
HAL Id: hal-04505187
https://hal.science/hal-04505187

Submitted on 14 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standalone Nested Loop Acceleration on CGRAs for
Signal Processing Applications

Chilankamol Sunny, Satyajit Das, Kevin J M Martin, Philippe Coussy

To cite this version:
Chilankamol Sunny, Satyajit Das, Kevin J M Martin, Philippe Coussy. Standalone Nested Loop
Acceleration on CGRAs for Signal Processing Applications. DASIP 2024: Workshop on Design and
Architectures for Signal and Image Processing, Jan 2024, Munich, Germany. �hal-04505187�

https://hal.science/hal-04505187
https://hal.archives-ouvertes.fr

Standalone Nested Loop Acceleration on
CGRAs for Signal Processing Applications

Chilankamol Sunny1[0000−0003−3826−3810], Satyajit Das1[0000−0002−7550−2641],
Kevin J. M. Martin2[0000−0002−8122−1192], and Philippe

Coussy2[0000−0002−7222−5271]

1 IIT Palakkad, Kerala, India
112004004@smail.iitpkd.ac.in, satyajitdas@iitpkd.ac.in

2 Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France
{kevin.martin,philippe.coussy}@univ-ubs.fr

Abstract. Coarse-Grained Reconfigurable Array (CGRA) architectures
are becoming increasingly popular as low-power accelerators in compute
and data intensive application domains such as security, multimedia, sig-
nal processing, and machine learning. The efficiency of a CGRA is deter-
mined by its architectural features and the compiler’s ability to exploit
the spatio-temporal configuration. Numerous design optimizations and
mapping techniques have been introduced in this direction. However, the
execution model has been overlooked, despite its critical role in ensur-
ing the efficient acceleration of applications. Most of the existing CGRA
implementations follow a hosted approach i.e., they execute the modulo
scheduled innermost loop, entrusting outer loops to the host processor.
This increases synchronization overhead with the host, mitigating the
benefits of acceleration provided by the CGRA. In this paper, we pro-
pose a compilation flow that supports efficient standalone execution of
nested loops. Experiments show that the standalone execution model
leads to a maximum of 12.33× and an average of 6.75× performance
improvement compared to the existing hosted execution model. In the
proposed model, energy consumption is reduced up to 14.49× compared
to that of the hosted one. We also compared our results with state-of-
the-art standalone execution that uses loop flattening and achieved a
maximum of 4.80× speed up with an average of 2.80×.

Keywords: Coarse grained reconfigurable array (CGRA) · Nested loop
acceleration · Standalone execution model.

This document is the author version of the paper “Standalone Nested Loop
Acceleration on CGRAs for Signal Processing Applications” by Chilankamol
Sunny, Satyajit Das, Kevin J. M. Martin, and Philippe Coussy, accepted for
publication in DASIP’24.

Author version

https://dasipws.github.io/

2 C. Sunny et al.

1 Introduction

Due to the architectural elasticity, Coarse-Grained Reconfigurable Array (CGRA)
architectures offer high performance, energy efficiency, and flexibility [13]. A typ-
ical CGRA integrated system consists of an array of interconnected processing
elements (PEs) tightly/loosely coupled with a host CPU, a context, and a data
memory. Each PE is composed of a word-level configurable functional unit (FU),
a regular register file, an instruction memory, and routers at the input and out-
put. CGRAs have been proposed to cater to the needs of both High Performance
Computing (HPC) and Low Power Computing (LPC) domains with various ar-
chitectural and compilation novelties. Architectural improvements like dynamic
voltage and frequency scaling (DVFS) [19], approximate arithmetic units [1] and
efficient memory hierarchies [2] have been proposed to improve the performance
and energy efficiency of CGRAs. To improve the performance of the compute-
intensive applications, several loop optimization techniques have been adopted
in the compilation flow, such as loop unrolling [6], modulo scheduling [8] and
polyhedral loop optimizations [12]. However, most of the state-of-the-art CGRA
compilation flow [8,9,18] uses modulo scheduling loop optimization due to its
good performance for the innermost loop.

The majority of the existing CGRAs focus on the optimized innermost loop
execution, entrusting outer loops to the host processor. This increases the syn-
chronization overhead, diminishing the benefits of acceleration provided by the
CGRA [4]. Hence, optimized mapping techniques and improved architectural de-
signs are not sufficient to guarantee the best performance. The execution model,
which defines how tasks or processes are partitioned, scheduled, and executed
(includes configuration and execution time) on CGRAs, is equally important.
This paper discusses and analyses the standalone and hosted execution models
for CGRAs. In the standalone model, the entire nested loop structure is run on
the CGRA with no host intervention. In the hosted model, CGRAs execute only
the innermost loop letting the host processor execute the outer loops.

