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ABSTRACT
Machine learning algorithms have opened a breach in the prediction’s fortress of high-dimensional
chaotic systems. Their ability to find hidden correlations in data can be exploited to perform model-
free forecasting of spatiotemporal chaos and extreme events. However, the extensive feature of these
evolutions makes up a critical limitation for full-size forecasting processes. Hence, the main challenge
for forecasting relevant events is to establish the set of pertinent information. Here, we identify
precursors from the transfer entropy of the system and a deep Long Short-Term Memory network
to forecast the complex dynamics of a system evolving in a high-dimensional spatiotemporal chaotic
regime. Performances of this triggerable model-free prediction protocol based on the information
flowing map are tested from experimental data originating from a passive resonator operating in such
a complex nonlinear regime. We have been able to predict the occurrence of extreme events up to 9
round trips after the detection of precursor, i.e., 3 times the horizon provided by Lyapunov exponents,
with 92% of true positive predictions leading to 60% of accuracy.

1. Introduction
Large-aspect-ratio deterministic systems operating out

of equilibrium can become extremely sensitive to the initial
conditions when undergoing chaotic spatiotemporal evolu-
tion [1–4]. Spatiotemporal chaos may be understood as the
exponential destruction of information in both time and
space, making the dynamics require many spatially dis-
tributed chaotic elements to be described [5]. With these
elements, accurate modeling of such a system lies in two
key points—a good description of the physical equations
and minimal uncertainty in the initial conditions. Despite
many years of intensive research to understand the complex
dynamics of chaos, most are limited to theoretical investi-
gations. Only a few experimental works had been reported
due to the huge precision required to gain knowledge on
the initial conditions. Recently, improvements of supervised
machine learning algorithms have brought new perspectives
for the forecasting of spatiotemporal complex dynamics in
optics [6], economy [7], power grid load [8], and meteo-
rology [9–11], to mention a few. These studies were per-
formed mainly using deep learning, recurrent, and echo state
networks. By providing model free processes it could be
possible that chaos theory tools are no more necessary to
handle time series in general. Even though powerful, the
performances of machine learning-based forecasting can be
compromised when dealing with spatiotemporal chaos. In-
deed, the specificity of this chaos is its extensive feature. The
larger the system, the larger the number of the coupled nodes
in the network. This makes the problem rapidly unsolvable
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for high-dimensional spatiotemporal chaotic systems. Thus,
alternative strategies based on local intensive order parame-
ters other than predicting the whole system are needed.

Here, we show that model-based and model-free tools
can be combined to provide triggerable local forecasting of
the extreme events in chaotic regimes. Namely, the forecast-
ing process is activated when relevant information is identi-
fied. Answering the question of when and where the extreme
events will emerge, we also address the question of what
is coming? We will also forecast the profile of the coming
event. Our strategy is depicted by the Fig. 1. First, from
output signals of a resonator operating in a highly chaotic
regime we identify relevant pairs. Next, they are used to
train a neural network. The pre-trained network is deployed
to monitor the dynamics in live and trigger the forecast
when a precursor is detected. Our manuscript is organized
as follows. After describing how the precursors are found
in the Sec. 2, we describe the experimental setup in Sec. 3.
In Sec. 4 we recall some basic of high dimensional chaos,
before introducing the methods we will used to estimate the
range the local dynamical regions to be forecasted Sec. 5.
The details of our model-free prediction process and the
results are provided in Sec. 6, followed by the concluding
remarks in Sec. 7.

2. Complex dynamics characterization and
information transfer
The degree of sensitivity to the initial conditions is

formally deduced from the value of the largest Lyapunov ex-
ponent (LE). This exponent can be computed for low dimen-
sional systems based on the mathematical model if known
[12] or from the time series [13]. However, for extended
systems, the main characteristics of the chaos require the
knowledge of the continuous spectrum of LEs [14]. Hence,
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from experimental data, only the consequences of the chaos
can be measured and not their analytical characteristics. In-
deed, LE is also interpreted as the production rate of entropy
during the evolution. Likewise, in high-dimensional chaos,
correlation ranges between different locations in the system
are much smaller than the actual size of the system. Conse-
quently, according to information theory [15], mutual infor-
mation between two locations x1 and x2 may exponentially
vanish as the separation ||x1−x2|| → ∞. For a system com-
posed of two signals x and ywith joint probability p(x, y) the
Shanon entropy [16] is H1 = −

