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Abstract
Characterizing the processes underlying reproductive isolation between diverg-
ing lineages is central to understanding speciation. Here, we present RIDGE—
Reproductive Isolation Detection using Genomic polymorphisms—a tool tailored 
for quantifying gene flow barrier proportion and identifying the relevant genomic 
regions. RIDGE relies on an Approximate Bayesian Computation with a model-
averaging approach to accommodate diverse scenarios of lineage divergence. It 
captures heterogeneity in effective migration rate along the genome while ac-
counting for variation in linked selection and recombination. The barrier detection 
test relies on numerous summary statistics to compute a Bayes factor, offering a 
robust statistical framework that facilitates cross-species comparisons. Simulations 
revealed RIDGE's efficiency in capturing signals of ongoing migration. Model aver-
aging proved particularly valuable in scenarios of high model uncertainty where no 
migration or migration homogeneity can be wrongly assumed, typically for recent 
divergence times <0.1 2Ne generations. Applying RIDGE to four published crow 
data sets, we first validated our tool by identifying a well-known large genomic 
region associated with mate choice patterns. Second, while we identified a sig-
nificant overlap of outlier loci using RIDGE and traditional genomic scans, our re-
sults suggest that a substantial portion of previously identified outliers are likely 
false positives. Outlier detection relies on allele differentiation, relative measures 
of divergence and the count of shared polymorphisms and fixed differences. Our 
analyses also highlight the value of incorporating multiple summary statistics in-
cluding our newly developed outlier ones that can be useful in challenging detec-
tion conditions.

K E Y W O R D S
approximate Bayesian computation, crows, gene flow barrier detection, hybrid zones, 
reproductive isolation, speciation
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1  |  INTRODUC TION

The process of speciation involves a gradual and divergent evolu-
tion of populations, passing through conditions of semi-isolated spe-
cies, named the ‘grey zone of speciation’ (De Queiroz, 2007; Roux 
et al., 2016), until complete genetic isolation is achieved, resulting in 
the formation of distinct species (Wu, 2001). Population divergence 
can occur through various scenarios, ranging from the complete 
absence of genetic exchanges, known as allopatric speciation (e.g. 
due to geographical barriers between populations), to almost unre-
stricted genetic exchanges in sympatric speciation. These extreme 
scenarios are not mutually exclusive, as genetic exchanges can re-
occur after a period of allopatric divergence followed by secondary 
contacts (Schluter, 2001). Regardless of the scenario, the question 
of how reproductive isolation is established between divergent pop-
ulations is central to understanding speciation. This involves com-
paring the proportion and identity of the relevant genomic regions 
across biological systems (Delmore et al., 2018; Fraïsse et al., 2021; 
Schluter, 2001).

Extensive exploration of the genomic bases of speciation have 
been conducted, in particular, in the case of ecological specia-
tion where environmental disparities among populations drive 
both phenotypic divergence and reproductive isolation (Rundle & 
Nosil, 2005; Schluter, 2000; Shafer & Wolf, 2013). A recurrently 
observed pattern is that pre-mating reproductive isolation is fa-
cilitated by the physical linkage between genes that govern re-
productive isolation and those responsible for divergent traits, 
which can potentially result from adaptation to contrasted envi-
ronmental conditions. The gradual establishment of linkage dis-
equilibrium between these genes can then lead to the progressive 
arrest of gene flow during the speciation process (Schluter & 
Rieseberg, 2022).

For example, in stickleback fish, divergent mate preferences have 
been mapped to the same set of genomic regions controlling body 
size, shape and ecological niche utilization (Bay et al., 2017). Another 
striking example concerns the genomic determinants of mate selec-
tion based on feather colour patterns in carrion and hooded crows 
(Metzler et  al.,  2021; Poelstra et  al.,  2014). Specifically, genes en-
coding feather pigmentation and genes responsible for perceiving 
colour patterns have been identified within the same 1.95 Mb region 
of chromosome 18. This region displays significant genetic differ-
entiation between carrion and hooded crows. Similarly, in the neo-
tropical butterflies Heliconius cydno and H. melpomene, assortative 
mating patterns correlate with a genomic region proximate to optix, 
a crucial locus influencing distinct wing colour patterns between 
these species (Merrill et  al.,  2019). Note that, inversions can help 
build linkage disequilibrium by generating large genomic regions of 
suppressed recombination, maintaining combinations of co-adapted 
alleles encoding ecologically relevant traits. For example, in three 
species of wild sunflowers, 37 large non-recombining haplotype 
blocks (1–100 Mbp in size) contribute to strong prezygotic isolation 
between ecotypes through multiple traits such as soil, climate and 
flowering characteristics (Todesco et al., 2020).

Another key genetic mechanism involved in speciation is the epi-
static interaction between genes that produce deleterious pheno-
types in hybridization, also known as Bateson–Dobzhansky–Muller 
Incompatibility (BDMI) (Gavrilets, 2003). Across Arabidopsis thaliana 
strains, epistatic interactions between alleles from two loci located 
on separate chromosomes, result in an autoimmune-like responses 
in F1 hybrids (Bomblies et al., 2007). A more recent example in ver-
tebrates concerns the Swordtail fish species, Xiphophorus birchmanni 
and X. malinche, where interaction between two genes generates a 
malignant melanoma in hybrids associated with strong viability se-
lection (Powell et al., 2020).

As population-wide genomic data increase, genome-scan ap-
proaches enable a more systematic search of the genetic factors 
behind reproductive isolation. One popular approach relies on the 
search for genomic islands of elevated differentiation compared 
with the genomic background, typically through FST scans (Wolf & 
Ellegren, 2017). However, it is now widely recognized that processes 
other than selection against gene flow can generate such islands. For 
example, selective sweeps and background selection against delete-
rious alleles both decrease genetic diversity at linked sites especially 
in low recombination regions (Charlesworth,  1993; Charlesworth 
& Jensen, 2021; Cruickshank & Hahn, 2014; Kaplan et  al.,  1989). 
Because gene flow barriers are more likely to occur in functional 
regions, they are also more affected by those forms of selection, 
further complicating the distinction of gene flow reduction (Ravinet 
et al., 2017). Demography, which affects the entirety of the genome, 
is also key to account for barrier detection because barrier loci are 
harder to identify when the time split is recent and/or the migration 
rate is low (Sakamoto & Innan, 2019). Yet, recent splits of partially 
isolated taxa are of paramount interest in speciation research as they 
allow access to the key determinants of reproductive isolation while 
avoiding the confusion with other differences accumulated since 
speciation (Tenaillon et al., 2023).

Linked selection (at least some forms of) can be approximated 
by a local reduction in effective population size (Cruickshank & 
Hahn,  2014; Ravinet et  al.,  2017; Sakamoto & Innan, 2019) and 
several methods have proposed to decouple its effect from the 
heterogeneity in effective migration rate to detect gene flow 
barrier on genomic polymorphism patterns (Fraïsse et  al., 2021; 
Laetsch et al., 2023; Sethuraman et al., 2019; Sousa et al., 2013). 
These methods relax the assumption that all loci share the same 
demography. Some of them use likelihood methods to directly es-
timate and decouple the effects of differential introgression and 
demography across genomic loci (Laetsch et al., 2023; Sethuraman 
et al., 2019; Sousa et al., 2013). However, they make specific as-
sumptions about demography. For example, gIMble simulates 
population divergence under isolation with migration (IM) only, 
thereby considering no variation in migration rate through time 
(Laetsch et al., 2023). DILS proposes a more flexible approximate 
Bayesian computation (ABC) approach. First, it infers the best de-
mographic models among four models that include migration rate 
variation through time while accounting for genomic heterogene-
ity in effective population size Ne (to mimic linked selection) and in 
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effective migration me (to mimic gene flow barriers). Such account 
of genomic heterogeneity has been shown to enhance the quality 
of model inferences (Roux et al., 2014). Second, DILS infers the mi-
gration model at the locus scale—arrest of migration versus migra-
tion similar to the genome-wide level–conditioned on the chosen 
best model (Fraïsse et al., 2021). Although effective in detecting 
gene flow barrier, this reliance on an initial model choice restricts 
comparability among species pairs.