The major contributions of this work are: (a) An explorative study on the
impact of execution models in determining the performance and energy efficiency
of CGRAs. We demonstrate that a highly efficient mapping technique may not
be sufficient to guarantee the best performance. The execution model is equally
important, especially for kernels with deeply nested loops which is the case with
most modern signal processing and AI applications [20]. (b) A compilation flow
for CGRAs that supports the standalone execution of nested loops. The pro-
posed approach modulo schedules the innermost loop using traditional modulo
scheduling algorithms and executes loops at all levels of loop nesting on the
CGRA, with no host intervention.

The rest of the paper is organized as follows. Section 2 presents the back-
ground and related works. Section 3 introduces the proposed compilation flow.
The experiments and results are discussed in Section 4. Section 5 concludes the
paper.

Standalone Nested Loop Acceleration on CGRAs 3

Instruction
Cache

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Host
CPU

SoC Bus

Context
memory

for(i=0;i<32;i=i+1) {
seed=s[i]; tmp=t[i];
for(j=0;j<32;j=j+1){

sum=seed+tmp*j;

#pragma parallel CGRA
for(k=0;k<32;k=k+1)
{

sum+=a[i][k]*b[k][j];
}

tmp=sum/32;
c[i][j]=a[i][j]+tmp;

}
t[i]=tmp;

}

On-chip TCDM

SoC Bus

1

5

9

2
4

3

6

7

8

Off-chip L2 Memory

CGRA

Hosted Execution Standalone Execution

1. Outer loop start
execution

2. Live-in variables
store from CPU

3. CGRA start
execution

4. Live-in variables
load in CGRA

5. CGRA execution
modulo scheduled
innermost loop

6. Live-out variables
store from CGRA

7. CGRA end execution
8. Live-out variables

load in CPU
9. Outer loop end

execution

1. CGRA start
execution

2. CGRA execution
outer loops +
modulo scheduled
innermost loop

3. CGRA end
execution

1

2

3

Hosted execution model Stand-alone execution model

Fig. 1. Hosted and standalone execution model for CGRA loosely coupled with CPU

2 Background and Motivation

CGRAs, due to their architectural specialization, efficiently execute the pipelined
innermost loop (single loop). Traditional CGRAs target to accelerate only the
innermost loop for applications with nested loops, leaving outer loops for the
host processor. This is referred to as hosted execution model (Fig. 1) in this pa-
per. In this execution model, the variables needed for the CGRA to execute the
innermost loop (live-in variables), and the variables processor needs from CGRA
(live-out variables) are transferred through shared memory. The overhead due to
added memory operations and communication for synchronization are shown in
Fig. 1. To minimize the overhead, proposals like [12,10,21] perform several loop
transformations (i.e. polyhedral transformation, loop flattening, loop fission).
However, with the growing complexity of the loop nests in signal processing ap-
plications, in addition to the transformations, we need mechanisms to minimize
the host intervention. Hence, the standalone execution of the entire loop nests
is the ideal solution as presented in Fig. 1.

For the hosted execution of CGRAs, the works [5,8,14] perform modulo
scheduling on the innermost loop. It is a software pipelining technique that facil-
itates overlapped execution of different iterations of a loop. The goal of modulo
scheduling is to find a schedule of operations from different iterations of the in-
nermost loop that can be repeated in a short interval called initiation interval
(II), expressed in cycles. The data flow graph (DFG) formed by this repeating
schedule is referred to as Modulo Data Flow Graph (MDFG). The set of opera-
tions that are executed once before and after the MDFG, form a couple of DFGs
and are referred to as prologue and epilogue respectively [17]. As the hosted exe-
cution only executes the innermost loop, mapping of the MDFG onto the target
CGRA is considered a DFG mapping problem [9,8]. The prologue and epilogue
mappings are adapted from the mapped MDFG [16]. Fig. 2(d) shows the repli-
cation of MDFG mapping in Fig. 2(c). The innermost loop DFG in this example
is presented in Fig. 2(a). Fig. 2(b) shows the prologue epilogue, and MDFG