∑

x,y p(x, y) log[p(x, y)]. Ifthe same processes are supposed independent it comesH2 =
−
∑

x,y p(x, y) log[p(x)p(y)]. The mutual information is then
IXY = H2 −H1 =

∑

x,y p(x, y) log
[

p(x,y)
p(x)p(y)

]

. To determine
which of the two signals provides more information regard-
ing its own past, it is useful to compute the transfer entropy
(TE) [17–21] : TEY→X = ∑

x,y p(xn+1, xℎn , y
ℎ
n ) log

[

p(xn+1|xℎn ,y
ℎ
n )

p(xn+1|xℎn )

]

,
with n the current iteration and ℎ the history length. Hence,
taking x and y as the measured data at different locations
separated by Δt (slow time in Fig. 1) and lagging one over
the other by Δ� (fast time in Fig. 1), one can construct the
map TEY→X (Δt,Δ�) or TEX→Y (Δt,Δ�) as sketched in
Fig. 1. With the two-point correlation length (see Sec. 5.2),
TE will be the model-free tool that we will use to measure
the impact of the spatiotemporal chaos in our system. In
practice, there are a many codes that allow to compute the
transfer entropy of continuous time series. Here, for our
transfer entropy maps, we have used the open source JIDT
software package[22] (https://github.com/jlizier/jidt/). The
portability of this JIDT Java-based code, with no installation
requirement have motivated our choice.

Δt Δτ
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Figure 1: Schematic representation of prediction method of
the spatiotemporal chaos at the output of the optical fiber
ring synchronously pump close to a resonance frequency. CW:
continuous wave. In the grey panel, we illustrate how the
signals are selected to compute the transfer entropy map. The
details of the multi-layer Network are given in the Appendix D
section.
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Figure 2: Experimental setup. PWM, powermeter; PC1−5,
polarization controller; PD1−2, photodetector; OSA, opti-
cal spectrum analyzer; Elec. BPF: electronic band-pass fil-
ter; Oscillo.1−2, oscilloscope; Pulse Gen., pulse generator;
EOM, electro-optic modulator; PID, proportional-integrate-
derivative; EDFA1−2, erbium-doped fiber amplifier; BPF, band-
pass filter; STR, fiber stretcher; FBG, fiber Bragg grating;
SOA, semiconductor optical amplifier; Laser fs, femtosecond
laser.

3. The experimental setup
A details sketch of the experimental setup is depicted

in Fig. 2. It is similar to the one used in Ref. [23] . It
consists of a passive fiber ring cavity built with a specially
designed dispersion shifted fiber (�DSF = −3.8 ps2/km at
1545 nm and DSF = 2.5 W−1.km−1) closed by a 95/5
coupler made of the same fiber to get a perfectly uniform
cavity of 132.9 meter-long with a finesse of 15.6. We drive
the cavity with a train of square shaped pulses of 1 ns
duration. This configuration prevents from stimulated Bril-
louin scattering and to generate high peak power to trigger
the parametric process. These pulses are generated from
a continuous wave (cw) laser at 1545 nm (with a narrow
linewidth, less than 100 Hz) whose intensity is chopped by
an electro-optic modulator (EOM). The repetition rate of
these pulses is set to match with the repetition rate of the cav-
ity, in order to drive the system synchronously and get one
pulse per roundtrip. Pulses are then amplified by an erbium
doped amplifier and filtered out by a thin bandwidth filter
(BPF, 100 GHz) to remove amplified spontaneous emission
(ASE) in excess. Finally, pump pulses are launched into
the cavity through the right port of the cavity propagating
in the anticlockwise direction (blue arrows). Note that, we
added a 99/1 tap coupler just before the input port of the
cavity for input power monitoring and setting. Due to the
interferometric nature of such a system the linear phase
accumulated by pump is extremely sensitive to external
perturbations (change in pressure, temperature) and need to
be stabilized. For this purpose, a fraction of the output power
of the EOM is launched through the left port of the cavity,
propagating in the clockwise direction (red arrows). This
weak signal detected at the cavity output by a photodetector
(PD1) provides an error signal for a feedback loop system
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(proportional-integrate-derivative) which finely tunes the cw
laser wavelength. As in Ref. [23, 24], a combination of three
polarization controllers and measurements of a fraction of
cavity output signals are used to control the cavity detuning
(normalized detuning set to Δ = 1.1, monostable [25]).
In order to study the intracavity field, we added just before
the coupler closing the cavity a 99/1 tap coupler. A part of
this extracted field (20%) is analyzed by means of optical
spectrum analyzer while the other part (80%) is amplified by
a low noise EDFA and then studied by a commercial time-
lens (Picoluz ultra-fast temporal magnifier, Thorlabs) based
on the results published in Ref. [26].

