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ARTICLE OPEN
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Early markers are needed for more effective prevention of Alzheimer’s disease. We previously showed that individuals with
Alzheimer’s disease have decreased plasma DYRK1A levels compared to controls. We assessed DYRK1A in the plasma of cognitively
healthy elderly volunteers, individuals with either Alzheimer’s disease (AD), tauopathies or Down syndrome (DS), and in
lymphoblastoids from individuals with DS. DYRK1A levels were inversely correlated with brain amyloid β burden in asymptomatic
elderly individuals and AD patients. Low DYRK1A levels were also detected in patients with tauopathies. Individuals with DS had
higher DYRK1A levels than controls, although levels were lower in individuals with DS and with dementia. These data suggest that
plasma DYRK1A levels could be used for early detection of at risk individuals of AD and for early detection of AD. We hypothesize
that lack of increase of DYRK1A at middle age (40–50 years) could be a warning before the cognitive decline, reflecting increased
risk for AD.
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INTRODUCTION
The complex pathologic cascade that leads to Alzheimer’s disease
(AD) begins decades before clinical symptoms develop [1–3]. This
suggests that effective prevention will require predicting who will
develop AD long before the onset of symptoms. Therefore, there
is significant interest in identifying biomarkers for individuals at
increased risk of AD, who can then be targeted with preventive
interventions such as risk factor reduction, behavioural modifica-
tion, and pharmacologic treatment [4, 5].
The kinase DYRK1A is encoded on HSA21 in 21q22.2 [6, 7]. The

gene comprises 151 kb and 15 exons (Ensemble release 90); it
encodes two main protein isoforms of 763 and 754 amino acids.
DYRK1A autophosphorylates on tyrosine, serine, and threonine
residues but phosphorylates its substrates only on serine and
threonine residues. The large number of substrates phosphory-
lated by DYRK1A and the wide range of interacting partners
indicate that DYRK1A is capable of controlling a variety of
molecular processes. These processes underlie several physiologi-
cal functions at different stages of life: during neurogenesis at
early development, in neuronal plasticity during brain functioning,
and during aging [8]. Our previous work showed that plasma from
AD patients has significantly lower DYRK1A levels compared to
controls [9, 10]. We also recently found that plasma DYRK1A can
be used to identify elderly people with subjective memory
complaint who are at risk for brain amyloid β (Aβ) deposits [11]. In
mouse models, our work also showed increased DYRK1A levels in

the brain of older wild-type mice when comparing 4-month-old
with 12- and 17-month-old mice [12]. Similarly, our results in
humans also indicate an age-dependent increase of plasma
DYRK1A levels, which might be protective for aging and cognitive
decline [11].
DYRK1A may participate in different pathways that change over

time, with an initial role during development and then other roles
during adulthood and aging, and may differ across tissue types.
DYRK1A is located on chromosome 21, suggesting this gene may
be overexpressed in cells from individuals with Down syndrome
(DS). DYRK1A transcripts from DS lymphoblastoids are over-
expressed 1.4-fold [13] compared to individuals without DS.
Similar overexpression is observed in mouse models with three
copies of Dyrk1a [14, 15]. The brains of AD patients [16] and
mouse models of AD with cognitive impairment show increased
DYRK1A levels [17, 18], which are associated with increased Tau
phosphorylation that can be reversed with DYRK1A inhibitors [19].
Moreover, in other mouse models with hyperhomocysteinemia-
induced increased liver DYRK1A, brain DYRK1A levels are
decreased [20]. Collectively, these results suggest that low plasma
levels of DYRK1A may be a risk factor for AD in the early stages of
the disease [9, 10].
Therefore, this study tested our previous observations by

analysing plasma samples from the SENIOR cohort of cognitively
healthy elderly volunteers [21] and the SHATAU7-IMATAU cohort
of patients with AD pathology [22, 23]. We also compared levels of
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plasma DYRK1A from patients with various tauopathies in the
SHATAU7-IMATAU cohort: frontotemporal lobar degeneration,
hippocampal sclerosis, and progressive supranuclear palsy and
corticobasal degeneration. Individuals with DS develop dementia
earlier (at 40–60 years of age) than the general population, with
half of DS individuals affected by 55 years of age [24, 25]. Thus, we
also assessed DYRK1A levels in plasma samples from individuals
with DS in a longitudinal cohort from the University of Kentucky
[26].

