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Abstract

Classical capacitated lot-sizing models include capacity constraints relying on a rough esti-
mation of capacity consumption. The plans resulting from these models are often not exe-
cutable on the shop floor. This paper investigates the use of constraint learning approaches
to replace the capacity constraints in lot-sizing models with machine learning models. In-
tegrating machine learning models into optimization models is not straightforward since
the optimizer tends to exploit constraint approximation errors to minimize the costs. To
overcome this issue, we introduce a training procedure that guarantees overestimation in
the training sample. In addition, we propose an iterative training example generation ap-
proach. We perform numerical experiments with standard lot-sizing instances, where we
assume the shop floor is a flexible job-shop. Our results show that the proposed approach
provides 100% feasible plans and yields lower costs compared to classical lot-sizing models.
Our methodology is competitive with integrated lot-sizing and scheduling models on small
instances, and it scales well to realistic size instances when compared to the integrated
approach.
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1. Introduction

Advanced Planning and Scheduling software is crucial for operation management in
manufacturing industries. Such tools usually follow the hierarchical approach (Stadtler,
2005), where a production planning module provides the input for a scheduling model.
Production planning gives weekly (or monthly) production quantity, adjusting the capacity,
and placing orders with suppliers to meet the demand while minimizing inventories. At
the operational level, the scheduling modules take as input the production quantities, and
they assign the operations to machines, sequence the operations, and compute their starting
times. To better integrate the limitation at the scheduling level, capacity consumption is
computed at the production planning level.

This capacity consumption calculation has been included since the use of the MRPII
planning system, but the resulting tools only roughly consider the time required on each
resource, and they do not take into account the complexities of the scheduling environ-
ments. This computation plays a crucial role in production planning since underestimating
capacity consumption leads to a plan that cannot be implemented on the shop floor. Such
a situation often results in unmet demand, and a lot of actions must be engaged to pro-
duce the quantities on time. This situation is hard to manage for practitioners since it
requires either recomputing the quantities for the whole plan, which is time-consuming or
shifting the quantities, causing delay and a drop in customer confidence. In addition, the
gap between an infeasible production plan and its repaired solution can be huge, and the
cost associated with these initial plans becomes irrelevant. Overestimating capacity con-
sumption leads to a loss of opportunity since it prevents the resources from being used at
full capacity. As a result, despite the inclusion of capacity in complex optimization models
provided by advanced planning systems (APS), this type of software keeps providing plans
that are too tight, and often cannot be implemented in practice. For instance, Tenhiälä
(2010) showed that APS with finite capacity do not fit well in job-shop-like environments
because the user cannot provide accurate enough values for the required parameter (e.g.,
the capacity consumption per unit). As users are unsatisfied, they tend to turn towards
simpler and less cost-efficient planning approaches (often relying on simple rules to apply by
hand). As a result, a large proportion of manufacturers still rely on Excel software to plan
their production (Liu et al., 2019; Filho et al., 2010). Many authors highlight the drawback
of aggregated capacity constraints in lot-sizing models and the necessity to acquire further
information at the planning level (Dauzère-Pérès and Lasserre, 2002; Almeder et al., 2015).
This includes scheduling decisions or detailed capacity constraints, leading to impractical
mathematical programs or constraints that are too complex to be integrated.

We assume that the capacity requirements are known and fixed, and we focus on finding
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approximations of the capacity consumption leading to feasible and cost-efficient produc-
tion plans. This capacity consumption calculated at the lot-sizing level corresponds to an
approximation of the scheduling problem from the next production level on the shop floor.
The corresponding production environment is assumed to be immutable and deterministic,
but the inclusion of uncertain parameters on the shop floor can be considered with our
approach.

With the rising interest in machine learning, the operation research community re-
cently provided several approaches to translate machine learning models into mathematical
programs (e.g., Fajemisin et al., 2023). In this work, we propose to replace the basic capac-
ity consumption function in lot-sizing models with an approximation built using machine
learning algorithms. The capacity consumption is learned from examples that give the total
amount of time required to complete all operations. While our experiments rely on produc-
tion schedules optimized with linear and constraint programming, the methodology remains
applicable when the examples for learning capacity are generated by other means. For
instance, the examples can correspond to historical data obtained by reconciling Advance
Planning System and Manufacturing Execution System data, or they can be generated from
simulation models. Machine learning models lead to accurate approximations of capacity
consumption, and this leads to integrated lot-sizing and machine learning models returning
reliable and cost-efficient production plans. This reliability is also essential and time-saving
since it prevents practitioners from recomputing the quantities in case of infeasibility.

To better understand the capacity consumption calculation and compare the value of
each approach proposed in this work, we evaluated our approach in an integrated lot-sizing
and scheduling problem. Hence, the capacity consumption at each period of the production
plan is measured as the makespan of a flexible job shop scheduling problem. The violation
of the capacity at the scheduling level is undesirable since this leads to plans that cannot
be implemented in practice. As a result, we consider that a production plan respects the
capacity if we can find a production schedule with a makespan lower than the number of
working hours in the factory.

The contributions of this work are threefold: (1) We propose several extensions of the
lot-sizing problem (LSP) formulation where the capacity constraint is approximated with
machine learning techniques. These formulations correspond to approximation with linear
regressions, decision trees, and piecewise linear regressions. We study different sets of
features to train machine learning models, and our results suggest that the most important
features include the lot sizes and lower bounds on the makespan; (2) The optimal solution
of a Mixed Integer Linear Program usually lies at the extremes of the feasible region. When
a constraint is approximated by a machine learning model, approximation errors lead to
undesirable solutions. Therefore, we propose a constrained training approach that prevents
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us from overestimating the capacity consumption in the training sample. This new training
procedure increases the number of feasible plans of the proposed models, with a percentage
of feasible plans increased by 17% up to 93%. In addition, we propose an iterative learning
scheme that integrates machine learning training with an optimization approach. This
learning procedure results in integrated lot-sizing and machine learning models returning
100% of feasible plans for all types of instances and can be adjusted to favor the cost
of the plans over their feasibility. (3) We show that machine learning leads to good
approximations of capacity constraints. A comparison with the exact (but unpractical)
approach that integrates the lot-sizing and scheduling models shows that the proposed
formulation yields close to optimal solutions. Our results show that the computational
efforts required to solve the model depend on the complexity of the machine learning model.
Simple approximations with linear regression do not impair the computational performance,
while complex models such as deep decision trees lead models that are hard to solve. For
large-size instances, the proposed approach outperforms models based on integrated lot-
sizing and scheduling and returns reliable production plans compared to standard lot-sizing
model. In addition, we show the adaptability of our approach with an iterative lot-sizing
and scheduling approach.

