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ABSTRACT

We propose a general history-dependent framework (GHDF), an intertemporal optimization framework in
which the instantaneous reward function depends on the memory of (eventually all) the previous decisions.
By considering a very general history-formation process, through the introduction of a memory function,
we provide a wide embracing framework, keeping it being both tractable and interpretable within many
diverse contexts and allowing to enrich the analysis by treating at the same time several kinds of history
dependencies. An easily implementable history-dependent framework (ETHDF) is provided, a version of our
general history-dependent framework (GHDF) for which the primer (i.e. instantaneous reward function,
feasible set and history-formation process) are defined in a recursive way so that it is easily implementable
while still as general as needed to be widely applicable.

Taking into account the fact that the environment keeps in memory our activities and decisions, we further
provide a general sustainable framework (GSF) which introduces a basis for future analysis in environmental
and sustainable issues and encompasses many existing models in the environmental literature (including
circular economy models). It is designed in a very amenable and flexible manner so that it can be adapted
to many contexts and one can easily remove or add different effects that will be needed to be addressed. The
mathematical results (including existence of a solution and dynamic programming tools) are derived as an
application of our general history-dependent (GHDF) framework and can be directly used.

As examples, we address the model by Morhaim and Ulus[37] and all its history-dependent and habit form-
ation applications, as well as many environmental models. These include optimal management of natural
resources, circular economy (CE) models (with or without recycling habits) and circular and cumulative
causation (CCC) models, all of which being particular cases of our framework.
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1 Introduction

History-dependencies are currently widely taken into account in economics in various domains, among
which importantly representation of preferences issues (Rozen[36], Rustichini and Siconolfi[37, 38])
or optimal growth (Ryder and Heal[17], Morhaim and Ulus[32]) and to address environmental issues.

In this paper, we provide history-dependent models and dynamic programming tools to deal with
such models. The dynamic programming tools (in particular, existence of a solution and that the
value function is the unique fixed point of the Bellman operator) are obtained without concavity
assumptions. Mpre precisely, we consider the following three history-dependent frameworks

e a general history-dependent framework (GHDF)

e an easily implementable history-dependent framework (EIHDF), a version of our general history-
dependent framework (GHDF) in which the primer of the problem are defined in an adquate
recursive way so that is both kept easily implementable and as general as needed to be widely
applicable.

e a general sustainable framework (GSF) which introduces a very amenable and flexible basis
for future analysis in environmental and sustainable issues and encompasses many existing
models in the environmental literature (including linear and circular economy models) and is
an application of general history-dependent framework (GHDF)

The first history-dependent model, i.e. the general history-dependent framework (GHDF), is a
general tractable framework for intertemporal optimization framework in which the instantaneous
reward function depends on the memory of (eventually all) the previous decisions. On one hand, we
introduce a general function allowing to model many different memory processes and on the other
hand, we deal with general decision variables, objective functions and feasible sets. The formalism
we propose allows to discuss and study the memory process formation (through a function m) as well
as the way the history enters the instantaneous reward function. We provide dynamic programming
tools for such models. Without concavity assumptions, we show the existence of a solution and that
the value function is the unique fixed point of the Bellman operator.

The framework in Morhaim and Ulus[32], in which consumption history is considered becomes a
particular case of transforming the decisions into a history sequence. Indeed, the framework in
Morhaim and Ulus[32] is a case in which consumption is kept in memory, which is a function of
previous date and current capital stock decisions. Thus, it means keeping in memory a function of
these decisions. Our general history-dependent framework allows, not only to keep in memory the
particular function defining consumption, but any function of the previous date and current decisions.
By this way, the model provided in Morhaim and Ulus[32] as well as the examples presented in
Morhaim and Ulus[32]! become particular cases of our general history-dependent framework.

By generalizing the history formation process, through the introduction of a memory function, we
provide a very general framework that keeps the framework being tractable as well as the elements of
the basic model being interpretable within different contexts. This includes all the history-dependent
models that are considered in Morhaim and Ulus[32] (i.e. Ryder and Heal[17]) but also sustainability
issues, in particular environmental models (Van Der Ploeg and Withagen[44], Tkefuji[18], Lofgren[27]),

lincluding Ryder and Heal[17], Rozen[36], Rustichini and Siconolfi[38], Caroll, Overland and Weil[6], He, Dyer and
Butler[16], Baucells and Sarin[4], Tkefuji[18], Lofgren[27], Safi and Ben Hassen[39].



optimal management of natural resource (Smulders, Toman and Withagen[40], Ulus[42]), circular eco-
nomy (CE) models (George, Chi-ang Lin and Chen[14], and circular and causation (CCC) models
(Donaghy 10, 11]) Kasioumi[20, 21, 23]).

Further, we provide an easily implementable history-dependent framework (EIHDF), a version of
our general history-dependent framework (GHDF) which is both easily implementable and as gen-
eral as needed to be widely applicable. This is allowed by providing a history-dependent framework
in which the primer of the problem, in particular the instantaneous reward function and the feasible
set I', are defined in an adequate recursive way answering both issues simultaneously. We then show
that such a model is a particluar case of our general history-dependent framework and the results
for this particular case are derived as corollaries of the results for the general history-dependent
framework.

Further, taking into account the fact that the environment keeps in memory our activities and
decisions, we provide a general sustainable framework (GSF) which introduces a basis for future
analysis in environmental and sustainable issues and encompasses many existing models in the en-
vironmental literature (including circular economy models). It is designed in a very amenable and
flexible manner so that it can be adapted to many contexts and one can easily remove or add different
effects that will be needed to be addressed. The mathematical results (including existence of a solu-
tion and dynamic programming tools) are derived as an application of our general history-dependent
(GHDF) framework and can be directly used.

Environmental and sustainable variables in the economy can be interpreted as being influenced
by (the memory of our past) decisions. Through such a point of view, our framework fits many
environmental and sustainable model, including circular economy models.

Circular economy (CE) is an important issue on current policy agendas worldwide (Abad-Segura,
de la Fuente, Gonzalez-Zamar and Belmonte-Urena[l], Fitch-Roy, Benson and Monciardini [12],
de Melo, de Oliveira, de Sousa, Vieira and Amaral[9])?, CE aiming to increase the efficiency of
resources use to achieve a better balance and harmony between economy, environment and society
(Ghisellini, Cialani and Ulgiati[15])3. Among scholars, discussions and ideas about CE date at least
back to the second half of the the twentieth century (Boulding[5], Pearce and Turner [34]). The
conceptual and theoretical CE understandings as well as CE strategies and implementations are
still currently discussed (Andersen[2], Kirchherr, Reike and Hekkert[24], Kalmykova Sadagopan and
Rosado[19])* Nevertheless, CE is most frequently depicted as a combination of reduce, reuse and
recycle activities (Kirchherr, Reike and Hekkert[24]), but also design, implying a focus on the entire
life cycle of the processes the interaction between the process and the environment and the economy
in which it is embedded (Ghisellini, Cialani and Ulgiati[15]). Although not systematically, a large
strand of research analyze CE interlinked with sustainable development (Ghisellini, Cialani and
Ulgiati[15], Ritzén and Sandstrom[35]%). The Ellen Mac Arthur Foundation Report[28] thus aimed

2((a enlever)) cf aussi European Commission|[7, 8], China 2008 Circular Economy Promotion Law of the People’s
Republic, cf comparaison Europe/China dans McDowall et al.[30]

3((a enlever)) “By promoting the adoption of closing-the-loop production patterns within an economic system
Circular Economy (CE) aims to increase the efficiency of resource use, with special focus on urban and industrial
waste, to achieve a better balance and harmony between economy, environment and society” ; “over the entire life
cycle of any process as well as at the interaction between the process and the environment and the economy in which
it is embedded” (Ghisellini, Cialani and Ulgiati[15])

4((a enlever)) Kalmykova cité 1400 fois

°((a enlever)) ritzen est cité 700 fois



to demonstrate how circular economy principles and strategies significantly reduce greenhouse gas
emissions and calls for integrating efforts to respond to climate change with those to accelerate the
transition to a circular economy.

While incorporating the concept of circular economic activities, George Lin and Chen[14] considers
a social planner twho maximizes an intertemporal utility function, which depends on aggregate con-
sumption and the stock of pollution. This model was later generalized to incorporate the intensity of
recycling by Stengos[22], and to further incorporate recycling habits by Kasioumi[20, 21]. The theor-
etical circular-economy model of economic growth with circular and cumulative causation (CCC)° is
presented in Donaghy[10, 11]. The George Lin and Chen[14]’s model is modified by Donaghy[10, 11]
including physical capital K, human capital HC, labor L, and other materials OM, as productive
factors. A whole section is devoted to such applications and examples.