MATERIALS AND METHODS
Young controls
Plasma samples from young individuals were obtained from Cambridge
BioScience Ltd. (9 Caucasians, 7 Asians, 1 Black, 3 Mixed), from blood
samples collected on heparin; these samples were compared to SENIOR
and SHATAU7-IMATAU cohorts (Table 1) [11].

Middle-aged controls
Blood samples from parents of individuals with Down syndrome
(Aneuploidy program [13]) have been collected on sodium citrate and
collected plasmas were used to compare with patient cohorts.

SENIOR cohort
The SENIOR cohort is a group of cognitively healthy volunteers aged 50–70
years at the time of inclusion who agreed to annual examinations over 10
years [21]. In March 2012, the NeuroSpin Center in Saclay, France, initially
contacted 300 individuals who indicated interest in participating in the
study after public advertisement via flyers and invitations sent to former
study participants. Among these volunteers, 186 subjects reporting no
memory complaints, uncontrolled chronic diseases, and/or MRI incompat-
ibility were invited for further neuropsychological assessment and
neuroimaging via 3 T MRI for final screening. A total of 142 subjects were
included and completed the baseline examination. Forty-four subjects

were excluded for the following reasons: failed neuropsychological tests,
detected structural abnormalities on MRI, moved during MRI imaging, did
not meet inclusion criteria, or experienced discomfort during the imaging
session. Blood samples were collected on heparin and processed within 2 h
to prepare plasmas.
To measure the cerebral Aβ load of participants, cerebral PET was

performed at Service Hospitalier Frédéric Joliot (Orsay, France) on a high-
resolution neuroimaging tomograph (Siemens Healthineers). Aβ-PET
dynamic acquisition was performed 40–60min after injection of 341 ± 68
MBq of [11 C]-Pittsburgh Compound-B (PiB). All corrections (attenuation,
normalization, random and scatter coincidences) were incorporated in an
iterative ordered-subset expectation maximization reconstruction. Seg-
mentation into cerebral regions of interests and cortical thickness was
performed using the Killiany/Desikan parcellation atlas. Aβ-PET imaging
analysis was performed as previously described [27, 28]. Parametric images
were created using BrainVisa software.

SHATAU7-IMATAU cohort
We included 98 participants from the SHATAU7-IMATAU study
(NCT02576821-EudraCT2015-000257-20) recruited during March
2016–November 2019. The Ethics Committee (Comité de Protection des
Personnes Ile-de-France VI) approved the studies. All subjects provided
written informed consent. Fourty three patients diagnosed with AD at mild
cognitive impairment or mild dementia stage were included according to
the following criteria: (i) cerebrospinal fluid biomarker profile suggestive of
AD [total tau/Aβ (Aβ42) > 0.52, which provided 93% sensitivity and 83%
specificity in a previous publication [29] (ii) [11 C]-PiB-PET Global Cortical
Index score of >1.4515 2716; and (iii) Clinical Dementia Rating score of ≤1.
Of the 43 participants, 29 took cholinesterase inhibitors, and two of these
also took N-methyl-D-aspartate antagonists. During the two-year follow-
up, treatment changes were limited: cholinesterase inhibitors were
discontinued in three patients and were introduced in three other
patients. All participants underwent complete clinical and neuropsycho-
logical assessments, 3 T brain MRI, and [11 C]-PiB and [18 F]-flortaucipir PET
imaging at baseline. The SHATAU7-IMATAU study included also individuals
with non-AD pathologies classified according to the results of imaging

Table 1. Demographic and clinical data of studied groups.