The paper is organized as follows. Section 2 gives a literature review of production
planning and scheduling problems, as well as machine learning approaches to predict the
makespan. Section 3 states the considered problem. Section 4 describes our data-driven
approach and the different machine learning models used in this paper. Section 5 presents
several approaches to generate relevant datasets related to the scheduling level consid-
ered. Finally, we compared our data-driven method with multiple integrated lot-sizing and
scheduling models from the literature in the numerical experiments in Section 6, before
concluding in Section 7.

2. Literature review

This section successively reviews the literature on the integration of machine learning
models into mathematical programs, capacity consumption computation in lot-sizing mod-
els, and machine learning models in scheduling problems.

2.1. Constraint Learning framework for production planning
Embedding machine learning models into mathematical programs is an increasingly

popular area of research. This approach, referred to as ”constraint learning” or ”surrogate
modeling” , leverages machine learning techniques to incorporate constraints or objective
functions that are either computationally challenging or complex to formulate manually.
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Numerous studies have explored the translation of different machine learning models into
linear programs, including neural networks (Fischetti and Jo, 2018), decision trees and
ensemble methods (Mǐsić, 2020; Biggs et al., 2022), among others (Fajemisin et al., 2023;
Maragno et al., 2023).

There is a growing interest in the application of machine learning techniques for produc-
tion planning. In this research field, machine learning is commonly used to either generate
specific parameter values for the lot-sizing model or leveraged to solve the lot-sizing problem
(e.g., Larroche et al., 2021; Zhang et al., 2021; Şenyiğit et al., 2013; Yu et al., 2024). For
example, Rohaninejad et al. (2023) use neural networks to predict safety stocks and safety
slacks in situations where processing times are uncertain. Similarly, Beykal et al. (2022)
developed a data-driven optimization framework to solve bi-level production planning, with
scheduling and lot-sizing under uncertain demand.

Machine learning approaches are also commonly used to learn the uncertainty set in
robust optimization methods. For instance, Shang et al. (2017) used Support Vector Clus-
tering (SVC) for a robust chemical planning problem. SVC computes the uncertainty set
of several parameters, including demands and prices with piecewise linear kernels to ensure
the resulting uncertainty set corresponds to a linear program.

The literature review on the application of machine learning for production planning is
extensive. In the rest of this section, we focus on papers that consider a similar approach
to the one we use in this paper. Specifically, we concentrate only on papers related to con-
straint learning approaches for production planning programs. Casazza and Ceselli (2019)
consider a data-driven model for the integration of production planning and scheduling,
where the constraints related to the scheduling problem are replaced by a decision tree. At
the scheduling level, a set of jobs has to be scheduled on a set of parallel machines while re-
specting release dates and due dates, and jobs can be split into two to make the assignment
easier. The objective is to find a feasible assignment of jobs that minimizes the number
of split jobs. Dias and Ierapetritou (2019) considered the integration of a lot-sizing model
and scheduling decisions, where scheduling decisions correspond to a discrete state-task
network. The authors incorporate classification models into lot-sizing to ensure the plan
is feasible, and they consider different machine learning models such as neural networks,
decision trees, and support vector machines. The authors show that the latter approach
scales very well on high-dimensional instances when compared to methods integrating the
whole scheduling decision. The resulting method also provides accurate approximations in
the case of uncertain production capacity as by Hu et al. (2008). This latter study led
to an increasing interest in surrogate modeling for the integration of production planning,
scheduling, and control (Dias and Ierapetritou, 2020; Badejo and Ierapetritou, 2022).

These studies consider discrete scheduling problems (where the scheduling horizon is

5



discretized in a set of discrete time periods) or parallel machine scheduling. To the best
of our knowledge, this paper is the first to consider learning capacity consumption in a
flexible job-shop environment with sequence-dependent setup times. Flexible resources are
frequent in make-to-order industries (Bish and Wang, 2004; Chod and Zhou, 2014), and
their popularity is increasing in the manufacturing industry (Begnaud et al., 2009). In
addition, the flexible job-shops generalize many scheduling environments (job-shop, flexible
flow shop, etc...), and our results remain valid in all these environments.

Setup times are also frequent in manufacturing systems and they have been considered
early in the literature on capacitated lot-sizing problems (Trigeiro et al., 1989). With
the inclusion of setup times, the problem of finding production plans respecting both the
capacity and demand becomes NP-complete. Realistic scheduling applications often account
for sequence-dependent setup time (Allahverdi et al., 1999), for instance in the food industry,
chemistry, fast moving consumer goods (Thevenin et al., 2017; Larroche et al., 2021).

In addition, we investigate different approaches to improve the accuracy of machine
learning models when used in optimization models. In particular, we propose methods to
generate efficient datasets, including an approach that takes advantage of the scheduling
problem structure to generate adversarial examples. In addition, we introduce additional
features for our problem that improve the prediction of capacity consumption. Finally, we
compared our approach with standard mathematical models for the integrated lot-sizing
and scheduling problem, and show the potential of our data-driven approach for solving
large-scale instances.

2.2. Approximation of capacity consumption in lot-sizing models
Lot-sizing models determine the optimal production quantities in each period of the

horizon. Once the plan is available, the lots of each period become production jobs to
schedule on the machine. The acquisition of capacity in lot-sizing problems also led to an
increasing body of literature review. In these problems, the lot-sizing formulation incor-
porates decisions regarding the capacity, including subcontracting and capacity acquisition
(Atamtürk and Hochbaum, 2001; Hwang, 2021), or the adjustment between different lev-
els of capacity (Ou and Feng, 2019). In the classical hierarchical decision framework,
scheduling decisions are made independently of production planning decisions (Axsäter,
1986). Lot-sizing models represent aggregated production planning problems, where the
items correspond to aggregated product families rather than specific items produced on the
shop floor. Consequently, the computation of the capacity consumption function in the
lot-sizing model relies on the quantity per aggregated item family, which offers only a rough
approximation of the actual resource consumption on the shop floor. The accurate com-
putation of actual resource consumption takes place at the scheduling level, where product
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families are disaggregated to perform computations at a more detailed level. As scheduling
has a smaller granularity, it often incorporates additional details that cannot be considered
at the planning step, such as secondary equipment required for production, transportation
time on the shop floor, blocking constraints, . . . ). Therefore, the feasibility of a production
plan is only assessed at the production scheduling step.

