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Abstract
Characterizing the processes underlying reproductive isolation between diverg-
ing	 lineages	 is	 central	 to	 understanding	 speciation.	 Here,	 we	 present	 RIDGE—
Reproductive	 Isolation	Detection	using	Genomic	polymorphisms—a	 tool	 tailored	
for quantifying gene flow barrier proportion and identifying the relevant genomic 
regions.	 RIDGE	 relies	 on	 an	 Approximate	 Bayesian	 Computation	 with	 a	 model-	
averaging approach to accommodate diverse scenarios of lineage divergence. It 
captures heterogeneity in effective migration rate along the genome while ac-
counting for variation in linked selection and recombination. The barrier detection 
test	relies	on	numerous	summary	statistics	to	compute	a	Bayes	factor,	offering	a	
robust statistical framework that facilitates cross- species comparisons. Simulations 
revealed	RIDGE's	efficiency	in	capturing	signals	of	ongoing	migration.	Model	aver-
aging proved particularly valuable in scenarios of high model uncertainty where no 
migration or migration homogeneity can be wrongly assumed, typically for recent 
divergence times <0.1 2Ne	 generations.	Applying	RIDGE	to	 four	published	crow	
data sets, we first validated our tool by identifying a well- known large genomic 
region associated with mate choice patterns. Second, while we identified a sig-
nificant	overlap	of	outlier	loci	using	RIDGE	and	traditional	genomic	scans,	our	re-
sults suggest that a substantial portion of previously identified outliers are likely 
false positives. Outlier detection relies on allele differentiation, relative measures 
of	divergence	and	the	count	of	shared	polymorphisms	and	fixed	differences.	Our	
analyses also highlight the value of incorporating multiple summary statistics in-
cluding our newly developed outlier ones that can be useful in challenging detec-
tion conditions.

K E Y W O R D S
approximate	Bayesian	computation,	crows,	gene	flow	barrier	detection,	hybrid	zones,	
reproductive isolation, speciation
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1  |  INTRODUC TION

The process of speciation involves a gradual and divergent evolu-
tion of populations, passing through conditions of semi- isolated spe-
cies,	named	the	 ‘grey	zone	of	speciation’	 (De	Queiroz,	2007;	Roux	
et al., 2016), until complete genetic isolation is achieved, resulting in 
the	formation	of	distinct	species	(Wu,	2001). Population divergence 
can occur through various scenarios, ranging from the complete 
absence	of	genetic	exchanges,	known	as	allopatric	 speciation	 (e.g.	
due to geographical barriers between populations), to almost unre-
stricted	genetic	exchanges	 in	sympatric	speciation.	These	extreme	
scenarios	are	not	mutually	exclusive,	as	genetic	exchanges	can	re-
occur after a period of allopatric divergence followed by secondary 
contacts (Schluter, 2001). Regardless of the scenario, the question 
of how reproductive isolation is established between divergent pop-
ulations is central to understanding speciation. This involves com-
paring the proportion and identity of the relevant genomic regions 
across biological systems (Delmore et al., 2018;	Fraïsse	et	al.,	2021; 
Schluter, 2001).

Extensive	exploration	of	the	genomic	bases	of	speciation	have	
been conducted, in particular, in the case of ecological specia-
tion where environmental disparities among populations drive 
both	phenotypic	divergence	and	reproductive	isolation	(Rundle	&	
Nosil,	2005; Schluter, 2000;	Shafer	&	Wolf,	2013).	A	recurrently	
observed pattern is that pre- mating reproductive isolation is fa-
cilitated by the physical linkage between genes that govern re-
productive isolation and those responsible for divergent traits, 
which can potentially result from adaptation to contrasted envi-
ronmental conditions. The gradual establishment of linkage dis-
equilibrium between these genes can then lead to the progressive 
arrest	 of	 gene	 flow	 during	 the	 speciation	 process	 (Schluter	 &	
Rieseberg, 2022).

For	example,	in	stickleback	fish,	divergent	mate	preferences	have	
been mapped to the same set of genomic regions controlling body 
size,	shape	and	ecological	niche	utilization	(Bay	et	al.,	2017).	Another	
striking	example	concerns	the	genomic	determinants	of	mate	selec-
tion based on feather colour patterns in carrion and hooded crows 
(Metzler et al., 2021; Poelstra et al., 2014). Specifically, genes en-
coding feather pigmentation and genes responsible for perceiving 
colour	patterns	have	been	identified	within	the	same	1.95 Mb	region	
of chromosome 18. This region displays significant genetic differ-
entiation between carrion and hooded crows. Similarly, in the neo-
tropical butterflies Heliconius cydno and H. melpomene, assortative 
mating	patterns	correlate	with	a	genomic	region	proximate	to	optix, 
a crucial locus influencing distinct wing colour patterns between 
these species (Merrill et al., 2019).	Note	 that,	 inversions	 can	 help	
build linkage disequilibrium by generating large genomic regions of 
suppressed recombination, maintaining combinations of co- adapted 
alleles	 encoding	 ecologically	 relevant	 traits.	 For	 example,	 in	 three	
species of wild sunflowers, 37 large non- recombining haplotype 
blocks (1–100 Mbp in size) contribute to strong prezygotic isolation 
between ecotypes through multiple traits such as soil, climate and 
flowering characteristics (Todesco et al., 2020).

Another	key	genetic	mechanism	involved	in	speciation	is	the	epi-
static interaction between genes that produce deleterious pheno-
types	in	hybridization,	also	known	as	Bateson–Dobzhansky–Muller	
Incompatibility	(BDMI)	(Gavrilets,	2003).	Across	Arabidopsis thaliana 
strains, epistatic interactions between alleles from two loci located 
on separate chromosomes, result in an autoimmune- like responses 
in	F1	hybrids	(Bomblies	et	al.,	2007).	A	more	recent	example	in	ver-
tebrates concerns the Swordtail fish species, Xiphophorus birchmanni 
and X. malinche, where interaction between two genes generates a 
malignant melanoma in hybrids associated with strong viability se-
lection (Powell et al., 2020).

As	 population-	wide	 genomic	 data	 increase,	 genome-	scan	 ap-
proaches enable a more systematic search of the genetic factors 
behind reproductive isolation. One popular approach relies on the 
search for genomic islands of elevated differentiation compared 
with the genomic background, typically through FST	scans	(Wolf	&	
Ellegren,	2017). However, it is now widely recognized that processes 
other	than	selection	against	gene	flow	can	generate	such	islands.	For	
example,	selective	sweeps	and	background	selection	against	delete-
rious alleles both decrease genetic diversity at linked sites especially 
in low recombination regions (Charlesworth, 1993; Charlesworth 
&	 Jensen,	2021;	 Cruickshank	 &	Hahn,	2014; Kaplan et al., 1989). 
Because	 gene	 flow	 barriers	 are	more	 likely	 to	 occur	 in	 functional	
regions, they are also more affected by those forms of selection, 
further complicating the distinction of gene flow reduction (Ravinet 
et al., 2017). Demography, which affects the entirety of the genome, 
is also key to account for barrier detection because barrier loci are 
harder to identify when the time split is recent and/or the migration 
rate	is	 low	(Sakamoto	&	Innan,	2019). Yet, recent splits of partially 
isolated	taxa	are	of	paramount	interest	in	speciation	research	as	they	
allow access to the key determinants of reproductive isolation while 
avoiding the confusion with other differences accumulated since 
speciation (Tenaillon et al., 2023).

Linked	selection	(at	least	some	forms	of)	can	be	approximated	
by	 a	 local	 reduction	 in	 effective	 population	 size	 (Cruickshank	&	
Hahn, 2014; Ravinet et al., 2017;	 Sakamoto	&	 Innan,	2019) and 
several methods have proposed to decouple its effect from the 
heterogeneity in effective migration rate to detect gene flow 
barrier	 on	 genomic	 polymorphism	 patterns	 (Fraïsse	 et	 al.,	2021; 
Laetsch et al., 2023; Sethuraman et al., 2019; Sousa et al., 2013). 
These	methods	relax	the	assumption	that	all	 loci	share	the	same	
demography. Some of them use likelihood methods to directly es-
timate and decouple the effects of differential introgression and 
demography across genomic loci (Laetsch et al., 2023; Sethuraman 
et al., 2019; Sousa et al., 2013). However, they make specific as-
sumptions	 about	 demography.	 For	 example,	 gIMble	 simulates	
population divergence under isolation with migration (IM) only, 
thereby considering no variation in migration rate through time 
(Laetsch et al., 2023).	DILS	proposes	a	more	flexible	approximate	
Bayesian	computation	(ABC)	approach.	First,	it	infers	the	best	de-
mographic models among four models that include migration rate 
variation through time while accounting for genomic heterogene-
ity in effective population size Ne (to mimic linked selection) and in 
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effective migration me (to mimic gene flow barriers). Such account 
of genomic heterogeneity has been shown to enhance the quality 
of	model	inferences	(Roux	et	al.,	2014). Second, DILS infers the mi-
gration	model	at	the	locus	scale—arrest	of	migration	versus	migra-
tion similar to the genome- wide level–conditioned on the chosen 
best	model	 (Fraïsse	et	al.,	2021).	Although	effective	 in	detecting	
gene flow barrier, this reliance on an initial model choice restricts 
comparability among species pairs.