4 C. Sunny et al.

EPILOGUE Mapping replicated
from MDFG Mapping → 2x2 CGRA

A B

D

C

D
C

A

B

time

MDFG Mapping (II = 2) → 2x2 CGRA

Innermost loop DFG

Modulo-scheduling at II =1

A B

D

C A B

D

C A B

D

C

time

PROLOGUE Mapping replicated
from MDFG Mapping → 2x2 CGRA

A

A
C

B

B

D

D

C

MDFG

PROLOGUE

EPILOGUE
time

Mapping = Scheduling + Placement

(a)

(b)

(c)

(d)

B
A

C
A

B

Separate PROLOGUE Mapping → 2x2 CGRA

C
D

D

time

time

(e)
Separate EPILOGUE Mapping → 2x2 CGRA

Separate mapping of MDFG, PROLOGUE,
and EPILOGUE considering each as an
individual DFG improves performance
but converts the DFG mapping problem
to CDFG mapping

4 cycles

2 cycles

3 cycles

2 cycles

Fig. 2. Modulo scheduling example with MDFG, prologue, epilogue mapping

after modulo scheduling. In this example, the two-cycle-long MDFG mapping
(Fig. 2(a)) is replicated twice to prepare the prologue mapping, resulting in a
schedule length of 4 (Fig. 2(d)). Similarly, the epilogue mapping is also prepared
from the MDFG mapping with a schedule length of 2. However, replicating the
MDFG mapping does not always guarantee the optimum solution. As shown in
Fig. 2(e), a mapping solution of schedule length 3 is obtained by mapping the
prologue DFG directly onto the CGRA rather than adapting from the MDFG
mapping which resulted in a higher schedule length. The larger schedule length
may seem very less in a single-nested loop. However, for loop nests if the iteration
count increases, the cumulative effect of the larger schedule results in degraded
performance. Thankfully, prologue and epilogue DFGs always contain a smaller
number of operations per cycle compared to the MDFG due to the inherent
construct of MDFG. As the number of nodes is less, mapping the prologue and
epilogue as individual DFGs results in a lower schedule length. This is a CDFG
mapping problem where, the prologue, epilogue, and MDFG are considered as
individual DFGs, and while mapping, control flow between the DFGs needs to
be satisfied. In this paper, the standalone execution is achieved by the mapping
of the entire application CDFG along with the modulo scheduled innermost loop
kernel.

The state-of-the-art solution, Cheng et al [18] proposes support for the stan-
dalone execution where the loop nests are flattened into a single-nested loop
(Fig. 3) to facilitate the DFG mapping. The resultant DFG is modulo scheduled
and executed on the CGRA. The solution suffers from inflated DFG when the

Standalone Nested Loop Acceleration on CGRAs 5

Loop1: for (i=0; i<M ; i++){
 sum=0;
Loop2: for (j=0; j<N ; j++)
 sum += array_in[i][j];
array_out[i] = sum;
}

Loop1: for (n=0; n < M * N ; n++){
i = n / N ;
j = n % N ;

 if (j==0)
 sum=0;
 sum += array_in[i][j];
 if (j==N -1)
 array_out[i] = sum;
}

Nested loop in proposed approach

Flattened loop used in [18]

The modulo scheduled loop bodies in
both the approaches are highlighted.

Fig. 3. Example of where modulo scheduling is applied in the proposed and loop trans-
formation based standalone execution models

DFG selection -
MDTT

MDT based CDFG
Transformation

Modulo
Scheduling

Constraint-aware
Placement

Constraint
Update

DFG selection -
BFS

Assembly
Code

Generation

Y

N

Y

N

Y

N

Y

N

Application
CDFG,

CGRA graph

Assembly
Code

Innermost
Loop DFG

Success ?
Last DFG
in MDT?

Last DFG in
CDFG?

Constraint
Update

Scheduling &
Constraint-aware

Placement

BFS (Breadth First Search) MDT (Modulo DFG Trio) MDTT (Modulo DFG Trio Traversal)

Innermost Loop Mapping

Fig. 4. Proposed compilation flow supporting standalone execution of nested loops and
modulo scheduling of innermost loop

number of loops gets increased causing increased II and high energy consump-
tion. IPA [3] approach proposes to support the standalone execution of nested
loops using register allocation-based direct-mapping of CDFG onto CGRAs achiev-
ing good performance and energy results. However, the compilation flow pro-
posed in that work uses partial loop unrolling instead of modulo scheduling the
innermost loop. In this paper, we extend the solution proposed in the IPA [3]
to support the standalone execution of the entire loop nests with the innermost
loop modulo scheduled (Fig. 3).