While we detail extensively some of these models within our framework and discuss how our frame-
work is fitted for future research as it is amenable not only to treat various sustainable and environ-
mental issues but also allows to interlink these with many kind of effects and history-dependencies
(consumption, production, saving and investment, human capital, labor, consumption habits, recyc-
ling habits, pollution, stock of waste, etc).

The research on circular and sustainable economy is currently vivid. Our framework is fitted to
consider and interlink economic, environmental, technological and social issues. The GSF can eas-
ily be adapted to already suggested paths for future research (Donaghyl], Ghisellini .... ) and the
extensive literature that is developing. The way the GSF may incorporate the history-dependence
viewpoint and the memory formation that we introduce open perspectives towards several aspects
and interpretations. In particular, the GSF allows to deal with many important features that are
coming to be taken into account, such as recycling, reuse, reduction, design, habits, activities of
harvesting exhaustible and renewable resources, the assimilative capacity of the natural environment
for (non-recyclable) waste, transport activities, management of resources, interaction between the
processes and the environment, preventative and regenerative eco-industrial development, etc. We
discuss the way existing models are particular cases of our general framework as well as how its flex-
ibility allows to use it in future research. As an example, he sustainable process or design variable r
does not enter directly Donaghy’s utility function in contrast with this possibility which is allowed
in our framework. Our general framework allows to study simultaneously many effects and contexts:
circular models without production waste (Section 4.4), linear economies with production waste, and
furthermore circular economies with production waste, as well as other many effects. These may be
interconnected: our general framework allows to enrich the analysis by treating at the same time
several kinds of history dependencies. This is crucial for sustainability issues as they involve on one
hand habits (consumption habits but also recycling habits), and on another hand pollution stocks
and environmental quality (Mazar[29], Moreau[31]). Such a modelling choice also emphasizes the

5The property of circular and cumulative causation (CCC) was given a formulation by Gunnar Myrdal (Fujita[13],
Donaghy[10, 11])7. “Myrdal characterizes (CCC) as a process in which “a change in one form of an institution will
lead to successive changes in other institutions. These changes are circular in that they continue in a cycle, many
times in a negative way, in which there is no end, and cumulative in that they persist in each round” (Wikipedia,
n.d.). Through CC, initial advantages or disadvantages are reinforced. Examples of CCC include the working of
agglomeration economies (Krugman 1995, Baldwin et al. 2001), path dependence (Arthur 1994, durlauf 2005, Donaghy
2009) and poverty traps (Myrdal 1957, Azariadis and Stachurski 2005). Some contributing factors to positive CCC are
technologies that display increasing returns to scale (Kaldor 1967, Arthur 1994), learning by doing (Arrow 1962) and
human capital deepening (Romer 1986). The rincipal contribution of the original research reported in this chapter is
to intriduce CCC through the abovementioned factors contributing to circularity in a model of economic growth to
characterize the effects it elicits. (Donaghy[10]).



fact that the environment keeps in memory our activities and decisions.

The paper is organized as follows. Section 2 introduces the general history-dependent framework
(GHDF) an easily implementable history-dependent framework (EIHDF), a version of our general
history-dependent framework (GHDF') in which the primer of the problem are defined in an adquate
recursive way so that is both kept easily implementable and as general as needed to be widely
applicable. We provide the results on the existence of a solution and dynamic programming tools
for such models. Section 3 provides a general sustainable framework (GSF) which introduces a
very amenable and flexible basis for future analysis in environmental and sustainable issues and
encompasses many existing models in the environmental literature (including linear and circular
economy models) and is an application of our general history-dependent framework (GHDF). Section
4 details and addresses many examples and applications of our general framework from the related
literature. The proofs are in the Appendix.

2 A general history-dependent framework (GHDF)

We propose a general intertemporal optimization framework in which the instantaneous reward
function depends on memory of all the previous decisions. The formalism we propose allows to
discuss and study the memory process formation (through a function m) as well as the way the
history enters the instantaneous reward function (through a function ¢). We further provide a
general history-dependent framework which is both easily implementable and as general as needed
to be widely applicable. This is allowed by providing a history-dependent framework in which the
primer of the problem, in particular the instantaneous reward function and the feasible set I', are
defined in an adequate recursive way answering both issues simultaneously. We then show that such
a model is a particular case of our general history-dependent framework and the results for this
particular case are derived as corollaries of the results for the general history-dependent framework.

2.1 The general history-dependent model

We propose a general intertemporal optimization framework in which the instantaneous reward
function depends on memory of all the previous decisions. The formalism we propose allows to
discuss and study the memory process formation (through a function m) as well as the way the
history enters the instantaneous reward function (through a function ).

We describe a general framework of an infinite horizon intertemporal history dependent decision
problem of a social planner which may be a problem of optimal growth related to consumption,
saving, conservation, accumulation, pollution or sustainable issues. depending on the objectives and
the constraints of the model.

Let X be a topological space which will be the set of state and control variables of the problem.®. Let
us consider an intertemporal decision process. Let Y be a topological space. We define a memory
function/process by m : X x X — Y such that for time ¢, m(zy, x;41) is the memory for the decision
T € X given xy. By this memory function/process m we will obtain the history of the memories
over time which is modeled in the following way:

8For example, in Morhaim and Ulus[32], X = IR", in George, Lin and Chen[14], X = IR x R™



Let us consider the set [ defined by

1 = {7 = ()7 € (RYN, 7] == sup 2, < +00}
te
At time t = 0, she has a time-0 history denoted by h(®) := (héo), hﬁo), ) = (h( ))°° lying in I2°.

Having on memory m(zo, 1) at time 0, she has then time-1 history equal to ) = (m(xg, 1), ﬁ(o))
at time ¢ = 1. That is, for any time ¢t > 1, time-t history will be

Vi >1,h1 = (hgj));’il = (m(@—1, 1), m(To—2, Tp_1),s ooy m(21, 22), m(20, 1), HO)

The j-th coordinate of the sequence h(®) is denoted by hgt). For j such that 1 < 5 <, the term h§t)
is the decision j periods prior to time ¢, i.e.

B = m(w g, weja)
For 7 >t + 1, the terms hg-t) of the sequence h(®) are defined by the terms of h(©
t
(02 = B

Let us consider an agent facing a time ¢ objective function F' which is defined on a subset Dp of
IFxXxX

F:DpC(¥xXxX)—=R

The feasible correspondence I' : (I3° x X) — X is given such that for any (h,z) € I xX

I'(h,z) C {z' € X, (h,z,2') € Dy}

Assuming a fixed discount factor 5 € (0, 1), for initially given state stock xy > 0 and time-0 history
ho e [5°; with feasible state and control variables at time ¢, that is, satisfying the process z;4; €
L(h®, z,), for every t > 0, the general framework optimization problem can then be written as
follows:

Max Z BtF( () xt,$t+1)
t=
Prrm(i0,z0) ={ st W20 i1 € L0, )
Vt Z 17 h - ( (xt717 xt), m(xt727 'thl), ..... ; m(l‘l’ I2)7 m({EO’ 1‘1)7 h(o))

zo > 0 and A e [ are given

2.1.1 The problem

Let X,Y be topological spaces. Let us consider F' : X x [* x X — IR the instantaneous reward
function, m : X x X — Y the memory function and the (fixed) discount factor 3 € (0,1). Let
zo € X and b0 € [$° be given. Let us consider the problem

+oo ~
Maximize Y B'F(h"D, xy, z441)
=0

;0 — -
Prsm(x0, 77) s.t. Yt > 0,21 € D(RD 2)

vt 2 17 }Nl(t) = (m(xtfla xt); m<xt727 Q;t,l), """ ) m(SE17 1:2)7 m(x()? xl)’ E(O))



2.1.2 Notations and feasible sets

DEFINITION 2.1.— For any giwen initial data o > 0, and initial time-0 history hO 15, the
feasible set H(k:o, h(©) ) is defined by the set of sequences feasible from xq and h%), i.e. for any o > 0,
for any h© e I,

(Y, 20) = {& = (z,)[% € X]N Vt > 0,241 € D(RY, 2,), MY = (m(xy, 241), )}

The process is analogous as usual. The feasible set is defined from xy but here also from the given
(infinite) sequence h(©. Once z; is chosen in the feasible set ['(xo, B(O)), the sequence R is updated
from the current chosen variable x; and the given variable zy. Then, x5 is chosen given x; and h(v)
in the feasible set I'(zy, 71(1)). And so on, at time ¢ + 1, given x; and h® , the variable x;,; must be
chosen in the feasible set I'(zy, iNL(t)). Once x4y is Chosen at time ¢ + 2 Zyio 1 chosen given xy g
and A that has been updated from the previous history sequence h® and the variables (x4, Tig1).
Such a process allows to keep decisions in memory while chosing the variable x; at each time ¢.

