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- ABSTRACT  This research empirically examines embedded development tools viable

for on-device TinyML implementation. The research evaluates various development tools
with various abstraction levels on resource-constrained IoT devices, from basic hardware
manipulation to deployment of minimalistic ML training. The analysis encompasses mem-
ory usage, energy consumption, and performance metrics during model training and in-
ference and usability of the different solutions. Arduino Framework offers ease of imple-
mentation but with increased energy consumption compared to the native option, while
RIOT OS exhibits efficient energy consumption despite higher memory utilization with
equivalent ease of use. The absence of certain critical functionalities like DVFS directly
integrated into the OS highlights limitations for fine hardware control.
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| INTRODUCTION

This research aligns with developing a small wireless device intended to function within
networks of similar devices, operating independently of external power and communica-
tion networks. Within this scope, we are contemplating the software development for an
embedded system, an autonomous computing device integrated into an object or a more
extensive system capable of performing specific tasks. It is less potent than a traditional
computer but significantly more energy-efficient and more in scope with ubiquitous com-
puting. For instance, we might equip this device with a battery and energy-harvesting so-
lution such as a small solar panel for autonomy. The idea is to create a system roughly the
size of the palm of a hand or even smaller. We aim to design an intelligent sensor capable
of processing data and making decisions, categorized into two phases: learning and infer-
ence using ML algorithms.

Pursuing this objective, we explore key concepts crucial to our embedded system’s de-
velopment within a wireless edge network. These concepts include intermittent learning
[1], [2], which adapts learning processes to conserve energy, aligning with the system’s
low-energy consumption goals. Our system aims to embody ambient intelligence [1] by
reacting to environmental changes, resonating with the IoT principle [3] as part of an in-
terconnected system that collects, processes, and transmits data. We consider Federated
Learning’s collaborative approach, aiming to improve performance without centralizing
data. We fall into Frugal Al since we will need our resource-efficient Al to align with our
system’s need to execute complex tasks with minimal energy consumption and scarce data
availability. On-device learning [2], [4] and TinyML [5], [6] play integral roles in acquiring
knowledge independently and implementing advanced on-device ML techniques, fitting
perfectly within our embedded system’s operational environment.

In Section II, we present general constrained device classification and associated ML
tasks. We present our hardware targets in Section III and the tools selected for this study
in Section [V. Section V outlines the measurements conducted and the evaluated applica-
tions. Finally, in Section VI, we compile the results from various experimental measures.

Il EMBEDDED ML DEVICES CLASSIFICATION

Applying Machine Learning (ML) in embedded systems is not new. Edge computing rep-
resents an innovative approach to bring data processing closer to its sources (i.e., sensors,
cameras, etc.). This approach leverages interconnected smart devices for decentralized
computation. Edge computing presents critical implications for the Internet of Things
(IoT), including latency reduction, privacy preservation, failure resilience, and system
modularity. [7]

The literature proposes different classifications of constrained devices used in edge pro-
cessing. This classification from Bonneau et al. [8] is based on the hardware character-
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istics, and we added energy consumption and ML algorithms available. Distinct device
categories are identified in Table 1, ranging from Class 0 to Class 19. Class 0 to Class 4
encompasses microcontrollers with limited memory and power, suitable for lightweight
inference. Class 10 to Class 19 devices gather high-performance application processors
with substantial memory and power and fall out of the scope of this study. Those devices
are usually selected for complex tasks such as deep learning, training, and advanced in-
ference. Each device class is associated with specific ML algorithms based on their capa-
bilities, ranging from simplicity to complexity.