Overall, an adequate method to identify potential reproduc-
tive isolation barriers would require a cross- species comparative 
framework that takes genomic heterogeneity into account, while 
making analysis comparable despite differences in demographic 
histories. Here, we propose an innovative method to identify gene 
flow barrier loci satisfying these requirements and that also quan-
tifies	 the	 confidence	 in	 locus	detection.	We	used	an	ABC-	based	
model averaging approach that accounts for different modalities 
of	 divergence	 between	 pairs	 of	 populations/taxons.	We	 consid-
ered both heterogeneity in Ne along the genome, by modelling the 
mosaic	effect	of	 linked	selection	as	 in	the	DILS	program	(Fraïsse	
et al., 2021), and heterogeneity in recombination, by including an 
option for the user to provide a recombination map. In addition, 
we not only relied on a number of classic summary statistics but 
also incorporated new ones, related to outlier detection, which im-
proved	the	inferences	of	barrier	loci.	Finally,	the	method	provides	
Bayes	 factors	 associated	with	 barrier	 detection,	which	 facilitate	
cross- species comparisons.

2  |  MATERIAL S AND METHODS

2.1  |  RIDGE pipeline

RIDGE	utilizes	ABC	based	on	random	forest	(RF)	to	detect	barrier	
loci between two diverging populations in the line of the frame-
work	 proposed	 in	DILS	 (Fraïsse	 et	 al.,	2021). The observed data 
consist of a set of loci sequenced on several individuals of the two 
populations.	 The	 general	 principle	 of	 RIDGE	 is	 as	 follows:	 first,	
we	 simulate	 14	 demographic × genomic	models	 to	 produce	 a	 ref-
erence table.	This	table	serves	to	train	one	RF	per	parameter	that	
generates corresponding estimate of each parameter in addition 
to providing weights for each model according to their fit to the 
target (observed) data set. Second, we construct a hypermodel 
where the posterior distribution of each parameter is obtained 
as	 the	weighted	average	over	 the	14	models.	Finally,	we	use	 this	
hypermodel to produce data sets for control loci (thereafter non- 
barrier) and barrier loci that have undergone no gene flow during 
divergence. Simulated data sets are employed to train a second 
RF	 model	 that	 subsequently	 calculates	 posterior	 probabilities	
and	 associated	 Bayes	 factors	 for	 categorizing	 each	 locus	 as	 bar-
rier	or	non-	barrier.	RIDGE	was	executed	using	Snakemake	(v7.7.0)	
with Singularity as the container manager. Data visualization was 
conducted using R v4.1.2 (R Core Team, 2021) and involved the 
utilization of the following packages: ggpubr (Kassambara, 2020), 

scales	 (Wickham,	2018),	 FactoMineR	 (Le	et	 al.,	2008),	 factoextra	
(Kassambara	&	Mundt,	2017)	and	latex2exp	(Meschiari	2023).

2.2  |  ABC summary statistics

ABC	inferences	rely	on	summary	statistics	that	are	computed	either	
at the locus- level or across loci, that is, genome- wide distributions of 
summary statistics and correlations among loci, and either within-  or 
between-	populations.	For	a	given	observed	data	set,	the	number	of	
loci used for construction of the hypermodel is set by the user. To 
reduce computation time for large data sets, a subset of loci can be 
randomly sampled to represent the whole genome (by default, we 
used 1000 loci).

For	 each	 locus,	 RIDGE	 computes	 the	 following	within	 popula-
tion	 statistics:	 the	 number	 of	 Single	 Nucleotide	 Polymorphisms—
SNPs	(S),	π	(Nei	&	Li,	1979),	Watterson	θ	(Watterson,	1975), as well 
as	Tajima's	D (Tajima,	1989).	As	measures	of	population	differentia-
tion	between	populations,	RIDGE	computes	FST	(Bhatia	et	al.,	2013; 
Hudson et al., 1992), the absolute (Dxy) and the net (Da) divergence 
(Nei	&	Li,	1979),	the	summary	of	the	joint	Site	Frequency	Spectrum	
(jSFS)	 (Wakeley	 &	 Hey,	 1997) with ss (the proportion of shared 
polymorphisms between populations), sf	 (the	 proportion	 of	 fixed	
differences between populations), sxA and sxB (the proportion of 
exclusive	polymorphisms	to	each	population).

Across	loci,	RIDGE	computes	the	mean,	the	median	and	the	stan-
dard deviation for each summary statistic described above. In addi-
tion,	RIDGE	computes	the	Pearson	correlation	coefficient	between	
Dxy and FST and between Da and FST.	 Regarding	 the	 jSFS,	 RIDGE	
determines the number of loci that contains both shared polymor-
phisms (ss > 0)	 and	 fixed	 differences	 (sf > 0)	 between	 populations,	
ss+sf+ and following the same rational ss+sf−, ss−sf+, ss−sf−. These sta-
tistics	are	commonly	used	in	ABC	to	simplify	the	jSFS	while	keeping	
the	most	relevant	information	(e.g.	in	DILS,	Fraïsse	et	al.,	2021). To 
obtain better insights into the proportion of barriers, we introduced 
new statistics: the proportion of outlier loci, defined as the propor-
tion	of	loci	that	exceeds	certain	thresholds	for	FST, Dxy, sf, Da and ss 
or falling below certain thresholds for π and θ. The thresholds are de-
termined	using	Tukey's	 fences:	tmin = Qmin − 1.5∗

(

Qmax − Qmin

)

 and 
tmax = Qmax + 1.5∗

(

Qmax − Qmin

)

, for the lower and upper thresholds 
respectively, where Qmin is the lowest and Qmax the highest quar-
tiles (Tukey, 1977).	All	 summary	 statistics	 are	 computed	using	 the	
python packages scikit- allel (Miles et al., 2021) and numpy (Harris 
et al., 2020).

2.3  |  Coalescence simulations

We	simulated	the	evolution	of	neutral	loci	(1000	by	default)	under	
14	demographic × genomic	models	using	the	scrm	simulator	 (Staab	
et al., 2015), an efficient ms- like program (Hudson, 2002).	We	stored	
corresponding simulation parameters as well as all summary statis-
tics in the reference table.
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2.3.1  |  Demographic	models

RIDGE	simulates	the	split	of	a	single	ancestral	population	of	effec-
tive size Na, into two daughter populations of size N1 and N2 at time 
Tsplit.	Four	different	demographic	models	are	considered	as	 in	DILS	
(Fraïsse	et	al.,	2021) (Figure 1): (1) strict isolation with no migration 
(SI), (2) isolation with constant migration rate since Tsplit (IM), (3) sec-
ondary contact with no migration after the split until a secondary 
contact at time TSC occurs (SC), and (4) ancestral migration with mi-
gration occurring initially and ceasing after time TAM	(AM).	Migration	
rate m is assumed to be symmetrical between the two populations.