For a sequence = (1;)°° € I1(ko, h?), we denote by U(Z) the objective i.e.

“+o00

U@E) =Y BFOY), 20, 2041)

t=0

2.1.3 Assumptions

We set that (F,T") satisfies the set (A) of assumptions if the following assumptions (F') on the feasible
set, (A) on the instantaneous function, and (M) on the memory function are satisfied

(F)
(F1) I' is a continuous nonempty compact-valued correspondence from X x (%° into X.

)
F2) There exists a > 0,a # 1 and @' > 0 such that for any x € X and any history h e g
' €T(h,x)= ||| <d|z]| +a

(A) ~ )
(A1) Yoo > 0 and A £ 0,37 € TI(R©), z0) such that U(F) > —oco.
(A2) There exist a € IR with a < 1, a; € IR" and a continuous’ function a; : X — IR such that
for any zo > 0 and h(® € [%°, for any feasible sequence & = ()% € I(h(®, x4) and its associated
history h®, for any t > 0, )

F+<h‘(t)7 T, 1) < ar(xo)a’ + as
(M)
(m1) The function m is continuous.
2.1.4 The objective is well-defined

The next result shows that, under the set of assumptions (A), the objective function of the optim-
ization problem P 3., (h(*) 1) is well-defined. The proof is given in the Appendix.

9This continuity assumption is needed to prove the upper semi-continuity of the value function (Proposition 4.3).

7



PROPOSITION 2.1.— Assume (A) and let xy € X and Lo 5 be given. Then for any feas-

- T ~ -
ible sequence T = (1) € (A, z0), the limit! Tlim S BYF (A ay, mpq), with VE > 1,00 =
—+00 =0
(m(@—1, ), M(Ty_g, 1),y oy M1, T2), Mo, 1), AO)), is well-defined.

The proof can be found in the Appendix.

2.1.5 Existence and uniqueness of the solution

In this section, we give a proposition which shows the existence of a solution to the optimization
problem P g (2o, h(o)). The uniqueness is obtained under additional assumptions, requiring strict
concavity of the instantaneous function F'. The proof is given in the Appendix.

PROPOSITION 2.2.— Assume (A) and assume that TI(xg, h®) # 0. Then there exists an optimal
solution. Moreover, if F' is jointly strictly concave in (y,x,x') on I x X x X, then the solution is
unique.

We give the existence and uniqueness results in a general framework, in particular without any
differentiability assumptions. The strict joint concavity of I’ allows to guarantee uniqueness.

The proof can be found in the Appendix.

2.1.6 The value function and Bellman equation

We now define the value function of the optimization problem. We show that under the set of
assumptions (A), dynamic programming tools can be used to study PFﬁ,m(fL(O), xg). We first study
the properties of the value function. We then provide an appropriate set of functions on which the
Bellman operator has a unique fixed point which is the value function.

DEFINITION 2.2.— The value function V' is defined on I x X by for any (ﬁ(o),mo) el xX

+oo ~
Maz > BF(hYW, 2, 1441)

=0 ~
V(RO zy) = st Vt>0,2, € D(RD ;)
vt > 1,00 = (m(zi_1, 20), m(2_9, T_1), oo, m(x1, 22), m(zg, 1), HV)

hO ¢ [ and xy € X are given
PROPOSITION 2.3.— Assume (A). Then the value function V is upper semi-continuous.

The proof of this proposition can be found in Appendix.

2.1.7 Properties of the value function

The next proposition states some further properties on the value function and the proof is given in
Appendix. These properties, together with the upper-semi continuity, will provide an appropriate
set of functions to consider for dynamic programming tools.

10j e. the objective function



PROPOSITION 2.4.— Assume (A). Then the value function V' satisfies
(i) Vxo, KO, & € TI(hD), z), Timy o BV (R, ) < 0. )
(i3) Yo, h\V, and ¥z € TI(h®), , z¢) such that U(F) > —oo, limy_, ;s BV (RD, 2,) = 0.

The proof can be found in the Appendix.

A standard proof (see Theorem 4.4 p.75 Stokey, Lucas and Prescott[41]) allows to show the following
result.

PROPOSITION 2.5.— Assume (A). Then T* is an optimal solution if and only if
vt > 0,V(RY, 7)) = F(0, 2}, 2y ,) + BV (R, 27,)
where B*O = (m(z:_ |, xF), m(xt oy, xt ), oo, m(xt, k), m(x, 7)), h©)
Let B be the Bellman operator, i.e. B : F(I x X,IR) = F(I¥° x X,IR) be defined by

Vw € F(IF x X,R), Bu(h,z) = max ){F(ﬁ,x,x') + Bw((m(z,z"), h), ')}

'€l (h,x

DEFINITION 2.3.— Let F,(I° x X, IR) be the set of upper semi-continuous functions w € F(I5° x
X, IR) such that ) o )
(1) Yo € X, ¥z € (A, xo),tliin Btw(h®, z,) <0,

—+oo

with h® = (m(zs—1,2¢), (242, T¢-1), oo, m(x1, T2), M(T0, 1), iL(O)) .
(i1) Yoo € X, V7 € (A, 2¢) such that U(F) > —oco, one has 1tli1r+n Btw(h®, 2,) =0
—+00

2.1.8 The value function is the unique fixed-point of the Bellman operator

We now finally state that the value function is the unique fixed-point of the Bellman operator on
this set of functions. The proof is given in Appendix.

PROPOSITION 2.6.— Assume (A). Then the value function V is the unique fized-point of the Bell-
man operator on the set of functions Fy,(I5° x X, IR).

Finally, this shows that dynamic programming tools can be used to deal with general history-
dependent optimal growth models.

2.2 An easily implementable history-dependent model (EIHDF)

In this section, we provide a general history-dependent framework which is both easily implementable
and as general as needed to be widely applicable. This is allowed by providing a history-dependent
framework in which the primer of the problem, in particular the instantaneous reward function and
the feasible set ', are defined in an adequate recursive way answering both issues simultaneously. We
then show that such a model is a particluar case of our general history-dependent framework and the
results for this particular case are derived as corollaries of the results for the general history-dependent
framework.



2.2.1 The problem

Let X,Y be topological spaces. Let us consider F' : IRY x X x X — IR the instantaneous reward
function, m : X x X — Y the memory function and the (fixed) discount factor 5 € (0,1). Let us
consider an adjustement level function ¢ : I3® — RY, with N € IN. Let zop € X and h® e [ be
given. Let us consider the problem

Maximize Z ﬁtF( (fz(t)),xt,xtﬂ)

0)y — t=0 -
PF[‘m(x(h h ) s.t. Vit 2 O,$t+1 € F(h(t),.ft)
vt > 1,0 = (m(ai_y, 2), m(T_g, 241), ooy m(1, 22), m(zg, 1), hO)

est-ce que c’est RY ou XN ?

Recall that for any given initial data zy > 0, and initial time-0 h1st0ry Lo ¢ 5%, the feasible set

I (Ko, RO )} is defined by the set of sequences feasible from z, and RO ie. for any zy > 0, for any
hO €12,

H<h(0)>$0) {7 = ()3 € X]N Vt > 0,241 € F(h() t); pUH = (m(xtaxt+1)7il(t))}

2.2.2 Assumptions

Let us give a set (A') of assumptions: (F) on the feasible set, (A’) on the instantaneous function,
and (M) on the memory function.

(A”)
~ ~ Too ~
(A1) Vzg > 0 and h® #£ 0,37 € TI(hY), z0) such that Y B'F(¢(h"), 24, 2441)) > —o0.
(A
ti

t=0
2’) The function ¢ is continuous and there exist a € IR with a8 < 1, ay € IR" and a con-

nuous'! function a; : X — IR such that for any zo > 0 and h(® € [, for any feasible sequence
i = (2)% € TI(h?), ) and its associated history h(®"), for any t > 0,

F+<¢(h(t))v T, xt—i—l) < a (l‘o)at + a9y

2.2.3 An easily implementable case

An easily implementable case is when the function ¢ : I2° — RY, with N € IN can be defined
recursively through a function G : Y x RN — IRV, i.e. for any v € Y and any h € [ >, as'?

90(07 iL) = G(U> @(iL))

and when the correspondence I' can be defined (and easily calculated) by ¢

with ¢ : IRY x X — X is given'

1 This continuity assumption is needed to prove the upper semi-continuity of ’Ehe value function (Proposition 4.3).
2In the problem, we then will have for any t > 1,o(h(Y)) = G(m(zi—1, 1), (A1)
13In the problem, we then will have for any ¢ > 0,T(h®"), z,) = g(o(h®), zy)
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The problem is then written

(

400 ~
Maximize Y. B'F (¢(h"W), x4, 2441)
=0 5
- 0y _ s.t. Vt > 0,21 € T(RD, 2,)
Frm (70, RT) = vt > 1,00 = (m(w oy, @), m(e g, Ti1), e, ma1, 22), m(wo, 21), hO)
vt > 1, 0(hM) = G (m(zs-1, 31), p(A*))
L zo >0 and A € [ are given

with Vt > 1, gp(iL(t)) = G(m(xt_l, Ty), gp(ﬁ(tfl))) and F(ﬁ(t), z) = g(p(h®), x,).

