from one to
five are bounded. In addition, if g : P1(R) × R → R is any of the previous functions, then, there
exists C > 0 such that for all x ∈ R, the function gx belongs to C2

b (P1(R)) (the set is introduced in
Definition 2.8), and

sup
m∈P1(R)
y1,y2∈R

∣∣∂2y1y2
δ2(gx)(m, y1, y2)

∣∣ ≤ C(1 + |x|).



X. Erny/Measure-valued Markov processes and mean-field limits 11

As previously, a particular case (see Corollary 1.9) of the theorem below is given to avoid the
use of the technical assumption above.

Theorem 1.7. Grant Assumptions 1, 2 and 4. Assume that the probability measure ν is centered
with a finite third moment. Then, for all T > 0, there exists CT > 0 such that, for any measure-
variable polynomial G of order four (in the sense of Definition 2.30), for all N ∈ N∗,

sup
t≤T

∣∣E [G (µN
t

)]
− E [G (µ̄t)]

∣∣ ≤ CT ||G||3

(
DKR

(
L

(
1

N

N∑
k=1

δXN,k
0

)
,L(µ̄0)

)
+

1√
N

)
,

where ||G||3 is a bound of the mixed derivatives of G up to order three (defined at Definition 2.14).

Remark 1.8. Contrary to the situation in the linear regime, for the diffusive regime, it is possi-
ble to state the dynamics of (7) as usual concerning the initial condition (i.e. with µ̄0 = L(X̄0)
deterministic). Indeed, in Theorem 1.7, the rate of convergence is N−1/2 because it corresponds
to a Central Limit Theorem regime. So, the constraint about the convergence speed of the initial
condition (i.e. the fact that the term DKR is of order N−1/2), does not weaken our result. This
is the reason why, in the simple model below, it is not necessary to consider deterministic initial
conditions Ȳ0 and Y N,k

0 (1 ≤ k ≤ N), as it was done in Corollary 1.5.

Now, let us give, as a corollary, a consequence of Theorem 1.7 that is easier to state. So let us
introduce: for N ∈ N∗ and 1 ≤ k ≤ N ,

dY N,k
t = b̃

(
Y N,k
t

)
dt+ σ̃

(
Y N,k
t

)
dBk

t +
1√
N

N∑
l=1

∫
R+×R

u · 1{z≤f̃(XN,l
t− )}dπ

l(t, z, u), (8)

where Bk (k ≥ 1) are standard Brownian motions, πl (l ≥ 1) are Poisson measures with intensity dt·
dz ·dν(u) and, the variables Y N,k

0 (1 ≤ k ≤ N) are i.i.d. with finite p-th order moment for all p ∈ N∗.
The Brownian motions, Poisson measures and initial conditions are assumed to be independent.

And let Ȳ be solution of

dȲt = b̃
(
Ȳt
)
dt+ σ̃

(
Ȳt
)
dBt +

(∫
R
u2dν(u)

)1/2√
E
[
f̃(Ȳt)

∣∣∣Wt

]
dWt, (9)

with B,W independent standard Brownian motions, W the filtration ofW , and Ȳ0 having the same
law as the variables Y N,k

0 . The Brownian motions B,W are assumed to be independent of Ȳ0.

Corollary 1.9. Assume that the functions b̃, σ̃ and f̃ are C5 and that their derivatives of orders
from one to five are bounded. In addition, we assume that f̃ is bounded and lower-bounded by some
positive constants. We also assume that ν is centered with a finite third order moment. Then, for
any φ ∈ C4

b (R), for all T > 0, there exists CT,φ > 0 such that, for all N ∈ N∗,

sup
t≤T

∣∣∣E [φ(Y N,1
t

)]
− E

[
φ
(
Ȳt
)]∣∣∣ ≤ CT (||φ||∞ + ||φ′||∞ + ||φ′′||∞ + ||φ′′′||∞)N−1/2.
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2. Analysis of functions defined on spaces of probability measures

2.1. Definitions and some elementary properties

The following notion of differentiability is a generalization of the one introduced in Dawson (1993),
and often referred to as the linear derivative.

Definition 2.1. For m0 ∈ P1(R), a function F : P1(R) −→ R is said to be differentiable at m0 if
there exists a measurable sublinear function Hm0

: R → R such that, for all m ∈ P1(R),

F (m)− F (m0) =

∫
R
Hm0

(x) d(m−m0)(x) + εm0
(m), (10)

where εm0
(m)/DKR(m,m0) vanishes as m converges to m0 for the metric DKR. The function Hm0

is called a version of the derivative of F at m0. We define the canonical derivative of F at m0 as
the only version of the derivative that satisfies∫

R
Hm0

(x) dm0(x) = 0,

and denote it by, for all x ∈ R,
δF (m0, x) = Hm0

(x).

In the rest of the paper, we may omit ”canonical” and “linear” and just mention ”the derivative”.
For most of the properties that are studied in this paper, the canonical version of the derivative is
not particularly needed, but it allows the definitions to be unquestionably well-posed, particularly
for the notion of many times differentiable. Note that, the set Cn

b (P1(R)) (see Definition 2.8)
depends on the version of the derivative, and so Assumptions 3 and 4 also depend on our choice of
canonical derivative. However, for example, the expressions of the infinitesimal generators given at
Theorems 3.6 and 3.10 do not depend on this choice.

This particular choice of canonical derivative is motivated by the fact that it allows to recover
“natural properties” (see Lemma 2.4), and it is close to the notion of derivative that is used in
Dawson (1993). Let us remark that it is also the convention that was used by François Delarue
in his course at the Summer School “Mean Field Models” organized by Centre Henri Lebesgue at
Rennes in 2023.

Remark 2.2. It is easy to see that the versions of the derivative of F are never unique when they
exist: if some function Hm0 : R → R satisfies (10), then any function of the form x 7→ Hm0(x) +
G(m0) also satisfies (10). It can be noted (cf Lemma 2.3 below) that this notion of derivative is
still unique for the following equivalence relation : two functions H1, H2 : P1(R) × R → R are
equivalent if for all m,x, H1(m,x)−H2(m,x) is independent of x. Hence the canonical derivative
of a differentiable function always exists and is unique.

The following result allows to guarantee the uniqueness of the canonical derivative of differen-
tiable functions.

Lemma 2.3. Let m0 ∈ P1(R) and h1, h2 : R → R be measurable and sublinear. Assume that, for
all m ∈ P1(R), ∫

R
h1(x) d(m−m0)(x) =

∫
R
h2(x) d(m−m0)(x) + εm0

(m),



X. Erny/Measure-valued Markov processes and mean-field limits 13

where εm0(m)/DKR(m,m0) vanishes as m converges to m0. Then, for all x, y ∈ R,

h1(x)− h2(x) = h1(y)− h2(y).

In particular, if a function F : P1(R) → R is differentiable at some m ∈ P1(R), then its canonical
derivative at m exists and is unique.

Lemma 2.3 being not particularly useful for the understanding of the paper, we postpone its
proof to Appendix C.

Let us also state an elementary lemma guaranteeing expected properties for a differential oper-
ator. This lemma is implicitly used in the computation throughout the paper. For this lemma, the
choice of the canonical derivative is important.

Lemma 2.4.

(a) Let F : P1(R) → R be a constant function. Then F is differentiable at any m ∈ P1(R), and
its canonical derivative is the zero function.

(b) Let F,G : P1(R) → R be differentiable at m0 ∈ P1(R), and α ∈ R. Then, the function αF +G
is differentiable at m0, and, for all x ∈ R,

δ(αF +G)(m0, x) = αδF (m0, x) + δG(m0, x).

(c) Let F,G : P1(R) → R be differentiable at m0 ∈ P1(R) and Lipschitz continuous. Then, the
product function FG is differentiable at m0, with, for all x ∈ R,

δ(FG)(m0, x) = F (m0)δG(m0, x) +G(m0)δF (m0, x).

Proof. To prove Item (a), it is sufficient to notice that (10) is trivially satisfied if Hm0 is the zero
function, by considering εm0

to be the zero function. Item (b) is a straightforward consequence of
the linearity of the integral operator. To prove Item (c), let us write, for all m ∈ P1(R),

F (m)G(m)− F (m0)G(m0) =F (m)G(m)− F (m0)G(m)

+ F (m0)G(m)− F (m0)G(m0)

=F (m0) (G(m)−G(m0)) +G(m0) (F (m)− F (m0)) (11)

+ (F (m)− F (m0)) (G(m)−G(m0)) .

Besides, since F and G are assumed to be Lipschitz continuous, we have

|(F (m)− F (m0)) (G(m)−G(m0))| ≤ CDKR(m,m0)
2.

So, developing (11) using the differentiability of F and G proves the result.

Let us notice that the derivability in the sense of Definition 2.1 is close to the one used in Cox
et al. (2021) (as derivative), and in Guo, Pham and Wei (2023) and Carmona and Delarue (2018)
(as linear derivative). It is however different than the derivative introduced by Pierre-Louis Lions,
even if it is closely related (see Propositions 5.44, 5.48 and 5.51 of Carmona and Delarue (2018)).

Depending on the properties that are studied, each notion of differentiability can be more or less
appropriate to state and prove the results. For the sake of clarity, in all the paper, only one notion
of differentiability is used explicitly. We choose to use Definition 2.1 instead of Lions’ derivative
because it appears to be more appropriate to express the infinitesimal generators of measure-valued
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Markov processes, to retrieve properties of real-valued Markov processes (see Remarks 3.7 and 3.11).
However, to define the notion of mixed derivatives (that is used in Assumptions 3 and 4, and in
the proof of Lemma 3.8), the Lions-derivative is particularly useful as a notation. Instead of stating
the original and rather technical definition, we just give the expression of the Lions-derivative using
the (linear) derivative. As in Guo, Pham and Wei (2023), we use the notation δ for the (linear)
derivative, and ∂ for the Lions-derivative.

Definition 2.5 (Lions-derivative). Let F : P1(R) → R and m ∈ P1(R). The function F is said to
be L-differentiable at m if:

� F is differentiable at m (in the sense of Definition 2.1),
� and x ∈ R 7→ δF (m,x) is differentiable on R.

In this case, the Lions-derivative of F at m is the function ∂F (m, •) defined as

∂F (m, •) : x ∈ R 7−→ ∂F (m,x) = ∂xδF (m,x).

As mentioned earlier, the notion of derivative we use (cf Definition 2.1) is related to the definition
given at (Dawson 1993, p. 19) in the following sense (which is a straightforward consequence of
Lemma 2.15 with m0 = m and m1 = δx).

Remark 2.6. Let F : P1(R) → R be differentiable at m ∈ P1(R), then, for all x ∈ R,

F ((1− η)m+ ηδx)− F (m)

η

converges, as η > 0 goes to zero, to the canonical derivative δF (m,x) of F . In other words

δF (m,x) = (∂ηF ((1− η)m+ ηδx))|η=0 .

One can note that the previous remark gives a useful way of characterizing the expression of the
derivative of a given function, once it is known it is differentiable.

In the following, it is required to differentiate many times some functions. To define this notion,
we use the following notation: if G : P1(R)× Rk → R (with k ∈ N∗), then, for all x1, ..., xk ∈ R

G(x1,...,xk) : m ∈ P1(R) 7−→ G(m,x1, ..., xk).

Definition 2.7. A function F : P1(R) → R is said to be n-times differentiable if:

� F is (n− 1)-times differentiable,
� for all x ∈ Rn−1, the function (δn−1F )x is differentiable.

In that case we define inductively the canonical n-th derivative of F at m by: for all x =
(x1, ..., xn) ∈ Rn,

δnF (m,x1, ..., xn) = δ
(
(δn−1F )x\n

)
(m,xn).

The differentiability w.r.t. the measure-variable is not the only regularity that will be needed
to prove our results. We also need regularity w.r.t. the real variables appearing when a function
defined on P1(R) is differentiated.
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Definition 2.8. We define Cn,k(P1(R)) (with n ∈ N∗ and k ∈ N ∪ {∞}) the set of functions F :
P1(R) → R such that F is n-times differentiable on P1(R) and, for every 1 ≤ j ≤ n, the function

(m,x) ∈ P1(R)× Rj 7→ δjF (m,x)

is Ck w.r.t. x for fixed m, and is continuous w.r.t. m for fixed x.
In addition, we denote Cn

b (P1(R)) the subspace of Cn,n(P1(R)) composed of the (non-necessarily
bounded) functions F such that, for all 1 ≤ k ≤ n and 1 ≤ j ≤ k,

sup
m∈P1(R),x∈Rk

∣∣∣∣ ∂k

∂x1...∂xk
δkF (m,x)

∣∣∣∣ <∞ and sup
m∈P1(R),x∈Rk

∣∣∂xj
δkF (m,x)

∣∣ <∞.

Remark 2.9. The set Cn
b (P1(R)) depends on the choice of the version of the derivatives because of

the second boundedness conditions (i.e. boundedness of ∂xjδF
k(m,x)). These conditions imply that,

for any µ1, ..., µk ∈ P1(R), the family of functions (x 7→ δF k(m,x))m∈P1(R) is uniformly integrable

w.r.t.
⊗k

i=1 µi.

One can easily note that C1
b (P1(R)) is included in the set of functions F : P1(R) → R that are

Lipschitz continuous functions w.r.t. DKR (cf Proposition 2.21 below).
In the following, the notion of many times L-differentiability is also used. The definition is

essentially the same as Definition 2.7 for the Lions-derivative instead of the (linear) derivative.

Definition 2.10. A function F : P1(R) → R is said to be n-times L-differentiable if:

� F is (n− 1)-times L-differentiable,
� for all x ∈ Rn−1, the function (∂n−1F )x is L-differentiable.

In that case we define inductively the n-th Lions-derivative of F at m by: for all x = (x1, ..., xn) ∈
Rn,

∂nF (m,x1, ..., xn) = ∂
(
(∂n−1F )x\n

)
(m,xn).

Let us now introduce the notion of mixed derivatives for functions defined on P1(R) × Rd for
any d ∈ N. The mixed derivatives are defined as sets of functions.

Definition 2.11 (Mixed derivatives). Let d ∈ N and F : P1(R)× Rd → R. We say that F admits
mixed derivatives if, for all x = (x1, ..., xd) ∈ Rd:

� for any 1 ≤ k ≤ d and m ∈ P1(R), y ∈ R 7→ F (m,x\ky) is differentiable on R,
� and the function Fx is L−differentiable on P1(R).

In that case, the mixed derivatives of F at m form the following set of d+ 1 functions:{
(m,x) ∈ P1(R)× Rd 7−→ ∂xk

F (m,x) : 1 ≤ k ≤ d
}

∪
{
(m,x, y) ∈ P1(R)× Rd × R 7−→ ∂(Fx)(m, y)

}
,

where ∂(Fx) above denotes the Lions-derivative of Fx (cf Definition 2.5).
In addition, we define inductively the n-th order mixed derivatives of F as the union of the

mixed derivatives of all the functions belonging to the set corresponding to the (n − 1)-th order
mixed derivatives of F (assuming all these mixed derivatives exist).
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Example 2.12. Let b : P1(R)× R → R. Then, the (first order) mixed derivatives of b are the two
following functions:

(m,x) ∈ P1(R)× R 7−→ ∂xb(m,x),

(m,x, y) ∈ P1(R)× R2 7−→ ∂(bx)(m, y).

The second order mixed derivatives of b are the five following functions

(m,x) ∈ P1(R)× R 7−→ ∂2xxb(m,x),

(m,x, y) ∈ P1(R)× R2 7−→ ∂x∂(bx)(m, y),

(m,x, y) ∈ P1(R)× R2 7−→ ∂y∂(bx)(m, y),

(m,x, y) ∈ P1(R)× R2 7−→ ∂ (∂xbx) (m, y),

(m,x, y, z) ∈ P1(R)× R3 7−→ ∂2(bx)(m, y, z).

The only way the notion of mixed derivatives is used is to write Assumptions 3 and 4 in a
compact way, stating that all the mixed derivatives up to order five of some functions are bounded.
This kind of assumption is required to prove the regularity of the semigroups of the measure-valued
Markov processes that we study in this paper (i.e. Proposition 3.9, and more precisely, the proof of
Lemma 3.8).

Let us write now a remark that is a direct consequence of Proposition 2.21, explaining the reason
behind the boundedness hypothesis of the mixed order derivatives.