2.3.2  |  Genomic	models

In	addition	to	modelling	demography,	RIDGE	also	incorporates	het-
erogeneity in effective population size along the genome gener-
ated by linked selection, and heterogeneity in effective migration 

generated by selection against migrants at barrier loci. Thus, de-
mographic models are combined with two effective population 
size modalities (homo- N vs. hetero- N) and with two migration rate 
modalities (homo- m vs. hetero- m), so that four genomic models are 
considered,	 except	 for	 the	 SI	 model	 where	 there	 is	 no	 migration	
and only two genomic models (homo- N and hetero- N). This gives 
14	demographic	x	genomic	models.	For	simplicity,	genomic	models	
are named using a combination of 1N (homo- N), 2N (hetero- N), 1m 
(homo- m), 2m (hetero- m).	While	 in	 the	1N modality all loci display 
the same effective population size genome- wide, heterogeneity of 
effective population size under 2N,	 is	modelled	by	a	rescaled	Beta	
distribution.	Effective	size	at	locus	i is given by:

where	B(α,β)	is	a	Beta	distribution	with	parameter	α and β and N is the 
mean effective population size across the genome. In other words, 
under 2N and for a given locus, three independent values are sampled 

(1)Ni = N ⋅

(

� + �

�

)

⋅ B(�, �)

F I G U R E  1 Demographic	models	implemented	in	RIDGE.	The	hypermodel	combines	all	four	demographic	models	considered:	Strict	
Isolation	(SI),	Ancestral	Migration	(AM),	Secondary	contacts	(SC)	and	Isolation-	Migration	(IM)	plus	genomic	models.	In	the	hypermodel,	
an ancestral population of effective size Na split at Tsplit in two populations of effective size N1 and N2.	At	TAM ancestral migration ceases, 
and it restarts at the time of secondary contact,TSC .	manc and mcurdenote the ancestral and current migration rates between populations 
respectively. To fit in the hypermodel, each of the four demographic models adopt specific values for four of the parameters as indicated 
below	each	graph.	For	example,	under	SI,	TAM is set to Tsplit as there is no ancestral migration, and TSC is set to 0 as there is no secondary 
contact, and so are manc and mcur.	Note	that	under	IM,	in	order	to	model	uninterrupted	gene	flow,	we	considered	TAM = TSC = K ∗Tsplit, where 
K is a random value drawn from a uniform distribution in [0,1]. These demographic models are then combined with four genomic models: 
homogenous or heterogenous Ne (1N, 2N) and homogeneous and heterogenous m (1m, 2m).	For	the	SI	model	there	are	only	two	possible	
genomic models (1N or 2N) because there is no migration. This yields 14 models in total.
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    |  5 of 18BURBAN et al.

from	the	same	B(α,β) distribution albeit distinct N are used in equa-
tion 1 so that there is no covariation of the effective population size 
across	populations.	For	migration	(m), the genome- wide heterogene-
ity	in	effective	migration	is	modelled	by	a	Bernoulli	distribution	where	
a proportion Q of loci displays m = 0 and a proportion 1 − Q loci dis-
plays m > 0, m corresponding either to current migration (mcur) or to 
ancestral migration (manc). Likewise, we referred to the proportion of 
barriers under current (Qcur) and ancestral (Qanc) migration. It is im-
portant to note that coalescent simulations use the scaled parameter 
M = 4Nem, and that M (rather than m) is the standard way to report 
migration rate. Variable M across the genome can thus be due to vari-
ation in Ne alone, m	alone	or	both.	For	example,	2N	and	1 m models, 
M is variable across the genome but its variation parallels variation in 
Ne. This approach differs from the one implemented in DILS, where Ne 
can be variable but M	fixed,	which	implicitly	implies	that	m is propor-
tional to 1/Ne and can thus over- detect heterogeneity in m.	Also	note	
that under 2N2m models, variations in Ne and m are assumed to be 
independent.	RIDGE	assumes	that	all	loci	are	independent	and	expe-
rience a genome- wide homogeneous mutation rate (μ, set by the user) 
and recombination rate (r, set by the user) unless a recombination map 
is provided, in which case locus- specific recombination rates are given 
by the recombination map.

2.4  |  Generation of the reference table

RIDGE	explores	14	demographic × genomic	models	of	divergence	using	
a hypermodel that integrates them all. This model contains 12 parame-
ters, eight demographic parameters (Na,N1,N2, Tsplit, TAM, TSC,mcur,manc) 
as described in Figure 1, and four genomic parameters (�, � ,Qcur,Qanc). 
Regarding the demographic parameters, population sizes (Na,N1,N2) and 
times (Tsplit, TAM, TSC) are sampled in uniform distributions with bounda-
ries specified by the user. Migration rates are drawn from a truncated 
log- uniform distribution, with the boundary also specified by the user. 
We	used	 log-	normal	 instead	of	uniform	distributions	as	migration	af-
fects most statistics in a non- linear, multiplicative way. Preliminary 
simulations showed that it improved the performance of migration es-
timation.	Note	that,	depending	on	the	considered	demographic	model,	
some of the parameters are set to 0 (Table S1, Figure 1).	For	example,	
under SI, only four demographic parameters are estimated (Table S1). 
Regarding	 the	genomic	parameters,	parameters	of	 the	Beta	distribu-
tion and the Q parameter, are sampled in a uniform distribution where 
�, � ∈

[

0, 10
]

 and Qanc,Qcur ∈
[

0,Qmax

]

. Qmax ≤ 1	 is	 the	 maximal	 pro-
portion	of	the	genome	under	gene	flow	barrier	set	by	the	user.	RIDGE	
produces the reference table from a set of simulations with parameters 
sampled from these prior distributions.

2.5  |  Point estimates and goodness of 
fit of posteriors

RIDGE	utilizes	the	reference table	for	training	a	regression	RF	model	
(Raynal et al., 2019). This model produces point estimates for the pre-
dicted values of each parameter and assigns weights to simulations 

based	on	 their	 proximity	 to	 the	 real	 data	using	 the	 regAbcrf func-
tion. The weight for each simulation is calculated as the mean of the 
weights across all parameters. Subsequently, a set of simulations 
(and their corresponding parameter values) are subsampled in pro-
portion of these average weights to represent a set of simulations 
that better match the observed data. This subsample of the refer-
ence table is referred to as the posterior table.	Note	that	subsampling	
of parameters according to the averaged weights over simulations 
effectively	 account	 for	 the	 non-	independence	 of	 parameters.	We	
evaluated the goodness of fit of the posterior distributions using an 
enhanced version of the gfit function of the abc packages (Csilléry 
et al., 2012), which employs a goodness- of- fit statistics approach de-
scribed in Lemaire et al. (2016) and summarized here. To assess the 
goodness of fit of the posterior Gpost, we followed these steps: first, 
summary statistics (in both observed data set and posterior table) 
are normalized by their mean absolute deviation determined from 
the posteriors table.	Then,	we	computed	the	Euclidean	distance	be-
tween each summary statistics computed from the observed data 
set and those computed from each η simulation contained in the pos-
terior table.	Together	it	form	a	vector	of	Euclidean	distances	d1 … d� 
on which we computed the average, denoted Dpost. To derive the 
null distribution of Gpost, we considered a data set randomly sampled 
in the posterior table as ‘observed’ and discarded from subsequent 
analyses. The remaining η–1 data sets of the reference table were 
used to compute Dpost',	the	average	Euclidean	distance	between	the	
posterior table and the ‘observed’ data set. Repeated as such Ζ times, 
we obtained a vector of D1post

�
… DZ

post
�. Then we computed Gpost as 

the proportion of values for which Dpost
′ > Dpost.

2.6  |  Detection of barrier loci

Each	set	of	parameters	of	the	posterior table is used to generate two 
sets of individual- locus simulations, one set for non- barrier loci (m 
equals to the value of the posterior table) and one set for barrier loci 
(m set to 0), with two corresponding per- locus reference tables. The 
RF	 algorithm	 (abcrf package) was trained on these per- locus refer-
ence tables to predict the most probable status of each locus, either 
barrier (model x1) or non- barrier (model x2). Since there are only two 
models, the posterior probabilities satisfied: P

[

x1
]

= 1 − P
[

x2
]

 so that 
we	were	able	to	compute	a	Bayes	Factor	(BF) for each locus i, de-
noted as BFi:

Here, E[] represents the average of 1 − Q̂ and Q̂ over the poste-
rior distribution obtained from the hypermodel. Q can be zero in the 
empirical distribution, so the ratio undefined. Instead of removing 
zero values that makes the BF highly stochastic from one simulation 
to	another,	we	used	the	following	approximation	(based	on	the	Taylor	
expansion	of	the	expectation	of	a	ratio	of	random	variables):

(2)BFi = E

[

1 − Q

Q

]

⋅

(

P
[

x1
]

i

1 − P
[

x1
]

i

)

(3)BFi =

(

E
[

1 − Q
]

E
[

Q
] +

V
[

Q
]

E
[

Q
]3

)

⋅

(

P
[

x1
]

i

1 − P
[

x1
]

i

)
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6 of 18  |     BURBAN et al.

2.7  |  Evaluation of RIDGE performance on 
pseudo- observed data sets

We	evaluated	RIDGE	performance	 on	 pseudo-	observed	 data	 sets	
(i.e. simulated data sets considered as ‘observed’ data and compared 
with	 simulation	 outputs).	 As	 a	 first	 step,	 we	 evaluated	 the	 ability	
of	 RIDGE	 to	 correctly	 infer	 demographic	 x	 genomic	 models.	 We	
next	used	the	pseudo-	observed	data	sets	to	evaluate	the	accuracy	
of	RIDGE	 in	 estimating	 the	proportion	of	 barrier	 loci,	 and	detect-
ing their locations throughout the genome. SI model where all loci 
should be detected as barriers was used as a positive control.