2.2.4 A particular case of our general history-dependent framework

It is a particular case of our general history-dependent framework. Let us define the following
instantaneous reward function F':1° x X x X — IR by

A~

F(h(t);$t7$t+1) = F(@(ﬁ(t))vxtaxtﬂ)

It is straightforward to check that the problem Pﬁanm(xo, ﬁ(o)) is equivalent to the general history-
dependent problem Pp. . (o, h©) and that (F,T) satisfies the set (A) of assumptions (by (A’)),

2.2.5 Theorem/proposition (existence d’une solution, programmation dynamique etc)

The following results are then derived as corollaries of the ones previously shown for the general
history-dependent model. Assume (\A’) in this subsection hereafter.

COROLLARY 2.1.— Assume (A"). The problem P;7F’m(xo,ﬁ(0)) is well-defined. Assume moreover

that T1(xo, ﬁ(o)) # (). Then there exists an optimal solution. Moreover, if F' is jointly strictly concave
in (y,x,x') on ¥ x X x X and ¢ is linear, then the solution is unique.

DEFINITION 2.4.— The value function V is defined on I x X by for any (ﬁ(o),azo) el xX

+o0 ~
Maz 37 ' F(p(h"), 2y, x441)
t=0 N
V(RO zg) ={ st VE> 0,240 € (WY, 1,) ]
Yt > 1,0 = (m(wpq, 2e), m(e—2, 1), ..o m(21, 22), (o, 21), hO)

R €1 and xo € X are given
COROLLARY 2.2.— Assume (A’). Then the value function V' is upper semi-continuous.

COROLLARY 2.3.— Assume (A’). Then the value function V satisfies
(i) Vo, h9, 7 € TI(h), 2¢), limy_, 1o BV (R®), 2,) < 0.

(ii) Yo, bV, and ¥z € TI(hY),  z¢) such that U(F) > —oo, limy_; ;o BV (RD, 2,) = 0.

COROLLARY 2.4.— Assume (A’). Then &* is an optimal solution if and only if

Vi > 0,V(*0, 27) = F(o(h*®), a7, a70) + BV (B, a7y )
where B*® = (m(x;_y, 27), m(x} o, 77y), ooy m(a, 23), m(af, 27), RO)

11



Let B be the Bellman operator, i.e. B : F(I° x X,IR) — F(I¥° x X,IR) be defined by

Vw € F(I¥ x X,IR), Bu(h,2) = max {F(p(h),z,2") + pw((m(z,a’),h),z')}

x' €l (h,z)

= max {F(gp(ﬁ)w,x’)+ﬁw((m(x,:€'),}~l),$/)}

z'eg(p(h),z)

DEFINITION 2.5.— Let F,(I2° x X, IR) be the set of upper semi-continuous functions w € F(I5° x
X, IR) such that . o )
(1) VYoo € X,V¥2 € (A, xo),tligl Btw(h®, ;) <0,

— 400

with b = (m(ﬂft—bﬂ?t),m(ﬂ?t—z,xt—1)7 ----- ,m(x1, 2), m(xo, T1), 71(0)) ~
(ii) Yao € X,VZ € TI(h), 24) such that U(T) > —oo, one has th+m Btw(h®,z,) =0
—+00

COROLLARY 2.5.— Assume (A"). Then the value function V' is the unique fized-point of the Bellman
operator on the set of functions F,(I x X, IR).

We next propose a general sustainable framework that provides a basis for future research, including
environmental and sustainable analysis. It is a particular case of our general history-dependent
framework. This illustrates how our general history-dependent framework can be used to deal with
many economic issues.

3 Application: a general sustainable framework (GSF)

In this section, we present a general sustainable framework. It provides a basis for future analysis in
environmental and sustainable issues. It is designed in a very flexible manner. It can be adapted to
many contexts and one can easily remove or add different effects that are needed to be addressed.
The mathematical results (including existence of a solution and dynamic programming tools) can
be directly used. They are derived as an application of the general history-dependent framework
presented in the previous section.

It encompasses many existing models in the literature. The next section is devoted to applications
((CHANGER “applications” en “examples” ?7)): we detail extensively some of these models within
our framework and discuss how our framework is fitted for future research as it is amenable not only
to treat various sustainable and environmental issues but also allows to interlink these with many
kind of effects and history-dependencies (consumption, production, saving and investment, human
capital, labor, consumption habits, recycling habits, pollution, stock of waste, etc).

3.1 The model

We consider an economy in which a unique final good is produced using two factors of production.
The sustainable inputs obtained from the sustainable process (from waste, recycling actions, reuse,
etc) are denoted by & and the other inputs (as polluting resources, capital, human capital, labor,
other materials, etc) are denoted by k. At each date ¢, the production level g, is thus given by the
production function f depending on & € IR and k; € IRM (with N, € IN) as

~

Yt = f(gh Kf)

12



In this economy, the representative consumer cares for the state of environment and sustainability.
She derives utility from consumption ¢;, from the sustainable process or design r; (as for example the
recycling level), and from environmental and sustainability variables E; (which can be the stock of
pollution, the recycling habits, etc). These environmental and sustainability variables depend on all
previous decisions-history, thus inducing instantaneous history-dependent preferences. At each date
t, the instantaneous utility of the representative agent thus depends on ¢, 7 € IR and E, € IRV®
(with Ng € IN) as

U(Ct, T, Et)

The economy accumulates waste. Indeed, production and consumption generate discards. Discards
generated from production come both from the production process itself and the use of the polluting
input for producing, so the level @p of discard from production is a function of the production level y;
and the other inputs level k;. The level D, of discards from consumption depend on the consumption
level ¢;. All what is produced (y;) and all discards that are neither consumed (¢;), invested (i;) nor
used in the sustainable process (r;), accumulate as waste:

A

Sty1 — St = JE(ft, Ke) + ﬁp(?/t; ki) + Deler) — e — iy — 1y

with r, depending on the instantaneous waste stock s; and on the environmental and sustainability
variables F;. This is modelled through a function R so that we have r; = R(s;, F;) such that for all
s, B, one has 0 < R(s, E) < s. The investment ¢, depends on the instantaneous and the next period
input levels, i.e. i, = Z(&, kg, 41, e41). The waste accumulation dynamics is thus given by

St41 — St = f(ft, /it) + Z517(3/167 K;t) + ﬁc(ct) — Ct — j(ft; Kty §i41, /ft+1) - R(St, Et)

The environmental and sustainability variables E; evolve in function of their previous state and the
current decisions. The law of motion of the environmental and sustainability variables is thus defined
through a given function G : IR x IR™ x IR x RM® — IRN® by, at each date t,

Ei = G((5t> /%Ct)a Et)

Given the initial stock of waste sg, available inputs kg, and initial environmental and sustainability
variables Fjy, the representative agent solves the following optimization problem

( “+o00

Maximize Y Stu(c, e, Ey)
=0

st. VE> 0,

P = St41 — St = f(fn /ft) + Dp(yta /it) + Dc(ct) — C — I(fta Ky St /‘ft+1) - R(Sn Et)
By = G(St, fft>Ct), Et)

re = R(se, Er) € [0, s4]

So, ko > 0, Ey > 0 are given

In a sustainable economy, a key assumption is that production involves an input which is obtained
through sustainable actions. Here, it is assumed that

& = R(se, By)

13



rFhen, by defining f(sq, k¢, Ey) == f(R(st, Ey), ki), Dp(se, k) = ﬁp(f(st, ki), k) and Z(sg, Ky, Sg11, Keg1) =
Z(R(st, Et), Kty R(St41, Et+1), Ket1), the problem is written
( —+o00
Maximize Z ﬁtU(Ct, Tt Et)
=0
s.t. Vt >0,
P =< Ser1— St = f(5e, ke, Bt) + Dy(se, k) + Delcr) — ¢ — L(5e, ke, Se1, Kev1) — R(St, Ey)
Et+1 = G((Sta K, Ct)7 Et)
Ty = R(St, Elt) € [O, St]
S0, ko > 0, Ey > 0 are given

\

This framework can be easily adapted to remove or add any environmental and sustainablity variables
E related effects, as for example the ones played by recycling habits, or pollution, etc, adding or
removing them in the preferences and corresponding accumulation laws of motion. For simplicity of
exposition, we assumed that £ and s belong to IR but the framework can easily be adapted to deal
with several kinds of sustainable inputs and several kinds of waste that may play different roles in
the economy. Linear economy models are encompassed by assuming there is no input coming from
any circular process (i.e. all the functions involved are constant with respect to £ and there is no R
involved). This will be more extensively discussed afterwards.