Number of
subjects

Female-
Male

Age (years)-
Range

MMSE DYRK1A (ng/
ml) (SEM)

PIB-PET (SEM) Tau-PET E4/E4E4

young controls

20 6-14 25.5- (19–50) 1.64 (0.15)

middle aged controls

19 12-7 47.5- (36–64) 2.45 (0.23)

cohort SENIOR 96 48-48 59 29.2

low amyloid 28 9-18 59- (50–69) 29.1 4.12 (0.34) 1.18 (0.013) (4/0)

high amyloid 49 27-21 60- (50–69) 29.3 2.81 (0.18)* 1.34 (0.021)**** (9/1)

cohort SHATAU7-IMATAU

AD 43 25-18 67.4- (53–87) 20 1.7 (0.1) 2.79**** 2.7****(0,2) (17/4)

HS 27 9-18 74.8- (41–85) 22.5 1.57 (0.13) 1.7 1.33 (0,05) (4/1)

FTLD 23 10-13 70.5- (55–78) 17.8 1.42 (0.1) 1.32 1.28 (0,06) (4/1)

PSP-CBD 9 7-2 65.8- (58–79) 23 2.11 (0.17) 1.45 1.22 (0,1) (4/0)

cohort DS LCLs

CTRL 12 6-6 45.6 100

DS 8 3-5 52.7 180~ (11.6)

DS-AD 8 3-5 49.7 138~ (10.9)

cohort DS plasmas

DS 38 18-19 38.5- (25–49) 91a 7.34 (0.37) (9/2)

DS-AD 32 22-10 51- (31–65) 80a 3.99 (0.31) (7/0)
aSIB, Severe impairment battery. MMSE Mini Mental State Examination, PiB-PET Pittsburgh Compound-B positron emission tomography, Tau-PET Tau protein
positron emission tomography; AD Alzheimer’s disease, HS, hippocampal sclerosis,FTLD frontotemporal lobar degeneration, PSP-CBD progressive supranuclear
palsy and corticobasal degeneration, LCL lymphoblastoid cell line, ~arbitrary units, DS Down syndrome without dementia, DSAD Down syndrome with
dementia. *P < 0.05, ****P < 0.0001
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studies as frontotemporal dementia (22), hippocampal sclerosis (25), and
progressive supranuclear palsy/corticobasal degeneration (8). The blood
samples were collected from participants into citrate containers, and the
containers were immediately placed on ice until processed. Plasma was
obtained by centrifugation of containers for 15min at 2000 g at 4 °C, then
rapidly frozen and stored at − 80 °C until analysis.

Kentucky cohort
The Kentucky cohort includes individuals with DS with a wide age range
(25–64 years) to detect early cognitive changes. Inclusion criteria were:
(i) existing diagnosis of DS, (ii) >25 years old, (iii) medically stable,
(iv) completion of annual visits with MRI and blood samples, (v) English
speaking, and (vi) able to tolerate MRI. Exclusion criteria were: (i) not
medically stable and have changed medications in the last 3 months (with
the exception of anxiolytic use as needed for medical procedures), and
(ii) diagnosis of neurological disease other than DS. Research procedures
were independently reviewed and approved by the University of Kentucky
Institutional Review Board. Participants provided informed consent or
assent with guardian approval. Participants were community-residing men
and women with DS recruited through local DS support groups and
residential facilities in Kentucky, southern Indiana, and southern Ohio.
Cognitive assessment was performed longitudinally using the Brief Praxis
Test [30], Severe Impairment Battery [31], and Dementia Scale for People
with Learning Disabilities [32, 26]. Blood samples were collected on EDTA
and rapidly processed to isolate plasmas which were stored at −80 °C.

Lymphoblastoids cohort
An EBV immortalization protocol was used to establish LCLs [13, 33]. DS
and DSAD blood samples were obtained during patient examinations and
were derived from subjects with confirmed full trisomy 21. Control blood
samples were obtained from parents of individuals with DS described
during the AnEUploidy study and were aged matched with DS individuals
[13]. Cognitive assessment was performed longitudinally using the Severe
Impairment Battery [31]. All subjects were in the age range of 40 to 60
years. Results are reported as a combination of male and female LCLs for
each group.