Memory Size Average :
1glass Power }“)yplg al ML Use Case
ame  Datae.g. RAM  Code e.g. Flash  Consumption evice
Cl'ésos 0 < 10KiB < 100 KiB <100 pW RFID Tag
Basic
Class 1 computations
Cl ~ 10 KiB =~ 100 KiB <1mW Basic Sensor
(lightweight
Class 2 inference)
o) =~ 50 KiB =~ 250 KiB <10 mW IToT Sensors
Class3 ~100KiB ~05.1MB < 100mW Wearable IoT Basic
statistics
Class4 ~03.1MiB ~ 1.2 MiB <1W IoT Gateway (inference)
Cléslsolo ~16.128 MiB =~ 4.16 MiB <2W OpenWRT routers  Classification,
Regression
Class15 ~05.1GB  ~16.64 MiB <4W Raspberry PI (inference)
Class 16 ~ . Prediction
C16 ~ 1.4 GiB (lots) <l6 W Smartphone Decision-making
Class 17 - . (inference &
C17 ~4.32 GiB (lots) <100 W Laptop training)
Deep learning,
Class 19 auto-encoders
C19 (lots) (lots) = 1000 W Server

(inference &
training)

Table 1. Classes of constrained devices associated with ML use cases

11l BOARDS SELECTION

Minimizing energy consumption involves employing low-power (LP) [7] or even ultra-
low-power (ULP) boards. Several criteria classify embedded electronic boards as LP or
ULP [8], [9]. The first criterion considers energy consumption during board inactivity,
while the second focuses on energy usage during activity. Additionally, standby power



consumption is a critical factor. Examining the components constituting the board for en-
ergy-saving designs is essential. Evaluating power management methods, such as dynamic
power management and contention, which adjust power based on workload and battery, is
also crucial [10]. We assessed several boards based on various aspects:

* Performance: Not all boards have the same computational or memory capabilities,
necessitating performance testing.

* Energy Consumption: This is a primary low-consumption consideration. Conduct-
ing comprehensive measurements in different scenarios (and implementations) is es-
sential to understand the board’s energy behaviour beyond what datasheets offer.

* Functionalities: Boards vary in features; some integrate telecommunication systems
while others don’t. Certain boards support specific frameworks.

* Development Ease for Hardware Target: This pragmatic aspect is crucial. Not all
boards embed the same basic software component and are powered by fifferent com-
munity more or less active and sharing specialized tools; some present more devel-
opment challenges than others.

Several board families met the previously stated criteria in Bonneau et al.’s work [8].
However, we had to work on different versions of the nodes curated due to time limits and
hardware availability. We worked with the STM32 LO73RZ from ST Microelectronics and
a first-generation generic ESP32 from Espressif (Table 2). Those two boards are neverthe-
less representative of computing and memory capacity of targetted boards. The objective
was to test program implementation on these platforms. However, it is essential to note
that we did not conduct energy consumption tests on the ESP32 due to its high consump-
tion at boot, which caused the measurement board to fault. Nevertheless, given the code’s
portability, newer variants free from overvoltage issues can execute the provided code.

Application Core Network Core Regulated Unregulated
IoT Processing sﬁlzzg Memory OSI;)l:-gzzd Electrical Wireless Release
Board Unit (MHz) (kB) (kB) Characteristics Connectivity Price*
20
Arm (RAM) 2015
DiaZ Cortex MO+ 64 1024  RI18-36V —
32-bit RISC 6 13€
(ROM)
Xtensa 80 RSJiOM 2020
ESP32 LX6 0 RAM) e R33%03V WiFi
DK M1 dual-core 240 448 Us.12v Bluetooth g€
32-bit
(ROM)

Table 2. Selected devices among radio-enabled Middle-end IoT boards
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IV EMBEDDED DEVELOPMENT AND RUNTIME ENVIRONMENT

The goal is to evaluate the overhead energy use of different applications from different ab-
straction levels. We consider three development methods: coding natively for the ST board
using STM32CubelDE tools, Arduino Framework through PlatformIO, and RIOT OS for
IoT devices. We want to evaluate how each method varies in performance, memory usage,
and energy efficiency for embedded systems, offering trade-offs in energy consumption,
portability, and task management.