6 C. Sunny et al.

3 Proposed Approach

3.1 Overview

We introduce a novel compilation flow for CGRAs that supports standalone
execution of the entire application containing loop nests. The innermost loop
uses modulo scheduling for the pipelined implementation.

As the problem is defined as a CDFG mapping problem, we adapt the reg-
ister allocation-based approach proposed in Das et al [3] where the basic blocks
(BB) (individual DFGs) are mapped onto CGRA with a simultaneous scheduling
and placement algorithm. The variables that are used in multiple BBs (symbol
variables) are mapped in registers using target location, and reserved location
constraints in placement. In this paper, we propose a mapping of modulo sched-
uled innermost loop DFG along with the other BBs in the CDFG. The primary
challenge in this strategy is to integrate the MDFG, prologue, and epilogue gen-
erated by modulo scheduling in the original kernel CDFG and traverse efficiently
to find valid mappings for the entire CDFG. To meet this challenge, we have de-
signed a CDFG transformation and traversal technique which are explained in
the following section.

The proposed compilation flow comprises two tracks as depicted in Fig. 4,
one for the innermost loop mapping and the other for mapping the rest of the
CDFG. The first step in the compilation flow is to choose the BB for mapping.
The selection is done by the breadth-first search (BFS) traversal of the CDFG,
the technique proven to generate the least number of constraints in CDFG map-
ping [3]. If the selected BB (DFG) corresponds to the innermost loop, it is first
modulo scheduled and then placed onto the CGRA, respecting the register al-
location constraints imposed by the mappings of already mapped BBs. Every
other BB is mapped by following a simultaneous scheduling and placement ap-
proach [3]. The data integrity over different BB mappings is maintained by the
constraint-aware placement technique. The constraint update step in the com-
pilation flow sets the register allocation constraints that guide the choice of
registers in the placement process. These constraints ensure reserved usage of
registers for variables that are used in multiple BBs. Once all BBs are mapped,
the compiler generates the assembly code for the entire CDFG mapping.

Simultaneous Scheduling and Placement A priority-based list scheduling
algorithm is used to schedule the DFG nodes and an incremental version of Levi’s
algorithm [11] is used for placement and routing (binding). Failing to bind a node,
the compilation flow transforms the DFG dynamically and continues with the
mapping process. If a transformation that improves the mapping possibilities
cannot be identified, backtracking is performed, and mapping restarts with a
new mapping context. This is done by choosing the next BB from the set of
previously mapped BBs. If the mapping is successful, a stochastic pruning is
applied on the partial mapping set to prevent it from growing exponentially.

Standalone Nested Loop Acceleration on CGRAs 7

i=0 sum+=a[i][j]+b[i][j]

j=j+1

sum=c[i]

j=0;

Loop1: for(i=0;i<32;i=i+1){

sum=c[i];

Loop2: for(j=0;j<32;j=j+1) {

sum+=a[i][j]+b[i][j];

}

c[i]=sum;

}

c[i]=sum

i=i+1

BB_5

i=i+1

(a) Sample for loop; (b) corresponding CDFG; (c) CDFG after MDT-based transformation

BB_1 BB_2 BB_3 BB_4

i=0;i=0 sum=c[i]

j=0;

a1=a[i][j]

b1=b[i][j]

j=j+1

sum+=a1+b1

a1=a[i][j]

b1=b[i][j]

j=j+1

sum+=a1+b1 c[i]=sum

i=i+1

BB_1 BB_2 BB_prologue BB_mdfg BB_epilogue BB_4

Loop2: j < 32

Loop1: i < 32

Repeat 31X

(c)

(a)
(b)

OPTION 1

Loop1: i < 32

Fig. 5. MDT based CDFG transformation: (a) Sample for loop; (b) corresponding
CDFG; (c) CDFG after MDT based transformation

3.2 Innermost Loop Mapping

If the DFG selected for mapping corresponds to the innermost loop, it is modulo
scheduled [16] and placed onto the CGRA, following the innermost loop track
in the compilation flow.

Modulo Scheduling Modulo scheduling starts with computing the minimum
possible II (MII), determined by the resource and recurrence constraints of the
input DFG and the target CGRA. The nodes in the DFG are then modulo
scheduled [16] with an II equal to MII. Failing to find a schedule or placement
solution for this II, the process is restarted with an incremented II and repeated
until a valid mapping is found. Modulo Scheduling a DFG splits it into three
DFGs, the prologue, MDFG, and epilogue, together called Modulo-DFG-Trio
(MDT) in the discussion hereafter. This calls for a local graph transformation
in the CDFG.