Immunometric tests
Immunoassay plates were spotted with biotinylated AC4 (from a set of
seven monoclonal antibodies raised against a short form of DYRK1A, 1–502
aa) on MSD GOLD Small Spot Streptavidin 96-well plates (Meso Scale
Diagnostics, Rockville, MD, USA). Spotting was performed by the Meso

Scale Diagnostics spotting facility. After incubation with plasma samples or
calibrator samples (serial dilution of DYRK1A), MSD GOLD SULFO-TAG
conjugated detection antibody (AC6) was used to quantify DYRK1A protein
levels on a MESO QuickPlex SQ120 instrument (Meso Scale Diagnostics)
using electrochemiluminescence detection. AC4 and AC6 were already
used in a previous study (9) Plasma samples underwent a single
freeze–thaw cycle before analyses. All samples were measured in duplicate
with a coefficient of variability acceptance criteria of <20%, and within one
round of experiments with the same batch of precoated plates. Baseline
and longitudinal samples obtained from each participant were measured
side by side in the same run to avoid the effect of run-to-run variability. All
analyses were performed by one technician, who was blind to clinical
diagnosis. Concentrations are shown in ng/ml.

Statistical analysis
Data are presented as mean ± standard deviation or median with
interquartile range. D’Agostino and Pearson omnibus normality test was
used for all data, and Mann-Whitney U-test was used for comparisons
between groups. Correlations between DYRK1A levels and standardized
uptake value ratio (SUVR) were assessed for each marker using Spearman’s
(nonparametric) test. P < .05 for intergroup comparisons and P < .01 for
correlations were considered statistically significant. Correlations between
DYRK1A levels and age were assessed using Pearson’s test. Graphs were
prepared with GraphPad Prism software (version 6, La Jolla, CA, USA).

RESULTS
SENIOR cohort
Using our improved sandwich ELISA technique(Methods section),
we assessed DYRK1A levels in plasma samples from the SENIOR
cohort (Table 1) using two standardization methods: a standard
curve with varying amounts of synthetic DYRK1A-derived peptide,
and plasma from 10 young control individuals (~26 years). We
observed no correlation between DYRK1A levels and age (Fig. 1a)
or between DYRK1A levels and body mass index (BMI) (Fig. 1b).
When stratified by APOE genotype, SENIOR participants were
distributed among genotypes (E3E4 and E4E4 for APOE ε4 carriers
and E2E3 and E3E3 for non APOE ε4 carriers, and average DYRK1A
levels were similar in individuals with or without the APOE ε4 allele
(Fig. 1c). We then stratified low and high PiB-PET SUVR with
different cut-off values (PiB-PET SUVR= 1.2–1.3). We found a

Fig. 1 Characterisation of plasma DYRK1A levels for the SENIOR cohort. a Correlation between DYRK1A levels and age. b Correlation
between DYRK1A levels and body mass index (BMI). c DYRK1A levels stratified by APOE genotype. d DYRK1A levels stratified by PiB-PET SUVR
with a cut-off at 1.235. Graph bars indicate mean ± standard error of the mean; *P < .05. PiB-PET SUVR, Pittsburgh Compound-B positron
emission tomography standardized uptake value ratio.
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significant difference for a cut-off of 1.235, corresponding to
DYRK1A levels of 4.1 ng/mL for the low amyloid group and 2.8 ng/
mL for the high amyloid group (P= 0.02) (Fig. 1d). Comparison of
the four control groups young ctrl, middle aged ctrl, SENIOR with a
low PIB-PET (LP), SENIOR with a high PIB-PET (HP) is reported in
Table 2.

SHATAU7-IMATAU cohort
The SHATAU7-IMATAU cohort includes patients with four
neurological diseases (Table 1): AD, frontotemporal dementia,
hippocampal sclerosis, and progressive supranuclear palsy/
corticobasal degeneration. When stratified by APOE genotype,
average DYRK1A levels were similar across individuals with all
four diseases (Fig. 2).
No correlation was found between DYRK1A and AD cerebrosp-

inal fluid biomarkers such as Tau, pTau, and Aβ42. We compared
DYRK1A levels in control groups, including a cohort of young
controls, a cohort of middled aged individuals and the SENIOR
cohort with high and low brain Aβ deposits from the SENIOR
cohort (HP and LP, respectively) with the four disease groups of
the SHATAU7-IMATAU cohort. Young controls were significantly
different from the two SENIOR subgroups. Middle-aged controls
were not significantly different from the HP SENIOR subgroup. The
four SHATAU7-IMATAU disease subgroups differed significantly
from the two SENIOR subgroups with the exception of the
progressive supranuclear palsy/corticobasal degeneration group,
which was not significantly different from the high-PiB-PET SUVR
SENIOR subgroup. The four SHATAU7-IMATAU disease subgroups
did not differ significantly from the group of young controls

(Fig. 3). We also identified significant negative correlation between
plasma DYRK1A levels and PiB-PET SUVR for the AD (SHATAU7-
IMATAU) and SENIOR cohorts (P < 0.0001) (Fig. 4).