The time stretching effect was obtained by pumping the
time-lens with a femtosecond laser centered at 1570 nm
providing pulses with a fixed repetition rate of 99.88 MHz.
This laser was used as a reference clock for the EOM such as
the repetition rate of cavity pump pulses is an exact multiple
of the femtosecond laser (typically 65 times in our case).
In order to drive the cavity in a perfectly coherent way, we
added a stretcher inside the system, thus we could finely
tune the cavity length such as the pump pulses repetition rate
matched with the cavity repetition rate. The magnified signal
(magnified factor of 57) was filtered by means of a fiber
Bragg grating to perfectly remove the femtosecond pump
in excess, and then slightly amplified by a semiconductor
optical amplifier to be recorded by a fast photodiode and an
oscilloscope (70 GHz bandwidth each). Thanks to this time-
lens, we were able to record at each round-trip the intracavity
temporal pattern over a window of 36 ps with a resolution of
about 300 fs (shorter than the local dynamics time scale).
We will use these data either to train the network or to test
its performances.

4. Spatiotemporal chaos in an optical fiber
ring resonator
Figure 1 sketches up the prediction protocol of chaotic

extreme pulses in a Kerr resonator. The data are obtained
from a passive resonator made of an optical fiber ring
synchronously pumped close to a cavity resonance. The
repetition rate of the cavity is about 1.54 MHz (64.9 �s)
and the local dynamics time scale is of the order of the ps.
For simplicity, the ring was set to operate in a monostable
regime, i.e., a region where the transmission function is
single valued for a given pump power. By pumping the cavity
well above the cavity threshold, typically a few times, the
continuous wave solution breaks into a periodic wave train,
which in turn experiences an oscillatory instability and then
evolves onto a chaotic regime [27, 28]. This current sequence
is universal and can be observed in many other fields of
physics [5, 12]. The dynamics of the light circulating in the
cavity is accurately modelled by the driven and damped non-
linear Schrödinger equation [29] (see Appendix A), referred
to as Lugiato-Lefever equation (LLE) [30]. The LLE has the
advantage that we can use both model-based and model-free
tools to compute all the quantities needed to characterize the
spatiotemporal complexity.
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Figure 3: Typical spatiotemporal turbulent dynamics (a)
from experiments and (b) from numerics (LLE, Eq. (S7) in
supplemental documents). (c) Lyapunov spectrum for different
time windows (ΔTP ). (d) Kaplan-Yorke dimension as function
of the temporal window (ΔTP ) for different output power
normalized to the cavity threshold (Sn). All parameters are
listed in Appendix A. (e) Probability density functions of the
all the peaks (blue), laminar peaks (orange) and turbulent
peaks (yellow) from numerics for a detection threshold set
at the mean value of the intracavity power. The evolution
of these distributions is provided as an additional material
(moviepdf.gif).

Figure 3(a) shows an example of the complex behavior
obtained experimentally by pumping the cavity well above
the nonlinear threshold (3 times the emission threshold). It
illustrates the output cavity field in the time domain, round
trip to round trips. An almost periodic pulse train of 3.8
ps period with a pulse duration of typically 1.8 ps can be
observed. Pulse positions and shapes modifications in this
two dimensional map is characteristic of a spatiotemporal
chaos [27]. We performed numerical simulations with the
experimental parameters. They are depicted in Fig. 3(b).
Numerical results look similar to experimental results in
Fig. 3(a). The fine characterization of the complexity of
this spatiotemporal chaotic regime had been performed from
standard analysis tools [12] either by changing the time
window or the pump power. For the sake of simplicity,
since the agreement between experiments and numerics is
very good, we used numerical simulations to perform these
investigations. Firstly, Fig. 3(c) shows the Lyapunov spec-
trum evolution for different time window durations (ΔTp)for a pump power set to Sn = 4.9 (about 5 times the
nonlinear threshold). The spectrum broadens by increasing
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the time window, which is a clear signature of a spatiotem-
poral chaos. Secondly, Fig. 3(d) represents Kaplan-Yorke
dimension evolution as a function of the temporal window
for several pump powers ranging from 3.3 to 4.9 times the
cavity threshold. The curves’ slopes increase with the pump
power that confirms the spatiotemporal chaotic nature of the
process. More precisely, these slopes provide an estimation
of the duration ΔTstc of independent chaotic subdomains.
It is of the order of 1 ps in this case and much smaller
(ΔTstc ≪ ΔTp) than the time widow duration (36 ps here,
see Figs. 3(a) and (b)). Lyapunov spectra also enable us to
estimate the production rate of information during evolution
along the slow time (cf. Fig.1). For high-dimensional chaos
the mean metric entropy corresponds to the Kolmogorov-
Sinai entropy ℎKS =