3.2 Assumptions

Let us assume that the function ¢ — ¢—D,(c) is bijective and let us define the function C' : R — IR
by for all (s, s, s, k', E) € R™ (with N, := 2+ 2N, + Ng),

C(s,k, 8K, E) = (Id—D.) " (f(s,k, E) + Dy(s, k) — s = L(s,k,5, k') + s — R(s, E))

This gives the consumption level as a function of the stocks of waste, the inputs, and the environ-
mental and sustainablity variables.

The general sustainable problem is equivalent to

/

+o0o
Maximize Y Su(C(st, K¢, Sea1, Kir1, Ei), R(st, Er), Ey)
=0

s.t. Vt >0,

P = C (54, ki, Siq1, kg1, ) >0

Vt >0, B = G((8¢, ke, O(¢, e, Sea1, K1, By)), Ey)
R(st, Er) € [0, s4]

So, ko > 0, Ey > 0 are given

\

Let us consider the following set S of assumptions!®.

(S1) The functions u, f,D.,D,,Z, R, G are continuous, discards are bounded (both below and from
above), and the function ¢ — ¢ — D.(c) is bijective.
(S2) (i) There exists a bounded function E : R™**"2 — IR such that for all (s, s, s, x’, E) € R,

C(s,k,8,k',E)>0=|(s,r)| < E(s,k, E)

14 ((enlever cette footnote)) on a besoin de supposer que , z > 0 pour compacite de T

La partie recyclee R(mi(x),p(h)) du waste s; doit etre plus petite que s;, autrement dit la partie non recycled
NR(mi(x), ¢(h)) = st — R(m1(z), (h)) > 0 doit etre positive (ou nulle)

14



(ii) There exists a > 0,a # 1 and @’ > 0 such that for all (s, x, F) € R™**Ve
E(s,k, E) <d|(s,5)| +a

(S3) There exist a € IR* with a8 < 1, ay € IRT and a continuous'® function a; : X — IR such that
for any zo = (so, ko) > 0 and Ey, for any feasible sequence & = (1,)55 € II(Ey, xo) and its associated
history h®, for any t > 0,

u+<0(5ta Ry St+1, K41, Et)a R(St, Et)7 Et) < al(l’o)at + az

These assumptions are usual (see Le Van Dana[43]). They are not quite restrictive (see Le Van
and Morhaim[25]). They allow to cover situations with unboundedness in the objective function
combined with various types of the feasible set as used in the literature (i.e.with various returns to
scale technology).

They ensure that the assumptions in Section 2.2.2 are satisfied. The assumption that (Id — D,) is
bijective allows to uniquely express the instantaneous consumption in terms of the waste stocks, the
other inputs stocks, and environmental and sustainable variables, and greatly simplifies the nota-
tions. The continuity in (S1) and (S2) (i) ensure (F1) so that I' is compact-valued. The existence
of a function £ in Assumption (S2) (ii) ensures Assumption (F2) and Assumptions (S3) and (S4)
ensure Assumption (A2’).

3.3 The general sustainable framework is a particular case of the general
history-dependent framework

In this section, we show that the general sustainable framework is a particular case of the general
history-dependent framework.

The general sustainable framework is

( 0

Maximize JFZ Biu(C(sy, ke, Sea1s ka1, Er, R(8¢, By), Ey)
t=0

s.t. Vt >0,

P = C (54, Kty S41, g1, £5) >0

Eiq = G((St, R, C(St7 Rty St41, Rt+1, Et)); Et)

R(St, Et) € [0, St]

So, ko > 0, Ey > 0 are given

\

We explain hereafter that the problem is indeed a particular case of our general history-dependent
framework.

Let us define X := R** and z := (s,). Let the memory function m : X x X — Y be defined
with Y := IR***"* by for any (z,2') € X x X !¢

m(x,x') = (z,2")

15This continuity assumption is needed to prove the upper semi-continuity of the value function (Proposition 4.3).
16((a enlever))
m(ze, 1) = (T, Teg1)
(s0 zy := (8¢, 2¢) et xyy1 := (S¢41, 2¢41)). This means that m(zy, x411) = (24, Ter1) = (8¢, 2¢, S¢41, 2e41). For (z,2') =
(s,2,8,2"), we denote m11(x,2') = s,m(x,2') = x, m2(x,2’) = 2’. Note that m is continuous and satisfies (m1).

15



Let us define the function G by for any (z,2') € X x X, E € RM®,
G((x,7),E) = G((x,C(x,2, E)), E)

The adjustment level function ¢ : I — Z with!” Z = IR is defined recursively in the following
18
way:

Vho e IT,V(x,2') € X x X, o(m(x,2'), h) = G(m(z,2'), o(h))
By defining!?

F(h,@,a') = u(C(z,2', o(h), R(m (x), o(h)), p(h))
and T is defined by for all h € [ and x € IR?,
[(h,z) = {z' € (R")?,C(x, 2", o(h)) > 0}
The feasible correspondence I' can also be written?’
L(h,z) = g(o(h), z)
with the correspondence g : Z x X — X defined for all (k,z) € Z x X by

g(k,r) = {2’ € R* C(z,2', k) > 0}
Then the general sustainable model is written

+o00 ~
Max > B'F (Y, 2y, 2441)
=0

P(h(o),xo) = s.t. Vit Z O, Ti41 € F(iz(t),xt)
vt > 1,0 = (m(ai_y, 2), m(T_g, 24_1), ooy m(y, T2), m(zg, 21), AO)
zo > 0 and h) € [3° are given

which shows that our general sustainable framework fits general history-dependent model. Hence,
the results shown in Section 2 can be applied to the general sustainable problem. In particular, we

"pour I on a One has for all z, ['(h,z) is bounded from below (z € (IR*)?) and by the assumption on the functions
D, f etc T'(h,x) is bounded above.

Z =1R? parce quon a H;1 1 € Ret Pyq € R
'%((a enlever)) VAU € 152, o(hHD) = (p1 (RHD), pa (RIHD))

vﬁ(t+l) S lioa @(E(HU) = é(m(xh Z’t.i,_l), Sp(il(t)))

YTndeed, by the definition of F, then

F(h'Y, 2y, 2041) = u(C(ae, 211, (R D)), R(mi(22), p(hY)), (V)
ie. ~ ~ R R R R R
F(A, 20, 0041) = u(Clae, 2, @2 (BD), @2(hD), R(ma (1), 01 (hD), 2(hD), 02 (B1), 02 (1))

i.e.

F(h 2y, 241) = w(C(se, 20, St41, 241, Py Hi), Rise, Hy, Py), Hy, Py)

20((a enlever)) au lieu de considerer la correspondence I' sur les suites infinies A on peut ecrire le probleme imple-

mentable en definissant la correspondence g sur p(h)
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obtain the existence of a solution and the dynamic programming tools described in Section 2 can be
implemented.

This general sustainable framework can be easily adapted to various contexts and models. In the
next section, we give existing models in the related literature as applications of our framework.

4 Some models and examples

In this section, we discuss how our general framework allows to study issues and models from various
literature strands. As we introduced a general function allowing to model many different memory
processes, general decision variables, objective functions and feasible sets, we are able to encom-
pass many existing models. It generalizes the history-dependent intertemporal optimization models
provided in Morhaim and Ulus[32]. Thus, the applications presented in Morhaim and Ulus[32] are
encompassed, including seminal models dealing with habit formation (Ryder and Heal[17], Rozen[36],
Rustichini and Siconolfi[38], Caroll, Overland and Weil[6]) and satiation (He, Dyer and Butler[16],
Baucells and Sarin[4]), as well as environmental models (Ikefuji[18], Lofgren[27]) and Safi and Ben
Hassen[39]) and optimal management of natural resources (Smulders, Toman and Withagen[40],
Ulus[42]). Moreover, it encompasses circular economy models (George, Chi-ang Lin and Chen[14],
Kasioumi[20], Kasioumi and Stengos[23]) and circular and causation models (Donaghy[10, 11]).

We next discuss the way these existing models are particular cases of our general framework as well
as how its flexibility allows to use it in future research. Our general framework allows to study
simultaneously many effects and contexts: circular models without production waste (Section 4.4),
linear economies with production waste, and furthermore circular economies with production waste,
as well as other many effects.