Overall, an adequate method to identify potential reproduc-
tive isolation barriers would require a cross-species comparative 
framework that takes genomic heterogeneity into account, while 
making analysis comparable despite differences in demographic 
histories. Here, we propose an innovative method to identify gene 
flow barrier loci satisfying these requirements and that also quan-
tifies the confidence in locus detection. We used an ABC-based 
model averaging approach that accounts for different modalities 
of divergence between pairs of populations/taxons. We consid-
ered both heterogeneity in Ne along the genome, by modelling the 
mosaic effect of linked selection as in the DILS program (Fraïsse 
et al., 2021), and heterogeneity in recombination, by including an 
option for the user to provide a recombination map. In addition, 
we not only relied on a number of classic summary statistics but 
also incorporated new ones, related to outlier detection, which im-
proved the inferences of barrier loci. Finally, the method provides 
Bayes factors associated with barrier detection, which facilitate 
cross-species comparisons.

2  |  MATERIAL S AND METHODS

2.1  |  RIDGE pipeline

RIDGE utilizes ABC based on random forest (RF) to detect barrier 
loci between two diverging populations in the line of the frame-
work proposed in DILS (Fraïsse et  al., 2021). The observed data 
consist of a set of loci sequenced on several individuals of the two 
populations. The general principle of RIDGE is as follows: first, 
we simulate 14 demographic × genomic models to produce a ref-
erence table. This table serves to train one RF per parameter that 
generates corresponding estimate of each parameter in addition 
to providing weights for each model according to their fit to the 
target (observed) data set. Second, we construct a hypermodel 
where the posterior distribution of each parameter is obtained 
as the weighted average over the 14 models. Finally, we use this 
hypermodel to produce data sets for control loci (thereafter non-
barrier) and barrier loci that have undergone no gene flow during 
divergence. Simulated data sets are employed to train a second 
RF model that subsequently calculates posterior probabilities 
and associated Bayes factors for categorizing each locus as bar-
rier or non-barrier. RIDGE was executed using Snakemake (v7.7.0) 
with Singularity as the container manager. Data visualization was 
conducted using R v4.1.2 (R Core Team,  2021) and involved the 
utilization of the following packages: ggpubr (Kassambara, 2020), 

scales (Wickham, 2018), FactoMineR (Le et  al., 2008), factoextra 
(Kassambara & Mundt, 2017) and latex2exp (Meschiari 2023).

2.2  |  ABC summary statistics

ABC inferences rely on summary statistics that are computed either 
at the locus-level or across loci, that is, genome-wide distributions of 
summary statistics and correlations among loci, and either within- or 
between-populations. For a given observed data set, the number of 
loci used for construction of the hypermodel is set by the user. To 
reduce computation time for large data sets, a subset of loci can be 
randomly sampled to represent the whole genome (by default, we 
used 1000 loci).

For each locus, RIDGE computes the following within popula-
tion statistics: the number of Single Nucleotide Polymorphisms—
SNPs (S), π (Nei & Li, 1979), Watterson θ (Watterson, 1975), as well 
as Tajima's D (Tajima, 1989). As measures of population differentia-
tion between populations, RIDGE computes FST (Bhatia et al., 2013; 
Hudson et al., 1992), the absolute (Dxy) and the net (Da) divergence 
(Nei & Li, 1979), the summary of the joint Site Frequency Spectrum 
(jSFS) (Wakeley & Hey,  1997) with ss (the proportion of shared 
polymorphisms between populations), sf (the proportion of fixed 
differences between populations), sxA and sxB (the proportion of 
exclusive polymorphisms to each population).

Across loci, RIDGE computes the mean, the median and the stan-
dard deviation for each summary statistic described above. In addi-
tion, RIDGE computes the Pearson correlation coefficient between 
Dxy and FST and between Da and FST. Regarding the jSFS, RIDGE 
determines the number of loci that contains both shared polymor-
phisms (ss > 0) and fixed differences (sf > 0) between populations, 
ss+sf+ and following the same rational ss+sf−, ss−sf+, ss−sf−. These sta-
tistics are commonly used in ABC to simplify the jSFS while keeping 
the most relevant information (e.g. in DILS, Fraïsse et al., 2021). To 
obtain better insights into the proportion of barriers, we introduced 
new statistics: the proportion of outlier loci, defined as the propor-
tion of loci that exceeds certain thresholds for FST, Dxy, sf, Da and ss 
or falling below certain thresholds for π and θ. The thresholds are de-
termined using Tukey's fences: tmin = Qmin − 1.5∗

(

Qmax − Qmin

)

 and 
tmax = Qmax + 1.5∗

(

Qmax − Qmin

)

, for the lower and upper thresholds 
respectively, where Qmin is the lowest and Qmax the highest quar-
tiles (Tukey, 1977). All summary statistics are computed using the 
python packages scikit-allel (Miles et  al.,  2021) and numpy (Harris 
et al., 2020).

2.3  |  Coalescence simulations

We simulated the evolution of neutral loci (1000 by default) under 
14 demographic × genomic models using the scrm simulator (Staab 
et al., 2015), an efficient ms-like program (Hudson, 2002). We stored 
corresponding simulation parameters as well as all summary statis-
tics in the reference table.
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2.3.1  |  Demographic models

RIDGE simulates the split of a single ancestral population of effec-
tive size Na, into two daughter populations of size N1 and N2 at time 
Tsplit. Four different demographic models are considered as in DILS 
(Fraïsse et al., 2021) (Figure 1): (1) strict isolation with no migration 
(SI), (2) isolation with constant migration rate since Tsplit (IM), (3) sec-
ondary contact with no migration after the split until a secondary 
contact at time TSC occurs (SC), and (4) ancestral migration with mi-
gration occurring initially and ceasing after time TAM (AM). Migration 
rate m is assumed to be symmetrical between the two populations.