∑

�i>0 �i [31, 32]. The fluctuations
lifetime over the cavity roundtrips is given by �stc = 1∕ℎKS .From experimental parameters we found that �stc < tRwhere tR represents the cavity roundtrip, which is a key
feature of a system evolving into a high dimensional chaotic
regime. On the other hand, the description of the spatiotem-
poral chaos can be achieved by analogywith hydrodynamics
[27]. The dynamics is an irregular succession of laminar and
turbulent flows. A detailed statistical study of the laminar or
turbulent domains was performed in [27]. The probability
distribution of the laminar/turbulent domains has the fol-
lowing mixture function: P (x) = (Ax−� + B)e−mx. All the
constants depend only on the parameters except m which
also changes with the value of the power set to separate the
laminar and turbulent domains. The burst detected during
the evolution can be labelled according to their location in a
laminar or a turbulent flow, respectively. Distributions of all
the bursts, those located in laminar, and turbulent domains
are shown in Figs. 3(e) for a threshold set at the mean value
the intracavity power. Highest bursts are mainly located in
the laminar flows, and it is evenmore pronounced for highest
threshold values (see movie in supplemental material for
other thresholds). Hence, we can use the transfer entropy
to map the information flow from the neighborhood and
the past. To this end, we compute TEY→X (Δt,Δ�) with
X ≡ | (t, �)|2 and Y ≡ | (t − Δt, � + Δ�)|2,  being the
considered field.

5. Estimation of the local dynamics range and
predictibility
The qualitative feature of a high dimensional complex

behavior is the finite nature of the interaction range. Theory
of dynamical systems and information theory have provided
various estimations of this range. In a spatiotemporal chaotic
regime, the equal time two-points correlation range and the
Lyapunov dimension can be useful estimators.
5.1. Spatiotemporal chaos dimension ��

The Kaplan-Yorke dimension grows linearly with the vol-
ume of a high dimensional chaotic system. For a fixed set
of parameters, it is worth to provide an intensive char-
acterization of the chaoticity level. This can be done by

computing the slope of the Kaplan-Yorke dimension curve
with respect to the volume [27]. The inverse of this slope
estimates the size of the independent sub-domains produced
by the presence of the attractor. Figure 4(a) shows the typical
evolution of �� with respect of the pump power in the LLE.
It can be seen that the range of independent sub-domains
decreases with the pumping level. In the fully developed
turbulent regime (Sn∕Stn > 9) we have �� ≪ ΔTp.
5.2. Equal time correlation dimension �2

In the complex evolution the probability of two locations
separated by �T to behave coherently is obtained by com-
puting the function: [33–35]:
C (�T ) = ⟨

(

 
(

�T + T ′, t
)

− ⟨ ⟩
) (

 
(

T ′, t
)

− ⟨ ⟩
)

⟩. (1)
The brackets ⟨⋅⟩ stand for the average process. C (�T ) is the
equal time two-points correlation function. The computation
cost of this function is generally reduced by using Wiener-
Khintchin theorem [36, 37]. The correlation length �2 is
defined as the exponential decay of C (�T ). For the set of
parameters used here, the correlation function is shown in
Fig. 4(b). We found �2 ≃ 4.2 ps, which is much larger than
�� = 1.3 ps.The direct determination of C (Δ�) is quite costly in
calculation time. However, by using the Wiener-Khintchin
theorem [36, 37], it is computed by the following process:
first time-averaging the Fourier spectra and next taking the
inverse Fourier transform of its magnitude squared. Since
the experimental spectra result from an averaging process
over a large number of cavity roundtrip, C (Δ�) can also
be computed taking the inverse Fourier transform of the
measured spectrum. Hence, for the LL equation (1) , we have
computed �� end �2 with respect to the input pump intensity.

5.3. The mutual information vanishing range �IFinite correlation range implies a vanishing range. The
information content is shared by two locations separated by
�T . Transfer entropy is set to determine the causality in
the mutual information, it can be also use to estimate �I .Setting the roundtrip lag at the location of P11 the profile
of the transfer entropy is shown in Fig. 4(c). It can also
be seen that this quantity decays exponentially when the
separation increases. We found that �I = 4.3 ps, which
is of same order of �2. The three ranges clearly suggest
that the correlations in the system span beyond the chaotic
subdomains. To understand the meaning of these quantities,
we have represented the mean profile of the bursts in the unit
of �� and �2 = �I in Fig. 5. As it can be seen from this figure
�� appears to be the maximal extension of the local chaotic
objects that are the burst and �2 = �I the range above whichtheir information content vanishes. This sets �2 = �I as the
best choice for the local dynamics range.