Several extensions (Copil et al., 2016) of the classical lot-sizing model integrate schedul-
ing decisions into lot-sizing problems. For example, the continuous setup lot-sizing problem
incorporates setup times into the lot-sizing model and determines if resource configurations
change between periods (Drexl and Kimms, 1997). However, these models typically assume
that machines can only perform one operation per period, and the capacity consumption
remains a rough approximation of the actual complexity of the shop floor.

Other models introduced the concept of macro periods subdivided into several micro-
periods, where each micro-period produces at most one item. This methodology has led to
the general lot-sizing and scheduling problem (GLSP) presented in Fleischmann and Meyr
(1997). Multiple versions of the GLSP have been proposed in the last decades, including ver-
sions with parallel machines (Meyr, 2002) or bills of materials with multiple levels (Seeanner
and Meyr, 2012). For instance, Rohaninejad et al. (2014) propose a genetic algorithm and
particle swarm optimization to solve the GLSP in a Flexible Job-Shop Scheduling environ-
ment. While these approaches provide better approximations of the capacity consumption,
they remain aggregated models. The scheduling problems are not a detailed representation
of the operations on the shop floor. For instance, such models cannot represent a job-shop
environment precisely.

Some authors consider the integration of scheduling and lot-sizing (e.g., Lasserre, 1992).
These approaches address situations where the sequencing of lots is crucial, such as when
there are sequence-dependent setup times in the production process. Simultaneous lot-sizing
and scheduling methods typically involve iterative procedures that determine lot sizes at
the planning level and order operations on resources for fixed product quantities. Similarly,
different mathematical models have been proposed to incorporate the scheduling decisions
in each period of the production plan. Dauzère-Pérès and Lasserre (1994) propose a model
that integrates a flexible job-shop scheduling problem with setup into a lot-sizing model.
Dauzère-Pérès and Lasserre (2002) extend the model to the case of multi-level lot-sizing.
Urrutia et al. (2014) propose an efficient solution method for this problem. Their method
starts with an initial solution, and it creates this initial solution with the lot-sizing model
with fixed sequences of operations proposed in Wolosewicz et al. (2015). Afterward, the
approach iterates between a Lagrangian heuristic to solve the lot-sizing problem with a
fixed sequence of operations and a Tabu-search to improve the sequence with fixed lot sizes.

Almeder et al. (2015) highlight the weakness of the classical capacitated lot-sizing formu-
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lations for the multi-level bill of materials. The classical models lead to lot-sizing solutions
that are infeasible for the scheduling problem that considers each period separately. The
authors propose an improved mathematical formulation for the batching and lot-streaming
cases.

The integration of job-shop scheduling into lot-sizing models leads to accurate compu-
tation of the capacity consumption. However, solving the resulting model is hard, and no
method exists for solving large-scale instances to optimality. In particular, for a flexible
job-shop, alternative routings increase the number of operation sequences, and the inte-
grated approach rapidly becomes impractical for large-scale instances. In addition, shop
floors may involve complex structures and constraints, including workers unavailabilities,
machine breakdown during production, or the requirements of tools to perform certain oper-
ations. Such complexities are generally difficult to model as they would require a prohibitive
number of binary variables and constraints. As a result, the final lot-sizing models discard
these details, which leads to a less accurate computation of the capacity consumption. In
our study, we aim to improve the approximation of the capacity consumption by training
machine learning models with historical data from the scheduling problem encountered on
the shop floor. The resulting approach yields a model that is computationally less expensive
than the integration of scheduling decisions into lot-sizing models. In addition, since these
machine learning models are trained directly from the historical data of the shop floor, they
may incorporate all the complexity of the scheduling decision process, even the parts that
are difficult to model mathematically.

2.3. Machine learning for scheduling applications
A wide variety of applications of machine learning exist in the scheduling literature.

The first works to use machine learning in scheduling (e.g., Shinichi and Taketoshi, 1992;
Lee et al., 1997) seek to predict the best dispatching rule for a given instance. Jun et al.
(2019) show this methodology is relevant for flexible job-shop scheduling problems. These
approaches can be seen as a pre-processing phase to improve the performance of heuristics.
Very few papers study predictive models to approximate the value of makespan in job-shop
scheduling problems.

Some works (e.g., Raaymakers and Weijters, 2003; Schneckenreither et al., 2020) propose
regressive models to predict lead times of incoming orders in batch processing. The problem
is to predict the lead time of incoming orders, to ensure that the shop floor can meet the
demand on time. Predicting these lead times avoids computing the whole schedule, which
saves precious time when urgent decisions have to be made in the case of incoming orders or
unanticipated event on the shop floor. Raaymakers and Weijters (2003) introduced the use
of regression analysis and neural networks to predict the makespan of scheduling problems
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in a job-shop environment. Schneckenreither et al. (2020) considered a similar approach by
considering neural networks to predict the lead times in order release planning.

Recently, Tremblet et al. (2023) considered machine learning models to predict the
makespan of flexible job-shop scheduling problems. These machine learning models have
the advantage of instantly approximating the makespan without computing the scheduling
decisions. The present study aims at integrating these powerful predictive models into
capacitated lot-sizing models, in order to replace the well-know capacity constraints.

3. Problem description

This section presents the mathematical model of classical lot-sizing. The problem is to
determine optimal lot sizes at a production planning level while satisfying capacity con-
straints at each period for the scheduling. In this study, we consider a flexible job-shop
at the scheduling level, and this section provides a formal description of this scheduling
problem.

3.1. Capacitated Lot-sizing Problem (CLSP)
The capacitated lot-sizing problem (Drexl and Kimms, 1997) sizes production lots to

minimize holding costs, fixed setup costs, and unit production costs. The production plan
accounts for customer demand, production capacity, and lead times.

The factory produces each item i in the set of items J in a batch of consecutive op-
erations, since the processing of a batch of item i ∈ J results in a setup time si, and a
setup cost cs

i . Each operation in the batch yields one unit of item i, and it has a cost cp
i

and a duration of pik units on machine k ∈ M . In each period t ∈ T of the horizon, the
production is limited by a given capacity of Ct units. The production plan must respect
the demand dit of item i ∈ J in period t ∈ T . In our formulation, I+

it refers to the inventory
level of item i ∈ J at the end of period t ∈ T , and I−it refers to the backlog level of item i

in period t. Inventory and backlog levels generate costs ch
i and cb

i , respectively. Therefore,
the lot-sizing model involves decision variables for the lot sizes, setup, inventory level, and
backlog level for each item i ∈ J and each period t ∈ T , denoted respectively by Xit, Yit,
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I+
it , I−it . The CLSP corresponds to the following Mixed-Integer Linear Program (MILP):

min
∑
t∈T

∑
i∈J

ch
i I+

it + cb
iI
−
it + cs

i Yit + cp
i Xit (1)

s. t. I+
it−1 − I−it−1 + Xit − I+

it + I−it = dit, i ∈ J, t ∈ T (2)
Xit ≤ H · Yit, i ∈ J, t ∈ T (3)∑
i∈J

pikXit + sikYit ≤ Ct, k ∈ M, t ∈ T (4)

I+
i0 = I−iT = I+

iT = 0, i ∈ J (5)
Xit ≥ 0, I+

it ≥ 0, I−it ≥ 0, i ∈ J, t ∈ T

Yit ∈ {0, 1}, i ∈ J, t ∈ T.