MDT based CDFG Transformation Fig 5 illustrates the MDT based CDFG
transformation we introduce to apply modulo scheduling in conjunction with
direct CDFG mapping. The figure presents a sample for loop and the corre-
sponding CDFG. Fig 5 (c) gives the transformed CDFG in which the innermost
loop DFG is replaced with the MDT. Edges connecting these DFG nodes are set
such that the control flows from the outer loop BB to prologue, from prologue
to MDFG, and from MDFG to epilogue. The epilogue DFG is connected to the
immediate successor of the innermost loop DFG in the original CDFG. MDFG
is executed multiple times, determined by the number of times the innermost
loop DFG is unrolled to prepare the modulo schedule.

DFG Selection by Modulo DFG Trio Traversal (MDTT) Unlike the con-
ventional approach of preparing the prologue and epilogue mappings from the

8 C. Sunny et al.

Table 1. Modulo DFG Trio (MDT) Traversal explained

Let P, M and E be the set of all variables in
prologue, MDFG and epilogue respectively;

S be the set of all symbol variables (variables used in multiple BBs) in the MDT.

M = P ∪ E
S = (P ∩ M) ∪ (M ∩ E) ∪ (P ∩ E)
P ∩ M = P ; M ∩ E = E; P ∩ E ⊆ M
Therefore S = P ∪ E ∪ (P ∩ E) = M

#symbol variables
in prologue = n(S ∩ P) = n(M ∩ P) = n(P)
in MDFG = n(S ∩ M) = n(M ∩ M) = n(M)
in epilogue = n(S ∩ E) = n(M ∩ E) = n(E)
n(M) = n(P) + n(E) – n(P ∩ E) =>
n(M) >n(P) & n(M) >n(E)

Modulo DFG Trio Traversal (MDTT)
MDFG –>Prologue –>Epilogue; if n(P) >n(E)

MDFG –>Epilogue –>Prologue; otherwise

MDFG mapping, we propose to map the three DFGs separately (respecting the
modulo schedule generated in the previous step). As shown in the motivating
example (Fig. 2(e)), mapping the DFGs separately helps in achieving shorter
schedule lengths for the prologue and/or epilogue, leading to improved perfor-
mance and energy efficiency. This is now a nested CDFG mapping problem,
solved by employing the register allocation approach. However, in the case of
the CDFG formed by MDT, all variables in all three DFGs are symbol variables
(variables used in multiple BBs), by the inherent construct of modulo schedule.
One location constraint is generated each time a symbol variable is placed for
the first time. Hence, the ordering of DFGs for mapping is crucial (especially
in the case of MDT) to ensure the flexibility of mapping. We propose MDT
traversal (MDTT) technique, explained in Table 1, for DFG selection from the
MDT. Mapping BBs with a greater number of symbol variables earlier helps to
reduce the number of location constraints [3]. Hence, MDTT chooses the MDFG
first, the DFG with the highest number of symbol variables in the MDT. Next,
it selects the prologue, if the number of variables in the prologue is more than
that of the epilogue and epilogue otherwise.

Constraint Update and Placement While mapping the MDFG, the compiler
fetches the register allocation constraints generated by the previously mapped
BBs and finds a placement solution that meets these constraints. The next DFG
in the MDT is placed considering the constraints generated by the MDFG as
well as the previous BBs. Similarly, the mapping of the next BB in the outer
loop will be bound by the constraints set by the MDT as well. This technique of
constraint-aware placement maintains the data integrity between the separately
mapped BBs of the CDFG.

4 Experiments and Results

In this section, we evaluate the performance of the standalone execution vs
the hosted execution. In the hosted execution, the innermost loop is modulo
scheduled using EpiMap [8] and executed onto CGRA. The outer loops of the
applications are run and controlled by the host CPU. The proposed standalone

Standalone Nested Loop Acceleration on CGRAs 9

Table 2. Listed kernels and their loop characteristics

Kernel Nest depth Max # Iterations Loop nest structure

Matrix Multiplication 3 32X32X32 = 32 768 Imperfect
Histogram Equalization 2 80X60 = 4 800 Perfect
2D Non-Separable Filter 4 58X78X3X3 = 40 716 Imperfect
FIR Filter 2 190X10 = 1 900 Imperfect
DCT 3 8X8X8 = 512 Imperfect
Bicg 2 32X32 = 1 024 Imperfect
2D Convolution 4 58X38X3X3 = 19 836 Imperfect
Sobel 4 62X62X3X3 = 34 596 Imperfect

execution runs the entire application onto CGRA without any interruption from
the CPU. To be fair with the comparison, the modulo scheduled innermost loop
is mapped using EpiMap like approach. Here, the prologue and epilogue DFGs
are mapped separately as individual DFGs instead of adapting from the MDFG
mapping. We also present a performance comparison study with a state-of-the-
art standalone solution by using loop transformation modeled in Cheng et al [18],
which reduces the communication and memory overhead by flattening loop nests
into a single-nested loop.