1. NATIVE APPROACH

Developing directly on hardware without intermediary operating systems or software lay-
ers, known as the native or bare metal approach, implemented using C++ code, grants
complete control over resources, enabling energy consumption optimization by turning off
unnecessary hardware components and fine-tuning code execution. This method allows
for adjusting energy usage at its lowest level. However, its complexity demands extensive
hardware knowledge, making development intricate, while its lack of portability restricts
applications to specific hardware, complicating transitions to other platforms.

2. ARDUINO FRAMEWORK APPROACH

The Arduino Framework approach simplifies embedded app development through a user-
friendly interface featuring pre-built libraries, expediting project creation and enabling C-
like code reuse across platforms. It fosters portability by allowing applications to transfer
between compatible Arduino boards without extensive code rewriting. However, while
offering ease of use with simpler code and ready-to-use libraries, this approach might in-
cur higher energy consumption due to the abstraction it introduces, potentially leading to
increased overhead compared to a native approach.

3. OPERATING SYSTEM-BASED APPROACH

Leveraging an operating system such as RIOT OS, written in C, C++, provides task man-
agement, inter-task communication, and memory control, enabling the development of
intricate applications and effectively handling simultaneous resources. Operating systems
offer heightened portability across diverse hardware platforms through hardware abstrac-
tion layers, facilitating seamless migration. They also support concurrent execution of
multiple tasks, streamlining development with precise syntax and pre-built libraries, em-
ploying a high-level language. However, this approach may introduce increased energy
consumption due to inherent overheads, and configuring the system for low-level pro-
gramming without direct APIs can pose complexities.
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Testing the three approaches (Native, Arduino Framework, and OS) in similar use cases
allows for precise evaluation of energy consumption costs and programming feasibility
using these tools, while considering the specificities of each hardware platform. In reality,
each approach strikes a balance between advantages and drawbacks, notably regarding
energy consumption. However, in this project, multitasking capability is essential, and we
aim to assess the additional energy impact of employing an operating system. Neverthe-
less, the actual impact on energy consumption can vary significantly based on factors such
as application complexity, executed operations, and code optimization.

IV.B DiscussiON ON THE CHOICE OF THE OPERATING SYSTEM

Using an OS provides access to additional elements compared to a framework. Firstly, file
management which involves a directory structure containing other folders or files, simi-
lar to what we use on our computers daily. In our case, while this could store our model
when we have no battery, it could already be achieved by saving context in flash memory.
Secondly, multitasking is another advantage an OS brings, allowing us to execute multi-
ple tasks simultaneously. In practice, this involves scheduling processor instructions by
alternating between different tasks and it could enable continual learning while using the
communication module to send data to the user or communicate with other systems.

Bonneau et al. [8] proposed several real-time operating systems (RTOS) that are usable
within the scope of machine learning on communicating nodes listed in Table 3. RIOT OS
stands out, boasting compelling APIs for energy management, enabling native access to
alternative operating modes of equipped microcontrollers. These modes facilitate selective
standby of hardware components when not in use, effectively reducing energy consump-
tion during inactive periods. It also offers a highly active community, excellent documen-
tation, and compatibility with numerous consumer-grade boards.
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RAM ROM Codebase Programming . Last
RTOS Platforms (kB) (kB) (MLOC) Language Scheduling Release
Apache ARM (MO0/3/4/23/33) Preemptive 1.11.0
Moot MIPS32, Microchip ~1  ~10 ~12 C, C++ Prionity baved | SePL
yRew PIC32, RISC-V y 2023
Apache ARM, AVRS,S]\C/IIPS, oo Preemptive 12.21.1
Renesas, RISC-V, - - ~43 , C++ bl Jul.
Nuttx Xtensa, ZiLOG Priority based 2023
ARM, x86, ~2 Preemptive, 34.1
Zephyr ARC, RISC-V, - to ~3 C, C++ Priority based, Jun.
Nios II, Xtensa, SPARC ~8 Cooperative 2023
ARM, AVR(32),
ColdFire,
Xtensa, HCS12, RISC-V, -5 Preemptive 10.6.1
FreeRTOS 1A-32, Infineon XMC4000, ~1 to ~72 C, Ct+, Go Priorit Pbaseh A.u.
MicroBlaze, MSP430, ~10 : (Rust Wrappers) Coo Zrative > 202g3.
PIC(32), Renesas H8/S, P
RX100/200/600/700,
8052, TriCore, EFM32
RIOT ARM, MSP430 s s 3 C, C++ Precmptive,  Z0ao0’
AVR, x86, RISC-V ) (Rust Wrappers)  Priority based 202%‘