2.3.2  |  Genomic models

In addition to modelling demography, RIDGE also incorporates het-
erogeneity in effective population size along the genome gener-
ated by linked selection, and heterogeneity in effective migration 

generated by selection against migrants at barrier loci. Thus, de-
mographic models are combined with two effective population 
size modalities (homo-N vs. hetero-N) and with two migration rate 
modalities (homo-m vs. hetero-m), so that four genomic models are 
considered, except for the SI model where there is no migration 
and only two genomic models (homo-N and hetero-N). This gives 
14 demographic x genomic models. For simplicity, genomic models 
are named using a combination of 1N (homo-N), 2N (hetero-N), 1m 
(homo-m), 2m (hetero-m). While in the 1N modality all loci display 
the same effective population size genome-wide, heterogeneity of 
effective population size under 2N, is modelled by a rescaled Beta 
distribution. Effective size at locus i is given by:

where B(α,β) is a Beta distribution with parameter α and β and N is the 
mean effective population size across the genome. In other words, 
under 2N and for a given locus, three independent values are sampled 

(1)Ni = N ⋅

(

� + �

�

)

⋅ B(�, �)

F I G U R E  1 Demographic models implemented in RIDGE. The hypermodel combines all four demographic models considered: Strict 
Isolation (SI), Ancestral Migration (AM), Secondary contacts (SC) and Isolation-Migration (IM) plus genomic models. In the hypermodel, 
an ancestral population of effective size Na split at Tsplit in two populations of effective size N1 and N2. At TAM ancestral migration ceases, 
and it restarts at the time of secondary contact,TSC . manc and mcurdenote the ancestral and current migration rates between populations 
respectively. To fit in the hypermodel, each of the four demographic models adopt specific values for four of the parameters as indicated 
below each graph. For example, under SI, TAM is set to Tsplit as there is no ancestral migration, and TSC is set to 0 as there is no secondary 
contact, and so are manc and mcur. Note that under IM, in order to model uninterrupted gene flow, we considered TAM = TSC = K ∗Tsplit, where 
K is a random value drawn from a uniform distribution in [0,1]. These demographic models are then combined with four genomic models: 
homogenous or heterogenous Ne (1N, 2N) and homogeneous and heterogenous m (1m, 2m). For the SI model there are only two possible 
genomic models (1N or 2N) because there is no migration. This yields 14 models in total.
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from the same B(α,β) distribution albeit distinct N are used in equa-
tion 1 so that there is no covariation of the effective population size 
across populations. For migration (m), the genome-wide heterogene-
ity in effective migration is modelled by a Bernoulli distribution where 
a proportion Q of loci displays m = 0 and a proportion 1 − Q loci dis-
plays m > 0, m corresponding either to current migration (mcur) or to 
ancestral migration (manc). Likewise, we referred to the proportion of 
barriers under current (Qcur) and ancestral (Qanc) migration. It is im-
portant to note that coalescent simulations use the scaled parameter 
M = 4Nem, and that M (rather than m) is the standard way to report 
migration rate. Variable M across the genome can thus be due to vari-
ation in Ne alone, m alone or both. For example, 2N and 1 m models, 
M is variable across the genome but its variation parallels variation in 
Ne. This approach differs from the one implemented in DILS, where Ne 
can be variable but M fixed, which implicitly implies that m is propor-
tional to 1/Ne and can thus over-detect heterogeneity in m. Also note 
that under 2N2m models, variations in Ne and m are assumed to be 
independent. RIDGE assumes that all loci are independent and expe-
rience a genome-wide homogeneous mutation rate (μ, set by the user) 
and recombination rate (r, set by the user) unless a recombination map 
is provided, in which case locus-specific recombination rates are given 
by the recombination map.

2.4  |  Generation of the reference table

RIDGE explores 14 demographic × genomic models of divergence using 
a hypermodel that integrates them all. This model contains 12 parame-
ters, eight demographic parameters (Na,N1,N2, Tsplit, TAM, TSC,mcur,manc) 
as described in Figure 1, and four genomic parameters (�, � ,Qcur,Qanc). 
Regarding the demographic parameters, population sizes (Na,N1,N2) and 
times (Tsplit, TAM, TSC) are sampled in uniform distributions with bounda-
ries specified by the user. Migration rates are drawn from a truncated 
log-uniform distribution, with the boundary also specified by the user. 
We used log-normal instead of uniform distributions as migration af-
fects most statistics in a non-linear, multiplicative way. Preliminary 
simulations showed that it improved the performance of migration es-
timation. Note that, depending on the considered demographic model, 
some of the parameters are set to 0 (Table S1, Figure 1). For example, 
under SI, only four demographic parameters are estimated (Table S1). 
Regarding the genomic parameters, parameters of the Beta distribu-
tion and the Q parameter, are sampled in a uniform distribution where 
�, � ∈

[

0, 10
]

 and Qanc,Qcur ∈
[

0,Qmax

]

. Qmax ≤ 1 is the maximal pro-
portion of the genome under gene flow barrier set by the user. RIDGE 
produces the reference table from a set of simulations with parameters 
sampled from these prior distributions.

2.5  |  Point estimates and goodness of 
fit of posteriors

RIDGE utilizes the reference table for training a regression RF model 
(Raynal et al., 2019). This model produces point estimates for the pre-
dicted values of each parameter and assigns weights to simulations 

based on their proximity to the real data using the regAbcrf func-
tion. The weight for each simulation is calculated as the mean of the 
weights across all parameters. Subsequently, a set of simulations 
(and their corresponding parameter values) are subsampled in pro-
portion of these average weights to represent a set of simulations 
that better match the observed data. This subsample of the refer-
ence table is referred to as the posterior table. Note that subsampling 
of parameters according to the averaged weights over simulations 
effectively account for the non-independence of parameters. We 
evaluated the goodness of fit of the posterior distributions using an 
enhanced version of the gfit function of the abc packages (Csilléry 
et al., 2012), which employs a goodness-of-fit statistics approach de-
scribed in Lemaire et al. (2016) and summarized here. To assess the 
goodness of fit of the posterior Gpost, we followed these steps: first, 
summary statistics (in both observed data set and posterior table) 
are normalized by their mean absolute deviation determined from 
the posteriors table. Then, we computed the Euclidean distance be-
tween each summary statistics computed from the observed data 
set and those computed from each η simulation contained in the pos-
terior table. Together it form a vector of Euclidean distances d1 … d� 
on which we computed the average, denoted Dpost. To derive the 
null distribution of Gpost, we considered a data set randomly sampled 
in the posterior table as ‘observed’ and discarded from subsequent 
analyses. The remaining η–1 data sets of the reference table were 
used to compute Dpost', the average Euclidean distance between the 
posterior table and the ‘observed’ data set. Repeated as such Ζ times, 
we obtained a vector of D1post

�
… DZ

post
�. Then we computed Gpost as 

the proportion of values for which Dpost
′ > Dpost.

2.6  |  Detection of barrier loci

Each set of parameters of the posterior table is used to generate two 
sets of individual-locus simulations, one set for non-barrier loci (m 
equals to the value of the posterior table) and one set for barrier loci 
(m set to 0), with two corresponding per-locus reference tables. The 
RF algorithm (abcrf package) was trained on these per-locus refer-
ence tables to predict the most probable status of each locus, either 
barrier (model x1) or non-barrier (model x2). Since there are only two 
models, the posterior probabilities satisfied: P

[

x1
]

= 1 − P
[

x2
]

 so that 
we were able to compute a Bayes Factor (BF) for each locus i, de-
noted as BFi:

Here, E[] represents the average of 1 − Q̂ and Q̂ over the poste-
rior distribution obtained from the hypermodel. Q can be zero in the 
empirical distribution, so the ratio undefined. Instead of removing 
zero values that makes the BF highly stochastic from one simulation 
to another, we used the following approximation (based on the Taylor 
expansion of the expectation of a ratio of random variables):

(2)BFi = E

[

1 − Q

Q

]

⋅

(

P
[

x1
]

i

1 − P
[

x1
]

i

)

(3)BFi =

(

E
[

1 − Q
]

E
[

Q
] +

V
[

Q
]

E
[

Q
]3

)

⋅

(

P
[

x1
]

i

1 − P
[

x1
]

i

)
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6 of 18  |     BURBAN et al.