4.1 Experimental Setup

The proposed compilation flow for the standalone execution is implemented by
using Java and Eclipse Modeling Framework (EMF). The target CGRA for all
our experiments is a 4×4 PE array configuration of state-of-the-art Integrated
Programmable Array (IPA) architecture [4], loosely coupled with a host CPU as
shown in Fig. 1. The CPU is a RISCV [7] core based on a four pipeline stages
micro-architecture optimized for energy- efficient operations in digital signal pro-
cessing (DSP). A multi-banked tightly coupled data memory (TCDM) facilitates
data communication between IPA and the CPU. Energy results are computed
using the switching activity obtained by simulating the placement-and-routed
netlist design. The CGRA design is synthesized with Cadence Genus Synthesis
Solution using 90nm CMOS technology libraries. Placement and Routing are
performed using Cadence Innovus and power analysis is done with Cadence Vol-
tus at the supply of 0.9 V, in typical process conditions. A set of loop-intensive
signal processing kernels including those from PolyBench [15] benchmark suite
is chosen for our experiments. Table 2 features these kernels with the number
of levels of loop nesting (depth of nesting), maximum number of iterations, and
loop nest structures present. Nesting of loops is perfect if all the assignment
statements are in the innermost loop otherwise it is imperfect nesting. Due to
the additional assignments in the outer loops, the imperfect nested loops usually
have more live-in and live-out variables.

4.2 Results and Discussion

Performance Comparison of Different Execution Models Table 3 presents
execution latency in cycles on hosted and standalone execution models. The

10 C. Sunny et al.

Table 3. Performance and Energy comparison between hosted and standalone execu-
tion of applications with innermost loop modulo scheduled

Kernel
Execution
Model

Latency
(cycles)

Throughput
(Mbps)

Energy
(µJoule)

Speed-up
Throughput

gain
Energy
gain

Hosted 464 159 1.24 287.64Matrix
Multiplication Standalone 113 310 5.07 58.97

4.10x 4.10x 4.88x

Hosted 25 225 106.83 15.31Histogram
Equalization Standalone 15 484 174.03 8.06

1.63x 1.63x 1.90x

Hosted 2 783 615 0.97 1702.742D Non-Separable
Filter Standalone 225 768 11.94 117.49

12.33x 12.33x 14.49x

Hosted 43 365 2.59 26.37
FIR Filter

Standalone 6,308 17.80 3.28
6.87x 6.87x 8.03x

Hosted 14 450 2.49 8.79
DCT

Standalone 2 813 12.77 1.46
5.14x 5.14x 6.01x

Hosted 12 452 2.89 7.56
Bicg

Standalone 6 451 5.57 3.36
1.93x 1.93x 2.25x

Hosted 1 352 406 1.00 845.47
2D Convolution

Standalone 126 446 10.66 65.80
10.70x 10.70x 12.85x

Hosted 2 534 676 0.91 1583.88
Sobel

Standalone 2 23 844 10.27 116.49
11.32x 11.32x 13.60x

standalone execution achieves an average speed-up of 6.75× with a maximum
of 12.33× over the hosted model. As discussed in the previous sections, hosted
execution incurs a communication, and memory exchange overhead with the
host CPU, resulting in increased latency. The overhead is directly related to the
total number of control transfers and memory operations performed which in
turn depends on the kernel structure like the outer loop count and the number
of live-in and live-out variables. This is evident from the speed-up figures that
standalone execution reports. For instance, the highest speed-ups are achieved
on 2D Non-Separable Filter and 2D convolution kernels that feature the highest
number of outer loop iterations and live-in/live-out variables among the kernels
we considered. The average compilation times for the hosted and standalone
executions are 11.73 and 18.61 seconds respectively.

Energy consumption comparison of different execution models Table 3
lists the energy results for the hosted and standalone execution models. The
results demonstrate that the memory operations performed in the live-in and
live-out phases of the hosted execution significantly increase energy consump-
tion. The standalone model achieves an average of 8.00× reduction in energy
consumption over hosted execution by eliminating the communication overhead
with the host CPU. A maximum reduction of 14.49× is reported for the 2D
non-separable filter as it performs the highest number of memory operations to
transfer the live-in and live-out variables between the host and the CGRA.