We	simulated	pseudo-	observed	data	sets	under	 the	 four	demo-
graphic models and under both 2N2m and 2N1m genomic models (only 
2N1m	for	SI).	For	simplicity,	we	fixed	Na = N1 = N2 = 50, 000 individ-
uals. The time of the secondary contact (TSC) was set to 0.2 × Tsplit and 
the time of arrest of ancestral migration (TAM) was set to 0.7 × Tsplit. 
We	used	a	range	of	parameter	values	(Table S2) for divergence (from 
1000 to 2 million generations, i.e., from 0.1 to 20 in 2Ne generation 
unit), for migration (mean 4Nem = 1	and	10)	and	barrier	loci	proportion	
(Q = 1%,	5%	or	10%).	We	set	the	mutation	rate	to	μ = 1.10−8 and the 
recombination rate to r 	= 1.10−7 so that their ratio was 10. In total, we 
simulated 15,000 data sets using the scrm coalescent simulator (Staab 
et al., 2015).	 Each	multilocus	data	 set	 contained	1000	 loci	 of	10 kb	
each, and we performed 100 replicates per scenario.

To	evaluate	the	inference	of	demographic × genomic	models,	we	
calculated the goodness of fit of the estimated model and deter-
mined the contribution of each model to the estimation of posteri-
ors obtained from pseudo data sets. Contributions were evaluated 
through four criteria: (i) the average weight of the simulated de-
mographic (among the four) model called here the ‘correct’ model, 
(ii) the average weight of 2m models, (iii) the average weight of 2N 
models, and (iv) the average weight of models displaying current mi-
gration.	We	also	compared	the	point	estimates	obtained	from	simu-
lations with the input parameter values.

Next,	we	assessed	our	ability	to	detect	barrier	loci	using	the	Area	
Under	the	Curve	(AUC)	of	the	Receiver	Operating	Characteristic	(ROC)	
curve.	The	ROC	curve	relates	the	false-	positive	rate	(FPR)	to	the	true-	
positive rate (TPR) and provides insights into the discriminant power 
of	a	method.	The	AUC	of	the	ROC	ranges	from	0	to	1.	An	AUC	of	0.5	
indicates	 that	 FPR	 and	 TPR	 are	 equal	 irrespective	 of	 the	 threshold,	
which implies a random classification of loci into barrier and non- barrier 
loci	while	an	AUC	of	1	indicates	perfect	classification.	Additionally,	we	
computed the precision as the number of true positives (TP) divided by 
the	sum	of	true	positives	and	false	positives	(TP + FP).

2.8  |  Application to experimental data on crow 
hybrid zones

To	assess	the	performance	of	RIDGE	on	experimental	data,	we	fo-
cused on two published data sets produced by Poelstra et al. (2014) 
and Vijay et al. (2016).	All	sequencing	data	from	crows	were	extracted	
from	the	NCBI	database	under	project	number	PRJNA192205	and	

the	reference	genome	used	to	map	them	is	GCF_000738735.1.	In	the	
first one, a comparison was made between 30 individuals of Corvus 
corone (carrion crows) populations from Spain and Germany, and 30 
individuals of the C. cornix (hooded crows) population from Poland 
and Sweden. In the second one, three crow contact zones, among 
which two well- characterized hybrid zones, with similar divergent 
times around ~80,000 generations are described, from the most 
recently diverged pair C. corone–C. cornix (RX), to the most anciently 
diverged C. cornix–C. orientalis (XO) and C. orientalis–C. pectoralis (OP) 
pairs (Vijay et al., 2016). This data set consisted of 124 sequenced 
individuals. The number of individuals sampled varied for each pair 
(RX: 15–14 individuals; XO: 6–6 individuals; OP: 5–3 individuals).

All	alignments	were	done	on	a	reference	genome	(NCBI	assem-
bly:	GCF_000738735.1)	consisting	of	1299	scaffolds	resulted	in	the	
detection	of	16,064,921	common	SNPs	with	an	average	density	of	
15	SNPs	per	kilobase.	Previous	genome-	wide	scans	across	the	three	
pairs identified a number of candidate loci potentially involved in 
population/species divergence (Vijay et al., 2016). Two metrics were 
employed in those scans: (i) a Z- transformed FST	computed	on	50 kb	
non- overlapping windows between population/species pairs and 
normalized by the local level of Z- transformed FST from allopatric 
pairs, denoted as FST',	 (ii)	 an	 unsupervised	 genome-	wide	 recogni-
tion of local relationship pattern using Hidden Markov Model and a 
Self- Organizing Map (HMM- SOM) method implemented in Saguaro 
(Zamani et al., 2013) to identify local phylogenetic relationships 
based on matrices of pairwise distance measures, across each of the 
target hybrid zones.

Here,	we	applied	RIDGE	on	50 kb	non-	overlapping	windows	con-
sidering a mutation rate of 3.10−9 for both data sets as is Poelstra 
et al. (2014) and Vijay et al. (2016).	We,	therefore,	focused	on	scaf-
folds	 longer	 than	50 kb,	which	accounted	 for	9%	of	 the	 total	 scaf-
folds	but	represented	98%	of	the	genome,	corresponding	to	20,975	
windows. Prior bounds are given in Table S3, and were determined 
based on the observed data sets and results of analysis from Vijay 
et al. (2016).	First,	we	compared	Bayes	factor	outliers	(BF > 50) from 
RIDGE	 results	 with	 outlier	 loci	 detected	 in	 (Poelstra	 et	 al.,	 2014) 
to	 assess	 the	 ability	 of	 RIDGE	 to	 correctly	 detect	 barrier	 loci.	
Secondarily,	we	analysed	RIDGE	results	produced	on	three	species	
pairs on a lager data set (Vijay et al., 2016) to understand how BF 
correlates with summary statistics and which summary statistics are 
able to discriminate outlier loci (BF > 50).

3  |  RESULTS

3.1  |  Demographic inferences

The	 RIDGE's	 ability	 to	 infer	 demographic	 parameters,	 measured	
by the goodness of fit of posteriors (Gpost),	far	exceeded	the	rejec-
tion	 threshold	of	5%	and	was	 stable	 across	 all	models	 and	condi-
tions tested in pseudo- observed data sets (Figure 2 and Figure S1). 
However,	 the	 model's	 contribution	 to	 the	 estimation	 of	 the	 de-
mographic and genomic parameters varied across conditions. The 
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    |  7 of 18BURBAN et al.

percentage of simulations correctly attributed to the correct model 
increased with the time split (Tsplit),	reaching	over	51%	for	IM,	51%	
for	SI,	60%	for	AM	and	up	to	84%	for	SC	 (Figure 3). Consistently, 
we observed that the more recent the time split, the more balanced 
the contribution of different demographic models, and the greater 
the uncertainty surrounding the designation of a model (Figure 3 
and Figure S2).	For	 recent	 time	splits,	 the	choice	of	model	 is	 thus	
arbitrary, highlighting the increased utility of the model averaging 
approach	under	these	conditions.	Next,	we	investigated	in	greater	
details	 the	 consequences	 of	 model	 misspecification.	 We	 trained	
RIDGE	using	a	reference table generated under IM 2N2m and then 
applied	it	to	pseudo-	observed	data	created	under	both	SC	and	AM	
2N2m, in addition to IM 2N2m (the ‘correct model’) used as a control. 
Our results revealed a significant impact of model misspecification 
on Gpost for Tsplit = 10

6 (Figure S3a).	More	importantly,	the	AUC	fell	
below	0.5	and	exhibited	a	sharp	decrease	for	oldest	Tsplit	when	AM	
model was chosen (Figure S3b). This underscores that, while IM and 
SC	displayed	 similar	outputs,	opting	 for	 the	AM	model	drastically	
increases the false positive rate.

The percentage of simulations correctly detecting the pres-
ence or absence of ongoing migration increased with Tsplit	 (97.6%	
and	98.4%	at	 106	 generation	 for	 IM	 and	 SC	 against	 5.3%	 for	AM,	
Figure 3).	Heterogeneous	migration	(2 m)	was	better	captured	under	
ongoing rather than ancestral migration but even under the most 
favourable conditions, ~25%	of	the	simulations	exhibited	consistent	
patterns of homogeneous migration where barriers were undetect-
able (Figure 3). This once again emphasizes the enhanced value of 

employing the model averaging approach. The detection of the het-
erogeneity in population size (2N) varied little across Tsplit but tended 
to be more effectively detected under recent Tsplit, irrespective of the 
demographic model (Figure 3). Overall, these results indicated that 
while the correct demographic model was accurately inferred only 
under specific conditions, the occurrence of current migration was 
generally well captured.