Table 3. Low-End and Middle-End IoT OSs comparative overview (from [8])

V EXPERIMENTS AND METHODOLOGY

We have conducted a series of experiments to evaluate the performance and trade-offs
of the different approaches. We wanted to implement each curated application with those
approaches but faced some difficulties as mentioned later in Section VI.

V.A SURVEYED APPLICATIONS

We have selected three applications that involve different levels of complexity and corre-
lation with hardware knowledge:

* Blinky: A straightforward program that simply turns on the integrated LED on the
MCU-equipped board (most boards have at least one controllable LED). The LED
lights up for 1 second, then turns off for 1 second, looping continuously.

* Frequency: A program that gradually decreases the MCU frequency, starting from
the highest available frequency and progressively reducing it until reaching the low-
est available frequency on the main power mode.

* Classifier: A program that conducts basic ML using a perceptron model [11]. We
train on a portion of each dataset and test on another. The datasets used are well-
known and easily implementable, such as Iris flower [12], Heart Disease [13], Breast
Cancer [14], MNIST Handwritten Digits [15]. We have reduced the larger ones to fit
our boards’ memory constraints.
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V.B INSTRUMENTATION AND MEASUREMENTS

We utilized the X-NUCLEO-LPMO1A [16], a programmable power supply with a voltage
range from 1.8 V to 3.3 V, enabling static (from 1 nA to 200 mA) and dynamic (from 100
nA to 50 mA) current measurements with up to 100 kHz of sampling frequency. Leverag-
ing the software STM32CubeMonitor-Power [17], an analysis of energy consumption for
target boards was conducted. This software facilitates the acquisition of power measure-
ments and displays them through a graphical interface. It is not recommended to perform
acquisitions superior to one hour at max rate or over 360 million samplings, but only due
to GUI issues. Furthermore, it enables storing and retrieving acquired data saved in CSV
files. Each version of the application was executed on every platform within predefined
scenarios, capturing precise data regarding energy consumption for each run.

Comparison was made among the energy consumption data acquired for each approach
and platform, identifying significant differences among approaches. Subsequently, all
variability factors potentially influencing the outcomes were considered, including hard-
ware discrepancies (RIOT, Arduino Framework, and ST SDK do not activate the same
functionalities by default on the same board; these activated or deactivated functionalities
impact efficiency, and sometimes optimizations are made on specific platforms) and the
quality of implementation (code differs for each platform).

VI EXPERIMENTAL RESULTS

The following programs were developed on the STM32 LO73RZ platform, operating at a
frequency of 32 MHz. Data is extracted and analyzed using a Python script. This script
handles the processing of current measurements, energy consumption information, and
memory usage details. The obtained data is then transformed into graphs and visual rep-
resentations for more in-depth analysis and a better understanding of the performance and
characteristics of each test.

VI.LA MEMORY USAGE ANALYSIS

Our focus was initially on memory usage during each test, and these data were recorded
in a JSON-formatted document. This approach allows us to have a precise view of the
memory footprint of each test and to compare this characteristic across different configu-
rations.

1. BLINKY

We can observe in Figure 1 that using a framework such as Arduino (PlatformIO) or RIOT
indeed results in a greater need to store data in Flash memory, as expected. The differ-
ence between Arduino Framework and RIOT concerning ROM memory usage remains
relatively small (less than 5%), which is excellent news. The use of ROM memory for
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this application remains moderate, as even with RIOT, we do not exceed 10% usage. The
RAM analysis is not particularly significant, considering we use very little volatile mem-
ory to blink our LED (assuming our board’s maximum capacity is 20480 bytes). However,
a trend seems to emerge: RIOT consumes slightly more RAM, which is expected due to
its more advanced features.