The objective function (1) minimizes the total cost, which includes holding costs ch
i ,

backlogging costs cb
i , setup costs cs

i , and production costs cp
i . Constraints (2) compute the

inventory balance constraints for each product and period of the horizon. Constraints (3)
force Yit to be equal to 1 if a batch of items i is produced at a period t, using the well-
known big M constraints, where H = ∑

t∈T Dt. Constraints (4) ensure that the capacity
consumption does not exceed the capacity Ct for all periods t ∈ T . The basic formulation
of the capacity constraint accounts for the process duration per production unit and for the
setup time on each resource k ∈ M . Finally, constraints (5) ensure that there is no inventory
level at the beginning of the period and that there is neither inventory nor backlogged items
at the end of the planning horizon.

3.2. Flexible Job-Shop Scheduling Problem (FJSP)
At the scheduling level, each production lot becomes a job to schedule. As a result,

the set J of items in the lot-sizing model corresponds to a set of J jobs in the scheduling
problem. The flexible job-shop scheduling problem is an extension of the well-known job-
shop scheduling problem, but a set of machines can perform each operation in the routing.
A set J of n jobs have to be performed on a set M of m machines with respect to routing
constraints. Each job i ∈ J is subdivided into ni successive operations, and Oij denotes the
jth operation of job i. Each operation Oij performed on machine k ∈ Mij has a processing
time pu

ijk, where Mij ⊆ M denotes the set of machines that can perform operation Oij . We
also consider a sequence-dependent setup time sk

ii′ occurs when job i′ is processed after job
i on machine k. To avoid inconsistency, we assume that setup times respect the triangular
inequalities, i.e., sk

ii” ≤ sk
ii′ + sk

i′i” for any jobs i, i′ and i” ∈ J and any machine k ∈ M .
This paper focuses on minimizing the makespan, i.e., the time required to complete all jobs
i ∈ J . We consider a production plan period to be feasible if the makespan of the associated
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schedule for the production lot within that period is less than the total working hours in that
period. A production plan is feasible if all its periods are feasible. We assume that, within
a period of the production plan, each of the successive operations of each job has to be
operated once and that none of these operations can be delayed or canceled if the inventory
level is sufficient to perform the remaining operations of a job. We also assume that all the
operations are available as soon as their predecessors have already been processed.

The Supplementary Materials of this paper provide the formulation of the integrated
flexible job-shop scheduling and lot-sizing model. However, the latter approach leads to
a complex mathematical model that is not practical in large-scale instances. We use this
integrated model to benchmark the proposed approaches that rely on constraint learning
(Fajemisin et al., 2023) to replace the capacity constraints (4) by a machine learning model.

4. Machine Learning based method

To improve the accuracy of the capacity constraint, we rely on machine learning models
to predict the makespan of the schedule for the lots in each period. In our framework,
the lot-sizing model integrates the translation of a fitted machine-learning model for each
period t of the planning horizon. Given a production plan (X, Y, I+, I−), the linear program
translation of each of the machine learning models predicts a value for capacity consumption.
The model includes one machine learning model for each period. We restrict our study to
the case where the machine learning models of each period are identical and trained on the
same dataset.

Supervised learning models are predictive models trained with samples of past obser-
vations, and they return appropriate forecasts for the future. The training of a supervised
learning model requires a training dataset D = {X s, Ys | s = 1, . . . , N}, where N is the
number of samples, X s represents the value of the features for sample s, and Ys is a targeted
value observed for this sample. The model is trained over this dataset by minimizing an
error, typically the mean squared error, between the target and the output of the model.

Note that a classification model could predict if a plan is feasible or not. However, a
regression model provides more flexibility. For instance, in scenarios where available capac-
ity fluctuates across different time periods, the same regression model can predict capacity
consumption. Conversely, addressing this variability with a classification model would ne-
cessitate training a distinct model for each period. In addition, a regression model integrates
seamlessly into lot-sizing models that account for extra-capacity penalties. Finally, fore-
casting the capacity consumption rather than a binary class helps in evaluating the gap
between the prediction and the actual makespan.

We assume that the flexible job-shop environment remains the same throughout the
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planning horizon, but the quantity associated with each job changes. Therefore, the training
dataset corresponds to different processing durations in a single flexible job-shop scheduling
problem. Each sample of the training dataset provides the makespan obtained when solving
the flexible job-shop scheduling problem with the same resources and routing, but with
different quantities Xi associated with each job i ∈ J . For each sample s ∈ D, the targeted
value Ys represents the makespan, and the features X s are the quantities Xi of each job
i ∈ J .

The rest of this section presents the input features of the machine learning model, before
introducing three model, namely, linear regression, piecewise linear regression, and regres-
sion tree. The choice of these models is motivated by the following theoretical result, which
that shows the capacity consumption function is a piecewise linear non-convex function.

Proposition 4.1. Given any quantities X ∈ R+
|J |, the capacity consumption (i.e. the

makespan of the resulting FJSP) is defined as a piecewise linear non-convex function.

Proof. In the Supplementary Materials.

4.1. Features Selection
This section presents a set of relevant features F for our machine learning model that

predicts the makespan. Besides the lot sizes X, additional features can be considered
to improve the forecasting ability. Recent studies highlight important correlations between
features of job-shop scheduling problems and the makespan (e.g., Mirshekarian and Šormaz,
2016; Schneckenreither et al., 2020). However, to translate the resulting machine learning
model into a mathematical program, feature f ∈ F must be a linear combination of decision
variables of the problem. Non-linear features cannot be used for the prediction. Also, as
the production system remains the same over the entire planning horizon, features that do
not depend on the decision variables will take the same values in all examples, and they
are not relevant. In this sense, features based on scheduling decisions, such as assignment
or sequencing decisions, are of little interest for capacity consumption prediction.