We	also	examined	the	specific	point	estimates	associated	with	
each parameter. The accuracy of T̂split estimation was only slightly 
affected by the proportion of barriers and migration rate, closely 
approximating	the	simulated	value	irrespective	of	the	demographic	
model (Figure S4). Similar patterns were observed for T̂SC and T̂AM 
albeit TSC tended to be slightly overestimated (Figure S5).	As	Tsplit 
increased, estimates of current population sizes N̂1 and N̂2 improved, 
approaching simulated values when Tsplit reached 1.105 generations 
(Figure S6).	Estimates	of	past	population	size	N̂A is theoretically pos-
sible if TMRCA < 4Ne in each diverging population (with TMRCA the co-
alescent	time	of	the	Most	Recent	Common	Ancestor).	When	Tsplit is 
much greater than 4Ne,	most	sequences	are	expected	to	coalesce	
before Tsplit so that less signal is available for N̂A inference. In our 
case, TMRCA ≈ 4Ne = 2.105 generations, and N̂A deteriorated beyond 
this value, converging towards the prior mean (Figure S6). Current 
migration estimates (M̂curr) were more reliable than ancestral migra-
tion ones (M̂anc). The proportion of barriers had minimal impact on 
M̂curr, under SC and IM models (Figure S7). Deeper Tsplit resulted in 
greater migration signal and therefore improved the accuracy of 
M̂curr (Figures S7 and S8 left). In contrast, Tsplit had no clear effect on 
M̂anc (Figures S8 and S9).

3.2  |  Inferences of barrier proportion

The barrier proportion estimate, Q̂, plays a crucial role in the compu-
tation	of	Bayes	factors	(Equation 2) and the detection of barrier loci. 
We	obtained	reliable	estimates	of	 the	barrier	proportion,	Q̂ ,	when	
there was current migration (IM and SC models) and when Tsplit	ex-
ceeded 1.105 generations (Figure 4 and Figure S10).	For	more	recent	
Tsplit (<0.2 × 2Ne	 generations,	 approximately),	Q̂ was not properly 
estimated	and	converged	to	the	prior	mean,	 indicating	that	RIDGE	
lacks power to discriminate between barrier and non- barrier loci. 
Irrespective of the conditions, Q̂ was unreliable under ancestral mi-
gration	(AM	model),	except	for	both	high	migration	rate	and	diver-
gence time. Under the SI model, for which the proportion of barriers 
has no significance, the estimates corresponded to the prior mean. 
The Q parameter had a minimal impact on the effective migration 
rate as shown in Figure S8, reciprocally M had little impact on Q̂ 
(Figure S10), so that Q̂	was	expected	to	exhibit	a	weak	correlation	
with the genome- wide level of genetic differentiation/divergence 
between populations, as measured by statistics such as FST, Da and 
Dxy.	We,	therefore,	introduced	additional	summary	statistics	based	
on the proportions of outliers for FST, Da, Dxy, sf and π. To assess the 
usefulness of these new statistics, we compared Q̂ estimated with or 
without them. Overall, outlier statistics reduced estimation errors 

F I G U R E  2 Evolution	of	the	goodness	of	fit	of	the	posteriors	
(Gpost) as a function of time split, for four demographic models. 
The	rejection	threshold	of	5%	(under	which	an	inferred	model	is	
discarded)	is	represented	by	the	grey	zone.	Average	values	over	
100 replicates with error bars (standard deviation) are presented. 
The data used in this figure were obtained from pseudo- observed 
data sets simulated under the 2N2m model with migration set 
to 4Nem = 10	and	a	proportion	barrier	Q = 10%	(except	for	SI,	no	
migration and no barrier).
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8 of 18  |     BURBAN et al.

by	8.4%.	They	were	particularly	effective	in	improving	Q̂ under chal-
lenging conditions for barrier proportion estimation, such as when 
migration was low (M ≤ 1)	and	the	proportion	of	barriers	was	small	
Q ≤ 1%	 (Figure S11). The impact of outlier statistics varied across 
models and Tsplit values (Table S4).	At	Tsplit = 1.10

4, results remained 
difficult	to	 interpret	with	variation	 in	the	signs	of	correlations.	For	
Tsplit > 1.10

4,	under	the	AM	model,	Da outliers positively correlated 
with Q̂ (Pearson R > 0.51),	while	under	the	 IM	and	SC	models	both	
sf and ss	outliers	exhibited	a	positive	correlation	with	Q̂ (R > 0.88).	
At	 Tsplit = 1.10

6, Q̂ additionally correlated with Dxy for all models 
(Table S4).

3.3  |  Detection of barrier loci

The parameter Tsplit plays a crucial role in detecting gene flow barri-
ers. This is because the contrast between gene flow barriers and the 
rest of the genome increases with Tsplit as illustrated in Figure 5a.	As	
Tsplit increased, the overlap between the space of summary statistics 

occupied by barrier and non- barrier loci decreased resulting in a 
more pronounced shift between the corresponding BF distributions 
(Figure 5a, b).	A	consistent	signal	was	observed	on	posterior	prob-
ability distributions where under IM, a single mode was detected for 
the most recent Tsplit = 1.10

4, while two modes corresponding to bar-
rier and non- barrier loci emerged for older time splits (Figure S12). 
Note	that,	as	expected,	the	SI	model	produces	a	single	mode	distri-
bution irrespective of Tsplit, where all loci become barriers as Tsplit 
increases (Figure S12).	To	quantify	the	discriminant	power	of	RIDGE,	
we	used	the	area	under	the	curve	(AUC)	of	the	receiver	operating	
characteristic (ROC), as depicted in Figure 5c.	When	Tsplit was low, 
the	AUC	remained	close	to	0.5,	 indicating	no	power	to	detect	bar-
riers. This was confirmed by similar distributions of posterior prob-
abilities under SI and IM for Tsplit = 1.10

4 (Figure S12). Our results 
on pseudo- observed data demonstrated that both the ability to de-
tect	barriers	(measured	by	the	AUC	of	the	ROC)	and	the	precision	in	
barrier detection (measured by the PV/P ratio) increased with Tsplit 
(Figure 6). Moreover, barriers were more efficiently detected and at 
lower Tsplit under current (IM and SC models) than ancestral gene 

F I G U R E  3 Demographic × genomic	model	weights	in	posteriors	across	time	splits.	Weight	was	measured	by	considering	four	criteria:	(i)	
the	average	joint	weight	of	the	false	and	true	demographic	(among	the	fours)	model—called	here	the	‘correct’	model—in	posteriors,	(ii)	the	
average joint weight of 1m and 2m models, (iii) the average weight of 1N and 2N models, (iv) and the average weight of models displaying no 
ongoing	(current)	migration	and	ongoing	migration.	Proportion	of	accurate	model	predictions	are	shown	in	dark	colours.	As	an	example,	for	
a time split of 106, an average weight of 0 for ongoing migration under the SI model signifies that across 100 replicates, simulations under 
ongoing	migration	represent	0%	of	the	posteriors	and	so	did	not	contribute	to	parameter	estimation.	All	models	were	simulated	under	2N2M, 
and 4Nemcurr or 4Nemanc = 1.
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    |  9 of 18BURBAN et al.

flow	(AM	model)	as	shown	in	Figures S10 and S11.	Noteworthy,	the	
AUC	never	dropped	below	0.5,	indicating	that	RIDGE	did	not	gener-
ate	an	excess	of	false	positives	(Figures S13 and S14).

3.4  |  Detection of barrier loci on crow data sets

Poelstra et al. (2014) identified a highly divergent region on scaffold 
78 and 60, which contained multiple genes identified through genomic 
scan,	functional	analysis	and	differential	expression.	These	genes	are	
involved in the melanogenesis pathway and visual perception. This re-
gion was thus considered by the author as a ‘speciation island’ allowing 
for the maintenance of phenotypic differences between crows based 
on colour phenotypes and colour- assortative mate choice.