RAM and ROM Usage Comparison among Platforms for Blinky Application (LO73RZ)

Metrics

17500  mmm RAM
m== Flash (ROM)
15000
12500
10000
7500
5000
2500
. 1N — -

Native PlatformlO RIOT_OS
Platform

Usage [bytes]

Figure 1. Comparison of RAM and ROM Usage Across Platforms for Blinky
2. FREQUENCY

Figure 2 presents significant results. A decrease of approximately 40% in RAM usage is
observed when using PlatformIO compared to the original STM32 tool. In both cases,
RAM usage remains relatively low. However, ROM memory usage shows a notable in-
crease of over 70% when using PlatformlO compared to the ST tools. Ultimately, we find
ourselves in a similar scenario to the previous experiment; this is normal as we use func-
tions that do not require much memory. It is important to note that this experiment demon-
strates that both tools manage memory differently, which is expected given their different
approaches. This observation emphasizes that the tools handle memory in different ways.
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RAM and ROM Usage Comparison among Platforms for Frequency Application (L073RZ)

16000 Metrics
= RAM

=== Flash (ROM)
14000

12000

10000

8000

Usage [bytes]

6000

4000

2000

. N ]

Native PlatformIO
Platform

Figure 2. RAM and ROM Usage Comparison Among Platforms for Frequency App

The Frequency App Issue with RIOT

Unfortunately, RIOT does not easily allow for the modification of the processor fre-
quency. The absence of a low-level interface for frequency management makes conducting
this test challenging. To achieve this, delving into the RIOT source code would be neces-
sary, which was not feasible within the scope of this internship due to time constraints.
However, research has been conducted revealing that researchers are working on integrat-
ing DVFS (Dynamic Voltage and Frequency Scaling) into RIOT OS [18]. At least one
of these researchers appears to be an active developer for RIOT and has presented this
feature as desirable for the future of this OS [19]. DVFS dynamically manages the proces-
sor’s frequency and voltage based on workload. This optimizes power consumption by
adjusting these parameters in real time, providing better energy efficiency than manual
frequency changes.

3. CLASSIFIER

The most notable observation in Figure 3 is the doubling of RAM usage compared to
the previous tool. However, in previous experiments, we noted that PlatformIO favoured
ROM usage while consuming less RAM. It is important to contextualize this increase.
Nonetheless, the trend of RIOT OS to have higher RAM usage seems to be confirmed in
this context. Regarding ROM memory, we observe a 23% increase on the RIOT OS side
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compared to the PlatformlO tool. This difference aligns with the continuity of previous
observations, although it is more significant this time. These findings highlight trends that
are consistent with previous experiments.

RAM and ROM Usage Comparison among Platforms for Classifier Application (|
50000

Metrics
mmm RAM used [bytes]
mmm FLASH (ROM) used [bytes]
40000
@ 30000
L
>
2
[}
()]
@
[%2]
> 20000
10000

o — ]

PlatformlO RIOT OS
Platform

Figure 3. Comparison of RAM and ROM Usage Across Platforms for the Classifier App

As expected, the memory cost for the same application is higher with an OS compared
to the Arduino Framework and considerably higher than a native approach. However, this
impact appears moderate and does not generate particular difficulties for future software
implementations on programmable boards.

VI.B ENERGY USE ANALYSIS

The measurements were conducted by pairing the target development board with a current
measurement board. Both boards are connected to a computer, enabling both the transfer
of programs and debugging and the collection of current measurements.