Note that the assumption of exponential decay is based
on the observation in many chaotic systems. However, in
such a profile, it is also expected that data follow a power
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law as proposed in [38, 39]. We have analysed our data of
C (�T ) according to this proposition. The result is given in
Fig. 6. As excepted, this figure shows a region where the
envelope of C (�T ) follows a power law, which is initially
preceded by a region where the distribution is exponential.
The starting point of this power law is three times larger
than the exponential decay range. In addition, the exponen-
tial decay range obtained following the reference [39], is
about 4.88. This is of the same order than the values we
have previously obtained by detecting the trend two-points
correlation function. Hence, in our analysis, the exponential
regime allows us to determine the size of subdomains for the
forecasting.
5.4. Prediction horizon

There are many definitions of the prediction time of
chaotic evolution. These definitions converge to the same
value when dealing with low dimensional chaos with a
few positive Lyapunov exponents. The widely used is the
Lyapunov time given T�m = 1∕max(�i). However, this time
has some limitations for high-dimensional systems. In that
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ΔTp [ps]
22 45 180 360

(S∕Stℎ)2
11 3.66 1.83 0.47 0.23
14 2.85 1.32 0.34 0.16
20 1.81 0.81 0.21 0.10
23 1.31 0.71 0.18 0.09

Table 1: Lifetime of spatiotemporal chaotic fluctuations in
fraction of the cavity roundtrip. ΔTp is the duration of the
pump temporal window and (S∕Stℎ)2 is the ratio between
the pump power S2 and the threshold value S2tℎ.

case, the maximal local Lyapunov exponent can be a good
alternative. So far the bursts are the most chaotic objects
in the system. We can follow the local Lyapunov exponent
together with the local evolution as shown in Fig. 7. We
can see that the local values of the maximum Lyapunov
exponent correspond to the emergence of at least one burst
and are much larger than the mean value �m = 0.8 (see
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Figure 7: Maximal local Lyapunov exponent (top panel)
and the corresponding roundtrip evolution (bottom panel).
Red square mark the local maxima of the largest Lyapunov
exponents. Vertical lines give the local of the largest burst
over the roundtrips.

Fig. 3(c)). The Lyapunov time given by the mean value of
these local features is T�l ≃ 3 roundtrips. This time scale
has to be compared with the Kolmogorov-Sinai entropy time
[40, 41]. This entropy is estimated as ℎKS = ∑

�m with �mthe positive Lyapunov exponents. Then TKS = 1∕ℎKS gives
the time scale of entropy production by the system. We have
computed this time for different pump temporal windows
and pump intensities. This is summarized in Table 1. In
our configuration this time is smaller than a roundtrip time.
Consequently, our prediction horizons are larger than the
characteristic time of the chaos in the system.

6. Precursors-driven machine learning
Since the spatiotemporal chaos generated in the res-

onator is highly dimensional, (ΔTstc ≪ ΔTp and �stc < tR),forecasting the fully developed turbulence of the fiber ring
cavity is a great challenge. Recent use of neural networks has
opened new perspectives in this field [9, 42–45]. In partic-
ular, in [9, 42], the authors have used an echo state network
to reproduce the dynamics of the Kuramoto-Shivashinsky
equation over several Lyapunov times. It also shows that
increasing the size of the system requires larger network
nodes with the same forecasting accuracy. This would be
almost impossible in our system presenting a much higher
spatiotemporal chaotic behavior compared to these works.
Here, we propose to investigate an alternative to the forecast
of the complete field under study. It consists of identifying a
precursor of an event of interest and extracting a subdomain
around it to reduce the complexity of the forecasting and
increase the accuracy of the predictions. For this purpose,
we compute the information flow to optimize the deter-
mination of the size of subdomains. The transfer entropy
2D map is presented in Fig. 8(b) (numerics) and Fig. 8(g)
(experiments). At finite roundtrips, it exhibits either a central
peak (P0i) or double peak (P1i) structures. As an example,