We	ran	RIDGE	on	the	same	data	set	using	the	same	window	size	as	
in Poelstra et al. (2014). Our analysis successfully fitted the observed 
data, with a goodness of fit indicated by Gpost = 0.29.	The	estimated	
value of T̂split in 2Ne generation is T̂split ∕2N̂e = 0.25 (Table S5), cor-
responding	to	the	favourable	range	for	RIDGE	to	effectively	detect	
gene	flow	barriers.	The	distribution	of	Bayes	Factors	(BF) was clearly 
bimodal with a distinct group of outliers (BF > 50), which accounted 
for	0.13%	of	the	genome	(Figure 7b). Interestingly, among these out-
lier	loci,	four	genes	(CACNG1,	CACNG4,	PRKCA	and	RSG9)	were	also	
found by Poelstra et al. (2014) and located on scaffold 78 (Figure 7c). 
The probability of detecting the same four genes just by chance was 
low (p = 2.04 10−6).	We	next	applied	RIDGE	on	a	genome-	wide	data	
set produced for three pairs of Corvus species that form hybrid zones 
(pair RX: C. corone–C. cornix; pair XO: C. cornix–C. orientalis; pair OP: 
C. orientalis–C. pectoralis) where current gene flow is detected (Vijay 

et al., 2016).	For	a	single	pair	of	crow	species,	the	program	took	ap-
proximately	1,883,000 s	of	CPU	runtime	on	four	CPUs	running	at	a	
minimum	of	2.5 GHz.	Therefore,	in	real-	time,	it	took	around	36 h	for	
the whole data set on a cluster of 280 CPUs, which takes into account 
server latencies, job queues and CPU availability. The goodness of fit 
of	the	demographic	parameters	inferred	by	RIDGE	was	similar	across	
all three pairs (RX: 0.33; XO: 0.21; OP: 0.26). The ratio of T̂split ∕2N̂e 
was	 approximately	 0.3	 for	 all	 three	 pairs	 (RX:	 0.28;	 XO:	 0.27;	OP:	
0.31; Table S5),	suggesting	a	comfort	zone	for	RIDGE	to	detect	gene	
flow barriers in all three data sets.

PCA	analyses	coloured	by	BF show a main group of outliers (char-
acterized by elevated FST and/or Da and/or reduced level of diver-
sity in all four pairs Figures 7a and 8 and Figure S15). Those signals 
were	consistent	with	some	 theoretical	expectations	 for	gene	 flow	
barriers (i.e. increased Da, sf, FST and reduced ss and diversity), but 
almost no relationship with Dxy. In each pair, we identified a subset 
of	loci	with	elevated	Bayes	factors	(BF > 50) clearly separated from 
the genome- wide distribution (Figure 8c). These subsets detected 
on	a	per-	locus	basis	(RX:	0.12%;	XO:	0.02%;	OP:	0.17%),	represented	
smaller	proportions	than	the	expected	proportion	estimated	in	the	
general model, Q̂	(RX:	4.9%;	XO:	4.8%;	OP:	4.7%)	but	still	fell	within	
the credibility intervals (Figure 8b and Table S5).

We	found	significant	overlap	between	our	outliers	and	those	of	
Vijay et al. (2016)	 for	the	RX	and	OP	pairs	 (69%	and	28%,	respec-
tively, Figure 8a, b).	For	XO,	we	only	detected	four	candidates,	which	
makes the comparison difficult with Vijay et al. (2016) although using 
a less stringent BF > 10, the overlap was significant (p = 0.007).	The	
BF revealed various correlation patterns among the three pairs, with 
FST and Da being consistently strongly positively correlated with 

F I G U R E  4 Barrier	proportion	estimates	as	a	function	of	divergence	time	under	three	demographic	models.	In	this	figure,	migration	is	
set to M = 10	and	the	plain	black	line	represents	the	priors	mean.	Each	data	point	represents	the	average	value	over	100	replicates	with	
standard	deviation	as	error	bars.	Results	overall	conditions	explored	are	represented	in	Figure S8.
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10 of 18  |     BURBAN et al.

BF and ss being consistently negatively correlated with BF but to a 
lesser	extent	(Figure 9).

4  |  DISCUSSION

A	key	goal	of	speciation	research	is	to	elucidate	the	genetic	mecha-
nisms	behind	reproductive	isolation.	Although	diverging	populations	
have been analysed in many studies, a challenging aspect remains 
the ability to capture the sequence of events that lead to the es-
tablishment of reproductive barriers. To answer this question, one 
approach	 is	 to	 compare	 populations	 that	 exhibit	 varying	 degrees	
of temporal and/or spatial divergence, including recently diverged 

ones. This requires the use of a comparative framework capable 
of detecting barriers to gene flow at both early and ancient stages 
across diverse biological systems, independently of their demo-
graphic	history.	In	this	context,	we	introduce	RIDGE,	a	tool	designed	
to facilitate this task.

4.1  |  RIDGE offers a comparative framework 
where current migration is well captured

Currently,	two	methods	explicitly	model	heterogeneity	in	the	effec-
tive	migration	rate	across	the	genome.	Both	tools	utilize	variations	
in	effective	population	size	to	approximate	selective	effects	along	

F I G U R E  5 Impact	of	the	divergence	time	on	the	overlap	between	barrier	and	non-	barrier	loci.	Overlap	revealed	by	a	principal	component	
analysis	(PCA)	computed	on	all	14	summary	statistics	(a),	the	log	of	the	Bayes	factor	(BF)	produced	by	RIDGE	(b)	and	the	area	under	the	ROC	
curve	(AUC)	of	the	Bayes	factor	(c).	The	greater	the	AUC	the	higher	the	discriminant	power	is.	A	single	pseudo-	observed	data	set	was	used	for	
each of the three values of Tsplit. Data sets were simulated under an IM 2N2m model, with the following parameters: 4Nem = 10	and	Q = 0.1.
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    |  11 of 18BURBAN et al.

the	 genome.	DILS	 (Fraïsse	 et	 al.,	2021)	 uses	 an	 ABC	 framework	
under	four	demographic	models	of	divergence	(SI,	IM,	SC,	AM)	to	
assess	 alternative	 models	 of	 effective	 migration's	 homogeneity/
heterogeneity and to provide corresponding genome- wide esti-
mates.	While	not	primarily	designed	to	perform	barrier	detection,	
DILS can still offer valuable insights on potential barrier loci, con-
ditioned	on	the	selected	demographic	model	(Fraïsse	et	al.,	2021). 
There	are,	however,	 two	main	 limits	 to	 this	approach.	Firstly,	se-
lecting	a	model	can	be	rather	arbitrary	when	two	models	explain	
the data equally well, which is often the case when divergence is 
shallow	between	populations	(as	shown	in	Fraïsse	et	al.	(2021) and 
confirmed here, Figure 3 and Figure S2); and model misspecifica-
tion can have strong consequences on the rate of false positives 
(Figure S3). Secondly, the use of potentially different demographic 
models complicates comparison across species pairs. gIMble 
(Laetsch et al., 2023) relies on composite likelihood to identify win-
dows	of	unexpected	level	of	effective	migration	along	the	genome.	
It first computes a general homogeneous model (homo- N, homo- m) 
and then fits a model for each window yielding local estimate of 
Ne and m. Then, it uses a parametric bootstrap approach to assess 
the statistical significance of a putative barrier. However, because 
it	relies	on	likelihood	computation,	gIMBle	is	less	flexible	than	ABC	
methods and can only handle the IM model, while secondary con-
tacts	may	be	rather	frequent	in	nature	(ex:	Leroy	et	al.,	2020;	Roux	
et al., 2013; Vijay et al., 2016).

RIDGE	builds	on	DILS,	offering	a	high	degree	of	model	 flex-
ibility, while proposing a comparative framework. In order to do 
so,	 RIDGE	 employs	 a	 model	 averaging	 approach	 by	 assigning	
weights	to	each	demographic	x	genomic	model	without	directing	
the	user's	choice	towards	a	single	model.	In	addition,	model	aver-
aging is also useful in reducing the uncertainty on parameter es-
timation when individual models present high variance (Dormann 

et al., 2018). Our results show that model averaging is especially 
relevant	when	data	offers	little	discriminant	power.	For	example,	
when Tsplit is low, the discriminatory power of summary statistics 
is reduced, resulting in similar assignation to all models (Figure 3). 
Opting for the best scenario under such conditions might be mis-
leading.	For	example,	at	Tsplit = 0.1 × 2Ne, when current migration 
is simulated (IM or SC models), it is detected in only ~60%	of	the	
cases (Figure 3), thus potentially leading to the selection of the 
SI	or	AM	models,	thereby	 impeding	the	estimation	of	gene	flow	
barriers. In contrast, the model averaging approach always pro-
vides an estimate of the proportion of gene flow barrier with a 
credibility interval, which can be large and include 0 when the 
statistical	power	is	low.	RIDGE	thus	allows	for	formal	comparison	
of any data sets despite differences in demographic history and/
or statistical power.