1. BLINKY

During this experimentation, we conducted a series of tests on the RIOT, Arduino Frame-
work, and STM32CubelDE environments. We chose the basic Blinky app to evaluate
different aspects of the tools. Our primary objective was to measure the average power
consumption and the minimum, maximum, and quartile values. This provided us with an
overview of the energy behaviour of each tool, enabling us to make an objective compari-
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son.Figure 4 shows the analysis of three 100-second experiments for each tool, represent-
ing approximately 150 cycles of LED blinking per experiment, ensuring reliable measure-

ments.

11000

10500

10000

Current consumption (pA)

9500

9000

Current consumption of the STM32 platform for the Blinky application (L073RZ)

o

bt lhd g

Mo i

iy

0 2000 4000 6000

Time (ms)

8000 10000

Figure 4. Current Consumption of the STM32 Platform for the Blinky Application
(Zoomed in on 10 seconds)

14000

13000

12000

ar
IS
S
S

10000

9000

Current consumption (uA)

8000

7000

6000

Mean Current consumption of the 3 platforms for the Blinky application (L073RZ)

Native

PlatformlO

platform

Mean

RIOT_OS

Figure 5. Average Current Consumption of 3 Platforms for the Blinky App
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Figure 5 illustrates the energy consumption based on the platform. Unsurprisingly, using
the Arduino Framework results in higher energy consumption for operation in an equiva-
lent configuration. Surprisingly, RIOT OS consumes approximately 40% less energy than
the native program. It is worth noting that there is a slightly higher standard deviation and
significantly larger peaks in maximum consumption.

2. FREQUENCY

This test was conducted across the Arduino Framework and STM32CubelDE environ-
ments. The goal was to assess the average power consumption for different frequency
ranges based on the tool used. The LED briefly turns on between each frequency, as de-
picted in Figure 6, as we observe consumption spikes.

Figure 6. Analysis of the Power Consumption of the Frequency Program (using the Ar-
duino Framework) with STM32CubeMonitor-Power Software

Figure 7 illustrates the relationship between the microcontroller frequency and the aver-
age current consumed. Here, we find the classic approximation of microcontroller power
consumption: P o< f x V2 [20]. The curve reveals an extremely low standard deviation
across all data. However, it is essential to note that more significant variability occurs in
higher frequency ranges, suggesting more pronounced fluctuation levels than lower fre-
quencies. It is worth noting that despite the conclusions drawn from this observation, no
automated analysis was conducted using Python code, limiting the possibility of obtaining
a more comprehensive and objective evaluation of this data. Integrating such an approach
would have allowed for more rigorous results.
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Current consumption of the STM32 platform for the Frequency application (L073RZ)
11000
—— STM32

PlatformlO
10000

9000
8000
7000

6000

Current consumption (uA)

5000
4000
3000

10 20 30 40 50
Frequency (MHz)

Figure 7. Evolution of Average Current Based on Microcontroller Frequency

The main observation lies in the consistency of the gap between the two consumption
curves. Although the behaviour evolves similarly for both approaches, it is notable that
PlatformlO maintains a higher consumption than the STM32 program. This observation
indicates that PlatformIO generates a more power-hungry behaviour, ranging from ap-
proximately 700 to 800 pA, regardless of the chosen frequency.

3. CLASSIFIER

This test was conducted in the Arduino Framework and RIOT environments. The aim was
to assess the average consumption for each tool while running this program. We performed
five experiments, each lasting 100 seconds. The consumption measurement was taken over
the entire execution cycle, and we isolated the classifier’s training and testing phases. One
can observe a measurement in Figure 8. With RIOT OS, we clearly notice the learning and
inference phases.
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Right click to select training segments, middle click to select testing segments

10000 -

8000 A

L
6000 - N N

Current

4000 -

2000 A

0 20000 40000 60000 80000 100000
Time

Figure 8. Current consumption over time with the Classifier app (RIOT)