Age effect in control groups
Global analysis of the four control groups (young, middle-aged
and SENIOR subgroups) revealed a positive correlation between
age and plasma DYRK1A levels (pP= 5 e−06) (Fig. 5).

Lymphoblastoids from individuals with DS
Lymphoblastoid cell lines established from lymphocytes of
individuals with DS without dementia (DS), individuals with DS
and with dementia (DSAD), and age-matched controls were
grown in standard medium, and proteins were isolated to
quantify DYRK1A. Relative DYRK1A expression in DS lympho-
blastoids was significantly increased compared to controls (DS/
CTRL= 1.8; P= 0.0002), while DYRK1A expression in DSAD
lymphoblastoids was significantly decreased compared to DS
(DS/DSAD= 1.3; P= 0.04) but not significantly different from
controls (Fig. 6).

Kentucky cohort
We measured DYRK1A in 230 plasma samples collected long-
itudinally over 4 years from 70 individuals with DS, DSAD, or
cognitive regression. Individuals who exhibited cognitive regres-
sion were included in the DSAD group, and DYRK1A values in
various samples from the same individual were averaged. DYRK1A
levels were significantly lower in the DSAD compared to DS group
(DS/DSAD= 1.84; P < 0.0001) (Fig. 7). Comparison with the low Aβ

Table 2. Combined effects of age, gene dosage and dysregulation of DYRK1A on ratios of DYRK1A plasma levels.

Young Middle aged cog healthy HP cog healthy LP AD DS DSAD

ng/ml 1.64 2.45 2.42 3.92 1.7 7.34 3.99

Young 1.64 1.49 1.47 2.39 1.03 4.47 2.43

Middle aged 2.45 0.98 1.6 0.69 2.99 1.62

cog healthy HP 2.42 1.62 0.4 3.03 1.64

cog healthy LP 3.92 0.43 1.87 1.01

AD 1.7 4.31 2.34

DS 7.34 0.54

ba

c d

AD

HS

FTLD

PSP-CBD

Fig. 2 Plasma DYRK1A levels stratified according to APOE genotype for patients. a Alzheimer’s disease, b frontotemporal lobar
degeneration, c hippocampal sclerosis, or d progressive supranuclear palsy and corticobasal degeneration.
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SENIOR group as a control yielded a DS/CTRL ratio of 1.78, while
comparison with the high Aβ SENIOR group yielded a DS/CTRL
ratio of 1.42 (Table 2).

DISCUSSION
In the whole SENIOR cohort, DYRK1A levels were quite disperse.
However when stratifying with PiB-PET SUVR, the group with low
Aβ had significantly higher DYRK1A than the group with high Aβ,
indicating that individuals with low DYRK1A are potentially at-risk
for dementia-associated pathologies such as brain Aβ deposition.
DYRK1A levels were not correlated with age in the SENIOR cohort,
suggesting that the increase of DYRK1A occurred before the age

of 60. We observed no correlation with BMI, which was previously
reported as a risk factor for dementia [34].
These results are reminiscent of our findings with the INSIGHT

cohort of memory complainers without clinical signs of cognitive
decline, for which we also observed an association between low

****

****

****

**
****

*

****

**
****

****
****

****
***

Fig. 3 Plasma DYRK1A protein levels for the young control cohort,
the middle aged control cohort, the SENIOR control cohort with low
(LP) and high (HP) PiB-PET SUVR (cut-off: 1.235) and for the
SHATAU7-IMATAU cohort of Alzheimer’s disease (AD), frontotem-
poral lobar degeneration (FTLD), hippocampal sclerosis (HS), or
progressive supranuclear palsy and corticobasal degeneration (PSP-
CBD) patients. *P < .05; ***P < .001; ****P < .0001. PiB-PET SUVR,
Pittsburgh Compound-B positron emission tomography standar-
dized uptake value ratio.