In	addition,	compared	to	DILS,	RIDGE	makes	another	improve-
ment in the way heterogeneity of migration is modelled. DILS mod-
els separately the heterogeneity in Ne and M = 4Nem, which can 
lead to unrealistic scenarios where m is inversely proportional to Ne 
(when Ne is heterogeneous and M constant), which should inflate 
the detection of heterogeneity in migration rate. To illustrate it, we 
ran	a	modified	version	of	RIDGE	on	the	crow	data	sets	where	mi-
gration is modelled as in DILS (constant or variable M instead of m, 
independently of Ne,	see	Text	S1).	Employing	the	DILS-	like	version	
resulted in the detection of numerous additional putative barriers, 
some of which were challenging to interpret (e.g. high diversity and 
relatively low Fst).	Moreover,	the	correlations	between	Bayes	factors	
(BF) and summary statistics varied across data sets, lacking a clear 
interpretation for the RX and XO pairs.

A	direct	 consequence	of	using	a	demographic × genomic	hyper-
model	is	that	RIDGE	is	not	intended	for	precise	estimation	of	a	de-
mographic model and its underlying parameters but rather to address 

F I G U R E  6 Ability	and	precision	in	the	detection	of	barrier	loci	as	a	function	of	divergence	time	and	migration.	Ability	is	measured	by	the	
AUC	of	the	ROC	(a)	and	precision	by	TP/P	(b).	Considering	a	proportion	of	barrier	Q̂,	barrier	loci	are	those	displaying	a	Bayes	factor	superior	
to the quantile at 1 − Q̂.	Each	data	point	represents	the	average	value	over	100	replicates	with	standard	deviation	as	error	bars.	Simulations	
were performed under an IM 2N2m model with Q = 0.1.

(a) (b)

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13944 by C

ochrane France, W
iley O

nline L
ibrary on [14/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 18  |     BURBAN et al.

demography as a confounding factor in the detection of gene flow 
barriers. High and stable values of goodness of fit across models and 
conditions indicate that we achieved this goal (Figure 2 and Figure S1) 
and	more	moderately	for	complex/real	scenario	as	for	crow	data	sets	
(Table S5) where the goodness of fit is lower (Gpost ~ 0.9	for	simulated	
data sets, Gpost ~ 0.25	for	crow	data	sets).	However,	as	expected,	the	
accuracy of parameter estimation largely depends on the divergence 
time (Figures S6–S9).	Similar	to	DILS	(Fraïsse	et	al.,	2021), the correct 
model's	 contribution	 to	parameter	estimation	and	 the	detection	of	
ongoing migration increases with divergence time (Figure 3). Overall, 

current migration is well captured, both in model weights and in pa-
rameter estimation (Figure 3, Figure S7).

This is well illustrated with the analysis of the crow data sets. 
After	the	ice	cap	had	retreated	in	Europe	around	10,000 years	ago	
(~2000 crow generation), the ancestors of remnant carrion (C. corone) 
and hooded crow (C. cornix) populations met in a secondary contact 
in	Central	Europe,	 forming	a	narrow	and	stable	hybrid	zone	 (Knief	
et al., 2019; Metzler et al., 2021; Poelstra et al., 2014).	Based	on	the	
sampling by Poelstra et al. (2014), which covers a wide geographical 
area	away	from	the	central	European	hybrid	zone,	RIDGE	favoured	

F I G U R E  7 Results	of	the	analysis	conducted	using	RIDGE	on	the	crow	hybrid	zone	between	carrion	and	hooded	crows.	PCA	computed	
on	summary	statistics	obtained	from	50-	kb	windows	along	genomes	with	axes	1	and	2	(only	4	of	14	summary	statistics	are	represented),	
where	each	datapoints	(windows)	are	coloured	according	to	the	values	of	Bayes	factors	(a).	Blue	diamonds	represent	loci	detected	in	
Poelstra et al. (2014),	yellow	diamonds	indicate	loci	detected	by	RIDGE	that	exceeded	the	population-	specific	Bayes	factor	threshold	and	
red diamonds represent loci detected both in Poelstra et al. (2014)	and	RIDGE.	Distribution	of	Bayes	factors	across	the	genome	(b).	Genomic	
landscape	of	scaffold	78	and	60	through	Bayes	factor,	FST, shared polymorphism (ss) and diversity (π) (c). Data are from Poelstra et al. (2014).

(a)

(b)

(c)
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    |  13 of 18BURBAN et al.

the correct scenario, especially the occurrence of ongoing migration 
(model	weight	for	SC = 45%	and	IM = 44%)	(Table S6). Similar results 
were	obtained	for	the	RX	hybrid	zone	with	IM	at	43%	and	SC	at	39%.	
Overall, in all four data sets the current status of migration has been 
correctly captured with ongoing migration accounting for the ma-
jority	of	 the	model	weight	 (RX:	82%;	XO:	84%;	OP:	91%;	Poelstra	
et al., 2014:	89%).

4.2  |  Informative summary statistics are 
context- dependent

One	drawback	of	the	ABC	approach	is	that	parameter	inference	re-
lies on summary statistics to capture the genomic signal. Historically, 
Fst, a measure of relative divergence, has been the most widely 
used	 statistic	 in	 genome	 scans	 (Wolf	 &	 Ellegren,	 2017). To avoid 

F I G U R E  8 Barrier	loci	detection	by	RIDGE	on	three	crow	hybrid	zones.	PCA	computed	on	summary	statistics	obtained	from	50-	kb	
windows	along	genomes	with	axes	1	and	2	(a)	and	1	and	3	(b)	displayed.	Datapoints	(windows)	are	coloured	according	to	the	values	of	Bayes	
factors.	Blue	diamonds	represent	loci	detected	in	Vijay	et	al.	(2016),	yellow	diamonds	indicate	loci	detected	by	RIDGE	that	exceeded	the	
population-	specific	Bayes	factor	threshold	and	red	diamonds	represent	loci	detected	both	in	Vijay	et	al.	(2016)	and	RIDGE.	Distribution	of	
Bayes	factor	values	for	each	species	pair	(c).	The	histogram	inside	the	figure	shows	the	Bayes	factor	distribution	of	detected	loci,	which	are	
the	loci	exceeding	the	population-	specific	Bayes	factor	threshold	indicated	by	the	violet	dashed	line.	Black	dashed	lines	indicate	the	Bayes	
factor threshold based on the estimated barrier proportion Q̂. Data are from Vijay et al. (2016).
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14 of 18  |     BURBAN et al.

the confounding effect of reduced diversity in either of the com-
pared populations due to other causes than barrier to migration 
(Cruickshank	&	Hahn,	2014; Ravinet et al., 2017), it is now common 
practice to combine it to absolute measure of divergence (Dxy) to 
other related statistics such as net divergence (Da) or the number of 
fixed	differences	(sf) (Han et al., 2017; Hejase et al., 2020). Here, we 
devised a new set of summary statistics based on outlier detection, 
and proved them to be useful for estimating barrier proportions. The 
reasoning was that loci showing local increase in divergence (meas-
ured by FST, Dxy, Da, sf, ss) and decrease in diversity would generate 
outliers in the genome wide divergence and diversity distributions. 
Our results show that outlier statistics mostly contribute to Q̂ under 
moderate gene flow (M = 1), and mainly for low level of barrier pro-
portion (Q < 0.1) (Figure S11), where estimation of barrier proportion 
may be challenging.

Interestingly, the set of summary statistics that effectively cap-
ture the signal of barrier loci slightly differed among data sets, as 
illustrated with the three pairs of crows (Figure 9).	 For	 the	 three	
pairs, FST and Da strongly correlated with BF and contributed the 
most to barrier detection, in agreement with theoretical predictions 

(Cruickshank	&	Hahn,	2014).	Quite	unexpectedly,	however,	Dxy did 
not correlate with BF and did not contribute to barrier detection. 
A	possible	explanation	 is	 that,	at	 low	divergence,	variations	 in	Dxy 
mainly reflect local variations in Ne (as confirmed by the strong pos-
itive association with π	in	the	PCA,	Figure S15), while the main sig-
nal of variation in migration rate is already captured by Da. Other 
statistics also correlated with BF but at lower and variable levels in 
the three data sets, and, similarly outliers correlated differently to 
the	PCA	axes	(Figure 8 and Figure S15). Differences in genomic sig-
natures may reflect not only the difference in the environment in 
which incipient crow species evolved but also the difference in the 
geographical area covered by the hybrid zone (Vijay et al., 2016).