2.7  |  Evaluation of RIDGE performance on 
pseudo-observed data sets

We evaluated RIDGE performance on pseudo-observed data sets 
(i.e. simulated data sets considered as ‘observed’ data and compared 
with simulation outputs). As a first step, we evaluated the ability 
of RIDGE to correctly infer demographic x genomic models. We 
next used the pseudo-observed data sets to evaluate the accuracy 
of RIDGE in estimating the proportion of barrier loci, and detect-
ing their locations throughout the genome. SI model where all loci 
should be detected as barriers was used as a positive control.

We simulated pseudo-observed data sets under the four demo-
graphic models and under both 2N2m and 2N1m genomic models (only 
2N1m for SI). For simplicity, we fixed Na = N1 = N2 = 50, 000 individ-
uals. The time of the secondary contact (TSC) was set to 0.2 × Tsplit and 
the time of arrest of ancestral migration (TAM) was set to 0.7 × Tsplit. 
We used a range of parameter values (Table S2) for divergence (from 
1000 to 2 million generations, i.e., from 0.1 to 20 in 2Ne generation 
unit), for migration (mean 4Nem = 1 and 10) and barrier loci proportion 
(Q = 1%, 5% or 10%). We set the mutation rate to μ = 1.10−8 and the 
recombination rate to r  = 1.10−7 so that their ratio was 10. In total, we 
simulated 15,000 data sets using the scrm coalescent simulator (Staab 
et  al.,  2015). Each multilocus data set contained 1000 loci of 10 kb 
each, and we performed 100 replicates per scenario.

To evaluate the inference of demographic × genomic models, we 
calculated the goodness of fit of the estimated model and deter-
mined the contribution of each model to the estimation of posteri-
ors obtained from pseudo data sets. Contributions were evaluated 
through four criteria: (i) the average weight of the simulated de-
mographic (among the four) model called here the ‘correct’ model, 
(ii) the average weight of 2m models, (iii) the average weight of 2N 
models, and (iv) the average weight of models displaying current mi-
gration. We also compared the point estimates obtained from simu-
lations with the input parameter values.

Next, we assessed our ability to detect barrier loci using the Area 
Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) 
curve. The ROC curve relates the false-positive rate (FPR) to the true-
positive rate (TPR) and provides insights into the discriminant power 
of a method. The AUC of the ROC ranges from 0 to 1. An AUC of 0.5 
indicates that FPR and TPR are equal irrespective of the threshold, 
which implies a random classification of loci into barrier and non-barrier 
loci while an AUC of 1 indicates perfect classification. Additionally, we 
computed the precision as the number of true positives (TP) divided by 
the sum of true positives and false positives (TP + FP).

2.8  |  Application to experimental data on crow 
hybrid zones

To assess the performance of RIDGE on experimental data, we fo-
cused on two published data sets produced by Poelstra et al. (2014) 
and Vijay et al. (2016). All sequencing data from crows were extracted 
from the NCBI database under project number PRJNA192205 and 

the reference genome used to map them is GCF_000738735.1. In the 
first one, a comparison was made between 30 individuals of Corvus 
corone (carrion crows) populations from Spain and Germany, and 30 
individuals of the C. cornix (hooded crows) population from Poland 
and Sweden. In the second one, three crow contact zones, among 
which two well-characterized hybrid zones, with similar divergent 
times around ~80,000 generations are described, from the most 
recently diverged pair C. corone–C. cornix (RX), to the most anciently 
diverged C. cornix–C. orientalis (XO) and C. orientalis–C. pectoralis (OP) 
pairs (Vijay et al., 2016). This data set consisted of 124 sequenced 
individuals. The number of individuals sampled varied for each pair 
(RX: 15–14 individuals; XO: 6–6 individuals; OP: 5–3 individuals).

All alignments were done on a reference genome (NCBI assem-
bly: GCF_000738735.1) consisting of 1299 scaffolds resulted in the 
detection of 16,064,921 common SNPs with an average density of 
15 SNPs per kilobase. Previous genome-wide scans across the three 
pairs identified a number of candidate loci potentially involved in 
population/species divergence (Vijay et al., 2016). Two metrics were 
employed in those scans: (i) a Z-transformed FST computed on 50 kb 
non-overlapping windows between population/species pairs and 
normalized by the local level of Z-transformed FST from allopatric 
pairs, denoted as FST', (ii) an unsupervised genome-wide recogni-
tion of local relationship pattern using Hidden Markov Model and a 
Self-Organizing Map (HMM-SOM) method implemented in Saguaro 
(Zamani et  al.,  2013) to identify local phylogenetic relationships 
based on matrices of pairwise distance measures, across each of the 
target hybrid zones.

Here, we applied RIDGE on 50 kb non-overlapping windows con-
sidering a mutation rate of 3.10−9 for both data sets as is Poelstra 
et al. (2014) and Vijay et al. (2016). We, therefore, focused on scaf-
folds longer than 50 kb, which accounted for 9% of the total scaf-
folds but represented 98% of the genome, corresponding to 20,975 
windows. Prior bounds are given in Table S3, and were determined 
based on the observed data sets and results of analysis from Vijay 
et al. (2016). First, we compared Bayes factor outliers (BF > 50) from 
RIDGE results with outlier loci detected in (Poelstra et  al.,  2014) 
to assess the ability of RIDGE to correctly detect barrier loci. 
Secondarily, we analysed RIDGE results produced on three species 
pairs on a lager data set (Vijay et al., 2016) to understand how BF 
correlates with summary statistics and which summary statistics are 
able to discriminate outlier loci (BF > 50).

3  |  RESULTS

3.1  |  Demographic inferences

The RIDGE's ability to infer demographic parameters, measured 
by the goodness of fit of posteriors (Gpost), far exceeded the rejec-
tion threshold of 5% and was stable across all models and condi-
tions tested in pseudo-observed data sets (Figure 2 and Figure S1). 
However, the model's contribution to the estimation of the de-
mographic and genomic parameters varied across conditions. The 
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    |  7 of 18BURBAN et al.

percentage of simulations correctly attributed to the correct model 
increased with the time split (Tsplit), reaching over 51% for IM, 51% 
for SI, 60% for AM and up to 84% for SC (Figure 3). Consistently, 
we observed that the more recent the time split, the more balanced 
the contribution of different demographic models, and the greater 
the uncertainty surrounding the designation of a model (Figure  3 
and Figure S2). For recent time splits, the choice of model is thus 
arbitrary, highlighting the increased utility of the model averaging 
approach under these conditions. Next, we investigated in greater 
details the consequences of model misspecification. We trained 
RIDGE using a reference table generated under IM 2N2m and then 
applied it to pseudo-observed data created under both SC and AM 
2N2m, in addition to IM 2N2m (the ‘correct model’) used as a control. 
Our results revealed a significant impact of model misspecification 
on Gpost for Tsplit = 10

6 (Figure S3a). More importantly, the AUC fell 
below 0.5 and exhibited a sharp decrease for oldest Tsplit when AM 
model was chosen (Figure S3b). This underscores that, while IM and 
SC displayed similar outputs, opting for the AM model drastically 
increases the false positive rate.