In addition, as we assumed that producing an item requires performing all its operations
during the period, inventory and backlog level I+, I− have no impact on the capacity
consumption, and there is no need to consider inventory level for work in progress.

For the sake of clarity, we make a distinction between a feature f ∈ F used to train a
model, the value X s

f of this feature in a data sample s ∈ D, and the decision variables Xft

that represent the feature in each period t ∈ T when embedded in a mathematical program.
The first features are the lot sizes Xi for each job i ∈ J , and they can be directly

embedded into the lot-sizing since they correspond to decision variables Xit:

Xit = Xit ∀i ∈ J, t ∈ T.
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In addition, we consider the four features introduced in Tremblet et al. (2022) that are
linear combinations of lot sizes.

X(|J |+1)t = max
i∈J


ni∑

j=1
min

k∈Mij

{pijk · Xit}

 ∀t ∈ T (6)

X(|J |+2)t = max
k∈M

∑
i∈J

ni∑
j=1

∑
Mij={k}

pijk · Xit + smin
k · Yit

 ∀t ∈ T (7)

X(|J |+3)t = max
k∈M

∑
i∈J

ni∑
j=1

oijk · pijk · Xit + (ok − 1)smean
k · Yit

 ∀t ∈ T (8)

X(|J |+4)t = 1
m

∑
k∈M

∑
i∈J

ni∑
j=1

oijk · pijk · Xit + (ok − 1)smean
k · Yit

 ∀t ∈ T (9)

Feature (6) and (7) are lower bounds of the makespan. Feature (6) is the maximum
among all jobs i ∈ J of the sums of processing times of the operations of job i. If an
operation can be performed on more than one machine, the operation with the minimum
processing time is selected. Feature (7) is the sum of the processing times of all operations
processed on each machine. Since the machines are flexible, we only consider the operations
that can be performed on a single machine and the minimum setup time smin

k that occurs
on the machine. Features (8) and (9) provide a more realistic estimate of the makespan
and average sum of processing time for each machine. These features account for flexible
machines by considering all possible operations Oij that can be performed on each machine
k ∈ M , where oijk represents the likelihood of operation Oij being performed on machine
k ∈ Mij . ok is an estimation of the number of operations performed on machine k ∈ M ,
and smean

k is the average setup time that occurs on this machine. The expressions used to
compute oijk and ok are described in Tremblet et al. (2022), and we summarize them in the
Supplementary Materials.

Features (6)-(8) include max operator, and their representation in a MILP requires
big-M formulations. To avoid the cumbersome big-M formulations, we can restrict the
approximated capacity consumption function to be non-decreasing with features (6)-(8). For
instance, in a linear regression, we can force the coefficient of these features to be positive.
Since the value of the prediction should be as small as possible to respect the capacity
constraints, the decision variables associated with these three features will automatically
take the lowest values in the mathematical program. Therefore, features (6)-(8) can be
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expressed as the following linear inequalities:

X(|J |+1)t ≥
ni∑

j=1
min

k∈Mij

{pijk} · Xit ∀i ∈ J, ∀t ∈ T (10)

X(|J |+2)t ≥
∑
i∈J

ni∑
j=1

∑
Mij={k}

pijk · Xit + smin
k · Yit ∀k ∈ M, ∀t ∈ T (11)

X(|J |+3)t ≥
∑
i∈J

ni∑
j=1

oijk · pijk · Xit + (ok − 1)smean
k · Yit ∀k ∈ M, ∀t ∈ T (12)

As setups are important in lot-sizing and scheduling problems, we considered another
feature that computes the number of setups in each period t ∈ T :

X(|J |+5)t =
∑
i∈J

Yi ∀t ∈ T (13)

Note that a machine learning model may give different predictions when Yit takes the
value 1 or 0 when the value of Xit is equal to 0. In addition, the lot-sizing model (1)-(5) does
not prevent Yit taking the value 1 when Xi equals 0. If setting the value 1 to variable Yit

reduces the capacity consumption forecasted by the machine learning model, the solution
may set a setup to 1 even if item i has a lot size of 0 during period t. Although this situation
is unlikely to happen due to setup costs, this leads to a situation where the solution of the
lot-sizing model is not consistent with reality. Constraints can be employed during the
training of the machine learning model to force the prediction to increase when a setup is
performed. However, this restriction can decrease the performance of the resulting model.
Therefore, to avoid this situation, we impose a minimum lot size ϵ to each item i ∈ J with
a setup by adding the following constraints to the lot-sizing model (1)-(5):

ϵ · Yit ≤ Xit ∀i ∈ J, t ∈ T (14)

4.2. Model of capacity consumption with machine learning
We consider three machine learning models to predict capacity consumption, namely,

linear regression, piecewise linear regression, and regression tree.

4.2.1. Linear Regression
Linear regression is a simple choice when translating a machine learning model into a

linear program. The model fitted associates coefficients αf for each feature f ∈ F , as well
as an intercept value α0. Linear regression computes capacity consumption of vector Xj
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with the following formula:
Y =

∑
f∈F

αf Xft + α0.

Therefore, the capacity constraints (4) are replaced by the following equations:∑
f∈F

αf Xft + α0 ≤ Ct ∀t ∈ T, (15)

where Xft is the variable representing features f ∈ F in the dataset of period t ∈ T .

4.2.2. Piecewise linear regression
Piecewise linear regression divides the value of one feature f∗ ∈ F into a discrete set of

regions R. Each region is delineated by two consecutive breakpoints in a set of breakpoints
B. Each sample of the data falls into one region r ∈ R depending on the value of the
corresponding feature, and a linear regression is trained on the data points of each region.
The vector αrf represents the coefficients of each feature f ∈ F for each region r ∈ R.

To translate piecewise linear regressions into a linear program, we add some binary
variables Z that determine the region the samples belong to. The resulting linear program
is as follows:

Xf∗t ≤ br + H · (1 − Zrt) ∀r ∈ 2..|R|, ∀t ∈ T (16)
Xf∗t ≥ br + H · (1 − Z(r+1)t) + ϵ ∀r ∈ 1..|R| − 1, ∀t ∈ T (17)∑

r∈R
Zrt = 1 ∀t ∈ T (18)

∑
f∈F

αfrXft + α0r ≤ Ct + H · (1 − Zrt) ∀r ∈ R, ∀t ∈ T (19)

Equations (16) and (17) define the region to which the regression applies, depending
on the value of the selected feature f∗ ∈ F . The sufficiently small value ϵ prevents a
feature from being included in two regions. Constraints (18) ensure that only one region
is selected for each period t ∈ T . Finally, the capacity constraints associated with this
machine learning model are given by (19). For each period, only one capacity constraint is
active, depending on the region where the regression occurs.