the temporal profiles of roundtrip lags P01 and P11, themost powerful, are shown in Fig. 8(a) and (f). Experimental
traces are temporally wider because of the finite band-pass
of the detection system with a noise background inherent
to experiments, but a pretty good agreement with numerics
is obtained. These peaks mean that, on average, any peaks
in the evolution carry information from its own past. This
information vanishes roundtrip to roundtrip (Fig. 8(b) and
8(g)), the amplitude of the peaks following an exponential
decay as can be seen in Fig. 8(c) and 8(h). The dual peaks
structure of the P1i has the advantage to be easily differen-
tiated compared to the single peak of the P0i making P1ithe better choice than bursts precursors. Furthermore, the
time shift between the peaks of the P1i is of the same order
of the equal time correlation range �2 (see Appendix C).
It can be appropriated to be the order of magnitude of
our subdomains. Each measurement is locally centered at
the location of the intensity burst. Given that information
converges from P1j towards P0i we can make an association
{P0i,P1j}(|T −Tk| ⩽ �2) and perform a supervised machine
learning training, with Tk being the location of the k-th localpeak.

The network in Fig. 1 is a deep Long Short-Term Mem-
ory (LSTM) encoder-decoder algorithm which has been
shown to be suitable for sequence-to-sequence forecasting
[46, 47]. We used two sets of data: either two simulation
runs or two experimental campaigns of recordings. One
for training and testing, and the other one to evaluate fully
independently the forecasting accuracy of our system. Fig-
ures 8(d) and 8(e) show the highly forecasting correlation
skill on the test data for two roundtrip lags, P11, P12, fromnumerics, and figures 8(i) and 8(j) from experiments. The
correlation is close to 97% for P11 and only decays to 60%
for P12 in numerics proving the excellent performance of our
method. In experiments (Figs. 8(i) and 8(j)), while data are
noisy, correlation factors remain still close to 1, with 75%
and 64% for P11 and P12, respectively.After training and testing are completed, we can now
follow the evolution looking for the precursors. For the
detection, we have used a moving window convolution of
the current roundtrip with the profile of the P1i. Once a
double peak precursors identified in the running roundtrip
we feed of our multi-level network, and then we predict the
positions of pulses that will appear m roundtrips later. We
performed the same process for numerical simulations and
experiments. The positions of reconstructed local predic-
tions (when and where) are presented in circles in Figs. 9(a)
and (b), superimposed on spatiotemporal traces of the output
cavity. As illustrated on the right-hand side of Fig. 9(b),
precursors are identified at roundtrip n to forecast pulses
which will appear at roundtrip n + 9. This is 3 times the
horizon given by the local maximum Lyapunov exponent.
We obtained a better accuracy in the predictions for nu-
merical simulations (Fig. 9(a)) because experimental data
(Fig. 9(b)) are noisier. The shape of the predicted pulses
("what is coming ?)" is also predicted from our algorithm.
Typical examples are depicted in Figs. 9(c) to 9(e). An
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Figure 8: (a)-(e) Numerical simulations of the LLE (Eq. (2) in Appendix A) and (f)-(j) from experiments in a Kerr resonator.
(b) and (g) show the 2D plot of the transfer entropy. (a) and (f) represent profiles of P01 and P11. The evolution of the transfer
entropy at the fast time lag given by the P11 maximum with respect to the roundtrip lags are shown in (c) and (h). The blue
solid line shows the evolution of the transfer entropy as a function of the roundtrips, the symbols (+) mark peaks at each P1n,
and the strait yellow line the best exponential fit from these maxima. (d) and (e) show correlation maps after the supervised
training using the association between detected pulses and their P11 and P12 precursors respectively from numerical simulations
and (i) and (j) from experiments. In panels (d), (e), (i), and (j) the horizontal axes, Actual value, stands for the measured peak
value (blue points) and the standard deviation of the observed pulses (red points). The vertical axes, Forecast value, accounts
for the predicted peak value and their standard deviation.

P11 P12 P13
False-positive precursors (%) 6.66 8 14.92
True-positive precursors (%) 74.60 71.30 66.4
Pulses without precursors (%) 25.40 28.70 33.6

Prediction accuracy (%) 96.60 60 -
Roundtrip forecast 3 9 15

Table 2: Performances of the method as a function of the
double peaks precursor (P1i)

excellent agreement is achieved compared to the reference
traces. The performances of the predictions in terms of false-
positive and accuracy are summarized in Table 2. For P13,predictions at n + 9 roundtrips is possible with less than
8% of false-positive precursors while operating in a strongly
chaotic spatiotemporal regime. At this horizon, the accuracy
is about 60%. By slightly lowering the pump power from
3.3 to 3 times the cavity threshold (P12), the regime is
still strongly chaotic. While we get the same ratio of false-
positive prediction, we reach 75% of prediction accuracy at
n+6 roundtrips. For weakly spatiotemporal chaotic regimes,
between two and three times the cavity threshold, the pre-
diction are almost perfect.