The percentage of simulations correctly detecting the pres-
ence or absence of ongoing migration increased with Tsplit (97.6% 
and 98.4% at 106 generation for IM and SC against 5.3% for AM, 
Figure 3). Heterogeneous migration (2 m) was better captured under 
ongoing rather than ancestral migration but even under the most 
favourable conditions, ~25% of the simulations exhibited consistent 
patterns of homogeneous migration where barriers were undetect-
able (Figure 3). This once again emphasizes the enhanced value of 

employing the model averaging approach. The detection of the het-
erogeneity in population size (2N) varied little across Tsplit but tended 
to be more effectively detected under recent Tsplit, irrespective of the 
demographic model (Figure 3). Overall, these results indicated that 
while the correct demographic model was accurately inferred only 
under specific conditions, the occurrence of current migration was 
generally well captured.

We also examined the specific point estimates associated with 
each parameter. The accuracy of T̂split estimation was only slightly 
affected by the proportion of barriers and migration rate, closely 
approximating the simulated value irrespective of the demographic 
model (Figure S4). Similar patterns were observed for T̂SC and T̂AM 
albeit TSC tended to be slightly overestimated (Figure  S5). As Tsplit 
increased, estimates of current population sizes N̂1 and N̂2 improved, 
approaching simulated values when Tsplit reached 1.105 generations 
(Figure S6). Estimates of past population size N̂A is theoretically pos-
sible if TMRCA < 4Ne in each diverging population (with TMRCA the co-
alescent time of the Most Recent Common Ancestor). When Tsplit is 
much greater than 4Ne, most sequences are expected to coalesce 
before Tsplit so that less signal is available for N̂A inference. In our 
case, TMRCA ≈ 4Ne = 2.105 generations, and N̂A deteriorated beyond 
this value, converging towards the prior mean (Figure S6). Current 
migration estimates (M̂curr) were more reliable than ancestral migra-
tion ones (M̂anc). The proportion of barriers had minimal impact on 
M̂curr, under SC and IM models (Figure S7). Deeper Tsplit resulted in 
greater migration signal and therefore improved the accuracy of 
M̂curr (Figures S7 and S8 left). In contrast, Tsplit had no clear effect on 
M̂anc (Figures S8 and S9).

3.2  |  Inferences of barrier proportion

The barrier proportion estimate, Q̂, plays a crucial role in the compu-
tation of Bayes factors (Equation 2) and the detection of barrier loci. 
We obtained reliable estimates of the barrier proportion, Q̂ , when 
there was current migration (IM and SC models) and when Tsplit ex-
ceeded 1.105 generations (Figure 4 and Figure S10). For more recent 
Tsplit (<0.2 × 2Ne generations, approximately), Q̂ was not properly 
estimated and converged to the prior mean, indicating that RIDGE 
lacks power to discriminate between barrier and non-barrier loci. 
Irrespective of the conditions, Q̂ was unreliable under ancestral mi-
gration (AM model), except for both high migration rate and diver-
gence time. Under the SI model, for which the proportion of barriers 
has no significance, the estimates corresponded to the prior mean. 
The Q parameter had a minimal impact on the effective migration 
rate as shown in Figure  S8, reciprocally M had little impact on Q̂ 
(Figure S10), so that Q̂ was expected to exhibit a weak correlation 
with the genome-wide level of genetic differentiation/divergence 
between populations, as measured by statistics such as FST, Da and 
Dxy. We, therefore, introduced additional summary statistics based 
on the proportions of outliers for FST, Da, Dxy, sf and π. To assess the 
usefulness of these new statistics, we compared Q̂ estimated with or 
without them. Overall, outlier statistics reduced estimation errors 

F I G U R E  2 Evolution of the goodness of fit of the posteriors 
(Gpost) as a function of time split, for four demographic models. 
The rejection threshold of 5% (under which an inferred model is 
discarded) is represented by the grey zone. Average values over 
100 replicates with error bars (standard deviation) are presented. 
The data used in this figure were obtained from pseudo-observed 
data sets simulated under the 2N2m model with migration set 
to 4Nem = 10 and a proportion barrier Q = 10% (except for SI, no 
migration and no barrier).
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8 of 18  |     BURBAN et al.

by 8.4%. They were particularly effective in improving Q̂ under chal-
lenging conditions for barrier proportion estimation, such as when 
migration was low (M ≤ 1) and the proportion of barriers was small 
Q ≤ 1% (Figure  S11). The impact of outlier statistics varied across 
models and Tsplit values (Table S4). At Tsplit = 1.10

4, results remained 
difficult to interpret with variation in the signs of correlations. For 
Tsplit > 1.10

4, under the AM model, Da outliers positively correlated 
with Q̂ (Pearson R > 0.51), while under the IM and SC models both 
sf and ss outliers exhibited a positive correlation with Q̂ (R > 0.88). 
At Tsplit = 1.10

6, Q̂ additionally correlated with Dxy for all models 
(Table S4).

3.3  |  Detection of barrier loci

The parameter Tsplit plays a crucial role in detecting gene flow barri-
ers. This is because the contrast between gene flow barriers and the 
rest of the genome increases with Tsplit as illustrated in Figure 5a. As 
Tsplit increased, the overlap between the space of summary statistics 

occupied by barrier and non-barrier loci decreased resulting in a 
more pronounced shift between the corresponding BF distributions 
(Figure 5a, b). A consistent signal was observed on posterior prob-
ability distributions where under IM, a single mode was detected for 
the most recent Tsplit = 1.10

4, while two modes corresponding to bar-
rier and non-barrier loci emerged for older time splits (Figure S12). 
Note that, as expected, the SI model produces a single mode distri-
bution irrespective of Tsplit, where all loci become barriers as Tsplit 
increases (Figure S12). To quantify the discriminant power of RIDGE, 
we used the area under the curve (AUC) of the receiver operating 
characteristic (ROC), as depicted in Figure 5c. When Tsplit was low, 
the AUC remained close to 0.5, indicating no power to detect bar-
riers. This was confirmed by similar distributions of posterior prob-
abilities under SI and IM for Tsplit = 1.10

4 (Figure  S12). Our results 
on pseudo-observed data demonstrated that both the ability to de-
tect barriers (measured by the AUC of the ROC) and the precision in 
barrier detection (measured by the PV/P ratio) increased with Tsplit 
(Figure 6). Moreover, barriers were more efficiently detected and at 
lower Tsplit under current (IM and SC models) than ancestral gene 

F I G U R E  3 Demographic × genomic model weights in posteriors across time splits. Weight was measured by considering four criteria: (i) 
the average joint weight of the false and true demographic (among the fours) model—called here the ‘correct’ model—in posteriors, (ii) the 
average joint weight of 1m and 2m models, (iii) the average weight of 1N and 2N models, (iv) and the average weight of models displaying no 
ongoing (current) migration and ongoing migration. Proportion of accurate model predictions are shown in dark colours. As an example, for 
a time split of 106, an average weight of 0 for ongoing migration under the SI model signifies that across 100 replicates, simulations under 
ongoing migration represent 0% of the posteriors and so did not contribute to parameter estimation. All models were simulated under 2N2M, 
and 4Nemcurr or 4Nemanc = 1.
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    |  9 of 18BURBAN et al.

flow (AM model) as shown in Figures S10 and S11. Noteworthy, the 
AUC never dropped below 0.5, indicating that RIDGE did not gener-
ate an excess of false positives (Figures S13 and S14).

3.4  |  Detection of barrier loci on crow data sets

Poelstra et al.  (2014) identified a highly divergent region on scaffold 
78 and 60, which contained multiple genes identified through genomic 
scan, functional analysis and differential expression. These genes are 
involved in the melanogenesis pathway and visual perception. This re-
gion was thus considered by the author as a ‘speciation island’ allowing 
for the maintenance of phenotypic differences between crows based 
on colour phenotypes and colour-assortative mate choice.