Remark 2.13. Let F be a function admitting n-th order mixed derivatives (with n ≥ 2) such that
all its n-th order mixed derivatives are bounded. Then all the (n − 1)-th order mixed derivatives
of F are Lipschitz continuous: for any G : P1(R) × Rd belonging to the set of the (n − 1)-th order
mixed derivatives, there exists L > 0 such that, for all m,µ ∈ P1(R) and x, y ∈ Rd,

|G(m,x)−G(µ, y)| ≤ C (DKR(m,µ) + ||x− y||1) .

Let us end this section with a notation.

Definition 2.14. Let n ∈ N∗ and F : P1(R) → R bounded and belonging to Cn
b (P1(R)). Let us

assume that all the mixed derivatives of F of order up to n exist and are bounded. Then we denote
||F ||n a bound of all the k-th order mixed derivatives, for all 0 ≤ k ≤ n.

2.2. Chain rules

In this section, we state and prove some elementary results about ”chain rules” for the differentiation
of measure-variable functions. We want to prove the differentiability of functions of the following
form:

G ◦ h : R h−→ P1(R)
G−→ R.

The general form that one could naturally expect for the derivative of this kind of function is
the following: for t ∈ R,

(G ◦ h)′(t) =
∫
R
δG(h(t), x) d(h′(t))(x), (12)
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where the sense of the derivative of h : R → P1(R) has to be defined. In the first particular case,
we consider, for two measures m0,m1 ∈ P1(R) the following function

h : t ∈ [0, 1] 7−→ (1− t)m0 + tm1,

where the derivative of h has to be understood as the quantity (h(t) − h(t0))/(t − t0) which is
constant and equal to m1 −m0.

Lemma 2.15. Let G : P1(R) → R be differentiable, m0,m1 ∈ P1(R), and

f : t ∈ [0, 1] 7−→ G((1− t)m0 + tm1).

Then f is differentiable, and, for all t ∈ [0, 1],

f ′(t) =

∫
R
δG((1− t)m0 + tm1, x) d(m1 −m0)(x).

Proof. We have, for any t, t0 ∈ [0, 1],

f(t)− f(t0)

= (t− t0)

∫
R
δG((1− t0)m0 + t0m1, x)d(m1 −m0)(x) + ε((1− t)m0 + tm1), (13)

with ε(µ)/DKR(µ, (1− t0)m0 + t0m1) vanishing as µ converges to (1− t0)m0 + t0m1. Noticing that

DKR((1− t)m0 + tm1, (1− t0)m0 + t0m1) ≤ 2|t− t0|,

the proof of the lemma follows from (13) dividing it by (t− t0) and then letting t goes to t0.

Remark 2.16. We have the following consequence of Lemma 2.15 and of the fundamental theorem
of calculus: for any function G belonging to C1

b (P1(R)), for all m0,m1 ∈ P1(R),

G(m1)−G(m0) =

∫ 1

0

∫
R
δG((1− t)m0 + tm1, x)d(m1 −m0)(x).

The above property is used as the definition of the linear derivative by Carmona and Delarue
(2018) (cf Section 4.1), Guo, Pham and Wei (2023) and Cox et al. (2021). In addition, by Propo-
sition 5.44 of Carmona and Delarue (2018), under some generic assumptions, this property can
characterize the linear derivative as it is defined at Definition 2.1 when the analysis of measure-
variable functions is studied on P2(R).

Now we prove a similar result for functions that are many times differentiable with bounded
derivatives. In particular, the following result is not strictly stronger than the previous one.

Lemma 2.17. Let n ∈ N∗, G ∈ Cn
b (P1(R)), m0,m1 ∈ P1(R), and

f : t ∈ [0, 1] 7−→ G((1− t)m0 + tm1).

Then f is Cn, and, for all t ∈ [0, 1],

f (n)(t) =

∫
Rn

δnG((1− t)m0 + tm1, x) d(m1 −m0)
⊗n(x).
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Proof. We prove the statement by induction on n. For n = 1, Lemma 2.15 implies that f is
differentiable. The fact that f is C1 follows by the dominated convergence theorem since G ∈
C1

b (P1(R)).
For the general case (i.e. n ≥ 2), let us assume that f is Cn−1 with, for all t ∈ [0, 1],

f (n−1)(t) =

∫
Rn−1

δn−1G((1− t)m0 + tm1, x)d(m1 −m0)
⊗n−1(x).

Note that, since G ∈ Cn
b (P1(R)), the function

(t, x) ∈ [0, 1]× Rn−1 7−→ δn−1G((1− t)m0 + tm1, x)

is sublinear w.r.t. ||x||1 (hence integrable w.r.t. m1 and m0) and differentiable w.r.t. t (thanks to
Lemma 2.15) with derivative

(t, x) 7−→
∫
R
δ
((
δn−1G

)
x

)
((1− t)m0 + tm1, y)d(m1 −m0)(y),

which is also sublinear w.r.t. ||x||1 (with a constant which is uniform w.r.t. t ∈ [0, 1] since G ∈
Cn

b (P1(R)). Then, by differentiation under the integral sign, for all t ∈ [0, 1],

f (n)(t) =

∫
Rn−1

∫
R
δ
((
δn−1G

)
x

)
((1− t)m0 + tm1, y)d(m1 −m0)(y)d(m1 −m0)

⊗n−1(x).

Once again, the continuity of f (n) is a consequence of the dominated convergence theorem and of
the assumption that G belongs to Cn

b (P1(R)).

Another particular case of interest for the chain rule (12) is the one of the function

h : λ ∈ R 7−→ S(m,λ),

for some fixed m ∈ P1(R), with S a shift operator defined as:

S(m,λ) : A ∈ B(R) 7−→ m({x− λ : x ∈ A}).

In that case, the derivative of h could be seen as a reminiscent of the derivative in the sense of
Schwartz’ distribution, since it requires to differentiate the integrand instead of the measure in (12)
(it is actually the opposite of one would expect from the derivative in the distribution sense).

Lemma 2.18. Let m ∈ P1(R), G : P1(R) → R be differentiable such that, for any µ ∈ P1(R),
x 7→ δG(µ, x) is differentiable. Then the function

f : λ ∈ R 7−→ G(S(m,λ))

is differentiable and, for all λ ∈ R,

f ′(λ) =

∫
R
(∂yδG(S(m,λ), x+ y))|y=λ dm(x).
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Proof. We have for any t ∈ R,

f(λ)− f(λ0) =

∫
R
δG(S(m,λ0), x)d(S(m,λ)− S(m,λ0))(x) + ε(S(m,λ)),

with ε(µ)/DKR(µ,S(m,λ0)) vanishing as µ converges to S(m,λ0) for DKR. Since, writing m0 :=
S(m,λ0),

DKR(S(m,λ),S(m,λ0)) = DKR(S(m0, λ− λ0),m0) = |λ− λ0|,
we know that ε(S(m,λ))/|λ−λ0| vanishes as λ converges to λ0. And, by the Dominated Convergence
Theorem,

1

λ− λ0

∫
R
δG(S(m,λ0), x)d(S(m,λ)− S(m,λ0))(x)

=

∫
R

δG(S(m,λ0), x+ λ)− δG(S(m,λ0), x+ λ0)

λ− λ0
dm(x)

−→
λ→λ0

∫
R
(∂yδG(S(m,λ0), x+ y))|y=λ0

dm(x),

which ends the proof.

The last case for which we want (12) is when the function h is of the form

h : x ∈ R 7−→ L (Y (x)|T ) .

with (Y (x))x a family of random variables and T some sigma-field.

Lemma 2.19. Let G ∈ C1
b (P1(R)), T some sigma-field and Y (x) (x ∈ R) be real-valued random

variables such that, almost surely,
x 7−→ Y (x)

belongs to C1(R), and assume that for all compact set K ⊂ R,

E
[
sup
x∈K

|∂xY (x)|
]
<∞. (14)

Then, almost surely, the function

f : x ∈ R 7−→ G (L[Y (x)|T ])

belongs to C1(R) and, for all x ∈ R,

f ′(x) = E
[
(∂xY (x)) · (∂yδG (L[Y (x)|T ], y))|y=Y (x)

∣∣∣ T ] .
Proof. For the sake of notation, let us denote, for all x ∈ R,

mx = L(Y (x)|T ).

For the rest of the proof, let us fix some x0 ∈ R and some compact set K containing an open
neighborhood of x0. Then, for x ∈ K,

f(x)− f(x0) =G(mx)−G(mx0
) =

∫
R
δG(mx0

, y)d (mx −mx0
) (y) + εx0

(mx)

=E [δG(mx0
, Y (x))− δG(mx0

, Y (x0))| T ] + εx0
(mx),



X. Erny/Measure-valued Markov processes and mean-field limits 20

with εx0(µ)/DKR(µ,mx0) vanishing as µ converges to mx0 . Consequently, for all x ∈ K\{x0},

f(x)− f(x0)

x− x0
= E

[
δG(mx0

, Y (x))− δG(mx0
, Y (x0))

x− x0

∣∣∣∣ T ]+ εx0
(mx)

x− x0
.

Since, for all x ∈ K,

DKR(mx,mx0
) ≤ E [ |Y (x)− Y (x0)|| T ] ≤ |x− x0| · E

[
sup
x̃∈K

|∂x̃Y (x̃)|
∣∣∣∣ T ] ,

we know, by (14), that εx0
(mx)/|x− x0| vanishes almost surely as x goes to x0.

Then, using (14) and the hypothesis that G belongs to C1
b (P1(R)), the dominated convergence

theorem concludes the proof.

Remark 2.20. With the notation of Lemma 2.19, the expression of f ′ can be substantially simplified
using the Lions-derivative instead of the (linear) derivative: for all x ∈ R,

f ′(x) = E [ (∂xY (x)) · ∂G (L[Y (x)|T ], Y (x))| T ] .

2.3. Taylor’s formulas and some corollaries

The results of this section are mainly consequences of Taylor’s theorems applied to the function f
of Lemma 2.15 from the previous section. Let us give the statement for the Mean Value Theorem
for measure-variable functions. The proof consisting in applying directly the Mean Value Theorem
for the real-variable function f of Lemma 2.15, we omit it.

Proposition 2.21 (Mean Value Theorem). Let G : P1(R) → R be differentiable. Then, for
any m0,m1 ∈ P1(R), there exists some t ∈]0, 1[ such that

G(m1)−G(m0) =

∫
R
δG((1− t)m0 + tm1, x)d(m1 −m0)(x).

In particular, every function G belonging to C1
b (P1(R)) is Lipschitz continuous: for all m0,m1 ∈

P1(R),
|G(m1)−G(m0)| ≤ DKR(m0,m1) · sup

m∈P1(R),x∈R
|∂xδG(m,x)| .

Let us now generalize the previous result by stating a version of Taylor’s formula with integral
remainder for measure-variable functions.

Theorem 2.22 (Taylor’s formula with integral remainder). Let n ∈ N∗ and G ∈ Cn+1
b (P1(R)).

Then, for any m0,m1 ∈ P1(R),

G(m1)−
n∑

k=0

1

k!

∫
Rk

δkG(m0, x) d(m1 −m0)
⊗k(x)

=
1

n!

∫ 1

0

(1− t)n
∫
Rn+1

δn+1G((1− t)m0 + tm1, x) d(m1 −m0)
⊗n+1(x) dt.
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Proof. By Lemma 2.17, the function

f : t ∈ [0, 1] 7−→ G((1− t)m0 + tm1)

belongs to Cn+1([0, 1]), and for all 0 ≤ k ≤ n+ 1 and t ∈ [0, 1],

f (k)(t) =

∫
Rk

δkG((1− t)m0 + tm1, x)d(m1 −m0)
⊗k(x).

Then, by the (standard) Taylor’s formula with remainder term,

f(1)−
n∑

k=0

f (k)(0)

k!
=

1

n!

∫ 1

0

f (n+1)(t)(1− t)ndt.

This last equality is exactly the statement of the theorem.

In order to prove a version of the Taylor-Lagrange’s inequality for measure-variable functions,
the following lemma about Kantorovich-Rubinstein metric is required.

Lemma 2.23. Let n ∈ N∗ and g ∈ Cn
b (Rn). Then, for any m0,m1 ∈ P1(R),∣∣∣∣∫

Rn

g(x)d(m1 −m0)
⊗n(x)

∣∣∣∣ ≤ DKR(m0,m1)
n · sup

x1,...,xn∈R

∣∣∣∣ ∂n

∂x1...∂xn
g(x1, ..., xn)

∣∣∣∣ . (15)

Proof. We prove the result by induction on n. For n = 1, it is a mere consequence of the definition
of DKR, and of the fact that, any g ∈ C1

b (R) is Lipschitz continuous with Lipschitz constant
non-greater than ||g′||∞.

Then, let n ∈ N∗ and assume that (15) holds true for any g ∈ Cn
b (Rn). Let h ∈ Cn+1

b (Rn+1), and

g : x ∈ Rn 7−→
∫
R
h(x, y)d(m1 −m0)(y),

which belongs to Cn+1
b (Rn). So∣∣∣∣∫

Rn+1

h(x)d(m1 −m0)
⊗n+1(x)

∣∣∣∣ = ∣∣∣∣∫
Rn

g(x)d(m1 −m0)
⊗n(x)

∣∣∣∣
≤DKR(m0,m1)

n · sup
x1,...,xn∈R

∣∣∣∣ ∂n

∂x1...∂xn
g(x1, ..., xn)

∣∣∣∣ .
And, thanks to the case n = 1, we know that∣∣∣∣ ∂n

∂x1...∂xn
g(x1, ..., xn)

∣∣∣∣ = ∣∣∣∣∫
R

∂n

∂x1...∂xn
h(x, y)d(m1 −m0(y))

∣∣∣∣
≤ DKR(m0,m1) · sup

x1,...,xn,y∈R

∣∣∣∣ ∂n+1

∂x1...∂xn∂y
h(x1, ..., xn, y)

∣∣∣∣ .
Combining the two previous inequalities proves the statement of the lemma.

As a straightforward consequence of Theorem 2.22 and Lemma 2.23 we obtain the following
result.
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Theorem 2.24 (Taylor-Lagrange’s inequality). Let n ∈ N∗ and G ∈ Cn+1
b (P1(R)). Then, for

any m0,m1 ∈ P1(R),∣∣∣∣∣G(m1)−
n∑

k=0

1

k!

∫
Rk

δkG(m0, x)d(m1 −m0)
⊗k(x)

∣∣∣∣∣
≤ 1

(n+ 1)!
DKR(m0,m1)

n+1 · sup
x∈Rn+1,m∈P1(R)

∣∣∣∣ ∂n+1

∂x1...∂xn+1
δn+1G(m,x)

∣∣∣∣ .
Another consequence of Theorem 2.22 is that, in some sense, it is possible to interchange the

derivative w.r.t. the measure-variable and the partial derivative w.r.t. the real-variable, when it
makes sense. For the sake of readability, the result is only stated for second order derivatives, but
can be generalized inductively.

Corollary 2.25. Let G ∈ C3
b (P1(R)). Then, for all m ∈ P1(R), and x, y ∈ R,

∂xδ ((δG)x) (m, y) = δ (∂x(δG)x) (m, y),

or, with the Lions-derivative notation,

∂2xyδ
2G(m,x, y) = ∂2G(m,x, y).

Proof. The proof consists in showing that the function

(m,x, y) ∈ P1(R)× R× R 7−→ ∂xδ ((δG)x) (m, y)

is the derivative of the function

(m,x) ∈ P1(R)× R 7−→ ∂xδG(m,x)

in the sense of Definition 2.1. Let us fix in all the proof, some m,m0 ∈ P1(R).
Firstly, by differentiation under the integral sign (which is permitted since G ∈ C3

b (P1(R))), we
have, for any x ∈ R,

∂x

∫
R
δ2G(m,x, y) d(m−m0)(y) =

∫
R
∂xδ

2G(m,x, y) d(m−m0)(y),

such that,

∂xδG(m,x)− ∂xδG(m0, x)−
∫
R
∂xδ

2G(m,x, y) d(m−m0)(y)

= ∂x

(
δG(m,x)− δG(m0, x)−

∫
R
δ2G(m,x, y) d(m−m0)(y)

)
= ∂x

∫ 1

0

(1− t)

∫
R2

δ3G((1− t)m0 + tm, x, y1, y2) d(m−m0)
⊗2(y1, y2)dt

=

∫ 1

0

(1− t)

∫
R2

∂xδ
3G((1− t)m0 + tm, x, y1, y2) d(m−m0)

⊗2(y1, y2)dt,
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where we have used the Taylor’s formula with integral remainder (cf Theorem 2.22) to obtain the
before last equality, and we have once again differentiated under the integral sign to obtain the last
one. Then, by Lemma 2.23 and recalling that G ∈ C3

b (P1(R)), we obtain∣∣∣∣∂xδG(m,x)− ∂xδG(m0, x)−
∫
R
∂xδ

2G(m,x, y) d(m−m0)(y)

∣∣∣∣
≤ DKR(m,m0)

2 · sup
µ∈P1(R),y∈R3

∣∣∣∣ ∂3

∂y1∂y2∂y3
δ3G(µ, y)

∣∣∣∣ ,
which proves the result.