4.1 History-dependent optimal growth models with (consumption) habit
formation or satiation

In Morhaim and Ulus[32], a representative agent consumes a single good on periods t = 0,1,2,....
and maximizes her intertemporal utility over the consumption stream ¢ = (cg, ¢1, ....) in [*°. At date
t, the consumer’s instantaneous utility depends on her current consumption ¢;. But it also depends
on her time-t (consumption) history A" which is defined from an initial history h(®) e [5° and keeps
in memory the consumption decisions as follows:

vt > 1,00 = (B2 o= (mr, AOY) = (ot ooy €0, B©)

Her time t-utility u : D, C (RT x R) — IR U {—o0} changes endogenously from her time-t con-
sumption history 2® through the adjustment level function ¢ : I*° — R with R = (R")" (where
n > 1). For initially given capital stock ky > 0 and time-0 history ONS [, the general framework
and optimization problem, with f : IR" — IR" the production function, k; the capital stock at time
t, and g € (0,1) the fixed discount factor , is given as follows:

“+o00 ~
Maximize > S'u(c, @(h(t)))
t=0

Pu’¢15(k07 iL(O)> = s.t. Vit Z 0, ]ft-‘rl = f(k:t) — Ct, kft Z~O and Ct Z 0
Vi > 1, h(t) = ~(Ct_1’ ...., C1, Cp, h(O))
vt >0, (¢, (b)) € D, C (IRT x R)
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The problem can be rewritten as follows:

+o0 ~
Maximize 3 Bu(7(ky) — kusr, 9(i))
y =0
P8 (Ko, hO) = s.t. Vit >0, ki1 € [0, f(ke)]

vt Z 17 il(t) = (f(kt—l) - ktvf(kt—2) - kt—la ----- >f(kl) - k27 f(kO) - kla il(m)

Ve 20, (f(ke) = ki1, o(h")) € D, C (RT x R)

This is a case in which consumption is kept in memory, which is a function of previous date and
current capital stock decisions. Thus, it means keeping in memory a function of these decisions.
Our general history-dependent framework allows, not only to keep in memory the particular function
defining consumption, but any function of the previous date and current decisions. By this way,
the model provided in Morhaim and Ulus[32] as well as the models presented in Morhaim and
Ulus[32]?! become particular cases of our general history-dependent framework. Indeed, let us define
X=Y=R",zy=kecXforallt=0,...,+o0, andF:lj’f><X><X—>]Rbyforanyl~1€lj’r° and
x, 2 e X,
F(h,z,2") = u(f(z) — 2, o(h))

We define for any decision z’ given x, the memory function/process m : X x X —Y by
m(x,x') = f(z) — '
and for history h € [ and for any = € IR™, the feasible correspondence I' is given by

L(h,2) = {2’ € [0, f(2)], (f(z) —a',p(h)) € D}

The introduction of the memory function m to the modelling allows to explicitly study many memory
processes. Here, it is done by defining m which associates the consumption to the decisions.

4.2 History-dependent optimal growth models with environmental ef-
fects

History-dependence is important in environmental economics models. Morhaim and Ulus[32] already
underlined that their general framework allows to deal with environmental effects. We show in this
section how Lofgren[27]’s model writes in our new general history-dependent and further describe
how the discrete time version of Ikefuji[18]’s model is also encompassed.

Lofgren[27] proposes a model with environmental quality habit formation and in which a consumption
good moreover causes a negative external effect on the environment. The social planner maximizes the
utility given the negative effect of the consumption good on the environment and taking into account
that there is habit formation in environmental quality. The instantaneous utility w(n, x4, 24, S¢)
depends on n; which is the environment that displays habit formation, x; the “dirty” consumption
good (the environmental bad), z; the “clean” consumption good and s; the habit level related to the
environment. The following relations are satisfied with v € (0,1),5 € (0,1),d € (0,1), y being an
exogenously given income and n is a given initial environment

Ng=mn — YTy
2t =Y — Ty
St11 = 67% + (1 - 5)815

2lincluding Ryder and Heal[17], Rozen[36], Rustichini and Siconolfi[38], Caroll, Overland and Weil[6], He, Dyer and
Butler[16], Baucells and Sarin[4], Tkefuji[18], Lofgren[27], Safi and Ben Hassen[39].
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Lofgren[27)’s model is encompassed in our general framework. Let us define X =Y =R* 2, =k, €
X for all t =0...00, and ¢ is defined through the following recurrence relation

Vee IRY,Vh € 122, ¢((c, h)) = Bn+ (1 —8)p(h) — e

Let us define F': [?° x X x X — IR by, foranyizelio and z,2' € X,

F(h,z,2') == u(n — y(f(z) = a'), f(x) = 2,y = (f(z) — @), p())

We define for any decision 2’ given z, the memory function/process m : X x X — 'Y by m(z,2’) =
f(z) — 2/, and for any h € I° and = € IR™, the feasible correspondence I is given by

L(h,2) = {2’ € [0, f(@)], (n = 7(f(x) =), f(z) = ',y = (f(2) = 2), () € Da}

We further describe how the discrete time version of Ikefuji[18]’s model is encompassed in our frame-
work. Tkefuji[18] studies habit formation in consumption and pollution abatement activities when
agents derive disutility both from the habit stock and pollution. The pollution P; in period t is
generated by the capital stock k; used in production and reduced by abatement activities a; in the
same period. The problem is written as folllows.

+oo
Max /BtU(Ct,Ht,Pt)
t=0

P(hg, ko, mp) = st. Vt>1,Hyyy =pe+ (1 —p)Hy and P, = (’;—z)d)
\% Z O,kt+1 :Akt—ct—at—kt
ko > 0,mq > 0 and hg are given

where ¢; denotes the consumption in period ¢, H; denotes the consumption habit, and P, is the level
of aggregated pollution in the economy.

In order to cover this problem in our general framework, let us define X = (NIR+)2,Y = IR", and
z; = (ky,a;) € X for all t =0...00. The function ¢ : 1% — IR is defined by ¢(h?) = hy and

Vh € 1°,Ye € Ry, p(c, h) = G(c, p(h)).

with the function G defined by G(c,y) = pc+ (1 — p)y.
Also, let us define F': [ x X x X — IR by, for any he [ and z,2' € X,

F(h,z,a') == u(f(m(z)) — m(a'), p(h), (Wl(x))qs)

ma(x)
We define for any decision 2’ given x, the memory function/process m : X x X —Y by
m(z, ') = f(m(x)) — m(a)

and for history h € [ and for any = € IR™, the feasible correspondence I is given by

= ~ 1 ,T) ¢
D(h, ) = {a' € [0, f(mi ()] ma(a’) > 0, (f(ma(2)) — m (@), (B, %Ex)) ) €D,)
These two examples illustrate how our framework is on one hand as general and easy to use as needed
and on the other hand allows to keep the effects to be studied visible and interpretable, specially
to deal with environmental economic issues. In the next section, we show how it is also fitted to
optimal management of natural resources.
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4.3 Optimal management of natural resources

Smulders, Toman and Withagen[40] and Ulus[42] present models referring to the optimal management
of an exhaustible natural resource like oil, coal, gas and etc. In these models, there exists a single
planner who manages the decision of extraction and consumption of a single exhaustible natural
resource on periods t = 0,1,2,.... in order to maximize her intertemporal utility. At each period t,
the instantaneous utility depends on its consumption ¢; and also on the stock of the natural resource,
which is denoted by s;. The output 3; € IR, is produced from capital (k;) and extracted quantity of
resource (r;) (or the extraction flow of natural resource per unit of time) by a production function
f IRy xRy — Ry where y; = f(k¢, 7). The output is either consumed as ¢; > 0 or saved as capital
to the next period as k., satisfying:

Ct + kt—l—l S f(kt,Tt) + (1 - 5>kt with kt Z 0

where ¢ stands for the depreciation rate of capital.

For initially given stocks of kg, sg, 70 > 0 and § € (0, 1) the fixed discount factor, the problem of the
planner is given as follows:

+oo
Maximize Y S'u(cy, s¢)
t=0
P((ko, 7'0), So)) = s.t. Vit 2 O, Str1 = S¢ — Tt

Vt Z O, O S Ct = f(k:u Tt) + (1 — 5)kt — kt+1
S0, ko, 79 > 0 are given

which can be rewritten as

+o0
Maximize Y SB'u(f (ki) + (1 — 0)ke — kg1, St)
=0

'P((ko, o), 30)) = s.t. Vit >0,8.1=8—1
Vi Z 0,0 S kt+1 S f(k’u?"t) + (1 — (5)kt
S0, ko, 9 > 0 are given

Let us define G by G(s,7) := s — r. Note that our framework allows to consider more general forms
of G, for example if it comes to taking into account the resources regeneration (whether naturally or
otherwise). This model can be written similarly to Morhaim and Ulus[32] framework, defining ¢ by
the law of motion

vVt > 0, p(AT) = G(ry, p(R1))

so that the instantaneous utility u(cy, s¢) is u(c, ©(h®)). By defining 2 such that ¢(h®) = s and
for any ¢ > 0, AV such that h**V) = (r,, A®), the model can be written

+oo ~
Maximize > Btu(f(ke,re) + (1 — 0)ke — kiv1, o(hD))
=0

st V> 0,k € [0, f(ke o) + (1 — 6)k]
vt > 0,hHY = (v, ..., ()

Puv‘pvﬁ (k[)’ iL(O)) =

The model can be written in our general framework by defining x := (k,r) and the memory function
by m(x, ") = me(x). Let us define the objective function F' by, for any (z, ', h),

F(z,a',h) = u(f(mi(@), mo(2)) + (1 = O)m(z) — m(2'), p(h))
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and the feasible set by, for any (h,x),

L(h,2) = {2',0 < m(2) < f(m (@), mo(2)) + (1= )mi(2),0 < ma(a’) < p(h)}

In the next section, we show that our results are also fitted for circular economy issues.