We ran RIDGE on the same data set using the same window size as 
in Poelstra et al. (2014). Our analysis successfully fitted the observed 
data, with a goodness of fit indicated by Gpost = 0.29. The estimated 
value of T̂split in 2Ne generation is T̂split ∕2N̂e = 0.25 (Table S5), cor-
responding to the favourable range for RIDGE to effectively detect 
gene flow barriers. The distribution of Bayes Factors (BF) was clearly 
bimodal with a distinct group of outliers (BF > 50), which accounted 
for 0.13% of the genome (Figure 7b). Interestingly, among these out-
lier loci, four genes (CACNG1, CACNG4, PRKCA and RSG9) were also 
found by Poelstra et al. (2014) and located on scaffold 78 (Figure 7c). 
The probability of detecting the same four genes just by chance was 
low (p = 2.04 10−6). We next applied RIDGE on a genome-wide data 
set produced for three pairs of Corvus species that form hybrid zones 
(pair RX: C. corone–C. cornix; pair XO: C. cornix–C. orientalis; pair OP: 
C. orientalis–C. pectoralis) where current gene flow is detected (Vijay 

et al., 2016). For a single pair of crow species, the program took ap-
proximately 1,883,000 s of CPU runtime on four CPUs running at a 
minimum of 2.5 GHz. Therefore, in real-time, it took around 36 h for 
the whole data set on a cluster of 280 CPUs, which takes into account 
server latencies, job queues and CPU availability. The goodness of fit 
of the demographic parameters inferred by RIDGE was similar across 
all three pairs (RX: 0.33; XO: 0.21; OP: 0.26). The ratio of T̂split ∕2N̂e 
was approximately 0.3 for all three pairs (RX: 0.28; XO: 0.27; OP: 
0.31; Table S5), suggesting a comfort zone for RIDGE to detect gene 
flow barriers in all three data sets.

PCA analyses coloured by BF show a main group of outliers (char-
acterized by elevated FST and/or Da and/or reduced level of diver-
sity in all four pairs Figures 7a and 8 and Figure S15). Those signals 
were consistent with some theoretical expectations for gene flow 
barriers (i.e. increased Da, sf, FST and reduced ss and diversity), but 
almost no relationship with Dxy. In each pair, we identified a subset 
of loci with elevated Bayes factors (BF > 50) clearly separated from 
the genome-wide distribution (Figure  8c). These subsets detected 
on a per-locus basis (RX: 0.12%; XO: 0.02%; OP: 0.17%), represented 
smaller proportions than the expected proportion estimated in the 
general model, Q̂ (RX: 4.9%; XO: 4.8%; OP: 4.7%) but still fell within 
the credibility intervals (Figure 8b and Table S5).

We found significant overlap between our outliers and those of 
Vijay et al.  (2016) for the RX and OP pairs (69% and 28%, respec-
tively, Figure 8a, b). For XO, we only detected four candidates, which 
makes the comparison difficult with Vijay et al. (2016) although using 
a less stringent BF > 10, the overlap was significant (p = 0.007). The 
BF revealed various correlation patterns among the three pairs, with 
FST and Da being consistently strongly positively correlated with 

F I G U R E  4 Barrier proportion estimates as a function of divergence time under three demographic models. In this figure, migration is 
set to M = 10 and the plain black line represents the priors mean. Each data point represents the average value over 100 replicates with 
standard deviation as error bars. Results overall conditions explored are represented in Figure S8.
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10 of 18  |     BURBAN et al.

BF and ss being consistently negatively correlated with BF but to a 
lesser extent (Figure 9).

4  |  DISCUSSION

A key goal of speciation research is to elucidate the genetic mecha-
nisms behind reproductive isolation. Although diverging populations 
have been analysed in many studies, a challenging aspect remains 
the ability to capture the sequence of events that lead to the es-
tablishment of reproductive barriers. To answer this question, one 
approach is to compare populations that exhibit varying degrees 
of temporal and/or spatial divergence, including recently diverged 

ones. This requires the use of a comparative framework capable 
of detecting barriers to gene flow at both early and ancient stages 
across diverse biological systems, independently of their demo-
graphic history. In this context, we introduce RIDGE, a tool designed 
to facilitate this task.

4.1  |  RIDGE offers a comparative framework 
where current migration is well captured

Currently, two methods explicitly model heterogeneity in the effec-
tive migration rate across the genome. Both tools utilize variations 
in effective population size to approximate selective effects along 

F I G U R E  5 Impact of the divergence time on the overlap between barrier and non-barrier loci. Overlap revealed by a principal component 
analysis (PCA) computed on all 14 summary statistics (a), the log of the Bayes factor (BF) produced by RIDGE (b) and the area under the ROC 
curve (AUC) of the Bayes factor (c). The greater the AUC the higher the discriminant power is. A single pseudo-observed data set was used for 
each of the three values of Tsplit. Data sets were simulated under an IM 2N2m model, with the following parameters: 4Nem = 10 and Q = 0.1.
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    |  11 of 18BURBAN et al.

the genome. DILS (Fraïsse et  al., 2021) uses an ABC framework 
under four demographic models of divergence (SI, IM, SC, AM) to 
assess alternative models of effective migration's homogeneity/
heterogeneity and to provide corresponding genome-wide esti-
mates. While not primarily designed to perform barrier detection, 
DILS can still offer valuable insights on potential barrier loci, con-
ditioned on the selected demographic model (Fraïsse et al., 2021). 
There are, however, two main limits to this approach. Firstly, se-
lecting a model can be rather arbitrary when two models explain 
the data equally well, which is often the case when divergence is 
shallow between populations (as shown in Fraïsse et al. (2021) and 
confirmed here, Figure 3 and Figure S2); and model misspecifica-
tion can have strong consequences on the rate of false positives 
(Figure S3). Secondly, the use of potentially different demographic 
models complicates comparison across species pairs. gIMble 
(Laetsch et al., 2023) relies on composite likelihood to identify win-
dows of unexpected level of effective migration along the genome. 
It first computes a general homogeneous model (homo-N, homo-m) 
and then fits a model for each window yielding local estimate of 
Ne and m. Then, it uses a parametric bootstrap approach to assess 
the statistical significance of a putative barrier. However, because 
it relies on likelihood computation, gIMBle is less flexible than ABC 
methods and can only handle the IM model, while secondary con-
tacts may be rather frequent in nature (ex: Leroy et al., 2020; Roux 
et al., 2013; Vijay et al., 2016).

RIDGE builds on DILS, offering a high degree of model flex-
ibility, while proposing a comparative framework. In order to do 
so, RIDGE employs a model averaging approach by assigning 
weights to each demographic x genomic model without directing 
the user's choice towards a single model. In addition, model aver-
aging is also useful in reducing the uncertainty on parameter es-
timation when individual models present high variance (Dormann 

et al., 2018). Our results show that model averaging is especially 
relevant when data offers little discriminant power. For example, 
when Tsplit is low, the discriminatory power of summary statistics 
is reduced, resulting in similar assignation to all models (Figure 3). 
Opting for the best scenario under such conditions might be mis-
leading. For example, at Tsplit = 0.1 × 2Ne, when current migration 
is simulated (IM or SC models), it is detected in only ~60% of the 
cases (Figure 3), thus potentially leading to the selection of the 
SI or AM models, thereby impeding the estimation of gene flow 
barriers. In contrast, the model averaging approach always pro-
vides an estimate of the proportion of gene flow barrier with a 
credibility interval, which can be large and include 0 when the 
statistical power is low. RIDGE thus allows for formal comparison 
of any data sets despite differences in demographic history and/
or statistical power.