Finding the best feature that defines the regions requires testing each possible break-
point. Some studies proposed mathematical models that compute the best feature and
breakpoints for the fitting of a piecewise linear function (Rebennack and Krasko, 2020;
Yang et al., 2016), but these approaches remain time-consuming and impractical for large
models.

To delineate the regions, we select the feature corresponding to the number of setups
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F(|J |+5) since the approximation of capacity consumption changes when the product mix
changes. The number of breakpoints is a sensitive parameter since increasing the number of
regions requires embedding more variables and constraints for the integrated lot-sizing and
machine learning model, which increases the computing time significantly. In this work,
we propose different sets of breakpoints depending on the size of the scheduling problem
considered in the lot-sizing problem.

4.2.3. Regression Tree
A regression tree (or decision tree regressor) is a machine learning model that iteratively

splits the search space to provide the best prediction value according to the input data X
(Breiman et al., 1983). A regression tree is composed of N nodes, which include a set
of leaf nodes L. Each splitting node works as a query prescribing the path to follow in
the tree until falling into a leaf node i ∈ L, which returns the value to predict (here the
capacity constraints). In the splitting nodes, the queries are conditions computed based
on the features of input X . Each query can be represented as a linear condition on the
vector of features X . For each node j in the set of nodes N , these equations are represented
as ∑

f∈F Ajf Xft ≤ bj , where parameter ajf takes the value 1 if feature f ∈ F is involved
in the splitting node j, and 0 otherwise, and parameter bj represents the threshold of the
splitting condition. If the condition is satisfied, the decision tree moves to the right child
node, or to the left child node otherwise. After a number of queries, the tree arrives at a
leaf where a score S lies, and this score corresponds to the outcome of the prediction. We
adapt the mathematical formulation of Biggs et al. (2022) to embed random forest. In this
formulation, binary variables qt

ij indicate, for every node j ∈ N , if the input X lies in a leaf
node that is a descendant of node k. For each node j ∈ N , the left and right child nodes
are respectively given by lj and rj , and the parent node is provided as pj . This formulation
with binary variables represents the path followed in the tree for each data sample X . The
score of each leaf j ∈ L is provided by Sj . The model is described as follows:
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∑
f∈F

ajf Xft − M(1 − qt
j,lj ) ≤ bj , ∀t ∈ T, j ∈ N (20)

∑
f∈F

ajf Xft + M(1 − qt
j,rj

) ≥ bj + ϵ, ∀t ∈ T, j ∈ N (21)

qt
j,rj

+ qt
j,lj = qt

pj ,j , ∀t ∈ T, j ∈ N (22)∑
j∈L

qt
pj ,j = 1, ∀t ∈ T (23)

∑
j∈L

Sj · qt
pj ,j ≤ Ct ∀t ∈ T (24)

qt
j,lj , qt

j,rj
, qt

pj ,j ∈ {0, 1}, ∀t ∈ T, i ∈ N

Constraints (20) state that variable qt
j,lj

takes value 1 if the query at node j ∈ N is
satisfied, so the predicted value lies in the left subtree of node j. Alternatively, constraints
(21) ensure that variable qt

j,rj
takes value 1 if the value predicted by the tree lies in the

right subtree of j ∈ N . Equations (22) and (23) state that only one node is active at each
stage of the regression tree. Equations (24) compare the predicted value provided by the
tree and the capacity.

5. Prediction improvement

The training procedure of a machine learning model is a crucial step, and datasets used
to train a model have to be carefully selected. As the optimal solutions of mathematical
programs often lie in the extreme rays of the feasible region, the optimization model embed-
ding machine learning is prone to explore solutions that are not part of the training dataset
(Goodfellow et al., 2014). Thus, the prediction of the machine learning models deteriorates
when exploring solutions that are far from the data samples used for training. In partic-
ular, the lot-sizing solutions are likely to set the predicted capacity consumption equal to
the available capacity. In such situations, a small underestimation of capacity consumption
leads to an unfeasible solution. Recent papers addressed this issue by considering trust
regions to limit the prediction to the convex hull of the training dataset (Maragno et al.,
2023) or adaptative sampling to generate adversarial examples (Cozad et al., 2014). To
alleviate these issues, we consider the latter paradigm, and this section presents a training
procedure as well as methods to generate accurate data samples.
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5.1. Training procedure to prevent infeasible solutions
Training procedures minimize the error between the prediction and the value observed

in the dataset. If a regression model does not fit a training dataset perfectly, the prediction
may underestimate the real capacity consumption for some training samples. As underes-
timating capacity consumption leads to infeasible plans, we propose a training approach
that overestimates the prediction when fitting a linear model. In other words, the fitting
procedure forbids underestimating the capacity consumption in the training dataset.

We propose a MILP to minimize the mean absolute error between the training dataset
and the prediction of a linear regression model. This model relies on finding the best weight
αf associated with each feature f ∈ F of our regression model while minimizing an absolute
error ds between the actual capacity consumption and the prediction Ypred

s for each sample
s ∈ D.

A classical training model for a linear regression that minimizes the Mean Absolute
Error (MAE) is as follows:

min 1
|D|

∑
s∈D

ds (25)

s. t.
∑
f∈F

(X s
f αf ) + α0 = Ypred

s , ∀s ∈ D (26)

Ypred
s − Ys ≤ ds, ∀s ∈ D (27)

Ys − Ypred
s ≤ ds, ∀s ∈ D (28)

Ypred
s ≥ 0, ds ≥ 0, ∀s ∈ D

αf ∈ R, ∀f ∈ F .

The objective function (25) minimizes the mean absolute error between the output and the
prediction. Constraints (26) link the weighted sum of features and the predicted value for
each sample of the training dataset. Constraints (27) and (28) compute the absolute errors
between the targeted output Ys and the value predicted by the linear regression.

To ensure the fitted model overestimates the capacity consumption for all in-sample data
points, we forbid negative errors during the training by replacing (28) with the following
set of constraints:

Ypred
s ≥ Ys, ∀s ∈ D (29)

The same process applies to piecewise linear regression. To train such models, we divide
the dataset D into |R| smaller datasets depending on the region where each data point
falls. We fit a linear regression to each of these datasets by using this new fitting procedure.
We then consider these two machine learning models, named constrained linear regression
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(CLR) and constrained piecewise linear regression (CPLR) in the next section of this paper.