In the next section, we show that our results are also fitted for circular economy issues.

4.4 Circular economy (CE) and circular and cumulative causation (CCC)
models

Circular economy is most frequently depicted as a combination of reduce, reuse and recycle activities
(Kirchherr, Reike and Hekkert[24]), but also design, implying a focus on the entire life cycle of the
processes as well as the interaction between the process and the environment and the economy in
which it is embedded (Ghisellini, Cialani and Ulgiati[15]).

In this section, we show that the circular economy models provided by George, Chi-ang Lin and
Chen[14], Kasioumi and Stengos[22], Kasioumi[21] and Donaghy[10, 11] are particular cases of our
general sustainable framework. We first consider circular economy models without recycling habits
(George, Chi-ang Lin and Chen[14] and Kasioumi and Stengos[22]), then circular economy models
with recycling habits (Kasioumi[20]). We also show that our framework is adapted to the circular
and cumulative causation models as developed by Donaghy[10, 11] .

4.4.1 CE models without recycling habits

In this section, we consider the circular models without recycling habits proposed by George, Chi-ang
Lin and Chen|[14], and Kasioumi and Stengos[22].

George, Chi-ang Lin and Chen[14] and Kasioumi and Stengos[22] consider a closed economy with
zero population growth. They abstract from capital accumulation and technical progress??. The
social planner maximizes an intertemporal utility where the instantaneous utility u(c, P) depends
on consumption ¢ and the stock of pollution P. The output is produced via a (concave) production
function ¢ using two factors of production, one which corresponds to the rate of use of the recyclable
resource and another (z) corresponding to the rate of use of the environmentally polluting resource.
Output produced in any given period but not consumed or used for the employment of the polluting
resource, accumulates as (potentially recyclable) waste. Recycling turns waste into a useful factor
of production: a proportion b of the waste stock s with intensity of recycling 7 is supposed to be
recycled each period. George, Chi-ang Lin and Chen[14]’s model is a particular case of Kasioumi
and Stengos[22| in which the intensity of recycling 7 is equal to one. The social planner solves the
following optimization problem

+00
Maximize Y. S'u(c, py)
=0

73((30, zo),po) = s.t. Vit > 0,801 — 8¢ = ¢(Thsy, z4) — ¢p — azpp1 — Thsy
Vt > 0,pp1 — pe = 02 — 6py + (1 — b)sy
80,20 > 0,pg > 0 are given

By defining x := z (thus N, = 1), E = p (thus Ng = 1), f(s,k, E) := ¢(7bs, k), Dp(s, k) := 0,
D.(c) == 0, Z(s,k,5,K') == ar/, R(s,F) := 7bs and G((s,k,c),E) := (1 —0)E + 6x + (1 — b)s,

22ZHowever, our results apply to such models with capital accumulation and technical progress (see Section 4.4.3).

21



both models (George, Chi-ang Lin and Chen[14] and Kasioumi and Stengos[22])) fit our general
sustainable framework.

4.4.2 CE models with recycling habits

In this section, we consider the circular models with recycling habits proposed by Kasioumi[20, 21].
It is an extension of the theoretical work of Kasioumi and Stengos[22], combining elements of the
circular economy model of George, Chi-ang Lin and Chen[14] with the habit formation framework
of Tkefuji[18]. Kasioumi[20, 21] deals with a fixed intensity of recycling while Kasioumi[21] deals
further with an intensity 7(H;) depending (through an affine function 7(H,) := n+rH;) on the level
of recycling habits. Note that our framework fits also recycling intensity functions 7 that are not
necessarily affine. The social planner solves the following optimization problem

p

+oo
Maximize Y. S'u(ce,re, Hy, pt)
t=0
s.t. Vit Z O, St11 — St = (b(T(Ht)bSt, Zt) — C — 2y — T(Ht)bst
Vit > 0,p1 — pr = 02 — opre + (1 — b) sy + pey
Ht+1 — Ht = /,L(T(Ht)bst — Ht)
S0, 20 > 0,pg > 0 are given

P ((s0,20),p0) =

By defining x := z (thus N, = 1), E := (p,H) (thus Ng = 2), f(s,k, E) = ¢(r(me(FE))bs,e),
Dy(s,k) =0, D.(c) =0, I(s,k,s' k') = ar', R(s, E) := 7(m2(E))bs and

G((s,k,¢), E) = ((1 = 8)mi(E) + 0k + (1 — b)s + pc, p((ma(E))bs — ma(E))

these models (Kasioumi[20, 21]) fit our general sustainable framework.

4.4.3 CCC models

The theoretical circular-economy model of economic growth with circular and cumulative causation
(CCC) is presented in Donaghy|[10, 11] as follows. The George Lin and Chen[14]’s model is modified
by modelling capital formation and technical change and including physical capital K, human capital
HC labor L, and other materials OM, as productive factors. The optimization problem for the social
planner is to choose control variables, consumption ¢ and environmentally polluting resource z but
also invesments in physical and social capital to maximize the intertemporal utility function.

Given the functions b : IR — IR accounting for increased efficiencies in recycling (thus depends on
the accumulated recycling experience R € IR), the function ¥ : IR?> — TR characterizing technical
progress in reducing pollution from the polluting resource as a function of human capital deepening
(thus depends on (K, HC) € IR?), the production function ¢, and the instantaneous utility function
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u depending on consumption and pollution (¢, P) € IR?, the model in Donaghy|[10, 11] is as follows?3

+o0
Maximize Y Stu(ct, Pr)
=0

subect to, for all £ > 0,

P Sir1 — St = d(sy, 2, Ky, HCyy Ly, OMy, Ry) — ¢ — azyq
—(Ki — K)(1+ 53) — (HCu — HC) (1 + g575,) — b(Re) s

Py — P=0(K;, HC})zy — 0P, + (1 — b(Ry)) st

Ri1— Ry = b(Ry)sy

S0, 20 > 0, Py > 0 are given

Koy, Ry, HCy, Ly > 0 are given

Let us define k := (2, K, L, HC,OM) (thus N =5), E:=(P,R), Z(s,k, s, k) := am (k) + (ma (k') —
m2(K) (1 + gey) + (mals ) — my(k))(1 + 5;2%5) with for any ¢ = 1,....,5, m; is the i-th projection*
Dy(s,k) =0, D.(c) =0 and R(s, E) = b(m(E))s and G by

G((s,k,c), FE) = (19(%2(11),74(/f))7rl(/i) + (1= 0)m(E) 4+ (1 = b(ma(E)))s, me(E) + b(m(E))s).

The sustainable process or design variable r does not enter directly Donaghy’s utility function in
contrast with this possibility which is allowed in our framework. When the process does not enter
directly in the utility, it suffices to define the utility function @(c,r, M) := u(c, M). This shows that
circular and cumulative causation models fit our general sustainable framework.

4.4.4 On the circular and sustainable economy research agenda

The research on circular and sustainable economy is currently vivid. Our framework is fitted to con-
sider and interlink economic, environmental, technological and social issues. The GSF can easily be
adapted to already suggested paths for future research (Donaghy|], Ghisellini .... ) and the extensive
literature that is developing. The way the GSF may incorporate the history-dependence viewpoint
and the memory formation that we introduce open perspectives towards several aspects and inter-
pretations. In particular, as a by-product, the GSF allows to deal with many important features that
are coming to be taken into account, such as recycling, reuse, reduction, design, habits, activities of
harvesting exhaustible and renewable resources, the assimilative capacity of the natural environment
for (non-recyclable) waste, transport activities, management of resources, interaction between the
processes and the environment, preventative and regenerative eco-industrial development, etc. These
may be interconnected.