In addition, compared to DILS, RIDGE makes another improve-
ment in the way heterogeneity of migration is modelled. DILS mod-
els separately the heterogeneity in Ne and M = 4Nem, which can 
lead to unrealistic scenarios where m is inversely proportional to Ne 
(when Ne is heterogeneous and M constant), which should inflate 
the detection of heterogeneity in migration rate. To illustrate it, we 
ran a modified version of RIDGE on the crow data sets where mi-
gration is modelled as in DILS (constant or variable M instead of m, 
independently of Ne, see Text S1). Employing the DILS-like version 
resulted in the detection of numerous additional putative barriers, 
some of which were challenging to interpret (e.g. high diversity and 
relatively low Fst). Moreover, the correlations between Bayes factors 
(BF) and summary statistics varied across data sets, lacking a clear 
interpretation for the RX and XO pairs.

A direct consequence of using a demographic × genomic hyper-
model is that RIDGE is not intended for precise estimation of a de-
mographic model and its underlying parameters but rather to address 

F I G U R E  6 Ability and precision in the detection of barrier loci as a function of divergence time and migration. Ability is measured by the 
AUC of the ROC (a) and precision by TP/P (b). Considering a proportion of barrier Q̂, barrier loci are those displaying a Bayes factor superior 
to the quantile at 1 − Q̂. Each data point represents the average value over 100 replicates with standard deviation as error bars. Simulations 
were performed under an IM 2N2m model with Q = 0.1.

(a) (b)
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12 of 18  |     BURBAN et al.

demography as a confounding factor in the detection of gene flow 
barriers. High and stable values of goodness of fit across models and 
conditions indicate that we achieved this goal (Figure 2 and Figure S1) 
and more moderately for complex/real scenario as for crow data sets 
(Table S5) where the goodness of fit is lower (Gpost ~ 0.9 for simulated 
data sets, Gpost ~ 0.25 for crow data sets). However, as expected, the 
accuracy of parameter estimation largely depends on the divergence 
time (Figures S6–S9). Similar to DILS (Fraïsse et al., 2021), the correct 
model's contribution to parameter estimation and the detection of 
ongoing migration increases with divergence time (Figure 3). Overall, 

current migration is well captured, both in model weights and in pa-
rameter estimation (Figure 3, Figure S7).

This is well illustrated with the analysis of the crow data sets. 
After the ice cap had retreated in Europe around 10,000 years ago 
(~2000 crow generation), the ancestors of remnant carrion (C. corone) 
and hooded crow (C. cornix) populations met in a secondary contact 
in Central Europe, forming a narrow and stable hybrid zone (Knief 
et al., 2019; Metzler et al., 2021; Poelstra et al., 2014). Based on the 
sampling by Poelstra et al. (2014), which covers a wide geographical 
area away from the central European hybrid zone, RIDGE favoured 

F I G U R E  7 Results of the analysis conducted using RIDGE on the crow hybrid zone between carrion and hooded crows. PCA computed 
on summary statistics obtained from 50-kb windows along genomes with axes 1 and 2 (only 4 of 14 summary statistics are represented), 
where each datapoints (windows) are coloured according to the values of Bayes factors (a). Blue diamonds represent loci detected in 
Poelstra et al. (2014), yellow diamonds indicate loci detected by RIDGE that exceeded the population-specific Bayes factor threshold and 
red diamonds represent loci detected both in Poelstra et al. (2014) and RIDGE. Distribution of Bayes factors across the genome (b). Genomic 
landscape of scaffold 78 and 60 through Bayes factor, FST, shared polymorphism (ss) and diversity (π) (c). Data are from Poelstra et al. (2014).

(a)

(b)

(c)
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the correct scenario, especially the occurrence of ongoing migration 
(model weight for SC = 45% and IM = 44%) (Table S6). Similar results 
were obtained for the RX hybrid zone with IM at 43% and SC at 39%. 
Overall, in all four data sets the current status of migration has been 
correctly captured with ongoing migration accounting for the ma-
jority of the model weight (RX: 82%; XO: 84%; OP: 91%; Poelstra 
et al., 2014: 89%).

4.2  |  Informative summary statistics are 
context-dependent

One drawback of the ABC approach is that parameter inference re-
lies on summary statistics to capture the genomic signal. Historically, 
Fst, a measure of relative divergence, has been the most widely 
used statistic in genome scans (Wolf & Ellegren,  2017). To avoid 

F I G U R E  8 Barrier loci detection by RIDGE on three crow hybrid zones. PCA computed on summary statistics obtained from 50-kb 
windows along genomes with axes 1 and 2 (a) and 1 and 3 (b) displayed. Datapoints (windows) are coloured according to the values of Bayes 
factors. Blue diamonds represent loci detected in Vijay et al. (2016), yellow diamonds indicate loci detected by RIDGE that exceeded the 
population-specific Bayes factor threshold and red diamonds represent loci detected both in Vijay et al. (2016) and RIDGE. Distribution of 
Bayes factor values for each species pair (c). The histogram inside the figure shows the Bayes factor distribution of detected loci, which are 
the loci exceeding the population-specific Bayes factor threshold indicated by the violet dashed line. Black dashed lines indicate the Bayes 
factor threshold based on the estimated barrier proportion Q̂. Data are from Vijay et al. (2016).
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the confounding effect of reduced diversity in either of the com-
pared populations due to other causes than barrier to migration 
(Cruickshank & Hahn, 2014; Ravinet et al., 2017), it is now common 
practice to combine it to absolute measure of divergence (Dxy) to 
other related statistics such as net divergence (Da) or the number of 
fixed differences (sf) (Han et al., 2017; Hejase et al., 2020). Here, we 
devised a new set of summary statistics based on outlier detection, 
and proved them to be useful for estimating barrier proportions. The 
reasoning was that loci showing local increase in divergence (meas-
ured by FST, Dxy, Da, sf, ss) and decrease in diversity would generate 
outliers in the genome wide divergence and diversity distributions. 
Our results show that outlier statistics mostly contribute to Q̂ under 
moderate gene flow (M = 1), and mainly for low level of barrier pro-
portion (Q < 0.1) (Figure S11), where estimation of barrier proportion 
may be challenging.

Interestingly, the set of summary statistics that effectively cap-
ture the signal of barrier loci slightly differed among data sets, as 
illustrated with the three pairs of crows (Figure  9). For the three 
pairs, FST and Da strongly correlated with BF and contributed the 
most to barrier detection, in agreement with theoretical predictions 

(Cruickshank & Hahn, 2014). Quite unexpectedly, however, Dxy did 
not correlate with BF and did not contribute to barrier detection. 
A possible explanation is that, at low divergence, variations in Dxy 
mainly reflect local variations in Ne (as confirmed by the strong pos-
itive association with π in the PCA, Figure S15), while the main sig-
nal of variation in migration rate is already captured by Da. Other 
statistics also correlated with BF but at lower and variable levels in 
the three data sets, and, similarly outliers correlated differently to 
the PCA axes (Figure 8 and Figure S15). Differences in genomic sig-
natures may reflect not only the difference in the environment in 
which incipient crow species evolved but also the difference in the 
geographical area covered by the hybrid zone (Vijay et al., 2016).