These	examples	 illustrate	that	considering	a	 few	statistics	 in	 the	
detection of barrier loci can be misleading as signatures can be com-
plex	and	context	dependent.	It	thus	advocates	for	the	use	of	a	more	
inclusive approach as implemented in the BF derived from the random- 
forest-	based	 ABC	 approach	 of	 RIDGE.	 One	 contribution	 of	 the	
Random	Forest	(RF)	is	to	reduce	the	curse	of	dimensionality	(Bellman	&	
Kalaba, 1959),	which	improves	accuracy	and	computation	time,	RF	also	
makes	ABC	a	calibration-	free	problem	by	automating	the	inclusion	of	

F I G U R E  9 Pearson	correlation	between	RIDGE	Bayes	factor	and	summary	statistics	used	in	the	gene	flow	barrier	detection	for	the	three	
hybrid zones. Colours correspond to the values of correlations while circle size reflects the absolute values. Data are from Vijay et al. (2016).
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    |  15 of 18BURBAN et al.

summary statistics (Raynal et al., 2019). In return, a possible drawback 
is	 that	RF	results	are	 less	 interpretable	due	to	their	complex	nature.	
Indeed, even if the abcrf package provides a way to understand the 
contribution of variables to parameters estimations, it still remains dif-
ficult	to	interpret	the	RF	decision	for	a	specific	locus.

4.3  |  Detection of barrier loci using RIDGE

We	validated	the	ability	of	RIDGE	to	detect	gene	flow	barriers	on	
empirical data sets from Poelstra et al. (2014) and Vijay et al. (2016). 
In particular, we clearly detected the large and well- established re-
gion of scaffold 78 on chromosome 18. It contains major loci that 
are involved in mate choice patterns between C. corone and C. cornix 
(RX) (Knief et al., 2019; Metzler et al., 2021; Poelstra et al., 2014). 
The study by Vijay et al. (2016) was conducted on three species 
pairs	 that	 had	 similar	 demographic	 histories.	 For	 all	 three	pairs	 of	
populations,	we	 identified	a	portion	of	 loci	exhibiting	elevated	BF. 
For	the	RX	and	OP	pairs,	we	found	less	loci	than	previously	detected	
by Vijay et al. (2016) but a significant overlap between the two set 
of genes. Using a rather stringent threshold of BF > 50,	69%	(for	RX)	
and	28%	(for	OP)	of	 the	 loci	 that	RIDGE	detected	were	also	 iden-
tified by Vijay et al. (2016).	 For	 the	 three	pairs,	Vijay	et	 al.	 (2016) 
detected	(many)	more	loci	than	RIDGE.	On	average	these	additional	
loci,	 not	 detected	 by	 RIDGE,	 displayed	 low	 diversity	 without	 dis-
tinctive divergence patterns. This observation can be attributed to 
the confounding effect of the heterogeneity in Ne,	not	explicitly	ac-
counted for in Vijay et al. (2016) and which is a classic pitfall of Fst 
scan	approaches	(Cruickshank	&	Hahn,	2014).	The	fact	that	RIDGE	
detected only a limited number of loci displaying such a pattern im-
plies	that	it	effectively	circumvents	this	problem.	For	the	XO	pair,	its	
wide	spatial	range—three	to	seven	times	wider	than	the	hybrid	zone	
of	RX	pair—leads	to	a	reduction	in	selection	strength	as	documented	
in Vijay et al. (2016), and consequently, candidate regions in our re-
sults	 exhibit	 shallow	 divergence	 patterns	 (Figure 8).	 Furthermore,	
since low signal can increase noise in detection results, we did not 
detect any direct overlap between the candidate XO gene from Vijay 
et al. (2016)	and	our	results.	However,	when	examining	the	regions	
surrounding the candidate gene, we observed common regions such 
as the gene LRP5, which was consistently present in XO and OP pairs 
in	Vijay	and	was	consistently	located	at	a	distance	of	50 kb	from	an	
outlier locus in our results.

4.4  |  Benefits of RIDGE and guidelines for its use

RIDGE	 relies	 on	 an	 ABC	 approach	 that	 offers	 a	 lot	 of	 flexibility,	
enabling	 it	 to	 explore	 genomic	 heterogeneity	 and	 to	 incorporate	
customized	summary	statistics.	We	have	also	devised	a	method	for	
generating	 multidimensional	 parameter	 estimates,	 extending	 be-
yond the initial single- parameter focus of abcrf (Raynal et al., 2019). 
This	 improvement	 enables	 RIDGE	 to	 deal	 effectively	with	 param-
eter interdependencies and increase the precision of parameter 

estimations.	Another	 improvement	 introduced	by	RIDGE	 is	 the	 in-
corporation	of	Bayes	factors,	facilitating	result	comparisons.	In	ad-
dition,	 RIDGE	 explicitly	 models	 variation	 in	 the	migration	 rate,	m 
rather than the population- scaled migration rate (4Nem) as in DILS 
(Fraïsse	et	al.,	2021) which results is a much more stringent detec-
tion	of	barrier	loci	(Text	S1).	Our	interpretation	is	that	by	fixing	both	
Ne and 4Nem as in DILS, the heterogeneity of migration, m, tends 
to be too frequently inferred because it allows reconciling the ob-
served patterns for different statistics.

One	 limitation	of	RIDGE	 is	 the	need	to	define	a	priori	 the	size	
of windows, an arbitrary choice that can pose problems in cross- 
species comparisons. One possible improvement would be to define 
window size based on the genetic instead of the physical distance 
when	a	genetic	map	is	available.	Alternatively,	one	could	use	crite-
ria based on local topologies to segment the genome into windows, 
as implemented in Saguaro, which relies on a Hidden Markov Chain 
model coupled with unsupervised pattern recognition and classifica-
tion algorithms (Zamani et al., 2013).

The	simulated	data	sets	we	explored	gave	us	guidelines	for	the	
conditions	where	RIDGE	can	provide	useful	and	accurate	results.	We	
suggest	to	use	data	sets	with	SNP	density	higher	than	0.1%,	such	as	
in	crows	and	simulated	data	sets,	where	the	SNP	density	was	around	
1%.	We	also	advise	to	use	a	minimum	of	three	samples	per	popula-
tion. The goodness- of- fit statistics enables users to check the qual-
ity of inferences made. If Gpost < 5%,	the	user	should	verify	the	prior	
bounds. The guidelines for interpreting and thresholding BF depend 
on	the	user's	goals.	If	RIDGE	is	used	solely	to	discover	new	candidate	
genes involved in gene flow barriers for a specific population pair, 
we recommend using a customized threshold that optimally captures 
Bayes	 factor	 outliers.	 For	 the	 purpose	 of	 comparison,	 it	 is	 recom-
mended	to	use	a	standard	threshold	 for	all	data	sets,	 for	example,	
BF > 50 or 100, or to keep the number of outlier loci corresponding 
to	the	proportion	of	barriers	estimated	in	the	first	step	of	RIDGE	(Q̂
). In addition, it is also important to consider the whole distribution 
of BF	 (or	posterior	probability)	 to	help	 interpreting	the	results.	For	
example,	under	the	SI	model	(with	sufficient	divergence)	all	loci	or	a	
large proportion of loci appear as barrier but the global distribution 
is unimodal in sharp contrast with an IM model with barriers, which 
presents a clear bimodal distribution (Figure S12).

Crucially, genomic data alone cannot provide conclusive evi-
dence	of	barrier	 loci	and	so	RIDGE	results	should	be	coupled	with	
other analysis such as functional analysis (Ravinet et al., 2017). It 
is	worth	 noting	 that	window	 length	 (default	 set	 to	 10 kb)	 can	 sig-
nificantly	affect	the	results	of	RIDGE.	 It	should	be	determined	ac-
cording	 to	 the	extent	of	 linkage	disequilibrium	as	well	as	 the	 level	
of diversity, since it determines the amount of polymorphism and 
consequently affects the strength of the signal.

As	is	the	case	with	all	ABC	approaches,	the	quality	of	the	priors	
given	by	the	user	affects	the	results	obtained	using	RIDGE.	A	Tsplit of 
0.1 × 2Ne generations (10,000 generations in our simulations) appears 
to be a lower bound for both demography (Figures 4 and 5) and bar-
rier inferences (Figure 6),	below	which	RIDGE	fails	to	capture	informa-
tive	signals.	RIDGE	can	detect	gene	flow	barriers	on	both	simulated	
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16 of 18  |     BURBAN et al.

(Figure 6) and empirical data (Figure 7), starting at 0.1 ×	2Ne	genera-
tion,	which	represents	a	very	low	level	of	divergence.	For	context,	DILS	
correctly inferred a gene flow barrier when Tsplit > 0.5 × 2Ne genera-
tions, while gIMble only demonstrated its effectiveness on one pair of 
Heliconius species that diverged 4.5 million generations ago, estimated 
to	represent	0.49 × 2Ne generations (Martin et al., 2015).

Comparative approaches have been useful in understanding the 
genomic basis involved in the process of reproductive isolation (e.g. 
Roux	et	al.,	2016) and they will continue to play an important role in 
speciation	research.	By	its	flexibility	and	its	comparative	framework,	
RIDGE	should	become	a	useful	tool	to	follow	this	direction.
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