5.2. Data generation procedure
Fitting our machine learning models requires datasets that correspond to historical data

from actual production schedules implemented on the shop floor. However, we may take
advantage of available scheduling or simulation tools to generate data points that help train
the machine learning model. For proper comparison with methods from the literature,
we generate the dataset by solving flexible job-shop scheduling problems. Each dataset is
associated with one scheduling instance, where each data sample corresponds to one vector
of lot sizes X applied to each job. Generating data samples of a flexible job-shop scheduling
instance requires both the quantities of each item and the associated makespan (or capacity
consumption). The other features described in Section 4 are inferred from the lot sizes for
each data sample. To build the training dataset, we generate some lot sizes Xi for each item
i ∈ J , and associate each of them with the processing time of each operation of each job
i of the corresponding flexible job-shop scheduling problems. We solve each sample with
the MILP (see in the Supplementary Materials (A.1)-(A.5)) with a single period (|T | = 1).
Note that the hardest instances were solved with constraint programming approaches. The
rest of this section describes approaches to generate lot sizes examples.

5.2.1. Random procedure
One standard idea for data sampling is to generate the lot sizes Xi randomly. Advanced

sampling methods such as Latin Hypercube Sampling (LHS) generate samples that cover
the input space more evenly than simple Monte Carlo procedures (Mckay et al., 2000). This
sampling method works by dividing the input space into |F| bins of identical sizes. The
data samples are generated so that no two samples fall into the same bin. However, the
samples generated using LHS may not represent the solutions that can be found by solving
a lot-sizing model. For instance, randomly sampled lot sizes may have very small lots for
some item i ∈ J , which is not coherent with the high setup costs that can be encountered
in lot-sizing problems.

5.2.2. Iterative training procedure
This section suggests a practical enhancement where we look for adversarial examples

by running a simulation. Figure 5.2.2 summarizes the procedure. In each iteration, we
solve a randomly generated instance of the lot-sizing problem, and we solve the associated
scheduling problems to check if the capacity is violated in any period. Each sample that
is underestimated by the machine learning method is added to the training dataset D,
and the machine learning method is fitted into this new dataset. The method stops after
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solving a given number itermax of lot-sizing instances without finding periods where the
capacity is violated. However, the approach remains time-consuming for complex instances,

Update the training

dataset D and

train the machine

learning method ML

iter ←− 0

Generate a lot-

sizing instance LS

to be solved with an

Integrated Lot-sizing

and Scheduling (ILS)

method, retrieve the

lot sizes and compute

the real makespan

Is capacity

consumption

underestimated ?

Retrieve the lot sizes

which violate the

capacity constraints

iter = max iter

or ending criteria

met ?

Return

ML and D

iter ←− iter + 1

Yes

No Yes

No

Figure 1: Flow chart for ILS-based

with large scheduling sizes or parameters such as setup costs. We proposed an approach
(denoted as ILS-KP), that better identifies wrongly predicted samples better. The idea is to
generate lot-sizing solutions with tight capacity and with different structures. To generate
a wide variety of production plans, we randomly associate a profit λi with each item i, and
we seek solutions that maximize the profit while respecting the capacity constraint. The
capacity consumption is determined through the machine learning model ML translated
into a mathematical program as described in Section 4. Solving the following MILP a large
number of times with different weights yields various solutions with tight capacities:

max
∑
i∈J

λiXi (30)

s. t. (6) − (14) (31)
ML(X ) ≤ C (32)
Yi ∈ {0, 1}, Xi ≥ 0 i ∈ J

The objective function (30) maximizes the profit of each item i ∈ J while satisfying
the capacity constraint (32). Constraints (6)-(14) compute the features. Constraint (32)
approximates the capacity consumption with a machine learning model ML translated into
a mathematical program for the input vector X . Each iteration of this procedure generates
a vector of profit λ as well as a capacity C, and we solve (30)-(32).

In the case of linear regression, this approach is close to a continuous knapsack formula-
tion with a profit λi ∈ R for each item and a capacity C. In the numerical experiments, we
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run this procedure with the ILS-KP model, and the method stops when there is no more
than ρ percent on infeasible plans in the last N iterations.. To ensure that our machine
learning models always overestimate the capacity consumption, the intercept of the con-
strained linear regression trained using this procedure is increased by the difference between
the forecast and the real makespan of the last example that was underpredicted.

In addition to this iterative procedure, an exact method for finding adversarial examples
is presented in Appendix G.

6. Numerical experiments

This section summarizes the results of the computational experiments. We define the
lot-sizing instances in subsection 6.1. Then, we compare the performance of all machine
learning models in subsection 6.2. Subsections 6.3 and 6.4 provide the results of the machine
learning models compared to standard mathematical models for integrated lot-sizing and
scheduling. Finally, we propose an iterative lot-sizing and scheduling approach in subsection
6.5. Experiments assessing both the prediction performance of models that approximate
the capacity consumption and the data generation procedures are also proposed in Appendix
F. All the experiments were conducted on computers with Intel Xeon Broadwell EP E5-
2630v4 @ 2,20GHz and 124 Go of RAM. The mathematical models were solved using IBM
ILOG CPLEX 20.1.0.0 running with one thread. The linear regression and regression tree
were trained using the Scikit-learn (Pedregosa et al., 2011) package from Python, with
a maximum depth of 10 to limit the number of variables and constraints in the MILP
formulation. The constrained linear regression and constrained piecewise linear regression
were fitted using CPLEX to minimize the mean absolute error. Note that we also tried
to fit these machine learning models using the same mathematical model but minimizing
the mean squared error using a quadratic objective. However, we observed no significant
improvement by considering the mean squared error instead of the mean absolute error.

6.1. Instance definition
To generate the lot-sizing instances we adopt the procedure given in Wolosewicz et al.

(2015). At the scheduling level, the flexible job-shop scheduling instances mt06, mt10, and
mt20 from Hurink et al. (1994) are considered. The Supplementary Materials details the
instances generation procedure.

We compare the proposed approach with two methods from the literature, denoted by
ILS-Exact and ILS-Fixed. ILS-Exact is similar to ILS-CLSP but it replaces constraints
(4) with constraints (A.1)-(A.5). The resulting MILP solves the integrated lot-sizing and
flexible job-shop problem. This model provides perfect information on capacity consumption
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at each period since it simultaneously finds the best quantities for each item and sequences
the operations on the shop floor.

Wolosewicz et al. (2015) propose an approach that solves the lot-sizing problem with a
fixed sequence of operations for the job-shop scheduling problem. The new lot-sizing model
is less complex and solved with a heuristic based on Lagrangian relaxation. However, they
only considered one possible sequence of operations for the scheduling problem. We denote
by ILS-Fixed the lot-sizing model with a fixed sequence of operations for the scheduling
problem as presented in Wolosewicz et al. (2015). We consider the sequence that is the
solution to the flexible job-shop scheduling problem with lot sizes equal to 1 for each job.