These examples illustrate that considering a few statistics in the 
detection of barrier loci can be misleading as signatures can be com-
plex and context dependent. It thus advocates for the use of a more 
inclusive approach as implemented in the BF derived from the random-
forest-based ABC approach of RIDGE. One contribution of the 
Random Forest (RF) is to reduce the curse of dimensionality (Bellman & 
Kalaba, 1959), which improves accuracy and computation time, RF also 
makes ABC a calibration-free problem by automating the inclusion of 

F I G U R E  9 Pearson correlation between RIDGE Bayes factor and summary statistics used in the gene flow barrier detection for the three 
hybrid zones. Colours correspond to the values of correlations while circle size reflects the absolute values. Data are from Vijay et al. (2016).
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summary statistics (Raynal et al., 2019). In return, a possible drawback 
is that RF results are less interpretable due to their complex nature. 
Indeed, even if the abcrf package provides a way to understand the 
contribution of variables to parameters estimations, it still remains dif-
ficult to interpret the RF decision for a specific locus.

4.3  |  Detection of barrier loci using RIDGE

We validated the ability of RIDGE to detect gene flow barriers on 
empirical data sets from Poelstra et al. (2014) and Vijay et al. (2016). 
In particular, we clearly detected the large and well-established re-
gion of scaffold 78 on chromosome 18. It contains major loci that 
are involved in mate choice patterns between C. corone and C. cornix 
(RX) (Knief et al., 2019; Metzler et al., 2021; Poelstra et al., 2014). 
The study by Vijay et  al.  (2016) was conducted on three species 
pairs that had similar demographic histories. For all three pairs of 
populations, we identified a portion of loci exhibiting elevated BF. 
For the RX and OP pairs, we found less loci than previously detected 
by Vijay et al. (2016) but a significant overlap between the two set 
of genes. Using a rather stringent threshold of BF > 50, 69% (for RX) 
and 28% (for OP) of the loci that RIDGE detected were also iden-
tified by Vijay et  al.  (2016). For the three pairs, Vijay et  al.  (2016) 
detected (many) more loci than RIDGE. On average these additional 
loci, not detected by RIDGE, displayed low diversity without dis-
tinctive divergence patterns. This observation can be attributed to 
the confounding effect of the heterogeneity in Ne, not explicitly ac-
counted for in Vijay et al. (2016) and which is a classic pitfall of Fst 
scan approaches (Cruickshank & Hahn, 2014). The fact that RIDGE 
detected only a limited number of loci displaying such a pattern im-
plies that it effectively circumvents this problem. For the XO pair, its 
wide spatial range—three to seven times wider than the hybrid zone 
of RX pair—leads to a reduction in selection strength as documented 
in Vijay et al. (2016), and consequently, candidate regions in our re-
sults exhibit shallow divergence patterns (Figure  8). Furthermore, 
since low signal can increase noise in detection results, we did not 
detect any direct overlap between the candidate XO gene from Vijay 
et al. (2016) and our results. However, when examining the regions 
surrounding the candidate gene, we observed common regions such 
as the gene LRP5, which was consistently present in XO and OP pairs 
in Vijay and was consistently located at a distance of 50 kb from an 
outlier locus in our results.

4.4  |  Benefits of RIDGE and guidelines for its use

RIDGE relies on an ABC approach that offers a lot of flexibility, 
enabling it to explore genomic heterogeneity and to incorporate 
customized summary statistics. We have also devised a method for 
generating multidimensional parameter estimates, extending be-
yond the initial single-parameter focus of abcrf (Raynal et al., 2019). 
This improvement enables RIDGE to deal effectively with param-
eter interdependencies and increase the precision of parameter 

estimations. Another improvement introduced by RIDGE is the in-
corporation of Bayes factors, facilitating result comparisons. In ad-
dition, RIDGE explicitly models variation in the migration rate, m 
rather than the population-scaled migration rate (4Nem) as in DILS 
(Fraïsse et al., 2021) which results is a much more stringent detec-
tion of barrier loci (Text S1). Our interpretation is that by fixing both 
Ne and 4Nem as in DILS, the heterogeneity of migration, m, tends 
to be too frequently inferred because it allows reconciling the ob-
served patterns for different statistics.

One limitation of RIDGE is the need to define a priori the size 
of windows, an arbitrary choice that can pose problems in cross-
species comparisons. One possible improvement would be to define 
window size based on the genetic instead of the physical distance 
when a genetic map is available. Alternatively, one could use crite-
ria based on local topologies to segment the genome into windows, 
as implemented in Saguaro, which relies on a Hidden Markov Chain 
model coupled with unsupervised pattern recognition and classifica-
tion algorithms (Zamani et al., 2013).

The simulated data sets we explored gave us guidelines for the 
conditions where RIDGE can provide useful and accurate results. We 
suggest to use data sets with SNP density higher than 0.1%, such as 
in crows and simulated data sets, where the SNP density was around 
1%. We also advise to use a minimum of three samples per popula-
tion. The goodness-of-fit statistics enables users to check the qual-
ity of inferences made. If Gpost < 5%, the user should verify the prior 
bounds. The guidelines for interpreting and thresholding BF depend 
on the user's goals. If RIDGE is used solely to discover new candidate 
genes involved in gene flow barriers for a specific population pair, 
we recommend using a customized threshold that optimally captures 
Bayes factor outliers. For the purpose of comparison, it is recom-
mended to use a standard threshold for all data sets, for example, 
BF > 50 or 100, or to keep the number of outlier loci corresponding 
to the proportion of barriers estimated in the first step of RIDGE (Q̂
). In addition, it is also important to consider the whole distribution 
of BF (or posterior probability) to help interpreting the results. For 
example, under the SI model (with sufficient divergence) all loci or a 
large proportion of loci appear as barrier but the global distribution 
is unimodal in sharp contrast with an IM model with barriers, which 
presents a clear bimodal distribution (Figure S12).

Crucially, genomic data alone cannot provide conclusive evi-
dence of barrier loci and so RIDGE results should be coupled with 
other analysis such as functional analysis (Ravinet et  al.,  2017). It 
is worth noting that window length (default set to 10 kb) can sig-
nificantly affect the results of RIDGE. It should be determined ac-
cording to the extent of linkage disequilibrium as well as the level 
of diversity, since it determines the amount of polymorphism and 
consequently affects the strength of the signal.

As is the case with all ABC approaches, the quality of the priors 
given by the user affects the results obtained using RIDGE. A Tsplit of 
0.1 × 2Ne generations (10,000 generations in our simulations) appears 
to be a lower bound for both demography (Figures 4 and 5) and bar-
rier inferences (Figure 6), below which RIDGE fails to capture informa-
tive signals. RIDGE can detect gene flow barriers on both simulated 
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(Figure 6) and empirical data (Figure 7), starting at 0.1 × 2Ne genera-
tion, which represents a very low level of divergence. For context, DILS 
correctly inferred a gene flow barrier when Tsplit > 0.5 × 2Ne genera-
tions, while gIMble only demonstrated its effectiveness on one pair of 
Heliconius species that diverged 4.5 million generations ago, estimated 
to represent 0.49 × 2Ne generations (Martin et al., 2015).

Comparative approaches have been useful in understanding the 
genomic basis involved in the process of reproductive isolation (e.g. 
Roux et al., 2016) and they will continue to play an important role in 
speciation research. By its flexibility and its comparative framework, 
RIDGE should become a useful tool to follow this direction.
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