Let us end this section with two applications of Taylor-Lagrange’s inequality (i.e. Theorem 2.24)
that permits to differentiate some particular functions.

Corollary 2.26. Let H : P1(R)× R → R and

F : m ∈ P1(R) 7−→
∫
R
H(m,x)dm(x).

Assume that:

(i) for any x ∈ R, the function Hx belongs to C2
b (P1(R)), and there exists C > 0 such that, for

all x ∈ R,
sup

m∈P1(R)
y1,y2∈R

∣∣∂2y1y2
δ2(Hx)(m, y1, y2)

∣∣ ≤ C(1 + |x|),

(ii) for any m ∈ P1(R) and x ∈ R, the function y 7→ H(m, y) is C1 on R, and ∂xHx belongs
to C1,1(P1(R)), and

sup
m∈P1(R)
x,y∈R

|∂yδ (∂xHx) (m, y)| <∞.

Then, F is differentiable on P1(R), with: for all m ∈ P1(R) and x ∈ R,

δF (m,x) = H(m,x) +

∫
R
δHy(m,x)dm(y)− F (m).

Proof. Let m,m0 ∈ P1(R) be fixed in all the proof.

F (m)− F (m0) =

∫
R
H(m,x)d(m−m0)(x) +

∫
R
(H(m,x)−H(m0, x)) dm0(x)

=

∫
R
H(m0, x)d(m−m0)(x) +

∫
R
(H(m,x)−H(m0, x)) dm0(x)

+

∫
R
(H(m,x)−H(m0, x)) d(m−m0)(x).
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Consequently,∣∣∣∣F (m)− F (m0)−
∫
R

(
H(m0, x)−

∫
R
δHy(m0, x)dm0(y)

)
d(m−m0)(x)

∣∣∣∣
≤
∫
R

∣∣∣∣Hx(m)−Hx(m0)−
∫
R
δHx(m0, y)d(m−m0)(y)

∣∣∣∣ dm0(x) (16)

+

∣∣∣∣∫
R
(H(m,x)−H(m0, x)) d(m−m0)(x)

∣∣∣∣ . (17)

Then, by the hypothesis (i) of the corollary and Theorem 2.24, the integrand of (16) is bounded
by

C(1 + |x|)DKR(m,m0)
2

for any x ∈ R (with C > 0 independent of x,m,m0), whence the quantity at (16) is bounded by

C

(
1 +

∫
R
|x|dm0(x)

)
DKR(m,m0)

2

which is negligible compared to DKR(m,m0) when m converges to m0 (for a fixed m0).
In addition, the term (17) is non-greater than

DKR(m,m0) · sup
x∈R

|∂x (H(m,x)−H(m0, x))| .

And, by the Mean Value Theorem (i.e. Proposition 2.21) and the hypothesis (ii) of the corollary,
for all x ∈ R,

|∂x (H(m,x)−H(m0, x))| = |∂xHx(m)− ∂xHx(m0)|
≤DKR(m,m0) · sup

m∈P1(R)
x,y∈R

|∂yδ (∂xHx) (m, y)| ,

which entails that the term at (17) is bounded by

CDKR(m,m0)
2

for some constant C > 0 independent of m,m0.
So we have proved that F is differentiable on P1(R), and that the following function is one

version of its derivative:

(m,x) ∈ P1(R)× R 7−→ H(m,x) +

∫
R
δHy(m,x)dm(y).

It is then sufficient to subtract F (m) to the quantity above to obtain the canonical derivative
of F .

The next result is similar as the previous one for a larger class of functions.

Corollary 2.27. Let H : P1(R)× R2 → R and

F : m ∈ P1(R) 7−→
∫
R2

H(m,x)dm⊗2(x).

Assume that:
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(i) for any x ∈ R2, the function Hx belongs to C2
b (P1(R)), and there exists C > 0 such that, for

all x1, x2 ∈ R,

sup
m∈P1(R)
y1,y2∈R

∣∣∂2y1y2
δ2(Hx)(m, y1, y2)

∣∣ ≤ C(1 + |x1|+ |x2|+ |x1x2|),

(ii) for any m ∈ P1(R) and x1, x2 ∈ R, the functions x 7→ H(m,x) is C1 on R2, and both ∂x1
Hx

and ∂x2
Hx belong to C1,1(P1(R)), with

sup
m∈P1(R)
x1,x2,y∈R

|∂yδ (∂x1
Hx) (m, y)|+ |∂yδ (∂x2

Hx) (m, y)| <∞,

(iii) for all m ∈ P1(R), the function x 7→ H(m,x) belongs to C2
b (R2).

Then, F is differentiable on P1(R), with: for all m ∈ P1(R) and y ∈ R,

δF (m, y) =

∫
R2

δ(Hx)(m, y)dm
⊗2(x) +

∫
R
H(m,x1, y)dm(x1)

+

∫
R
H(m, y, x2)dm(x2)− 2F (m).

The proof of this result uses the following Lemma whose proof is given at Appendix C.

Lemma 2.28. Let d ∈ N∗ and m1, ...,md, µ1, ..., µd ∈ P1(R). Then,

DKR

(
d⊗

k=1

mk,

d⊗
k=1

µk

)
≤

d∑
k=1

DKR(mk, µk).

Proof of Corollary 2.27. Let us fix some m,m0 ∈ P1(R) in the proof.

F (m)− F (m0) =

∫
R2

H(m,x)d
(
m⊗2 −m⊗2

0

)
(x)

+

∫
R2

(H(m,x)−H(m0, x)) dm
⊗2
0 (x)

=

∫
R2

H(m0, x1, x2)dm(x1)d(m−m0)(x2)

+

∫
R2

H(m0, x1, x2)d(m−m0)(x1)dm0(x2)

+

∫
R2

(H(m,x)−H(m0, x)) dm
⊗2
0 (x)

+

∫
R2

(H(m,x)−H(m0, x)) d
(
m⊗2 −m⊗2

0

)
(x).
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Then, ∣∣∣∣F (m)− F (m0)−
∫
R

∫
R2

δ(Hx)(m0, y)dm
⊗2
0 (x)d(m−m0)(y)

−
∫
R

(∫
R
H(m0, x1, y)dm0(x1) +

∫
R
H(m0, y, x2)dm0(x2)

)
d(m−m0)(y)

∣∣∣∣
≤
∣∣∣∣∫

R2

H(m0, x1, x2)d(m−m0)
⊗2(x1, x2)

∣∣∣∣ (18)

+

∣∣∣∣∫
R2

(
H(m,x)−H(m0, x)−

∫
R
δ(Hx)(m0, y)d(m−m0)(y)

)
dm⊗2

0 (x)

∣∣∣∣ (19)

+

∣∣∣∣∫
R2

(H(m,x)−H(m0, x)) d
(
m⊗2 −m⊗2

0

)
(x)

∣∣∣∣ . (20)

By Lemma 2.23 and thanks to the hypothesis (iii) of the corollary, the term at (18) is bounded
by

DKR(m,m0)
2 sup
µ∈P1(R),x1,x2∈R

∣∣∂2x1x2
H(µ, x)

∣∣ .
According to Taylor-Lagrange’s inequality (i.e. Theorem 2.24) and using Hypothesis (i), we know

that the term at (19) is non-greater than

C ·DKR(m,m0)
2

(
1 +

(∫
R
|x|dm0(x)

)2
)
,

for some C > 0 independent of (m,m0).
For the last term (i.e. (20)), by definition of Kantorovich-Rubinstein’s metric, is bounded by

DKR

(
m⊗2,m⊗2

0

)
· sup
x1,x2∈R

|∂x1
Hx(m)− ∂x1

Hx(m0)|+ |∂x2
Hx(m)− ∂x2

Hx(m0)| .

As in the end of the proof of the previous corollary, we have

sup
x1,x2∈R

|∂x1Hx(m)− ∂x1Hx(m0)|+ |∂x2Hx(m)− ∂x2Hx(m0)| ≤ C ·DKR(m,m0).

On the other hand, by Lemma 2.28, we have that

DKR

(
m⊗2,m⊗2

0

)
≤ 2DKR(m,m0).

So the term at (20) is bounded by C ·DKR(m,m0)
2. This proves finally that the function F is

differentiable on P1(R) and that the function

(m, y) ∈ P1(R)× R 7−→
∫
R2

δ(Hx)(m, y)dm
⊗2(x) +

∫
R
H(m,x1, y)dm(x1)

+

∫
R
H(m, y, x2)dm(x2)

is one version of the derivative of F . It is then sufficient to subtract 2F (m) to the quantity above
to obtain the canonical derivative of F .
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Remark 2.29. Note that, an idea to prove Corollary 2.27 could have been to write

F (m) =

∫
R2

H(m,x)dm⊗2(x) =

∫
R
G(m,x2)dm(x2),

with

G(m,x2) =

∫
R
H(m,x1, x2)dm(x1),

and to apply twice Corollary 2.26. The problem is that it would require more technical and stronger
assumptions to be true than the assumptions of Corollary 2.27.

2.4. Measure-variable polynomials

A set of functions of interest is the following one{
F : m ∈ P1(R) 7−→

∫
R
g(x)dm(x) : g smooth enough

}
.

Indeed the computation (and the stochastic calculus properties) on this kind of functions defined
on P1(R) rely directly on the computation for functions defined on R. Since this set of functions is
not a separating class for P1(R), we need to introduce the richer class of functions composed of the
polynomials (similar functions are also used in Dawson (1993), Cuchiero, Larsson and Svaluto-Ferro
(2019) and Guo, Pham and Wei (2023)).

Definition 2.30 (Polynomials). For p ∈ N∪{∞}, let Pp be the set of polynomials of order p, i.e.
the functions F of the form

F : m ∈ P1(R) 7−→
∫
Rn

h(x)dm⊗n(x),

with n ∈ N and h ∈ Cp
b (Rn).

There exists another useful class of measure-variable functions called the cylinder functions (see
e.g. Cox et al. (2021) and Guo, Pham and Wei (2023)) that can be defined as the set{

F : m ∈ P1(R) 7−→ g

(∫
R
h1(x)dm(x), ...,

∫
R
hn(x)dm(x)

)
: g, h1, ..., hn smooth

}
.

Note that the terminology used by Guo, Pham and Wei (2023) slightly differs from the one of
this paper (in Guo, Pham and Wei (2023), the functions g, h1, ..., hn, h above are required to be
polynomials). Consequently, in this paper the cylinder functions and the polynomials form two
different sets of functions. In this paper, the class of polynomials satisfies an important property:
if (Pt)t is the semigroup of a particular measure-valued Markov process, then, for any G ∈ P4

and t ≥ 0, PtG belongs to P4 (see Proposition 3.9 for a formal statement). The previous property
does not seem to be true for other classes of measure-variable functions like the cylinder functions.

As mentioned above, the following proposition states that the set of the polynomials is a sepa-
rating class for P1(R).



X. Erny/Measure-valued Markov processes and mean-field limits 28

Proposition 2.31. Let p ≥ 1 and µ1, µ2 be Pp(R)-valued random variables. If for all F ∈ P∞,

E [F (µ1)] = E [F (µ2)] ,

then µ1 and µ2 have the same law.

The proof of this statement being quite both classical and technical, it is postponed to the end
of Appendix A.

The next result concerns the regularity of the polynomials.

Proposition 2.32. For all p ≥ 2, the set Pp is included in both C∞,p(P1(R)) and Cp
b (P1(R)). The

mixed derivatives of any G ∈ Pp up to order p exist and are bounded. In addition, for any n ∈ N∗,
for all φ ∈ Cp

b (Rn), defining G ∈ Pp as

G : m ∈ P1(R) 7−→
∫
Rn

φ(x)dm⊗n(x),

we have, for all m ∈ P1(R) and y ∈ R,

δG(m, y) =

n∑
k=1

∫
Rn−1

φ(x\ky)dm⊗n−1(x\k)− n ·G(m),

and, for all m ∈ P1(R) and y1, y2 ∈ R,

δ2G(m, y1, y2) =

n∑
k=1

n∑
l=1
l ̸=k

∫
Rn−2

φ(x\(k,l)(y1, y2))dm⊗n−2(x\(k,l)) + C1(m, y1) + C2(m, y2),

with C1(m, y1) (resp. C2(m, y2)) independent of y2 (resp. y1).

Before proving Proposition 2.32, let us remark that it is possible to have explicit and smooth
expressions for the quantities denoted by C1(m, y1) and C2(m, y2): with the notation of Proposi-
tion 2.32,

C1(m, y1) =− (n− 1)

∫
Rn−1

φ(x\ky1)dm⊗n−1(x\k),

C2(m, y2) =− n · δG(m, y2).

We have omitted these expressions in the statement of the proposition since we do not use them
in the proofs of the paper. It can still be of interest to note that the functions (m, y) 7→ C1(m, y)
and (m, y) 7→ C2(m, y) are polynomials of order p w.r.t. m, and Cp

b (R) w.r.t. y.

Remark 2.33. As a consequence of Proposition 2.32, it can be noticed that all the polynomials
are continuous on the space P1(R), and so, also on each space Pp(R), since p-th order Wasserstein
metric is finer than DKR (for any p ≥ 1).

Proof of Proposition 2.32. Let us fix p ≥ 2 in all the proof. We prove, by induction on n ∈ N∗ that,
for any φ ∈ Cp

b (Rn), and G defined as

G : m ∈ P1(R) 7−→
∫
Rn

φ(x)dm⊗n(x), (21)
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the function G is differentiable on P1(R) such that: for all m ∈ P1(R) and y ∈ R,

δG(m, y) =

n∑
k=1

∫
Rn−1

φ(x\ky)dm⊗n−1(x\k) + C(m). (22)

Let us begin with the case n = 1. So, let us consider some φ ∈ Cp
b (R) and define

G : m ∈ P1(R) 7−→
∫
R
φ(x)dm(x).

Since, for any m,m0 ∈ P1(R),

G(m)−G(m0) =

∫
R
φ(x)d(m−m0)(x),

we know that, the function (m,x) 7→ φ(x) is one version of the derivative of F . Its canonical
derivative therefore satisfies: for all m ∈ P1(R), x ∈ R,

δG(m,x) = φ(x)−G(m).

Now, let us fix some n ∈ N∗, and assume that (22) holds true for any function G of the form (21)
(for any choice of φ ∈ Cp

b (Rn)). Let φ ∈ Cp
b (Rn+1) and

G : m ∈ P1(R) 7−→
∫
Rn+1

φ(x)dm⊗n+1(x).

Let us introduce

H : (m, y) ∈ P1(R)× R 7−→
∫
Rn

φ(x, y)dm⊗n(x),

such that, for all m ∈ P1(R),

G(m) =

∫
R
H(m, y)dm(y).

Now, we prove that G is differentiable using Corollary 2.26. Firstly, by induction hypothesis,
applied twice successively, for all y ∈ R, the function Hy is twice differentiable on P1(R), with: for
all m ∈ P1(R), z1, z2 ∈ R,

δ2Hy(m, z1, z2) =

n∑
k=1

n∑
l=1
l ̸=k

∫
Rn−2

φ(x\(k,l)(z1, z2), y)dm⊗n−2(x\(k,l))

+ Cy(m, z1) + Cy(m, z2).

Then,

∂2z1z2δ
2Hy(m, z1, z2) =

n∑
k=1

n∑
l=1
l ̸=k

∫
Rn−2

∂2klφ(x\(k,l)(z1, z2), y)dm⊗n−2(x\(k,l)),

which is bounded uniformly w.r.t. (y, z1, z2,m) (recalling that φ ∈ Cp
b (Rn+1) with p ≥ 2). Hence,

the function H satisfies Condition (i) of Corollary 2.26.
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Besides, by differentiation under the integral sign, we have, for all m ∈ P1(R), y ∈ R,

∂yHy(m) =

∫
Rn

∂nφ(x, y)dm
⊗n(x).