To obtain reliable data and isolate the differ, a script was used to visualize consumption
graphs by delineating each phase in time, defined by a start and an end (Figure 9). This
method exposes some measurement imprecision, but we export the start and end parame-
ters of the windows so that they can be replayed and verified if needed. Zooming in on
parts of the figure makes it easier to notice the peaks caused by the learning and inference
phases due to their small size. The periods between the red and green bars correspond to

the learning phase, while those between the blue and yellow bars correspond to the infer-
ence phase.
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Figure 9. Current consumption over time with the Classifier app (Arduino Framework),
with delimited periods

The Classifier Issue with STM32CubelDE

The lack of high-level abstraction makes reproducing this program on STM32CubelDE
challenging. Its implementation would require a substantial time investment, and the gen-
erated code would likely need to be optimized. Figure 10 allows us to compare the overall
average current consumption with the task performed, namely learning and inference.

Surprisingly, RIOT OS consumes 40% less energy than PlatformlO in this context. In
the case of RIOT OS, significant standard deviations are observed, much higher than with
PlatformlO, as highlighted in Figure 8 with consumption peaks. These standard deviations
increase even more during the inference phases, with the highest consumption peaks. De-
spite this, the average values significantly differ between each phase.

On the other hand, no significant difference in consumption is observed between the
different phases when using PlatformlO. Indeed, the averages for the learning and infer-
ence phases are pretty close, particularly considering the variation introduced by the stan-
dard deviation. Another surprising observation Regarding RIOT OS is that inference is
less energy-consuming than learning.
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Comparison of Currents by Platform

2193.53 2205.66 2190.29 PlatformlO
I I = RIOT OS

2000 -

1793.67

1500 1410.72

Izssm -

Value [uA]

1000 A

500 -

Overall Training Inference
Metric

Figure 10. Evolution of the overall average current and according to the performed task

RIOT stands out as the clear winner regarding performance and energy consumption. It
consumes less in all measured aspects. This difference is explained by RIOT OS being
optimized and automatically turning off anything unnecessary. Even though we tried to
turn off unused features in STM32CubelDE, some components may have remained active
and might not have been essential.

RIOT presents a significant advantage for development: it facilitates the creation of en-

ergy-efficient software. Creating a low-power program is more feasible with this OS than
the other two solutions. In the previous section, we observed a peculiar behaviour: the
higher consumption during inference, which is explained by using a simplistic dataset in
training the perceptron. In the case of real applications, we would need a more complex
neural network than a simple isolated neuron, and consumption would likely be higher
(although this still needs to be verified by measurements).

VI.C PERFORMANCE ANALYSIS OF THE CLASSIFIER

Figure 11 presents the metrics associated with training our ML model with the perceptron.
Interestingly, the two curves are nearly superimposed because we applied the same ran-
dom seed in both cases. This similarity implies that the program functions similarly in
both environments, allowing for comparable and consistent energy consumption values
between the experiments.

This training and resulting inferences were performed on a subset of 100 rows from
the IRIS dataset. We can observe a decrease in the ‘Recall Evolution’” metric while the
other metrics progress upwards. During inference, this relatively simple dataset achieves
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a 100% success rate. This observation suggests satisfactory performance of the ML model
in both environments, providing a basis for consistent energy consumption comparisons

between the two experiments (RIOT and Framework).
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Figure 11. Perceptron metrics evolution on Iris Flower dataset

In this study, we tested bare metal (STM32 HAL), middleware (Arduino Framework, Plat-
formlIO), and RTOS (RIOT) development environments in terms of on-device learning
performances. RIOT stands out as a good compromise choice for designing complex sys-
tems like intelligent sensors, enabling the deployment of small-scale training and inference
solutions for tiny ML models. Indeed, the RTOS solution consumes more memory than
the native solution but appears less energy-consuming than the intermediate solution, fa-
cilitating prototyping. To delve deeper, we might compare it with other OS and use more
powerful boards to run more elaborate models and move datasets outside the memory.
Indeed, the perceptron is ridiculously small due to dataset sizes, and the tasks do not cor-
respond to the use cases of cyber-physical systems. Unfortunately, critical APIs like DVFS
are missing, which would allow for finer control of hardware and energy expenditure.
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