Performance comparison with loop transformed standalone execution
Fig. 6(a) compares the execution latencies between two standalone approaches.
Both approaches use modulo scheduled innermost loop. However, Cheng et al [18]

Standalone Nested Loop Acceleration on CGRAs 11

0

5

10

15

20

25

30

35

Mat Mul Hist Eq 2D Non-
Sep

FIR DCT Bicg 2D Conv Sobel

N
u

m
b

er
 o

f
n

o
d

es

Cheng et al Proposed

0

1

2

3

4

5

Mat Mul Hist Eq 2D Non-
Sep

FIR DCT Bicg 2D Conv Sobel

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 c

yc
le

s Cheng et al Proposed

(a) (b)

Fig. 6. Comparison between two standalone approaches (loop flattening-based vs pro-
posed) (a) Performance comparison; (b) Comparison between the Number of nodes in
the DFG to be modulo scheduled

transforms the loop nests into a single-nested loop by flattening whereas the
proposed approach maps the CDFG directly using constraint aware placement.
The results show that the proposed approach achieves an average of 2.80× (with
a maximum of 4.80×) speed up over the loop transformation approach. The
innermost loop DFG sizes of different kernels that are modulo scheduled in the
two approaches are presented in Fig. 6(b). Due to inflated DFGs, transformation-
based approaches deal with larger DFGs to be mapped, hence the performance
deteriorates.

5 Conclusion

This paper presented a standalone execution model for the acceleration of nested
loops on CGRAs. The main contribution is the compilation flow that: i) modulo-
schedules the innermost loop and achieves reduced execution latencies by sep-
arately mapping prologue, MDFG, and epilogue DFGs. ii) combines modulo-
scheduling with direct CDFG mapping for efficient standalone execution of
nested loops. The results show that the standalone model leads to a maximum
of 12.33× and an average of 6.75× performance improvement compared to the
hosted model. The proposed approach reports also a maximum of 4.80× and an
average of 2.80× speed-up when compared to the standalone solution.

References

1. Akbari, O., Kamal, M., Afzali-Kusha, A., Pedram, M., Shafique, M.: X-cgra:
An energy-efficient approximate coarse-grained reconfigurable architecture. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39(10)
(2019). https://doi.org/10.1109/TCAD.2019.2937738

2. Dai, L., Wang, Y., Liu, C., Li, F., Li, H., Li, X.: Reexamining cgra mem-
ory sub-system for higher memory utilization and performance. In: 2022 IEEE
40th International Conference on Computer Design (ICCD). IEEE (2022).
https://doi.org/10.1109/ICCD56317.2022.00017

3. Das, S., Martin, K.J., Coussy, P., Rossi, D., Benini, L.: Efficient mapping of
cdfg onto coarse-grained reconfigurable array architectures. In: 2017 22nd Asia

https://doi.org/10.1109/TCAD.2019.2937738
https://doi.org/10.1109/ICCD56317.2022.00017

12 C. Sunny et al.

and South Pacific Design Automation Conference (ASP-DAC). IEEE (2017).
https://doi.org/10.1109/ASPDAC.2017.7858308

4. Das, S., Martin, K.J., Rossi, D., Coussy, P., Benini, L.: An energy-
efficient integrated programmable array accelerator and compilation
flow for near-sensor ultralow power processing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38(6) (2018).
https://doi.org/10.1109/TCAD.2018.2834397

5. Dave, S., Balasubramanian, M., Shrivastava, A.: Ramp: Resource-aware mapping
for cgras. In: Proceedings of the 55th Annual Design Automation Conference
(2018). https://doi.org/10.1145/3195970.3196101

6. Dragomir, O.S., Stefanov, T., Bertels, K.: Loop unrolling and shifting for recon-
figurable architectures. In: 2008 International Conference on Field Programmable
Logic and Applications. IEEE (2008). https://doi.org/10.1109/FPL.2008.4629926

7. Gautschi, M., Schiavone, P.D., Traber, A., Loi, I., Pullini, A., Rossi, D., Flamand,
E., Gürkaynak, F.K., Benini, L.: Near-threshold risc-v core with dsp extensions for
scalable iot endpoint devices. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25(10) (2017). https://doi.org/10.1109/TVLSI.2017.2654506