And, by induction hypothesis and differentiating again under the integral sign, for all m ∈ P1(R)
and y, z ∈ R,

∂zδ (∂yHy) (m, z) =

n∑
k=1

∫
Rn−1

∂2knφ (x\kz, y) dm⊗n−1(x),

which is bounded uniformly w.r.t. (y, z,m). So H also satisfies Condition (ii) of Corollary 2.26.
Then, by Corollary 2.26, the function G is differentiable, and for all m ∈ P1(R), y ∈ R,

δG(m, y) = H(m, y) +

∫
R
δHz(m, y)dm(z)−G(m)

=

∫
Rn

φ(x, y)dm⊗n(x) +

n∑
k=1

∫
R

∫
Rn−1

φ(x\ky, z)dm⊗n−1(x\k)dm(z) + C(m)

=

∫
Rn

φ(x, y)dm⊗n(x) +

n∑
k=1

∫
Rn

φ(x\ky)dm⊗n(x\k) + C(m),

which is exactly (22).
Now, one can note that, thanks to (22), for any G ∈ Pp (for p ≥ 2), for any x ∈ R, the function

(δG)x still belongs to Pp and the function ∂x(δG)x belongs to Pp−1. This implies that Pp is
included in C∞,0(P1(R)). All the other statements of the proposition are a direct consequence of this
result and the fact that, by definition, any G ∈ Pp can be written as in (21) with φ ∈ Cp

b (Rn).

Remark 2.34. Similarly as it was noted in Remark 2.29, it is possible to differentiate measure-
variable functions that include all the functions of the forms given at Corollaries 2.26, 2.27 and
Proposition 2.32, considering

G : m ∈ P1(R) 7−→
∫
Rd

H(m,x)dm⊗d(x).

However, such a result would need particularly technical and strong hypothesis that what is actu-
ally needed in this paper.

3. Markov theory of measure-valued processes

The aim of this section is to study the Markov properties of two kind of measure-valued Markov
processes: the conditional laws of McKean-Vlasov processes (cf Section 3.2) and the empirical
measures of some McKean-Vlasov particle systems (cf Section 3.4). Before studying these two kinds
of processes, we need to introduce some definitions and some useful lemmas.
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3.1. General results

Let us begin by introducing the notion of semigroups and generators that we use in the paper. This
section is written for E-valued Markov processes, and is applied for E = Pp(R). It is assumed in all
the section that E is a Polish space (the fact that Pp(R) is Polish is guaranteed by Theorem 6.18 of
Villani (2009)). The notion of semigroup is the usual one, and the notion of infinitesimal generator
has to be understood in a sense of martingale problem. Notice that these are the definitions used in
Meyn and Tweedie (1993), and also in Erny, Löcherbach and Loukianova (2022b) only in the case
E = R. The results of this section generalize the ones of Appendix A and B of Erny, Löcherbach
and Loukianova (2022b).

Definition 3.1. Let E be a Polish space, and (Xt)t be some time homogeneous E-valued Markov
process w.r.t. some filtration (Ft)t. Let DS(X) denote the domain of the semigroup of X:

DS(X) = {g : E → R measurable : ∀t > 0,Ex [|g(Xt)|] <∞} .

The semigroup (Pt)t of (Xt)t is a family of operators defined by: for any g ∈ DS(X), for all t ≥ 0,

Ptg : x ∈ E 7−→ Ex [g(Xt)] ,

with Ex the expectation related to the probability measure Px under which X0 = x.
Let DG(X) denote the domain of the generator of X: g ∈ DG(X) if and only if g ∈ DS(X) and

there exists hg ∈ DS(X) such that, for all t ≥ 0,
Ex

[∫ t

0

|hg(Xs)|ds
]
<∞,

Ptg(x)− g(x)−
∫ t

0

Pshg(x)ds = 0.

In this case, the generator A of (Xt)t is the operator defined on DG(X) as Ag = hg.

Note that, thanks to Remark 2.33, any polynomial is continuous (hence measurable) w.r.t. the
topology of Pp(R), for all p ≥ 1. In this paper, these are the only functions that are considered in
the domains of the generators of the Markov processes.

Remark 3.2. In this paper, we give the expressions of the generators for two classes of measure-
valued Markov processes. In Theorem 3.6, we study the generator of processes defined as condi-
tional laws of solutions of McKean-Vlasov Ito-SDEs, conditionally on a Brownian motion. In The-
orem 3.10, we give a similar result for processes defined as empirical measures of particle systems
whose dynamics are driven by McKean-Vlasov Ito-SDEs.

We can now state a criterion for a Pp(R)-valued process to be Markov. Since it is a direct
consequence of the fact that the polynomials form a separating class for Pp(R) (i.e. Proposition 2.31),
the proof is omitted.

Proposition 3.3. Let p ≥ 1 and (µt)t be a Pp(R)-valued process adapted to some filtration (Ft)t.
Assume that, for any polynomial F ∈ P∞, for all 0 ≤ s ≤ t,

E [F (µt)| Fs] = E [F (µt)|µs] .

Then (µt)t is a Markov process w.r.t. the filtration (Ft)t.
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The exhaustive study of Markov theory for measure-valued processes is beyond the scope of this
section. The aim is only to prove the following result stating a classical Trotter-Kato formula under
some ad hoc assumptions.

Proposition 3.4. Let (P̄t)t and (PN
t )t (resp. Ā and AN ) be the semigroups (resp. generators) of

two E-valued Markov processes (X̄t)t and (XN
t )t, let A be a subset of C(E) and x ∈ E. Assume

that:

1. for all g ∈ A and t ≥ 0, the function y ∈ E 7→ P̄tg(y) still belongs to A,
2. the set A is included in the domains of the generators Ā and AN ,
3. for any g ∈ A, the three functions

t 7→ P̄tĀg(x) , t 7→ PN
t A

Ng(x) and t 7→ PN
t Āg(x)

are continuous,
4. and, for all T ≥ 0, g ∈ A and t ∈ [0, T ],

sup
r≤T

∣∣PN
r Ā

(
P̄t − P̄s

)
g(x)

∣∣+ sup
r≤T

∣∣PN
r A

N
(
P̄t − P̄s

)
g(x)

∣∣ −→
s→t

0.

Then, for all t ≥ 0, g ∈ A,

(
P̄tg − PN

t g
)
(x) =

∫ t

0

PN
t−s

(
Ā−AN

)
P̄sg(x)ds. (23)

The proof of Proposition 3.4 requires the following result. Its classical, so its proof is omitted
(see e.g. Remark A.2 and Proposition A.3 of Erny, Löcherbach and Loukianova (2022b)).

Lemma 3.5. Let (Xt)t be some E-valued Markov process with semigroup (Pt)t and generator A
(in the sense of Definition 3.1). For any g ∈ DG(X) and x ∈ E, if the function t 7→ PtAg(x) is
continuous on R+, then, for all t ≥ 0,

∂t (Ptg(x)) = PtAg(x).

In addition, if for all t ≥ 0, Ptg ∈ DG(X), then

∂t (Ptg(x)) = APtg(x) = PtAg(x).

Proof of Proposition 3.4. Let us fix in all the proof some g ∈ A, t > 0 and define

Φ : s ∈ [0, t] 7−→ PN
t−sP̄sG(x).

By Lemma 3.5 and conditions 1-3 of Proposition 3.4, the function Φ is differentiable with, for
all s ∈ [0, t],

Φ′(s) =− ∂u
(
PN
u P̄sG(x)

)
|u=t−s

+ ∂v
(
PN
t−sP̄vG(x)

)
|v=s

=− PN
t−sA

N P̄sG(x) + PN
t−sP̄sĀG(x)

=PN
t−s

(
Ā−AN

)
P̄sG(x).
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The only property required to prove the result of Proposition 3.4 is that Φ′ is continuous on [0, t].
Indeed, it would imply (by the second fundamental theorem of calculus),

Φ(t)− Φ(0) =

∫ t

0

Φ′(s)ds, (24)

which is exactly (23).
To prove the continuity of Φ′, let us fix, for the remainder of the proof, some s ∈ [0, t] and some

sequence (sk)k converging to s. Then

|Φ′(s)− Φ′(sk)| ≤
∣∣PN

t−s

(
Ā−AN

)
P̄sG(x)− PN

t−sk

(
Ā−AN

)
P̄sG(x)

∣∣
+
∣∣PN

t−sk

(
Ā−AN

)
P̄sG(x)− PN

t−sk

(
Ā−AN

)
P̄skG(x)

∣∣
=: Ak +Bk. (25)

Since
Ak ≤

∣∣(PN
t−s − PN

t−sk

)
ĀP̄sg(x)

∣∣+ ∣∣(PN
t−s − PN

t−sk

)
AN P̄sg(x)

∣∣ ,
we know, by conditions 1-3 that Ak vanishes as k goes to infinity.

On the other hand,

Bk ≤
∣∣PN

t−sk
Ā
(
P̄s − P̄sk

)
g(x)

∣∣+ ∣∣PN
t−sk

AN
(
P̄s − P̄sk

)
g(x)

∣∣ ,
also vanishes as k goes to infinity by condition 4. Consequently (25) implies that Φ′ is continuous
on [0, t], implying that (24) holds true, which proves the proposition.

3.2. Conditional law of diffusion

Let (X̄t)t be defined as the solution of the following SDE

dX̄t =b
(
µ̄t, X̄t

)
dt+ σ

(
µ̄t, X̄t

)
dBt + ς

(
µ̄t, X̄t

)
dWt (26)

+ h
(
µ̄t−, X̄t−

) ∫
R+

1{z≤f(µ̄t−,X̄t−)}dπ(t, z),

where B,W are standard Brownian motions of dimension one, π a Poisson measure on R2
+ with

Lebesgue intensity such that B,W and π are mutually independent, and

µ̄t = L
(
X̄t | Wt

)
,

with Wt = σ(Ws : s ≤ t) the filtration of the Brownian motion W at time t.

Theorem 3.6. Grant Assumption 1. The process (µ̄t)t is a P2(R)-valued Markov process. The
domain DG(µ̄) contains the set P2, and the generator Ā of µ̄ satisfies: for any G ∈ P2 and m ∈
P2(R),

ĀG(m) =

∫
R
L̄(δG(m, •))(m,x)dm(x) (27)

+
1

2

∫
R2

(
∂2xyδ

2G(m,x, y)
)
ς(m,x)ς(m, y)dm⊗2(x, y),
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where L̄ is the operator defined as: for g ∈ C2(R), x ∈ R,m ∈ P1(R),

L̄g(m,x) =b(m,x)g′(x) +
1

2

(
σ(m,x)2 + ς(m,x)2

)
g′′(x)

+ f(m,x) [g (x+ h(m,x))− g(x)] .

It can be noticed that the operator L̄ is the generator of the process X̄ in the “martingale
problem” sense. The process X̄ itself being a non-Markov semimartingale we prefer not to call L̄ a
generator to avoid confusion.

Remark 3.7. The expression of the generator Ā is a reminiscent of classical expressions for gen-
erators of R-valued Markov processes. Indeed, the drift terms of the generator corresponds to the
first order derivative of the test-function G (where it can be noted that, the Brownian and jump
terms of the R-valued process X̄ creates some drift terms for the measure-valued process µ̄ since
they are “averaged” by µ̄). Besides, the Brownian motion W being still a noise source for µ̄, it cre-
ates a Brownian term even in the dynamics of µ̄ which corresponds to the second order derivative
of G. The expression at (27) is compact because the first term is written as an operator acting on
the first order derivative of the test-function. This term would be harder to write with the notion
of Lions-derivative instead of the linear derivative that we use. However, one can note that the
second term would be a bit more compact with Lions-derivative instead of the linear derivative (by
Corollary 2.25).

The proof of Theorem 3.6 uses the same ideas as in Guo, Pham and Wei (2023) and Cox et al.
(2021): using Ito’s formula for Rn-valued processes, and then integrating the result. In both ref-
erences, the authors extend the expressions of their measure-valued Ito’s formulas to sufficiently
smooth test-functions. This is done by approximating smooth measure-variable functions with cylin-
der functions. It is not clear that the approximation scheme of Cox et al. (2021) can be adapted to
our framework, whereas the one of Guo, Pham and Wei (2023) seems to be adaptable. This paper
being sufficiently long and technical, we prefer to omit the use of approximation schemes, and re-
strict the result of Theorem 3.6 (and Theorem 3.10) for measure-variable polynomial test-functions.

Proof of Theorem 3.6. Let

G : m ∈ P1(R) 7−→
∫
Rn

φ(x)dm⊗n(x),

with n ∈ N∗ and φ ∈ C2
b (Rn).

For a fixed m ∈ P2(R), let us introduce, for all 1 ≤ k ≤ n, the process X̄k solution to

X̄k
t =X̄k

0 +

∫ t

0

b(µ̄s, X̄
k
s )ds+

∫ t

0

σ(µ̄s, X̄
k
s )dB

k
s +

∫ t

0

ς(µ̄s, X̄
k
s )dWs (28)

+

∫
[0,t]×R+

h(µ̄s−, X̄
k
s−)1{z≤f(µ̄s−,X̄k

s−)}dπ
k(s, z),

with X̄1
0 , ..., X̄

n
0 i.i.d. m-distributed, B1, ..., Bn,W independent Brownian motions, and π1, ..., πn

independent Poisson measures on R2
+ with Lebesque intensity, such that all these objects are mu-

tually independent. The random measure µ̄t is the conditional law of any of the process given the
filtration of W up to time t: µ̄t = L(X̄1

t |Wt). The interest of this construction is to guarantee the
following property: for all t ≥ 0,

conditionally on µ̄t, X̄k
t (1 ≤ k ≤ n) are i.i.d. µ̄t-distributed. (29)
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Let us denote X̄t = (X̄1
t , ..., X̄

n
t ), and, for 1 ≤ k ≤ n, X̄k,c the continuous part of the semi-

martingale X̄k. By Ito’s formula, for all t ≥ r ≥ 0,

φ(X̄t) =φ(X̄r) +

n∑
k=1

∫ t

r

∂kφ(X̄s)dX̄
k,c
s +

1

2

n∑
k,l=1

∫ t

r

∂2klφ(X̄s)d
〈
X̄k,c, X̄ l,c

〉
s

+
∑

r<s≤t

(
φ(X̄t)− φ(X̄t−)

)
=φ(X̄r) +

n∑
k=1

∫ t

r

∂kφ(X̄s)b(µ̄s, X̄
k
s )ds+

1

2

n∑
k=1

∫ t

r

σ(µ̄s, X̄
k
s )

2∂2kkφ(X̄s)ds

+
1

2

n∑
k,l=1

∫ t

r

ς(µ̄s, X̄
k
s )ς(µ̄s, X̄

l
s)∂

2
klφ(X̄s)ds

+

n∑
k=1

∫ t

r

∂kφ(X̄s)σ(µ̄s, X̄
k
s )dB

k
s +

n∑
k=1

∫ t

r

∂kφ(X̄s)ς(µ̄s, X̄
k
s )dWs

+

n∑
k=1

∫
]r,t]×R+

1{z≤f(µ̄s−,X̄k
s−)}[
φ
(
X̄s− + h(µ̄s−, X̄

k
s−) · ek

)
− φ

(
X̄s−

)]
dπk(s, z),

with ek = (1{k=l})1≤l≤n ∈ Rn. Then, thanks to the calculation above, the property (29), and
Lemmas D.1 and D.2,

G(µ̄t) =G(µ̄r) +

n∑
k=1

∫ t

r

∫
Rn

∂kφ(x)b(µ̄s, xk)dµ̄
⊗n
s (x)ds

+
1

2

n∑
k=1

∫ t

r

∫
Rn

σ(µ̄s, xk)
2∂2kk(x)dµ̄

⊗n
s (x)ds

+
1

2

n∑
k,l=1

∫ t

r

∫
Rn

ς(µ̄s, xk)ς(µ̄s, xl)∂
2
klφ(x)dµ̄

⊗n
s (x)ds

+

n∑
k=1

∫ t

r

∫
Rn

∂kφ(x)ς(µ̄s, xk)dµ̄
⊗n
s (x)dWs

+

n∑
k=1

∫ t

r

∫
Rn

f(µ̄s, xk) [φ (x+ h(µ̄s, xk) · ek)− φ(x)] dµ̄⊗n
s (x)ds

+

n∑
k=1

∫
]r,t]×R+

∫
Rn

1{z≤f(µ̄s−,xk)}

[φ (x+ h(µ̄s−, xk) · ek)− φ (x)] dµ̄⊗n
s− (x)dπ̃k(s, z),

with π̃k the compensated version of πk:

dπ̃k(t, z) = dπk(t, z)− dt · dz.
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Then, using the computation above and Proposition 3.3, we know that the process (µ̄t)t is
a Markov process. In addition, by (3) and the fact that ς and f are sublinear, we know that the
stochastic integrals w.r.t.W and π̃k above are real martingales. So the function G belongs to DG(µ̄),
and

ĀG(m) =

n∑
k=1

∫
Rn

∂kφ(x)b(m,xk)dm
⊗n(x) +

1

2

n∑
k=1

∫
Rn

σ(m,xk)
2∂2kkφ(x)dm

⊗n(x) (30)

+
1

2

n∑
k,l=1

∫
Rn

ς(m,xk)ς(m,xl)∂
2
klφ(x)dm

⊗n(x)

+

n∑
k=1

∫
Rn

f(m,xk) [φ (x+ h(m,xk) · ek)− φ(x)] dm⊗n(x).