R=-0,58
P<0,0001

Fig. 4 Correlation analysis between plasma DYRK1A levels and
PiB-PET SUVR levels for SENIOR cohort and SHATAU7-IMATAU
cohort of AD. Correlation was assessed with nonparametric Spear-
man’s rank test. Graph shows regression lines with 95% confidence
interval. PiB-PET SUVR, Pittsburgh Compound-B positron emission
tomography standardized uptake value ratio.

Fig. 5 Correlation analysis between age and plasma DYRK1A
levels (ln) for control groups including the young control group,
the middle aged control group, the SENIOR cohort (LP and HP).
Graph shows regression lines with 95% confidence interval (CI) and
95% prediction interval (PI).

***
*

Fig. 6 DYRK1A levels from lymphoblastoid cell lines (LCLs)
generated from controls (CTRL), individuals with Down syndrome
(DS), and individuals with Down syndrome and dementia (DSAD).
AU arbitrary units, *P < 0.05; ***P < 0.001.

*

****
****

****

****

Fig. 7 Plasma DYRK1A levels for the SENIOR cohort (LP and HP) and
for the Kentucky cohort of participants with Down syndrome (DS)
and participants with Down syndrome and dementia (DSAD).
*P < 0.05, ****P < 0.0001.
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DYRK1A levels and high Aβ deposits in the brain [11]. Individuals
with low Aβ load also had higher DYRK1A levels than young
individuals, indicating a potential increase of plasma DYRK1A
during aging as individuals with high Aβ load had DYRK1A levels
similar to young individuals. This paralleled our previous observa-
tions of increased Dyrk1A levels in the brain of wild-type aging
mice (4, 12, and 17 months), and also in Dyrk1A transgenic mice
even though these mice already overexpress Dyrk1A [12]. Increase
of DYRK1A is already present in middle age mice (12 months old).
In human, this increase could be observed at 40–50 years, younger
than the age of the SENIOR cohort. When a correlation analysis is
performed on DYRK1A levels and age for the four control groups,
we show a strong correlation which allow to define confidence
and prediction intervals (Fig. 5). In addition, lower DYRK1A levels
were present in AD and in other dementia-associated pathologies,
including frontotemporal lobar degeneration, hippocampal sclero-
sis, or progressive supranuclear palsy/corticobasal degeneration.
We thus hypothesize that age-dependant increase of DYRK1A
occurs with normal aging and either leads or is associated to a
lower risk of brain Aβ pathology as observed in the SENIOR cohort.
Individuals from the SHATAU7-IMATAU cohort had DYRK1A levels
significantly lower than the elderly control group with low PiB-PET
SUVR and similar to our young control group. This difference was
not observed when comparing the PSP-CBD group with the
control group with high PIB-PET-SUVR, suggesting that low
DYRK1A level is not a strong risk marker for PSP-CBD.
A potential limitation of this study is linked to blood collection

performed in three different types of tubes: however when
comparing cohorts of different age groups (young on heparin,
middle aged on citrate and aged on heparin) we observed a linear
correlation; moreover a low level of DYRK1A is observed in AD
patients (on citrate) compared to aged controls (on heparin) and
in DSAD patients (on EDTA) compared to DS patients (on EDTA)
suggesting that DYRK1A changes associated with dementia are
not caused by an effect of blood types of tube.
The decrease of DYRK1A could be due to truncation or

degradation of full-length DYRK1A. In 2015, Jin et al, [35]
hypothesized that calpain truncates and activates DYRK1A. The
authors’ analyses of brain samples revealed that bands character-
istic of DYRK1A at 95 kDa appeared at a lower molecular weight in
AD patients than in controls, suggesting that DYRK1A truncation
occurs in AD. Yet the bands expected to be degradation or
truncation products, were not increased in AD patients, indicating
that the antibody the authors used might cross-hybridise with
other molecular species. Nevertheless, our DYRK1A immunoassay
is detecting full-length as well as truncated protein.
We then investigated DYRK1A in a group of individuals with DS.