ZDonaghy[10] considers the particular functions b(R) = (% + C)_l, YK, HC) = [g — x(ZE)], ule,P) =
['v (weP™ 7’) ] and ¢(s, 2z, K, HC, L, OM, R) = ¥[01(b(R)s) ™7 4+ 02277 + 03K~ + 0,HC™7 + 5L + 6s6OM 7]~
e, m;: R® — R is defined by, for any a = (a;)5_; € R®, 7;(a) = a;
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5 Appendix

5.1 Proof of Proposition 2.1

By the assumption (A), along a feasible path & = (z;)5} I1(z, h), with associated history
h{t) = (m(@e—1, ), (T2, T—1), ... ,m(%,sz),m(%,fEl),h(O)),

Vt, F(hD 2y, 2411) < ay(wo)a + as

Then for all T € IN,

i{)ﬁtF(iL(t)axtaxt—H) < ioﬁt(al(xg)at + as)
= al(x0>§%(a6>t + azéﬂt

since 0 < aff < 1 and 0 < 8 < 1 the conclusion follows.

5.2 Proof of Proposition 2.2

Let us show that the objective is upper semi-continuous and the feasible sequence set is a compact
set of the product topology. By (F), one can check by induction that for any given ky € IR™ and
h® €1, for all feasible sequence & = (z,); € II(AY), x), for all t, 2,1 € T'(hY, z,), we have

t al a/
I _ o t
@ = (ool = =)t +

1—a

Vt, x; < a||zo|| +
1—a

The feasible set H(iz(o), 7o) is included in a compact set for the product topology. Moreover, it is
closed. So the feasible set TI(h(?), z) is also compact.

We next show that the objective function U is upper semi-continuous.

Let us consider a sequence " = {(z)%}, C (A", zy) that converges to & = (1,)7°° € IL(A©, x,).
Note that when n converges to 400, by (ml), the sequence of associated histories V¢ > 1,%7 =
(m(x?_ |, z)", m(x? g, 1), e, m(a?, 23), m(zl, 27), h?)) converges to the associated history Vt >
LAWY = (m(xi1, 20), m(zi—9, T4—1), ..., m(z1, 22), m(z0, 21), RO).

Let us show that E}rn U(i") < U(Z). The notation lim means lim sup.
n—-+0o0

For any t > 0, by (A2), for any & = (2,){% € (A", x,) and with history A®) associated to
z
FH(AY, 2y, 2041) < a1(x0)a’ + ay

and by 0 < a8 < 1, for any € > 0, there exists T such that for any (z;);>° € II(h(®), z), and for any

T =T,
+o0

Z BtFJr(iL(t)» Ty, Teg1) < €

t=T

24



So for any € > 0, there exists 7. such that for any n € IN and for any T" > T,

+o00 —®
ZﬁtF+(hn ,(L‘:L,l’ﬁ_l) S €

t=T

and for any n € IN and for any 7" > T,

s t Aﬁ(t) n .n I t 7@) n .n w t Aﬁ(t) n .n
;)BF(h LT, T ) =t_ZoﬁF(h 7$t’xt+1)+t;BF<h ST T )

(t)
n n
» Lt xt—&-l)

T —~(t) +o0o —~
< S BF(h 2 ap,) + Y BF (A
t=0 t=T
I~
S ZOB F(hn ,ZL’?,QE?_H) +€
t=

By taking n — 400 (and using the continuity of F' in the right-hand side of the above inequality),

n—+400

+0o T

e —~(t) n n 7

im Y FF(ap,ap) < ) BFRY ww) +
=0 t=0

Since this is true for any 7" > 1., by taking T" — 400,

“+o0

+o0
v —~(t) n o.n 7
nggloo Z BF(hm af, afy) < tz; BF(WY, wy, w040) +

Since this is true for any € > 0, by taking ¢ — 0,

_ —~ () iy -

im Y B o, a,) <> BFBY, wy, w041)
t=0

So U is upper semi-continuous on IT(A(©), xo).

By Weierstrass Theorem (Aubin[3], Theorem 5.3.1), since U is upper semi-continuous and II(2(®), z)
is a compact set for the product topology, there exists an optimal solution.

The assumptions that F' is jointly strictly concave ensures the uniqueness of the solution.

5.3 Proof of Proposition 2.3

—~—(©
A direct proof using (A2) can be done. Indeed, let us consider a sequence (h"( ),Ig)n Cl¥xX
that converges to (h(¥),z) € I3 x X, use the fact that z}} converges to x, and let us consider a
—~ (0
subsequence (h”i( ), xy"); such that
—~(0) —~ (0

Tm Ve 2 = lim V(i e

n——4o0o i——+00
Let ¢ > 0. By (A2), there exist iy and T such that for any ¢ > iy and for any 7" > T, and for
—~ (0 —~ (¢
optimal path ("), € H(h”i( ), xy") and its associated history h"i( ),

+o00 T
~0) . ~ () . ~®)
VI(hm " ag') = Zﬁtp(hm LT ) < ZﬂtF(h Co ) e
t=0 t=0
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—~ (0
Fix T' > Ty. The subsequence ("); that belongs? to H(h"z‘( ), x,") can be assumed to converge to
some 7 in II(h(9), z0). By the definition of the associated history and the continuity of m, this implies

—~ (t ~
that (h”i( ))i converges to h®) the history associated to Z.
Let i — 400, by the continuity of F,

T

—_— —~(0) -
lim V(h» m) < § tp(p®
n_lffoo ( ’xﬂ) = r g ( » Lty l’t+1) +e
Let T' — +o0,

Tm V", al) < U@ +e < VRO, )

n—-+4o0o

by the arbitrariness of ¢.

5.4 Proof of Proposition 2.4

One can check (see Le Van and Morhaim[26]) that (F2) and (A) imply that
(H) Vro € X,3V(z) a compact neighborhood of xy in X, Ve > 0,37y such that VI' > Ty, Vg €
V(x0), V3 € TR 2f), one has with h'®) = (m(x}_,, x}), m(x} o, 2} 1), ..o, m(ah, 2h), m(x), 24), hO),

“+oo
Z BIFY (WY 2 2, ) < e
where F*(h,r,r") = max{0, F'(h,r,r")}.

(1) By (H), 3Ty, VT > Ty, V) € V(z0),€ > 0,¥7 € TI(hO), x),

o0 o0
ZﬁtF(ﬁ/(t)v x:t?x;—i—l) < ZﬁtF—i_(iLl(t)v@ax;-ﬁ-l) <e¢
t=T t=T

Let #' € TI(A, xf), T > Ty. For any 3" = (v, ....) € (W'D, 2%, one has (&}, ..., ¥p, ¥l 1, ....) €
(A, z0), and )
BTF(h/(T)7x,T7x,7/“+1) BTHF(h, T+, TPl Tgn) + oo S €

so BTV (hT), 24.) < e which implies (i).

(i1) Vi € TL(h®), zy),
T
—00 <u Z tF LUt,I'H_l) ,8T+1V( (T+1) ZL'T 1)

and

0= lim UF) > BFOD zpz00)] < lim VI 20p)

T—+o0
—0 T—+oo

The notation lim means liminf. From (i) then limp_, o BT“V(h T+ 2p1) =0

— (0
25by the compactness of H(h"'i( ), x5")
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5.5 Proof of Proposition 2.6

The proof that V is a fixed-point of the Bellman operator is standard (see Stokey Lucas and
Prescott[41]). Uniqueness of the fixed point is shown by contradiction. Indeed, suppose there exists
W another fixed-point of B in F;(I° x X, IR). Let us first check that W < V. Let (A, 2) be given.
There exists 2, € ['(h(©), zy) such that W (A, z0) = F(h, z¢, ky) + W (M, 21) and by induction,
there exists a sequence (1;);>; with associated history sequence (h®"), such that for any T,

h(o) , T) ZﬂtF $t7xt+1> + 8" W( , )

Since W belongs to F4(I%° x X,IR), one has taking the limit when 7" — 400, and then by V' being
the sup of the sum

) 2) < ZBtF(ﬁ(t), 2, Ter1) < V(wo, B

Let us now show that V < W. Let 2o € X, h(® € 1. For any & € II(h®, x) such that U(F) > —o0,
one has, with ) = (m(z¢, z1), h(),

WO, z0) = BW (Y, x,)
> F(HO, 20, 20) + B ({0, 7:), KO)), 1)
= F(h9, 2, 21) + W (R, 21)
and so by induction, with Rt = (M1, ), M(Tp—2, T41), ooy M1, T2), M (20, T1), 71(%’

N T
W (ko, h®) > S F(h®, 2y, 201) + BTHW (BT 20,)
t=0
T ~

> lim Y F(AW, zy, 2) + lim BTHW (AT, 20 )

T—+00 41— T—+o0

= U(7)

which implies that W(h©, z) > V(RO z) (since for any & € (R, 20), one has W (R, ) > U(Z)
and V (h(©) zg) is the sup of U(Z) for & in TL(h(), z)).

Finally, this shows that dynamic programming tools can be used to deal with general history-
dependent optimal growth models.
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