Then, by Proposition 2.32, for all x, y ∈ R,m ∈ P1(R),

δG(m,x) =

n∑
k=1

∫
Rn−1

φ (y\kx) dm⊗n−1(y\k) + C0(m), (31)

δ2G(m,x, y) =

n∑
k,l=1
k ̸=l

∫
Rn−2

φ(z\(k,l)(x, y))dm⊗n−2(z\(k,l)) + C1(m,x) + C2(m, y), (32)

with C2(m, y) independent of x, C1(m,x) independent of y, and C0(m) independent of both x
and y.

Consequently,

∂xδG(m,x) =

n∑
k=1

∫
Rn−1

∂kφ (z\kx) dm⊗n−1(z\k),∫
R
b(m,x)∂xδG(m,x)dm(x) =

n∑
k=1

∫
R

∫
Rn−1

b(m,x)∂kφ (y\kx) dm⊗n−1(y\k)dm(x)

=

n∑
k=1

∫
Rn

b(m, yk)∂kφ(y)dm
⊗n(y).

Using the same trick on the other terms of (30), we have∫
R
σ(m,x)2∂2xxδG(m,x)dm(x) =

n∑
k=1

∫
Rn

σ(m, yk)
2∂2kkφ(y)dm

⊗n(y),

∫
R
ς(m,x)2∂2xxδG(m,x)dm(x) =

n∑
k=1

∫
Rn

ς(m, yk)
2∂2kkφ(y)dm

⊗n(y),

∫
R2

ς(m,x)ς(m, y)∂2xyδ
2G(m,x, y)dm⊗2(x, y) =

n∑
k,l=1
k ̸=l

∫
Rn

ς(m, zk)ς(m, zl)∂
2
klφ(z)dm

⊗n(z).

As a consequence, it is possible to rewrite (30) exactly as (27).



X. Erny/Measure-valued Markov processes and mean-field limits 37

3.3. Regularity of semigroups of conditional laws of diffusions

In this section, we only consider a particular case of the SDE (26) without the jump term:

dX̄t = b(µ̄t, X̄t)dt+ σ(µ̄t, X̄t)dBt + ς(µ̄t, X̄t)dWt, (33)

where B,W are still independent Brownian motions, and µ̄t = L(X̄t|Wt). In addition, for any x ∈ R,
let (X̄

(x)
t )t be the (only) strong solution of (33) with initial condition X̄

(x)
0 = x.

Lemma 3.8. Assume that the functions b, σ, ς admit fifth order mixed derivatives such that the
mixed derivatives of orders from one to five are bounded. Then, there exists some T > 0 such that,
for all 0 ≤ t ≤ T , the function

x ∈ R 7−→ X̄
(x)
t

belongs to C4
b (R).

In addition, for all T > 0, p ∈ N∗, and 1 ≤ k ≤ 4,

sup
x∈R

E
[
sup
t≤T

∣∣∣∂kxkX̄
(x)
t

∣∣∣p] <∞.

The proof of the previous lemma uses classical technics (see e.g. the proof of Lemma 4.17 of
Chassagneux, Crisan and Delarue (2022)), but due to the particularity of our framework, we prefer
to write an explicit proof at Appendix B.

Proposition 3.9. Let P̄ be the semigroup of the process X̄ defined at (33). Under the assumption
of Lemma 3.8, for any G ∈ P4 and t ≥ 0,

(a) the function
m ∈ P1(R) 7−→ P̄tG(m)

belongs to P4,
(b) there exists Ct > 0 independent of G such that, for all 0 ≤ k ≤ 4,

sup
s≤t

||P̄sG||k ≤ Ct||G||k,

where || • ||k is introduced in Definition 2.14,
(c) for all m ∈ P1(R) and x, y ∈ R, the following functions are continuous

t ∈ R+ 7−→ P̄tG(m),

t ∈ R+ 7−→ δ
(
P̄tG

)
(m,x),

t ∈ R+ 7−→ ∂xδ
(
P̄tG

)
(m,x),

t ∈ R+ 7−→ ∂2xxδ
(
P̄tG

)
(m,x),

t ∈ R+ 7−→ ∂2xyδ
2
(
P̄tG

)
(m,x, y).

Proof. Let G ∈ P4 satisfying for all m ∈ P1(R),

G(m) =

∫
Rn

φ(x)dm⊗n(x),
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with n ∈ N∗ and φ ∈ C4
b (Rn).

Let us prove Item (a). For all t ≥ 0,

G(µ̄t) = E
[
φ(X̄1

t , ..., X̄
n
t )
∣∣Wt

]
,

where the processes X̄k (1 ≤ k ≤ n) are solutions to (33) w.r.t. the same W , but independent Bk

and X̄k
0 (similarly as in (28)). Since the variables X̄1

0 , ..., X̄
n
0 are i.i.d. µ̄0-distributed, we have, for

any m ∈ P1(R),

P̄tG(m) = Em [G(µ̄t)] =

∫
Rn

E
[
φ
(
X̄

1,(x1)
t , ..., X̄

n,(xn)
t

)]
dm⊗n(x) =

∫
Rn

ψt(x)dm
⊗n(x), (34)

with
ψt : x ∈ Rn 7−→ E

[
φ
(
X̄

1,(x1)
t , ..., X̄

n,(xn)
t

)]
,

and X̄k,(xk) the process X̄k starting from initial condition X̄
k,(xk)
0 = xk (1 ≤ k ≤ n). Then, by

Lemma 3.8 and by differentiation under the integral sign (using uniform integrability condition, like,
for example, in Lemma 6.1 of Eldredge (2018)), there exists some T > 0 such that, for all t ∈ [0, T ],
the function ψt belongs to C

4
b (Rn). This proves that, for all 0 ≤ t ≤ T , P̄tG belongs to P4.

Then, since the process (µ̄t)t is Markov, we have: for all t ∈ [T, 2T ], for all m ∈ P1(R),

P̄tG(m) = P̄t−T

(
P̄TG

)
(m).

Whence, since P̄TG ∈ P4 and t − T ∈ [0, T ], the above equality implies that, for all T ≤ t ≤ 2T ,
the function P̄tG also belongs to P4. Iterating this argument concludes the proof.

The proof of Item (b) follows from the fact that we have the explicit expression of P̄tG at (34) and
the control given at Lemma 3.8 (recalling Proposition 2.32). The proof of Item (c) relies on the same
arguments as for Item (b) with the additional use of the Dominated Convergence Theorem.

3.4. Empirical measure of particle system

Let N ∈ N∗, and XN,k (1 ≤ k ≤ N) be solutions to the following SDEs:

dXN,k
t =b

(
µN
t , X

N,k
t

)
dt+ σ

(
µN
t , X

N,k
t

)
dBk

t + ς
(
µN
t , X

N,k
t

)
dWt (35)

+

N∑
l=1

∫
R+×R

h
(
µN
t−, X

N,l
t− , u

)
· 1{z≤f(µN

t−,XN,l
t− )}dπ

l(t, z, u),

whereB1, ..., BN ,W are standard Brownian motions, π1, ..., πN are Poisson measures on R+×R+×R
with intensity dt · dz · dν(u) (with ν a probability measure on R), such that they are all mutually
independent, and

µN
t =

1

N

N∑
l=1

δXN,l
t
.

Theorem 3.10. Assume that the functions b, σ, ς are Lipschitz continuous, and that there ex-
ists C > 0 such that for all x1, x2 ∈ R, and m1,m2 ∈ P1(R),∫

R

∫
R

∣∣h(m1, x1, u)1{z≤f(m1,x1)} − h(m2, x2, u)1{z≤f(m2,x2)}
∣∣ dz dν(u)
≤ C (|x1 − x2|+DKR(m1,m2)) .
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Then, the process (µN
t )t is a P2(R)-valued Markov Process. The domain DG(µ

N ) contains the
set P2, and the generator AN of µN satisfies: for any G ∈ P2, and m ∈ P2(R),

ANG(m) =

∫
R

(
b(m,x)∂xδG(m,x) +

1

2

[
σ(m,x)2 + ς(m,x)2

]
∂2xxδG(m,x)

)
dm(x)

+N

∫
R

∫
R
f(m,x) [G(S(m,h(m,x, u)))−G(m)] dν(u)dm(x)

+
1

2

∫
R2

∂2xyδ
2G(m,x, y)ς(m,x)ς(m, y)dm⊗2(x, y)

+
1

2N

∫
R

(
∂2y1y2

δ2G(m, y1, y2)
)
|y1=y2=x

σ(m,x)2dm(x),

where we recall that S is a shift operator defined as: for m ∈ P(R), λ ∈ R,

S(m,λ) : A ∈ B(R) 7−→ m ({x− λ : x ∈ A}) .

Remark 3.11. The same phenomenon as the one described at Remark 3.7 can be observed for µN :
the expression for AN can be interpreted in a similar way as the expression of R-valued processes.
The terms of the generator that depend on the first order derivatives corresponds to drift term in
the dynamics of µN , the terms that depend on the second order derivatives to Brownian terms (here
all Brownian motions Bk,W give Brownian dynamics for µN , since the law µN , being an empirical
measure instead of a (conditional) law, does not make disappear the Brownian dynamics of Bk,
on the contrary of the situation with µ̄ for the Brownian motion B). Compared to the generator
of µ̄, there is an additional term corresponding to the jump term of the measure-valued process µN

(whereas the process µ̄ is continuous in time) that depends on the shift operator S and on the
increasing of the test-function G.

Proof of Theorem 3.10. The fact that µN is a Markov process follows from Proposition 2.3.3 of
Dawson (1993). It can also be proved as in Theorem 3.6 using Proposition 3.3 and the following
computation that are in any case required to prove the remains of the statement of the theorem.

So, as in the proof of Theorem 3.6, let G ∈ P2 such that: for all m ∈ P1(R),

G(m) =

∫
Rn

φ(x)dm⊗n(x),

with n ∈ N∗ and φ ∈ C2
b (Rn).

Then,

G
(
µN
t

)
=

1

Nn

N∑
k1,...,kn=1

φ
(
XN,k1

t , ..., XN,kn

t

)
.

For a given tuple k = (k1, ..., kn) ∈ J1, NKn, let us denote

XN,k
t =

(
XN,k1

t , ..., XN,kn

t

)
,

and XN,ki,c the continuous part of the semimartingale XN,ki .
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By Ito’s formula, for all t ≥ r ≥ 0,

φ
(
XN,k

t

)
=φ

(
XN,k

r

)
+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
dXN,ki,c

s

+
1

2

n∑
i,j=1

∫ t

r

∂2ijφ
(
XN,k

s

)
d
〈
XN,ki,c, XN,kj ,c

〉
s

+
∑

r<s≤t

(
φ
(
XN,k

s

)
− φ

(
XN,k

s−

))
=φ

(
XN,k

r

)
+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
b
(
µN
s , X

N,ki
s

)
ds

+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
σ
(
µN
s , X

N,ki
s

)
dBki

s

+

n∑
i=1

∫ t

r

∂iφ
(
XN,k

s

)
ς
(
µN
s , X

N,ki
s

)
dWs

+
1

2

n∑
i,j=1

∂2ijφ
(
XN,k

s

)
σ
(
µN
s , X

N,ki
s

)
σ
(
µN
s , X

N,kj
s

)
1{ki=kj}ds

+
1

2

n∑
i,j=1

∂2ijφ
(
XN,k

s

)
ς
(
µN
s , X

N,ki
s

)
ς
(
µN
s , X

N,kj
s

)
ds

+

N∑
l=1

∫
]r,t]×R+×R

1{z≤f(µN
s−,XN,l

s− )}[
φ
(
XN,k

s− + h
(
µN
s−, X

N,l
s− , u

)
· 1
)
− φ

(
XN,k

s−

)]
dπl(s, z, u),
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with 1 = (1, 1, ..., 1) ∈ Rn. Consequently,

G(µN
t ) =

1

Nn

N∑
k1,...,kn=1

φ
(
XN,k

t

)
=G(µN

r ) +MN,r
t +

n∑
i=1

∫ t

r

∫
Rn

∂iφ(x)b
(
µN
s , xi

)
d
(
µN
s

)⊗n
(x)ds

+
1

Nn

∑
k∈J1,NKn

1

2

n∑
i,j=1

(36)

∫ t

r

∂2ijφ
(
XN,k

s

)
σ
(
µN
s , X

N,ki
s

)
σ
(
µN
s , X

N,kj
s

)
1{ki=kj}ds

+
1

2

n∑
i,j=1

∫ t

r

∫
Rn

∂2ijφ(x)ς(µ
N
s , xi)ς(µ

N
s , xj)d

(
µN
s

)⊗n
(x)ds

+

N∑
l=1

∫ t

r

∫
R

∫
Rn

f
(
µN
s , X

N,l
s

)
(37)

[
φ
(
x+ h

(
µN
s , X

N,l
s , u

)
· 1
)
− φ (x)

]
d
(
µN
s

)⊗n
(x)dν(u)ds,

with (MN,r
t )t≥r some martingale (the fact that MN,r is not only a local martingale holds true

thanks to controls like (3) and the assumption that f, σ, ς are sublinear).
Then, noticing that, for any x1, ..., xN ∈ R and λ ∈ R,

S

(
1

N

N∑
k=1

δxk
, λ

)
=

1

N

N∑
k=1

δxk+λ,

it is possible to rewrite the expression at (37) as

N

∫ t

r

∫
R

∫
Rn

∫
R
f
(
µN
s , y

) [
φ
(
x+ h(µN

s , y, u) · 1
)
− φ(x)

]
dµN

s (y)d
(
µN
s

)⊗n
(x)dν(u)ds

= N

∫ t

r

∫
R

∫
R
f
(
µN
s , y

) [
G
(
S
(
µN
s , h(µ

N
s , y, u)

))
−G

(
µN
s

)]
dµN

s (y)dν(u)ds,

Besides, separating the terms i = j and i ̸= j in the double-sum of the expression at (36), this
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expression can be rewritten as

1

2

∫ t

r

n∑
i=1

1

Nn

∑
k∈J1,NKn

∂2iiφ(X
N,k
s )σ

(
µN
s , X

N,ki
s

)2
ds

+
1

2

∫ t

r

n∑
i,j=1
i ̸=j

1

N
· 1

Nn−1

∑
k\j∈J1,NKn−1

∂2ijφ(X
N,(k\jki)
s )σ

(
µN
s , X

N,ki
s

)2
ds

=
1

2

∫ t

r

n∑
i=1

∫
Rn

∂2iiφ(x)σ
(
µN
s , xi

)2
d
(
µN
s

)⊗n
(x)ds

+
1

2N

∫ t

r

n∑
i,j=1
i ̸=j

∫
Rn−1

∂2ijφ(x\jxi)σ
(
µN
s , xi

)2
d
(
µN
s

)⊗n−1
(x\j)ds

=
1

2

∫ t

r

∫
R
σ
(
µN
s , x

)2
∂2xxδG

(
µN
s , x

)
dµN

s (x)ds

+
1

2N

∫ t

r

∫
R
σ
(
µN
s , x

)2 (
∂2y1y2

δ2G
(
µN
s , y1, y2

))
|y1=y2=x

dµN
s (x)ds,

where the last equality uses (31) and (32), and is mostly a notation matter.
In particular, doing the same computation trick as the one done at the end of the proof of

Theorem 3.6, it is possible to write the dynamics of G(µN
t ) as follows

G(µN
t ) =G(µN

r ) +MN,r
t +

∫ t

r

∫
R
b
(
µN
s , x

)
∂xδG(m,x)dµ

N
s (x)ds

+
1

2

∫ t

r

∫
R
σ
(
µN
s , x

)2
∂2xxδG

(
µN
s , x

)
dµN

s (x)ds

+
1

2N

∫ t

r

∫
R
σ
(
µN
s , x

)2 (
∂2y1y2

δ2G
(
µN
s , y1, y2

))
|y1=y2=x

d
(
µN
s (x)

)⊗2
(x)ds

+
1

2

∫ t

r

∫
R2

ς(µN
s , x)ς(µ

N
s , y)∂

2
xyδ

2G(µN
s , x, y)d

(
µN
s

)⊗2
(x, y)ds

+N

∫ t

r

∫
R

∫
R
f
(
µN
s , y

) [
G
(
S
(
µN
s , h(µ

N
s , y, u)

))
−G

(
µN
s

)]
dµN

s (y)dν(u)ds,

with (MN,r
t )t a martingale that depends only on the process µN , on the Brownian motions W,Bk

(1 ≤ k ≤ N) and on the Poisson measures πl (1 ≤ l ≤ N) such that it adapted to the union
of the filtrations of these objects. The equality above being true for all G ∈ P2, Proposition 3.3
entails that the measure-valued process (µN

t )t is a Markov process (which was already guaranteed
by Proposition 2.3.3 of Dawson (1993)), but also that the domain of the generator of µN contains
the set P2, and that the expression of the generator on any G ∈ P2 is the one given in the
statement of Theorem 3.10.
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4. Proof of the main results

4.1. Proof of Theorem 1.3

Let us recall that, for each N ∈ N∗, the processes XN,k (1 ≤ k ≤ N) are defined as the (strong)
solutions of (1), and X̄ as the (strong) solution of (2). And, by definition, for all t ≥ 0,

µN
t =

1

N

N∑
k=1

δXN,k
t

and µ̄t = L
(
X̄t|Wt

)
.