These individuals develop neuropathological features of AD at >40
years old, and half of DS patients present cognitive impairment
indicative of dementia by 55 years of age [24, 25].
From studies on individuals without dementia and without

known genetic abnormalities (INSIGHT and SENIOR cohorts), we

hypothesized that diploid control individuals with low Aβ
deposition would have increasing DYRK1A levels with age
(40–60 years old) (Table 2) and might be considered at lower risk
of developing dementia (Fig. 8). This critical period might
correspond to 20–40 years of age for individuals with DS. Our
results with cultured lymphoblastoids showed lower DYRK1A
levels in the DSAD group compared to DS group. Lymphoblas-
toids are established cell lines, indicating that genetic or
epigenetic regulation of DYRK1A levels was present before
transformation of the cells. Further, plasma from a longitudinal
cohort of DS and DSAD individuals showed significant differ-
ences between groups, although both DS and DSAD had
strongly increased DYRK1A levels compared to controls of a
similar age (46 years for the middle aged control group) (Table
2). The DS group had a 2.99-fold increase of DYRK1A (Table 2),
which is higher than the expected value of 1.5 for trisomy. This
elevated ratio may be associated with accelerated aging in DS,
thus combining the effect of trisomy (ie: x1.5) with the effect of
aging (ie: x2).
Psychometric data from a cohort of 445 individuals with DS

indicate that a single-point assessment of acquired mild
cognitive impairment, which is expected for the majority of
adults with DS, reveals two peaks for age‐related prevalence of
impairment, suggesting that the risk for AD onset conferred by
DS is moderated by other factors than trisomy [36], which could
include the APOE ε4 allele or overexpression of regulatory factors
encoded by HSA21 genes. Increased DYRK1A could have
contradictory effects related to AD: an anti-inflammatory and
protective effect [37–39] associated with low homocysteine
levels in the periphery as well as a deleterious hyperpho-
sphorylation of Tau protein in the brain [17, 40]. Liver treatment
with an adenovirus expressing Dyrk1A normalizes hepatic
DYRK1A level and decreases hyperhomocysteinemia in mice
with hyperhomocysteinemia. AAV-mediated hepatic Dyrk1A
gene transfer increases DYRK1A protein level in the periphery
and decreases DYRK1A level in the brain of hyperhomocystei-
nemic mice [20]. Hyperhomocysteinemia is associated with low
DYRK1A levels [41] in the periphery and with a change in
inflammatory status [42, 43]. Increased plasma DYRK1A levels
with aging may exert an anti-inflammatory effect at the
beginning of the neuropathological process, thus delaying early
signs of neurodegeneration and dementia. Conversely, low
plasma DYRK1A levels may be associated with vulnerability to
AD and AD-related pathologies. Accordingly, controlling DYRK1A
levels during aging may facilitate preventive intervention.
However, we cannot exclude the possibility that lack of increase
of DYRK1A during aging could be due to modifications of
regulatory processes in other pathways involved in neurode-
generation. In that case, DYRK1A levels would be a marker of
these alterations, and acting upon pathways regulating DYRK1A
and other factors would be a therapeutic target.
Aging is associated with increased risk of dementia in

individuals with DS, with a mean age of diagnosis of 55 years
[24, 25]. However, a fraction of individuals with DS will not
develop dementia or develop it later (>55–60 years old). Our
work suggests that the critical point for dementia is not DYRK1A
levels alone but a ratio between the levels of DYRK1A and
another HSA21 gene that we call X. High DYRK1A/X ratio may
delay onset of AD-type dementia in DS. The increased risk for
dementia in individuals with DS is associated with trisomy of the
APP gene [44]. In addition, APP locus duplications cause
autosomal dominant early-onset AD [45]. APP could thus be a
good candidate for X. A low DYRK1A/APP ratio could confer high
risk of AD. This hypothesis would be also applicable to diploid
elderly individuals with high DYRK1A levels and low AD risk, as
these individuals have a high DYRK1A/X ratio, while diploid
elderly individuals with low DYRK1A and AD dementia have a
low DYRK1A/X ratio.

Fig. 8 Schematic of changes in plasma DYRK1A levels during aging
in controls and in individuals with AD.
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Our results show that low plasma DYRK1A may indicate at-risk
individuals who may benefit from early treatment to prevent AD.
Further experiments with genetically engineered mouse models
of AD with 1 or 3 copies of Dyrk1A may help unravel the effects of
DYRK1A. Additional longitudinal human cohorts are also needed
to confirm these findings and determine the timeline of DYRK1A
variation compared to Aβ changes.
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