This value is remarkable for such a high-dimensional
chaotic system. We also point out that all predictions based
on P11 reach an accuracy above 90% without any deep opti-
mization of the network. The LSTM encoder-decoder are not
the unique recurrent neural network that could perform the
forecasting process. However, the main purpose of our work
was to show that precursors can be used tomake amodel-free

prediction of extreme events in a high-dimensional chaotic
system.

7. Conclusion
We have shown that forecasting high-dimensional chaos

is possible by splitting the system around the objects of
interest. We identify these objects by mapping the transfer
entropy. This quantity is also used to estimate the extension
range of the subsystem, the precursors of the object of
interest, and also the forecasting horizon of the dynamics. By
detecting the precursors, we can therefore build a triggerable
model-free process in which the "when?" and "where?" are
no more the concerns but the "what is coming?". The level
of the transfer entropy affects only the accuracy of this
prediction. Our analysis was based on the Long Short-Term
Memory encoder-decoder algorithm. However, other meth-
ods can be implemented to recognize precursor-pulse pairs,
such as gate recurrent unit, echo state network, and deep
learning. The optimal recognitionmethod of precursor-pulse
pairs is an open problem. Our protocol can be applied to any
nonlinear systems independently from its size provided that
information flows are correctly computed.
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A. Numerical simulations
In the experimental setup, the propagation of light in an

optical fiber loop ismodeledwithout loss of generality by the
nonlinear Schrödinger equation augmented with boundary
conditions or Ikeda map [24, 29, 48]:

)zA (z, T ) = −i
�2
2
)2TA (z, T ) + iA (z, T ) |A (z, T )|

2

A
(

0, T + TR
)

=
√

�Ei (T ) +
√

�A (L, T ) e−iΦ0 ,

where TR stands for the round-trip time, which is the time
taken by the pulse to propagate along the cavity with the
group velocity,Φ0 is the linear phase shift, � (�) is themirror
transmission (reflection) coefficient, and L is the cavity
length. The complex amplitude of the electric field inside
the cavity is A. Each of the coefficients �2 is responsible
for the second-order dispersion, and  is the nonlinear
coefficient of the fiber. The independent variable z refers to
the longitudinal coordinate, while T is the time in a reference
frame moving with the group velocity of the light. For large
enough cavity finesse  = �∕�, with � the effective losses
of the cavity, the evolution of the electric field inside the loop
is well described by the Lugiato-Lefever equation [29, 30]:

) 
)t

= S − (1 + iΔ) − i�
)2 
)�2

+ i| |2 , (2)

whereS = 2Ei
√

L∕�3, = A√L∕�, t = �T ∕TR = �m,
and � = T ∕Tn with Tn =

√

|

|

�2L|| ∕(2�). � = (2k�−Φ0)∕�
is the detuning with respect to the nearest cavity resonance k.
The integerm gives the roundtrip number and the coefficient
� = ±1 is the sign of the group velocity dispersion term.
The configuration of our setup gives � = 0.20, Δ = 1.1 and
Tn ≃ 1.1 ps.

B. Lyapunov spectrum computation
Strictly speaking, to prove a spatiotemporal chaotic dy-

namics, one may compute several quantities. In particular, it
is mandatory to compute the Lyapunov spectrum. Next, this
spectrum must have a positive part and continuous region
whose area has to linearly increase with the size of the
system. The computation of the Lyapunov spectrum itself is
very well documented [14] and is not the purpose here. Let
just recall the main steps. From the state of the system at a
given time, the linear evolution of any small perturbation �X
can be described by )t�X = J�X, where J is the respective
Jacobian. In the present case, we introduce  =  r + i i,with  r and  i being the real and imaginary part of  
respectively. At a time t = t0, introducing  =  0 + � ,with � ≪  (t = t0) =  0 the matrix J reads :

J =
⎡

⎢

⎢

⎣

−(1 + 2 0r 0i) Δ −  02r − 3 0
2
i − )

2
�

−Δ + ( 02i + 3 0
2
r ) + )

2
� −(1 − 2 0r 0i)

⎤

⎥

⎥

⎦

,

(3)
and �X = (� r, � r)t. Suppose that we want to compute the
n-th first dominant exponents of the spectrum, we introduce
the matrix L, that contains n orthonormal vectors vi whichto be used as initial conditions when solving )t�X = J�X:

L
(

t = t0
)

≡
[

v1 v2 … vn
]

=

⎡

⎢

⎢

⎢

⎣

x11 x12 x13 … x1n
x21 x22 x23 … x2n

. . . . . . . . . . . . .
xd1 xd2 xd3 … xdn

⎤

⎥

⎥

⎥

⎦

,
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(4)
where d is the dimension of the system. After a time incre-
ment dt, the matrix L evolves to L

(

t0 + dt
)

= ÛL
(

t0
)

where Û = eJ∗dt. Using the modified Gram-Schmidt QR
decomposition on L

(

t0 + dt
), the diagonal elements of R

account for the Lyapunov exponents �̃i (i = 1,… , n) at time
t0 + dt, that is

�̃i(t0 + dt) =
1
dt
ln
(

Rii(t0 + dt)
)

. (5)
Repeating this procedure several time, after a large number
of iterations N , the Lyapunov exponents can be approxi-
mated by

�i ≡ ⟨�̃i⟩ =
1

Ndt

N
∑

k=1
ln
(

Rii(t0 + kdt)
)

. (6)

From the spectrum {

�i
} an estimator of the dimension of

the chaotic attractor is given by the Kaplan-Yorke dimension
DKY = p+

∑p
i=1 �i∕|�p+1|where p is such that

∑p
i=1 �i > 0

and∑p+1
i=1 �i < 0 [12]. For a one-dimensional system of size

L, a spatiotemporal chaos implies thatDKY increase linearly
with L.

C. Determination of the subdomains to
forecast
In a spatiotemporal chaotic system many quantities can

be used as order parameter. Considering the extensive fea-
ture of this chaos, the Kaplan-Yorke dimension may change
linearly with the volume of the system [3, 35]. Namely, for a
1D system,DY K = �−1� ΔT whereΔT is the extension of the
system and �� represents the dimension correlation length
of the system for a fixed value of the control parameter.
This is an intensive quantity which gives an estimation of
the extension of the dynamically independent subsystems.
Together with the dimension correlation length one can
compute the correlation length �2. This length is defined
as the exponential decay range of the equal time two-point
correlation [33–35]:
C (Δ�) = ⟨

(

 
(

Δ� + �′, t
)

− ⟨ ⟩
) (

 
(

�′, t
)

− ⟨ ⟩
)

⟩, (7)
where the brackets ⟨⋅⟩ stand for the average process. The
direct determination of C (Δ�) is quite costly in calcula-
tion time. However, by using the Wiener-Khintchin the-
orem [37, 49], it is computed by the following process:
first time-averaging the Fourier spectra and next taking the
inverse Fourier transform of its magnitude squared. Since
the experimental spectra result from an averaging process
over a large number of cavity roundtrip, C (Δ�) can also
be computed taking the inverse Fourier transform of the
measured spectrum. Hence, for the LL equation (2), we have
computed �� end �2 with respect to the input pump intensity.
The third length we have computed is the long range decay
rate of the transfer entropy �TE . The region around the burstto forecast is largest range between �� , �2 and �TE . Detailedimplementation can be found in the SI.

Model:
Layer (type) Output Shape Param #
lstm_1 (LSTM) (None, 3, 820) 3365280
lstm_2 (LSTM) (None, 820) 5382480
repeat_vector (RepeatVector) (None, 1, 820) 0
lstm_3 (LSTM) (None, 1, 820) 5382480
lstm_4 (LSTM) (None, 1, 820) 5382480
time_distributed_10 (TimeDistr) (None, 1, 205) 168305
Total params: 19,681,025
Trainable params: 19,681,025
Non-trainable params: 0

Table 3: Python LSTM encoder-decoder summary for the
network we have trained with linear activation function.
We have used the package Tensorflow-Keras. For the op-
timization with have used the following options: "opti-
mizer=Adam(), loss=’Huber’,metrics=’mae’".

D. The forecasting protocol

Protocol of the forecasting process
From data:

• Compute the transfer entropy map
• Detect the pulses
• Move backward to the chosen history

The training:
• compute the PDF from peaks amplitude
• split data 80% for training and 20% for testing with

the same PDFs
• Standardize input data (precursors) : Yeo-Johnson

transform
• Create the LSTM encoder-decoder (see Table 3)

Forcasting:
• Watch the dynamics for precursors
• If precursor detected feed the network to forecast the

incoming pulse at the chosen horizon and location
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