Let us denote

EN =

{
mw =

1

N

N∑
k=1

δwk
: w1, ..., wN ∈ R

}
⊆ P∞(R).

It is classical that for any t ≥ 0, there exists Ct > 0 such that for all p ∈ N∗, m ∈ Pp(R)
and w1, ..., wN ∈ R

Em

[
sup
s≤t

∣∣X̄s

∣∣p] ≤ Ct

(
1 +

∫
R
|x|pdm(x)

)
, (38)

1

N

N∑
k=1

Emw

[
sup
s≤t

∣∣XN,k
s

∣∣p] ≤ Ct

(
1 +

1

N

N∑
k=1

|wk|p
)
, (39)

where mw = N−1
∑N

k=1 wk, Em (resp. Emw
) denotes the expectation w.r.t. the probability measure

under which the Markov process µ̄ (resp. µN ) has m (resp. mw) as initial condition.
Step 1. The first step of the proof consists in showing that, for any fixedN ∈ N∗, the P1(R)-valued

Markov processes µN and µ̄ satisfy the following Trotter-Kato formula: for all G ∈ P4, m ∈ EN
and t ≥ 0, (

P̄t − PN
t

)
G(m) =

∫ t

0

PN
t−s

(
Ā−AN

)
P̄sG(m)ds,

with PN , P̄ (resp. AN , Ā) the semigroups (resp. generators) of µN , µ̄, in the sense of Definition 3.1.
To prove this, it is sufficient to check that µN , µ̄ satisfy the four conditions of Proposition 3.4.

Condition 1 holds true for A = P4 by Proposition 3.9. Besides, Condition 2 is a direct consequence
of Theorems 3.6 and 3.10.

Now, let us verify Condition 3 of Proposition 3.4. Let G ∈ P4, by Theorem 3.6, the generator Ā
of µ̄ satisfy: for all m ∈ P1(R),

ĀG(m) =

∫
R
I(m,x)dm(x) +

∫
R2

J(m,x, y)dm⊗2(x, y),

with

I(m,x) =

(
b(m,x) +

∫
R
h(m, y)f(m, y)dm(y)

)
∂xδG(m,x) (40)

+
1

2

(
σ(m,x)2 + ς(m,x)2

)
∂2xxδG(m,x),

J(m,x, y) =
1

2
ς(m,x)ς(m, y)∂2xyδ

2G(m,x, y). (41)
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In particular thanks to Proposition 2.32, we have the following control: there exists C > 0 such
that for all G ∈ P4 and m ∈ P2(R),∣∣ĀG(m)

∣∣ ≤ C

(
1 +

∫
R
|x|2dm(x)

)
||G||2. (42)

And, for all t0, t ≤ T,

∣∣ĀG(µ̄t0)− ĀG(µ̄t)
∣∣ ≤ ∣∣∣∣∫

R
I(µ̄t0 , x)d (µ̄t0 − µ̄t) (x)

∣∣∣∣+ ∫
R
|I(µ̄t0 , x)− I(µ̄t, x)| dµ̄t(x)

+

∣∣∣∣∫
R2

J(µ̄t0 , x, y)d
(
µ̄⊗2
t0 − µ̄⊗2

t

)
(x, y)

∣∣∣∣
+

∫
R2

|J(µ̄t0 , x, y)− J(µ̄t, x, y)| dµ̄⊗2
t (x, y)

≤E
[ ∣∣I(µ̄t0 , X̄t0)− I(µ̄t0 , X̄t)

∣∣∣∣WT

]
+ E

[ ∣∣I(µ̄t0 , X̄t)− I(µ̄t, X̄t)
∣∣∣∣WT

]
+ E

[ ∣∣J(µ̄t0 , X̄
1
t0 , X̄

2
t0)− J(µ̄t0 , X̄

1
t , X̄

2
t )
∣∣∣∣WT

]
+ E

[ ∣∣J(µ̄t0 , X̄
1
t , X̄

2
t )− J(µ̄t, X̄

1
t , X̄

2
t )
∣∣∣∣WT

]
,

with X̄1, X̄2 solutions to the SDE (2) w.r.t. the same Brownian motion W , but w.r.t. two inde-
pendent Brownian motions B1, B2 instead of B. Let us note that, the functions I, J are locally
Lipschitz continuous in the following sense: there exists CG > 0 such that, for all m1,m2 ∈ P2(R),
and x1, x2, y1, y2 ∈ R,

|I(m1, x1)− I(m2, x2)|+ |J(m1, x1, y1)− J(m2, x2, y2)|

≤ CG

(
1 + |x1|2 + |x2|2 + |y1|2 + |y2|2 +

∫
R
|z|2dm1(z) +

∫
R
|z|2dm2(z)

)
(|x1 − x2|+DKR(m1,m2)) .

In particular, by Cauchy-Schwarz’ inequality and Jensen’s inequality and (3), denoting Em the
expectation w.r.t. the probability measure under which µ̄0 = m,∣∣P̄t0ĀG(m)− P̄tĀG(m)

∣∣ ≤ Em

[∣∣ĀG(µ̄t0)− ĀG(µ̄t)
∣∣]

≤ CGEm

[(
1 + sup

s≤T
E
[
|X̄s|2

∣∣WT

])
E
[ ∣∣X̄t0 − X̄t

∣∣∣∣WT

]]
≤ CGEm

[∣∣X̄t0 − X̄t

∣∣2]1/2 .
Recalling that X̄ is solution to (2), it is classical (using for example Burkholder-Davis-Gundy’s

inequality with (3)) that the RHS of the above inequality vanishes as t goes to t0. This implies that,
for any m ∈ P2(R) and G ∈ P4, the function

t 7→ P̄tĀG(m)

is continuous.
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The continuity of the function
t 7→ PN

t A
NG(m),

for m ∈ EN follows from the same reasoning provided Lemma 4.1 below to deal with the jump term
that depends on a shift operator S. Note that it is important to work with an initial condition
belonging to EN in order to interpret µN

t as the empirical measure of some N -particle system
satisfying the SDEs (1).

Lemma 4.1. Let m1,m2 ∈ P1(R) and h1, h2 ∈ R. Then

DKR (S(m1, h1),S(m2, h2)) ≤ DKR(m1,m2) + |h1 − h2|.

Proof. Let φ : R → R be any Lipschitz continuous function with Lipschitz constant non-greater
than one. ∣∣∣∣∫

R
φ(x)d (S(m1, h1)) (x)−

∫
R
φ(x)d (S(m2, h2)) (x)

∣∣∣∣
=

∣∣∣∣∫
R
φ(x+ h1)dm1(x)−

∫
R
φ(x+ h2)dm2(x)

∣∣∣∣
≤
∣∣∣∣∫

R
φ(x+ h1)d(m1 −m2)(x)

∣∣∣∣+ ∫
R
|φ(x+ h1)− φ(x+ h2)| dm2(x)

≤ DKR(m1,m2) + |h1 − h2|.

Taking the supremum over all such functions φ proves the result.

Indeed, with the same computation, we obtain∣∣PN
t0 A

NG(m)− PN
t A

NG(m)
∣∣ ≤ Em

[∣∣ANG(µN
t0)−ANG(µN

t )
∣∣]

≤ CGEm

[(
1 + sup

s≤T

1

N

N∑
k=1

∣∣XN,k
s

∣∣2) 1

N

N∑
k=1

∣∣∣XN,k
t0 −XN,k

t

∣∣∣]

≤ CG

(
1

N

N∑
k=1

Em

[∣∣∣XN,k
t0 −XN,k

t

∣∣∣2])1/2

.

Once again, this proves that for any m ∈ EN and G ∈ P4, the function

t 7→ PN
t A

NG(m)

is continuous. The continuity of t 7→ PN
t ĀG(m) is guaranteed by the same arguments. So Condi-

tion 3 of Proposition 3.4 is verified.
To end the Step 1 of the proof, let us now check Condition 4. Let us fix in the rest of Step 1

some G ∈ P4, 0 ≤ t < T and some sequence (sn)n converging to t such that sn ≤ T for all n ∈ N.
For M > 0, let us introduce

KM = {m ∈ P1(R) : Supp(m) ⊆ [−M,M ]} .

For any M > 0, KM is a compact set of Pp(R), for all p ≥ 1 (see Remark 6.19 of Villani (2009)).
Let us denote, for every n ∈ N,

Gn = P̄tG− P̄snG.
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Thanks to Proposition 3.9, we know that each Gn belongs to P4. Hence, by Proposition 2.32,
we can use Corollaries 2.26 and 2.27 (and Lemma 2.18 to differentiate the jump term from the
generator AN ) to compute ∂(ĀGn)(m,x) and ∂(A

Ngn)(m,x) (recalling the expressions of Ā and AN

given in Theorems 3.6 and 3.10) to prove that, for all M > 0,

sup
n∈N

m∈KM

|x|≤M

∣∣∂xδ (ĀGn

)
(m,x)

∣∣+ sup
n∈N

m∈KM

|x|≤M

∣∣∂xδ (ANGn

)
(m,x)

∣∣ ≤ CG

(
1 +M2

)
.

Note that the fact that the control above is uniform in n is guaranteed by Proposition 3.9.(b).
Then, by the Mean Value Theorem for measure-variable functions (i.e. Proposition 2.21) and

since KM (M > 0) are convex sets, we know that the families of functions (ĀGn)n and (ANGn)n
are both uniformly equicontinuous on each compact set KM (for any M > 0). In addition, let us
recall that it is possible to write the generator Ā and AN in the following form: for any m ∈ P2(R),

ĀGn(m) =

∫
R
In(m,x)dm(x) +

∫
R2

Jn(m,x, y)dm
⊗2(x, y)

ANGn(m) =

∫
R
INn (m,x)dm(x) +

∫
R2

JN
n (m,x, y)dm⊗2(x, y),

with In, Jn, I
N
n and JN

n defined similarly as I, J in (40) and (41), for the function Gn instead of G.
And, by Proposition 3.9.(c), for any x, y ∈ R and m ∈ P2(R), the integrands above vanish as n

goes to infinity, and are bounded by

CG

(
1 + x2 + y2 +

∫
|z|2dm(z)

)
,

where CG > 0 does not depend on (m,x, y, n). Then, by the Dominated Convergence Theorem, for
any m ∈ KM (for any M > 0), both ĀGn(m) and ANGn(m) vanish as n goes to infinity. Since
these two sequences are uniformly equicontinuous on each compact set KM , this implies that, for
all M > 0,

sup
m∈KM

∣∣ĀGn(m)
∣∣+ sup

m∈KM

∣∣ANGn(m)
∣∣ −→
n→∞

0. (43)

Then, let us introduce, for M > 0 the following event

DM =

 sup
r≤T

1≤k≤N

∣∣XN,k
r

∣∣ ≤M

 ,

and Dc
M its complementary. We have, by Cauchy-Schwarz’ inequality and Markov’s inequality, for

any m ∈ EN ,

sup
r≤T

∣∣PN
r ĀGn(m)

∣∣ ≤Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣]

≤Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DM

]
+ Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )1Dc

M

∣∣]
≤Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DM

]
+ CT,G,mM

−1/2,
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where we have used the controls given at (39), (42) and Proposition 3.9.(b).
In particular, for any ε > 0 it is possible to fix some Mε > 0 (whose also depends on T,G,m,

but not on n) such that

sup
r≤T

∣∣PN
r ĀGn(m)

∣∣ ≤ Em

[
sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DMε

]
+ ε.

Noticing that,
DMε ⊆

{
∀r ≤ T, µN

r ∈ KMε

}
,

we know, by (43), that, almost surely,

sup
r≤T

∣∣ĀGn(µ
N
r )
∣∣1DMε

−→
n→∞

0,

and, by the Dominated Convergence Theorem (and (39), (42) and Proposition 3.9.(b)), this entails
that, for m ∈ EN ,

sup
r≤T

∣∣PN
r ĀGn(m)

∣∣ −→
n→∞

0.

With exactly the same reasoning, we also have

sup
r≤T

∣∣PN
r A

NGn(m)
∣∣ −→
n→∞

0.

So Condition 4 of Proposition 3.4 is satisfied.
Step 2. We have proved that for all G ∈ P4, m ∈ EN and t ≥ 0,

(
P̄t − PN

t

)
G(m) =

∫ t

0

PN
t−s

(
Ā−AN

)
P̄sG(m)ds.

This formula allows to obtain a convergence speed for the semigroups provided a convergence
speed of the generators. So, the goal of Step 2 is to prove that, for all G ∈ P2 and m ∈ P3(R),∣∣(AN − Ā

)
G(m)

∣∣ ≤ C||G||2
1

N

(
1 +

∫
R
|x|3dm(x)

)
, (44)

where C > 0 is independent of G,m and N .
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To begin with, by Theorems 3.6 and 3.10, for all G ∈ P2 and m ∈ P2(R),

ĀG(m) =

∫
R

[
b(m,x) +

(∫
R
h(m, y)f(m, y)dm(y)

)]
∂xδG(m,x)dm(x)

+
1

2

∫
R

[
σ(m,x)2 + ς(m,x)2

]
∂2xxδG(m,x)dm(x)

+
1

2

∫
R2

ς(m,x)ς(m, y)∂2xyδ
2G(m,x, y)dm⊗2(x, y),

ANG(m) =

∫
R

[
b(m,x)∂xδG(m,x) +

1

2

∫
R

[
σ(m,x)2 + ς(m,x)2

]
∂2xxδG(m,x)

]
dm(x)

+
1

2N

∫
R
σ(m,x)2

(
∂2y1y2

δ2G(m, y1, y2)
)
|y1=y2=x

dm(x)

+
1

2

∫
R2

ς(m,x)ς(m, y)∂2xyδ
2G(m,x, y)dm⊗2(x, y)

+N

∫
R
f(m,x)

[
G

(
S
(
m,

1

N
h(m,x)

))
−G(m)

]
dm(x).