8. Hamzeh, M., Shrivastava, A., Vrudhula, S.: Epimap: Using epimorphism to map
applications on cgras. In: Proceedings of the 49th Annual Design Automation Con-
ference (2012). https://doi.org/10.1145/2228360.2228600

9. Hamzeh, M., Shrivastava, A., Vrudhula, S.: Regimap: Register-aware ap-
plication mapping on coarse-grained reconfigurable architectures (cgras). In:
Proceedings of the 50th Annual Design Automation Conference (2013).
https://doi.org/10.1145/2463209.2488756

10. Lee, J., Seo, S., Lee, H., Sim, H.U.: Flattening-based mapping of im-
perfect loop nests for cgras. In: Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis (2014).
https://doi.org/10.1145/2656075.2656085

11. Levi, G.: A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. Calcolo 9(4) (1973). https://doi.org/10.1007/BF02575586

12. Liu, D., Yin, S., Liu, L., Wei, S.: Polyhedral model based mapping optimization
of loop nests for cgras. In: Proceedings of the 50th Annual Design Automation
Conference (2013). https://doi.org/10.1145/2463209.2488757

13. Liu, L., Zhu, J., Li, Z., Lu, Y., Deng, Y., Han, J., Yin, S., Wei, S.: A survey of coarse-
grained reconfigurable architecture and design: Taxonomy, challenges, and appli-
cations. ACM Comput. Surv. 52(6) (Oct 2019). https://doi.org/10.1145/3357375

14. Park, H., Fan, K., Mahlke, S.A., Oh, T., Kim, H., Kim, H.s.: Edge-centric modulo
scheduling for coarse-grained reconfigurable architectures. In: Proceedings of the
17th international conference on Parallel architectures and compilation techniques
(2008). https://doi.org/10.1145/1454115.1454140

15. Pouchet, L.N., Grauer-Gray, S.: Polybench: The polyhedral benchmark suite, 2012
(2012), http://www-roc.inria.fr/~pouchet/software/polybench

16. Rau, B.R.: Iterative modulo scheduling: An algorithm for software pipelining loops.
In: Proceedings of the 27th annual international symposium on Microarchitecture
(1994). https://doi.org/10.1145/192724.192731

17. Rau, B.R., Schlansker, M.S., Tirumalai, P.P.: Code generation schema for
modulo scheduled loops. SIGMICRO Newsl. 23(1–2), 158–169 (dec 1992).
https://doi.org/10.1145/144965.145795

18. Tan, C., Xie, C., Li, A., Barker, K.J., Tumeo, A.: Opencgra: An open-source
unified framework for modeling, testing, and evaluating cgras. In: 2020 IEEE

https://doi.org/10.1109/ASPDAC.2017.7858308
https://doi.org/10.1109/TCAD.2018.2834397
https://doi.org/10.1145/3195970.3196101
https://doi.org/10.1109/FPL.2008.4629926
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1145/2228360.2228600
https://doi.org/10.1145/2463209.2488756
https://doi.org/10.1145/2656075.2656085
https://doi.org/10.1007/BF02575586
https://doi.org/10.1145/2463209.2488757
https://doi.org/10.1145/3357375
https://doi.org/10.1145/1454115.1454140
http://www-roc.inria.fr/~pouchet/software/polybench
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/144965.145795

Standalone Nested Loop Acceleration on CGRAs 13

38th International Conference on Computer Design (ICCD). IEEE (2020).
https://doi.org/10.1109/ICCD50377.2020.00070

19. Torng, C., Pan, P., Ou, Y., Tan, C., Batten, C.: Ultra-elastic cgras
for irregular loop specialization. In: 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). IEEE (2021).
https://doi.org/10.1109/HPCA51647.2021.00042

20. Wijerathne, D., Li, Z., Mitra, T.: Accelerating edge ai with morpher: An
integrated design, compilation and simulation framework for cgras (2023).
https://doi.org/10.48550/arXiv.2309.06127

21. Wijerathne, D., Li, Z., Pathania, A., Mitra, T., Thiele, L.: Himap: Fast and scal-
able high-quality mapping on cgra via hierarchical abstraction. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 41(10) (2021).
https://doi.org/10.1109/TCAD.2021.3132551

https://doi.org/10.1109/ICCD50377.2020.00070
https://doi.org/10.1109/HPCA51647.2021.00042
https://doi.org/10.48550/arXiv.2309.06127
https://doi.org/10.1109/TCAD.2021.3132551

	Standalone Nested Loop Acceleration on CGRAs for Signal Processing Applications