So ∣∣(AN − Ā
)
G(m)

∣∣ ≤ 1

2N

∫
R

∣∣∣σ(m,x)2 (∂2y1y2
δ2G(m, y1, y2)

)
|y1=y2=x

∣∣∣ dm(x) (45)

+N

∫
R
f(m,x)

∣∣∣∣G(S (m, 1N h(m,x)

))
−G(m) (46)

−h(m,x)
N

∫
R
∂yδG(m, y)dm(y)

∣∣∣∣ dm(x).

Firstly, the term (45) is bounded by

C||G||2
1

N

(
1 +

∫
R
|x|2dm(x)

)
.

To control the other term (46), let us define

H : (m,x) ∈ P1(R)× R 7−→
∫
R
δG(m, y) d

(
S
(
m,

1

N
h(m,x)

)
−m

)
(y),

and notice that, for all m ∈ P1(R), x ∈ R,

H(m,x) =

∫
R

[
δG

(
m, y +

1

N
h(m,x)

)
− δG(m, y)

]
dm(y).

Consequently, by subtracting H(m,x) in the first line of the integrand of (46), and adding it to
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the second line, we deduce that the term at (46) is non-greater than

N

∫
R
f(m,x)

∣∣∣∣G(S (m, 1N h(m,x)

))
−G(m)−H(m,x)

∣∣∣∣ dm(x)

+N

∫
R
f(m,x)

∫
R

∣∣∣∣δG(m, y + 1

N
h(m,x)

)
− δG(m, y)

− 1

N
h(m,x)∂yδG(m, y)

∣∣∣∣ dm(y)dm(x)

≤ 1

2
N ||G||2

∫
R
f(m,x)

(
DKR

(
S
(
m,

1

N
h(m,x)

)
,m

)2

+
1

N2
h(m,x)2

)
dm(x),

where we have used Taylor-Lagrange’s inequality for measure-variable functions (i.e. Theorem 2.24)
to control the first term of the sum above, and the standard Taylor-Lagrange’s inequality for the
second one. Besides, by Lemma 2.18, for any m ∈ P1(R) and λ ∈ R,

DKR(S(m,λ),m) ≤ |λ|,

such that (46) is bounded by

1

N
||G||2

∫
R
f(m,x)h(m,x)2dm(x) ≤ C||G||2

1

N

(
1 +

∫
R
|x|3dm(x)

)
,

where we have used the sublinearity of f, h. So we have proved (44).
Step 3. From (44), we deduce a control between the semigroups of µN , µ̄. Let w1, ..., wN ∈ R,

and

mw =
1

N

N∑
k=1

wk.

Then, thanks to Step 1,∣∣(P̄t − PN
t

)
G(mw)

∣∣ ≤∫ t

0

Emw

[∣∣(Ā−AN
)
P̄sG(µ

N
t−s)

∣∣] ds
≤C 1

N

∫ t

0

||P̄sG||2

(
1 +

1

N

N∑
k=1

Emw

[
|XN,k

t−s |3
])

ds

≤Ct
1

N
||G||2

(
1 +

1

N

N∑
k=1

|wk|3
)
, (47)

where we have used Proposition 3.9.
Step 4. Then end of the proof is now quite classical. For G ∈ P4,

∣∣E [G(µ̄t)]− E
[
G(µN

t )
]∣∣ ≤ ∣∣∣∣∣

∫
P1(R)

P̄tG(m) d
(
L (µ̄0)− L

(
µN
0

))
(m)

∣∣∣∣∣
+

∫
P1(R)

∣∣(P̄t − PN
t

)
G(m)

∣∣ d (L (µN
0

))
(m)

≤Ct||G||1DKR

(
L (µ̄0) ,L

(
µN
0

))
+ Ct||G||2

1

N
,
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where the last line has been obtained using Proposition 3.9 (and the definition of the Kantorovich-
Rubinstein metric) for the first term of the sum, and (47) for the second one.

This ends the proof of Theorem 1.3.

4.2. Proof of Corollary 1.5

The proof of Corollary 1.5 consists in remarking that the SDEs (4) and (5) are particular cases
of (1) and (2) with: for m ∈ P1(R) and x ∈ R,

b(m,x) = b̃(x); σ(m,x) = σ̃(x); ς(m,x) = 0; h(m,x) = 1; f(m,x) = f̃(x).

In addition, since the processes Y N,k (1 ≤ k ≤ N) and Ȳ are assumed to have the same
deterministic initial condition x0 ∈ R, the measures µN (N ∈ N∗) and µ̄0 are deterministic and
equal to the Dirac mass at x0. Hence

DKR

(
L (µ̄0) ,L

(
µN
0

))
= DKR (δx0

, δx0
) = 0.

Finally, the result of Corollary 1.5 comes from the fact that, for any φ ∈ C4
b (R), the function

G : m ∈ P1(R) 7−→
∫
R
φ(x)dm(x)

belongs to P4, and that

E [G(µ̄t)] = G(µ̄t) = E
[
φ(Ȳt)

]
and E

[
G(µN

t )
]
= E

[
1

N

N∑
k=1

φ(Y N,k
t )

]
= E

[
φ(Y N,1

t )
]
.

4.3. Proofs of Theorem 1.7 and Corollary 1.9

The proof of Theorem 1.7 is essentially the same as the one of Theorem 1.3. The only difference
is the Step 2 of the proof concerning the control of the difference of the generators AN and Ā,
where we need Taylor-Lagrange’s inequalities at order three instead of two. So concerning the proof
of Theorem 1.7, let us only write the proof of the equivalent of (44) for the diffusive model: for
G ∈ P3 and m ∈ P4(R),∣∣(AN − Ā

)
G(m)

∣∣ ≤ C||G||3
1√
N

(
1 +

∫
R
|x|4dm(x)

)
. (48)

To this end, let us admit the following lemma, whose proof consists in using three times the
Taylor-Lagrange’s inequality. This lemma allows to simplify computation in our proof.

Lemma 4.2. Let g ∈ C3
b (R2). Then, for all x, y, λ ∈ R,∣∣∣∣g(x+ λ, y + λ)− g(x+ λ, y)− g(x, y + λ) + g(x, y)− λ2

2
∂2xyg(x, y)

∣∣∣∣
≤ |λ|3

2

∑
|α|=3

||∂αg||∞.
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Let us denote ζ > 0 the standard deviation of the probability measure ν:

ζ =

(∫
R
u2dν(u)

)1/2.

Then, by Theorems 3.6 and 3.10, for all G ∈ P2 and m ∈ P2(R),

ĀG(m) =

∫
R

[
b(m,x)∂xδG(m,x) +

1

2
σ(m,x)2∂2xxδG(m,x)

]
dm(x)

+
1

2
ζ2
∫
R

(∫
R
h(m, y)2f(m, y)dm(y)

)
∂2xxδG(m,x)dm(x)

+
1

2
ζ2
∫
R2

(∫
R
h(m, z)2f(m, z)dm(z)

)
∂2xyδ

2G(m,x, y)dm⊗2(x, y),

ANG(m) =

∫
R

[
b(m,x)∂xδG(m,x) +

1

2
σ(m,x)2∂2xxδG(m,x)

]
dm(x)

+
1

2N

∫
R
σ(m,x)2

(
∂2y1y2

δ2G(m, y1, y2)
)
|y1=y2=x

dm(x)

+N

∫
R

∫
R
f(m,x)

[
G

(
S
(
m,

u√
N
h(m,x)

))
−G(m)

]
dν(u)dm(x).

So (
AN − Ā

)
G(m) =

1

2N

∫
R
σ(m,x)2

(
∂2y1y2

δ2G(m, y1, y2)
)
|y1=y2=x

dm(x) (49)

+N

∫
R
f(m, z)

∫
R

[
G

(
S
(
m,

u√
N
h(m, z)

))
−G(m) (50)

− u2

2N
h(m, z)2

∫
R
∂2xxδG(m,x)dm(x)

− u2

2N
h(m, z)2

∫
R2

∂2xyδ
2G(m,x, y)dm⊗2(x, y)

]
dν(u)dm(z).

The absolute value of the term at (49) is bounded by

C
1

N
||G||2

(
1 +

∫
R
x2dm(x)

)
.

For the rest of the proof, let us introduce, for u, z ∈ R, the signed measure

mN
z,u = S

(
m,

u√
N
h(m, z)

)
−m. (51)

To control the term at (50), by using Theorem 2.24, we need to compute the integrals of the k-th
order derivative of G w.r.t. the power of mN

z,u to k, for k ∈ {1, 2}.∫
R

∫
R
δG(m,x)dmN

z,u(x)dν(u) =

∫
R

∫
R

[
δG

(
m,x+

u√
N
h(m, z)

)
− δG(m,x)

− u√
N
h(m, z)∂xδG(m,x)

]
dν(u)dm(x),
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where the term at the second line above has been added artificially since ν is a centered measure.
In addition,∫

R

∫
R2

δ2G(m,x, y)d
(
mN

z,u

)⊗2
(x, y)dν(u)

=

∫
R

∫
R

∫
R

[
δ2G

(
m,x+

u√
N
h(m, z), y +

u√
N
h(m, z)

)
−δ2G

(
m,x+

u√
N
h(m, z), y

)
− δ2G

(
m,x, y

u√
N
h(m, z)

)
+ δ2G(m,x, y)

]
dν(u)dm(x)dm(y).

Whence, the absolute value of the term within the brackets at (50) is non-greater than the sum
of the three following quantities:∣∣∣∣G(S (m, u√

N
h(m, z)

))
−G(m)−

∫
R
δG(m,x)dmN

z,u(x)dm(x) (52)

−1

2

∫
R2

δ2G(m,x, y)d
(
mN

z,u

)⊗2
(x, y)

∣∣∣∣ ,∫
R

∣∣∣∣δG(m,x+
u√
N
h(m, z)

)
− δG(m,x)− u√

N
h(m, z)∂xδG(m,x) (53)

− u2

2N
h(m, z)2∂2xxδG(m,x)

∣∣∣∣ dm(x),∫
R2

∣∣∣∣δ2G(m,x+
u√
N
h(m, z), y +

u√
N
h(m, z)

)
− δ2G

(
m,x+

u√
N
h(m, z), y

)
(54)

−δ2G
(
m,x, y

u√
N
h(m, z)

)
+ δ2G(m,x, y)− u2

2N
h(m, z)2∂2xyδ

2G(m,x, y)

∣∣∣∣ dm⊗2(x, y).

Each of the three terms above is bounded by

C||G||3
1

N
√
N

(
1 + |z|3 +

∫
R
|x|3dm(x)

)(
1 + |u|3

)
.

Indeed, for (52), it is a consequence of the Taylor-Lagrange’s inequality for measure-variable
functions (i.e. Theorem 2.24), and the fact that (by Lemma 2.18)

DKR

(
S
(
m,

u√
N
h(m, z)

)
,m

)
≤ |u|√

N
|h(m, z)|,

for (53), it comes from the Taylor-Lagrange’s inequality for real-variable functions, and the control
of (54) is obtained by Lemma 4.2.

Finally using this last bound to control (50) is sufficient to prove (48). As explained previously,
the rest of the proof of Theorem 1.7 being almost unchanged compared to the proof of Theorem 1.3,
it is omitted.

The proof of Corollary 1.9 follows the same idea as the one of Corollary 1.5: it consists in
remarking that Corollary 1.9 is a particular case of Theorem 1.7. The only difference is that we
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need to prove that

DKR

(
L

(
1

N

∑
k=1

δY N,k
0

)
, δL(Ȳ0)

)
= DKR

(
1

N

∑
k=1

δY N,k
0

,L(Ȳ0)

)
≤ C

1√
N
.

Let us recall that, by hypothesis, the variables Y N,k
0 (1 ≤ k ≤ N) are i.i.d. with the same law as Ȳ0

with finite fourth order moment. Then, the inequality above is a direct consequence of Theorem 3.2
of Bobkov and Ledoux (2019) and the discussion thereafter, or of Theorem 1 of Fournier and Guillin
(2015).

Appendix A: Separating class on spaces of probability measures

The goal of this section is to prove Proposition 2.31. It means that the set P∞ is a separating
class for Pp(R) (for any p ≥ 1). Before proving this statement, let us introduce some definitions and
useful results about separating classes. This section relies strongly on the content of Section 3.4 of
Ethier and Kurtz (2005).

In all this section, E denotes some Polish space, and P(E) the space of probability measures
on E endowed with Prohorov metric (i.e. the topology of the weak convergence).

Definition A.1. Some set A of measurable functions f : E → R is said to separate E if, for
all x, y ∈ E,

(∀f ∈ A, f(x) = f(y)) =⇒ x = y.

A set A of measurable functions f : E → R is called a separating class for E if, for all m,µ ∈ P(E),(
∀f ∈ A,

∫
E

f(x)dm(x) =

∫
E

f(x)dµ(x)

)
=⇒ m = µ.

In other words, A is a separating class for E means that{
m ∈ P(E) 7−→

∫
E

f(x)dm(x) : f ∈ A
}

separates P(E). The interesting point of a separating class for E is that it allows to identify the
laws on E in the following sense (it is a mere rephrasing of the definition of a separating class).

Lemma A.2. If A is a separating class for E, and X,Y are two E-valued random variables such
that: for all f ∈ A,

E [f(X)] = E [f(Y )] .

Then X and Y have the same law.

The lemma below should be classical, but since we have not found a proof in the literature, we
provide one for self-completeness.

Lemma A.3. The set C∞
c (R) is a separating class for R.

Proof. Let m,µ ∈ P(R) such that, for all g ∈ C∞
c (R),∫

R
g(x)dm(x) =

∫
R
g(x)dµ(x). (55)



X. Erny/Measure-valued Markov processes and mean-field limits 54

Let a < b. Let (gn)n be a C∞
c (R)−valued sequence such that{
(gn)n converges pointwise to 1]a,b[,
∀(x, n) ∈ R× N, 0 ≤ gn(x) ≤ 1.

Then, rewriting (55) with gn instead of g (for all n ∈ N∗), and using the Dominated Convergence
Theorem,

m(]a, b[) = µ(]a, b[).

The previous equality being true for any a < b, this proves that m = µ.

The proof that the polynomials form a separating class for Pp(R) relies on the following criterion.

Theorem A.4 (Theorem 3.4.5.(a) of Ethier and Kurtz (2005)). Any algebra that separates E is a
separating class for E.

Besides, since Pp(R) is Polish (see Theorem 6.18 of Villani (2009)), Theorem A.4 above can be
used with E = Pp(R). Now we can prove that the polynomials form a separating class of Pp(R).

Proof of Proposition 2.31. By Lemma A.3, the set{
m ∈ P(R) 7−→

∫
R
h(x)dm(x) : h ∈ C∞

c (R)
}

separates P(R), hence it also separates Pp(R). The set P∞ being an algebra containing the set
above, it is a separating class by Theorem A.4.

Appendix B: Proof of Lemma 3.8

The proof of Lemma 3.8 uses the following classical lemma whose proof is omitted.

Lemma B.1. Let (fn)n be a sequence of C1(R) such that:

� (fn)n converges point-wisely to some function f ,
� (f ′n)n converges uniformly on every compact set to some function g.

Then, f ∈ C1(R) and f ′ = g.

Let us recall that, by definition, for all x ∈ R, t ≥ 0,

X̄
(x)
t = x+

∫ t

0

b
(
µ̄(x)
s , X̄(x)

s

)
ds+

∫ t

0

σ
(
µ̄(x)
s , X̄(x)

s

)
dBs +

∫ t

0

ς
(
µ̄(x)
s , X̄(x)

s

)
dWs,

where µ̄
(x)
s = L(X̄(x)

s |Ws).
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In order to prove Lemma 3.8, we use the Banach-Picard iteration scheme related to the above
equation. Namely, for all x ∈ R, t ≥ 0, n ∈ N,

X̄
(x),[0]
t =x,

µ̄
(x),[0]
t =δx,

X̄
(x),[n+1]
t =x+

∫ t

0

b
(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds+

∫ t

0

σ
(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dBs

+

∫ t

0

ς
(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dWs,

µ̄
(x),[n+1]
t =L

(
X̄

(x),[n+1]
t |Wt

)
.

Step 1. In this first step, we prove the almost sure convergence of X̄
(x),[n]
t to X̄

(x)
t as n goes to

infinity, for any t belonging to some sufficiently small interval, and locally uniformly w.r.t. x.
For n ∈ N, p ∈ N∗, t ≥ 0 and M > 0,

u
[n],0
t (M,p) = E

[
sup

s≤t,|x|≤M

∣∣∣X̄(x),[n+1]
s − X̄(x),[n]

s

∣∣∣p] .
With classical computation (using Burkholder-Davis-Gundy’s inequality and the assumption that

b, σ, ς are Lipschitz continuous), we have that, for all T > 0, p ∈ N∗, n ∈ N,

u
[n+1],0
T (M,p) ≤ Cp

(
T p + T p/2

)
u
[n],0
T (M,p),

with Cp > 0 independent of T , M and n. In particular, let us fix some small enough Tp > 0 such
that, for all n ∈ N, p ∈ N,M > 0,

u
[n+1],0
Tp

(M,p) ≤ 1

2
u
[n],0
Tp

(M,p),

whence

u
[n],0
Tp

(M,p) ≤ Cp
1

2n
(1 +Mp) . (56)

and

E

[
sup

s≤Tp,|x|≤M

∣∣∣X̄(x),[n+1]
s − X̄(x),[n]

s

∣∣∣] ≤ u
[n],0
Tp

(M,p)1/p ≤ Cp
1

2n/p
(1 +M) .

As a consequence, for all M > 0, p ∈ N∗,

E

[
sup

t≤Tp,|x|≤M

∣∣∣∣∣
+∞∑
n=0

(
X̄

(x),[n+1]
t − X̄

(x),[n]
t

)∣∣∣∣∣
]
<∞,

and, almost surely,

sup
t≤Tp,|x|≤M

∣∣∣∣∣
+∞∑
n=0

(
X̄

(x),[n+1]
t − X̄

(x),[n]
t

)∣∣∣∣∣ <∞.
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This proves that, almost surely, for all t ∈ [0, Tp], X̄
(x),[n]
t converges as n goes to infinity to X̄

(x)
t

(recalling that X̄(x) is solution to (33)) locally uniformly w.r.t. x.
In addition, with similar technics and Fatou’s lemma, we can prove that, for all p ∈ N∗, M > 0,

T > 0,

E

[
sup

t≤T,|x|≤M

∣∣∣X̄(x)
t

∣∣∣p] <∞. (57)

Step 2. Now we study the regularity of the functions

x 7−→ X̄
(x),[n]
t .

Let us prove by induction on n ∈ N that there exists T > 0 (independent of n) such that, for

all t ∈ [0, T ] the function x 7→ X̄
(x),[n]
t C1 and that, for all M > 0,

E

[
sup

t≤T,|x|≤M

∣∣∣∂xX̄(x),[n]
t

∣∣∣] <∞ and sup
x∈R

E
[
sup
t≤T

∣∣∣∂xX̄(x),[n]
t

∣∣∣] <∞.

For n = 0,

∂xX̄
(x),[0]
t = 1.

Then fix some n ∈ N and assume that the induction hypothesis holds true for this n. Then,
by Lemma 2.19 (and Remark 2.20), and assuming that b, σ, ς admits bounded second order mixed
derivatives (what implies that the first order mixed derivatives are continuous w.r.t. all their vari-
ables, by Remark 2.13),

∂xX̄
(x),[n+1]
t =1 +

∫ t

0

(
∂xX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds (58)

+

∫ t

0

Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)
∂(0,1)σ

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dBs

+

∫ t

0

Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
(
σ
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
dBs

+

∫ t

0

(
∂xX̄

(x),[n]
s

)
∂(0,1)ς

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
dWs

+

∫ t

0

Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
(
ς
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
dWs,

where X̃ is defined in the same way as X̄ w.r.t. the same Brownian motionW , but w.r.t. a Brownian
motion B̃ independent of (B,W ), and Ẽ is the expectation w.r.t. the law of B̃. One can note that,

the expression above of ∂xX̄
(x),[n+1]
t is closely related to the ones of Proposition 3.1 of Crisan and

McMurray (2018) (we actually use their notation for Ẽ and X̃).
Let us remark an important point: the functions appearing as coefficients in the expression above

are exactly the first order mixed derivatives of the functions b, σ, ς.
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And, with similar computation as in Step 1, we can prove that, for all p ∈ N∗, M > 0,

sup
n∈N

E

[
sup

t≤Tp,|x|≤M

∣∣∣∂xX̄(x),[n]
t

∣∣∣p] <∞ and sup
n∈N,x∈R

E

[
sup
t≤Tp

∣∣∣∂xX̄(x),[n]
t

∣∣∣] <∞, (59)

for some Tp > 0 independent of n,M .
Let

u
[n],1
t (M,p) = E

[
sup

s≤t,|x|≤M

∣∣∣∂xX̄(x),[n+1]
s − ∂xX̄

(x),[n]
s

∣∣∣p] .
To control the above quantity in a similar way as in Step 1, it is required to control two kind of

terms. In order to simplify the reading we only handle the drift terms (the Brownian terms can be
treated in the exact same way after using Burkholder-Davis-Gundy’s inequality). The first term is
of the following form: for |x| ≤M ,∣∣∣(∂xX̄(x),[n+1]

s

)
∂(0,1)b

(
µ̄(x),[n+1]
s , X̄(x),[n+1]

s

)
−
(
∂xX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)∣∣∣
≤

(
sup

m∈P1(R),|y|≤M

|∂(0,1)b(m, y)|

)∣∣∣∂xX̄(x),[n+1]
s − ∂xX̄

(x),[n]
s

∣∣∣
+ C

∣∣∣∂xX(x),[n]
s

∣∣∣ (∣∣∣X̄(x),[n+1]
s − X̄(x),[n]

s

∣∣∣+DKR

(
µ̄(x),[n+1]
s , µ̄(x),[n]

s

))
.

In particular, thanks to (56), (59) and Cauchy-Schwarz’ inequality, for any p ∈ N∗, for t ≤ Tp
(where Tp has possibly been reduced compared to the previous one),

E
[(∫ t

0

∣∣∣(∂xX̄(x),[n+1]
s

)
∂(0,1)b

(
µ̄(x),[n+1]
s , X̄(x),[n+1]

s

)
−
(
∂xX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)∣∣∣ ds)p]
≤ CM,pT

pu
[n],1
t (M,p) + CM,pT

p 1

2n/2
. (60)

The second term involves the following term(
∂xX̃

(x),[n]
s

)
∂
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)
,

and can be handled exactly as (60), since the function (m,x, y) 7→ ∂yδ(bx)(m, y) is assumed to
be Lipschitz continuous and bounded (recalling that this function belongs to the set of first order
mixed derivatives of b). Whence, for T ≤ Tp,

u
[n+1],1
T (M,p) ≤ CM,p

(
T p + T p/2

)(
u
[n],1
T (M,p) +

1

2n/2

)
.

And, possibly by reducing Tp,

u
[n+1],1
T (M,p) ≤ 1

2
u
[n],1
T (M,p) +

1

21+n/2
.

Consequently, for T ≤ Tp,

u
[n],1
T (M,p) ≤ CM,p2

−n/2, (61)
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and

E

[
sup

s≤Tp,|x|≤M

∣∣∣∂xX̄(x),[n+1]
s − ∂xX̄

(x),[n]
s

∣∣∣] ≤ u
[n],1
T (M,p)1/p ≤ CM,p2

−n/(2p).

The quantities above being the terms of a convergent series, we can conclude as in Step 1 that,

almost surely, for all t ∈ [0, Tp], ∂xX̄
(x),[n]
t converges as n goes to infinity to some function locally

uniformly w.r.t. x. Then, by Lemma B.1, we know that, almost surely, for all t ∈ [0, Tp], the function

x 7→ X̄
(x)
t is C1, and that its derivative is the limit of ∂xX̄

(x),[n]
t . In particular, by Fatou’s lemma

and (59),

E

[
sup

t≤T,|x|≤M

∣∣∣∂xX̄(x)
t

∣∣∣p] <∞ and sup
x∈R

E
[
sup
t≤T

∣∣∣∂xX̄(x)
t

∣∣∣p] <∞. (62)

Step 3. The proof that the function x 7→ X̄
(x)
t is C2 uses the same arguments as the ones used in

Step 2. In order to make it clear, we just write the terms of the dynamics of ∂2xxX̄
(x),[n+1]
t coming

from the two first lines of (58).

∂2xxX̄
(x),[n+1]
t =

∫ t

0

(
∂2xxX̄

(x),[n]
s

)
∂(0,1)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)2
∂(0,2)b

(
µ̄(x),[n]
s , X̄(x),[n]

s

)
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)
Ẽ
[(
∂xX̃

(x),[n]
s

)
∂
((
∂(0,1)b

)
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

)∣∣∣Ws

]
ds

+

∫ t

0

Ẽ
[(
∂2xxX̃

(x),[n]
s

)
∂
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s

)∣∣∣Ws

]
ds

+

∫ t

0

(
∂xX̄

(x),[n]
s

)
Ẽ

[(
∂xX̃

(x),[n]
s

)(
∂x̄∂ (bx̄)

(
µ̄(x),[n]
s , X̃(x),[n]

s

))∣∣∣x̄=X̄
(x),[n]
s

∣∣∣∣∣Ws

]
ds

+

∫ t

0

ĚẼ
[(
∂xX̃

(x),[n]
s

)(
∂xX̌

(x),[n]
s

)
∂2
(
b
X̄

(x),[n]
s

)(
µ̄(x),[n]
s , X̃(x),[n]

s , X̌(x),[n]
s

)∣∣∣Ws

]
ds

+ ...

where the omitted terms (hidden in the ellipsis) are the same as the ones written replacing the
function b respectively by σ and ς, and ds by dBs and dWs. As previously, X̃ and X̌ are defined
as X̄ w.r.t. the same Brownian motion W , and w.r.t. respective Brownian motions B̃ and B̌ such
that W, B̂ and B̌ are independent. The expectations Ẽ and Ě are the expectation w.r.t. the laws
of B̃ and B̌.

Once again, it can be noted that the functions appearing in the expression of ∂2xxX̄
(x),[n+1]
t are

the mixed-derivatives of b, σ, ς up to order two. Hence the same reasoning as in Step 2 allows to

conclude. Finally, the proof that x 7→ X̄
(x)
t is C3 (resp. C4) is the same as previously remarking

that, calculating the expression of ∂3xxxX̄
(x),[n+1]
t (resp. ∂4xxxxX̄

(x),[n+1]
t ) makes appear the mixed-

derivatives of b, σ, ς up to order three (resp. four) . Since it is assumed that all the mixed-derivatives
up to order five are bounded, we know by, Remark 2.20, that the mixed-derivatives up to order four
are Lipschitz continuous. So the end of the proof follows the same arguments as Step 2, and similar
controls as (62) can be proved for the third and fourth derivatives.
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Appendix C: Proofs of some technical lemmas on spaces of probability measures

Proof of Lemma 2.3. Let us consider m0 ∈ P1(R) and h1, h2 : R → R such that, for all m ∈ P1(R),∫
R
h1(x)d(m−m0)(x) =

∫
R
h2(x)d(m−m0)(x) + εm0

(m),

where εm0
(m)/DKR(m,m0) vanishes as m converges to m0.

Let us define

Φ : m ∈ P1(R) 7−→
∫
R
(h1(x)− h2(x)) d(m−m0)(x).

So, by hypothesis, Φ(m)/DKR(m,m0) vanishes as m goes to m0.
Step 1. In a first time, we prove that Φ is the zero function. Let us fix m ∈ P1(R) and introduce,

for any n ∈ N∗,

µn =
n− 1

n
m0 +

1

n
m ∈ P1(R).

We have that, for all n ∈ N∗,

DKR(m0, µn) ≤
1

n
DKR(m0,m),

hence, µn converges to m0 as n goes to infinity.
On the other hand,

Φ(m) = nΦ(µn) = n
Φ(µn)

DKR(m0, µn)
DKR(m0, µn) ≤

Φ(µn)

DKR(m0, µn)
DKR(m0,m) −→

n→∞
0.

This proves that, for all m ∈ P1(R), Φ(m) = 0.
Step 2. To conclude the proof, it is then sufficient to notice that, thanks to Step 1, for any y ∈ R,

Φ(δy) = 0. Whence, for any y ∈ R,

h1(y)− h2(y) =

∫
R
(h1(x)− h2(x)) dm0(x).

In particular, the function h1 − h2 is constant, and the lemma is proved.

Proof of Lemma 2.28. For each 1 ≤ k ≤ d, there exists a probability space (Ωk,Fk,Pk) and two
random variables on this space Xk, Yk of respective laws mk, µk such that

DKR(mk, µk) = Ek [|Xk − Yk|] ,

with Ek the expectation w.r.t. Pk (the existence of these random variables is guaranteed by Theo-
rem 4.1 of Villani (2009)). Let us assume that all the probability spaces (Ωk,Fk,Pk) are disjoint,
and consider the product probability space of these spaces, denoted by (Ω,F ,P). In particular, the
variables Xk (resp. Yk) (1 ≤ k ≤ d) are independent, whence

L (X1, ..., Xd) =

d⊗
k=1

mk and L (Y1, ..., Yd) =

d⊗
k=1

µk.

Consequently,

DKR

(
d⊗

k=1

mk,

d⊗
k=1

µk

)
≤ E

[
d∑

k=1

|Xk − Yk|

]
=

d∑
k=1

Ek [|Xk − Yk|] =
d∑

k=1

DKR(mk, µk),

which proves the result.
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Appendix D: Some technical lemmas about Ito’s integrals

Let (Xt)t≥0 be some càdlàg R-valued process that is locally L2: for all t ≥ 0,∫ t

0

E
[
X2

s

]
ds <∞. (63)

Let W,B be two standard Brownian motions of dimension one, and (Ft)t be a filtration such
that F , B and W are independent. Let us denote (Wt)t (resp. (Bt)t) the filtration of W (resp. B),
meaning

Wt = σ (Ws : s ≤ t) and Bt = σ (Bs : s ≤ t) ,

and define (Gt)t the union (in the filtration sense) of F , W and B: for all t ≥ 0,

Gt = Ft ∨Wt ∨ Bt.

Lemma D.1. Assume that X is G-adapted. Then, for all t ≥ 0,

E
[∫ t

0

XsdWs

∣∣∣∣Wt

]
=

∫ t

0

E [Xs|Ws] dWs.

Proof. Let us fix t ≥ 0. By definition of Ito’s integral,∫ t

0

XsdWs = lim
n→∞

n−1∑
k=0

Xsk

(
Wsk+1

−Wsk

)
in probability, where, for any 0 ≤ k ≤ n, sk = t · k/n.

Then, thanks to (63), the (conditional) Vitali’s convergence theorem implies that, almost surely,

E
[∫ t

0

XsdWs

∣∣∣∣Wt

]
= lim

n→∞

n−1∑
k=0

E
[
Xsk

(
Wsk+1

−Wsk

)∣∣Wt

]
= lim

n→∞

n−1∑
k=0

E [Xsk |Wt]
(
Wsk+1

−Wsk

)
= lim

n→∞

n−1∑
k=0

E [Xsk |Wsk ]
(
Wsk+1

−Wsk

)
=

∫ t

0

E [Xs|Ws] dWs,

where the before last equality above comes from the fact that X is G-adapted and that Wt can
be written as the union (in the filtration sense) of Wsk and σ(Wr −Wsk : sk < r ≤ t) which are
independent (whence, Xsk is also necessarily independent of σ(Wr −Wsk : sk < r ≤ t)).

Lemma D.2. Assume that X is G-adapted. Then, for all t ≥ 0,

E
[∫ t

0

XsdWs

∣∣∣∣Bt

]
= 0.
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Proof. With the same reasoning (and using the same notation) as in the beginning of the proof of
Lemma D.1, for all t ≥ 0,

E
[∫ t

0

XsdBs

∣∣∣∣Wt

]
= lim

n→∞

n−1∑
k=0

E
[
Xsk

(
Bsk+1

−Bsk

)∣∣Wt

]
. (64)

Let us recall that X is G-adapted and that B,W are independent. Let us consider any Wt-
measurable random variable Z. Then, both Z and Xsk are independent of Bsk+1

−Bsk . So,

E
[
Xsk

(
Bsk+1

−Bsk

)
Z
]
= E [XskZ]E

[
Bsk+1

−Bsk

]
= 0,

implying
E
[
Xsk

(
Bsk+1

−Bsk

)∣∣Wt

]
= 0.

Combining the equation above with (64) proves the result.
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