We summarize below all the mathematical models used to solve the lot-sizing instances:

• ILS-CLSP: Capacitated Lot-sizing problem (1)-(5)

• ILS-CLSP75: Capacitated Lot-sizing problem with capacity reduced by 75%

• ILS-Exact: Integrated Lot-sizing and Flexible Job-shop Scheduling (A.1)-(A.5)

• ILS-Fixed: Integrated Lot-sizing and Scheduling with a fixed sequence

• ILS-LR: Integrated Lot-sizing and Scheduling with Linear Regression (15)

• ILS-PLR: Integrated Lot-sizing and Scheduling with Piecewise Linear Regression (16)-
(19)

• ILS-RT: Integrated Lot-sizing and Scheduling with Regression Tree (20)-(24)

• ILS-CLR: Integrated Lot-sizing and Scheduling with Constrained Linear Regression

• ILS-CPLR: Integrated Lot-sizing and Scheduling with Constrained Piecewise Linear
Regression

Both ILS-CLR and ILS-CPLR have been trained with ρ = 100% and N = 10, 000 to
ensure the feasibility of the production plans obtained. Since these models can be restrictive,
we also considered two additional models, ILS-CLR95 and ILS-CPLR95, trained with ρ =
95% and N = 1, 000. All the lot-sizing models were solved by CPLEX with a time limit
of 1 hour.

6.2. Machine learning models comparison
This section reports the performance of different lot-sizing models that embed machine

learning methods to approximate the capacity constraint. We compare the performance
of different machine learning models and different training methods. First, we analyze the
solution quality and the feasibility of production plans obtained by embedding different
machine learning models. For each scheduling size and each period horizon, we generate
100 lot-sizing instances. To check the feasibility of the solution returned by the models,
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Size 6 × 6 10 × 10 20 × 5
T 5 30 50 5 30 50 5 30 50

ILS-LR

UB 1600 9368 15517 2659 15309 25746 5323 30423 51996
LB 1600 9368 15517 2659 15309 25746 5323 30423 51996

Gap(%) 0 0 0 0 0 0 0 0 0
Feasibility 88 18 5 89 12 7 83 72 67
Time (s.) 0.08 3.11 8.1 0.15 11.5 81.7 0.07 1.2 2.07

ILS-CLR

UB 1603 9382 15537 2664 15361 25833 5332 30470 52034
LB 1603 9382 15537 2664 15361 25819 5332 30470 52034

Gap(%) 0 0 0 0 0 0.05 0 0 0
Feasibility 100 100 98 100 99 96 100 100 100
Time (s.) 0.02 1.66 7.5 0.03 325.0 3409 0.09 19.1 142.1

ILS-RT

UB 1600 9367 15518 2659 15308 25742 5324 30443 52153
LB 1600 9367 15518 2659 15308 25739 5324 30424 51996

Gap(%) 0 0 0 0 0 0.004 0 0.06 0.3
Feasibility 91 50 28 88 19 3 72 59 53
Time (s.) 2.99 327.0 1154.5 10.8 1443.6 3263.6 111.1 3568.7 3600

ILS-PLR

UB 1601 9371 × 2659 15308 × 5321 30420 ×
LB 1601 9371 × 2659 15308 × 5321 30420 ×

Gap(%) 0 0 × 0 0 × 0 0 ×
Feasibility 64 5 0 64 3 0 7 1 0
Time (s.) 0.02 0.2 0.4 0.02 0.3 0.43 0.07 0.7 1.45

ILS-CPLR

UB 1602 9379 15527 2665 15342 25742 5333 30462 52023
LB 1602 9379 15527 2665 15342 25718 5333 30462 52023

Gap(%) 0 0 0 0 0 0.09 0 0 0
Feasibility 91 75 67 100 97 91 100 100 98
Time (s.) 0.05 14.4 321.3 0.06 1645.7 3597.1 0.1 6.7 15.1

Table 1: Comparison between constrained and standard machine learning models

the production quantities in each period are associated with a scheduling problem, and the
solution of this scheduling problem gives the actual capacity consumption. A solution to
the lot-sizing model is infeasible either if no feasible solution has been found by the solver
after reaching the time limit or the solution returned by the solver includes at least one
period where the capacity is exceeded.

Table 1 reports the performance of all the embedded machine learning and lot-sizing
models presented in Section 6.1. The metrics used to compare the solutions are the upper
bounds UB, lower bounds LB, and the relative gap found returned by CPLEX. Note that
these metrics are provided only for the instances where all methods find a feasible solution.

Table 1 shows that most of the solutions returned by the linear regression and regression
tree are infeasible, while the constrained approach leads to a large percentage of feasible
solutions. When compared to linear regression, regression trees appear to perform badly,
since this approach requires a significant computational time to find optimal solutions. The

23



number of variables and constraints grows exponentially with the size of the tree. For ex-
ample, a regression tree with a depth of 20 can include a total of 220 nodes, which leads to
at least 220 variables and three times more constraints for each period in the horizon. The
resulting mathematical model rapidly becomes impractical when the number of periods in-
creases. Although models learned without the constraint that prevents underapproximation
of the capacity consumption have high precision, they struggle to find solutions that respect
capacity consumption. The importance of the constrained learning approach is clear, and
we keep only the constrained machine learning models for the rest of the experiments.

6.3. Performance of the proposed approach
This section compares the state-of-the-art models ILS-Exact, ILS-CLSP, and ILS-Fixed

with lot-sizing models that embed constrained regression, namely ILS-CLR and ILS-CPLR.
We generate instances for this experiment by varying the scheduling size, horizon length,
and setup costs. Machine learning models were trained using the ILS-KP method proposed
in Section 5.2.2.

Metrics Scheduling Period Setup costs
6 × 6 10 × 10 20 × 5 5 30 50 15 50 100

ILS-Exact

GapB(%) 0.3 1.51 9.17 1.19 3.69 0.45 2.31 0.03 2.51
Feasibility (%) 99.3 55.6 8.6 74.8 44.8 43.9 75.2 44.2 44.0
GapMAE(%) 11.7 26.5 43.5 25.0 13.2 13.3 28.7 11.6 8.5
Time (s.) 1666.8 3378.6 3600.1 2201.4 3203.9 3240.2 2225.7 3202.0 3217.8

ILS-CLSP

GapB(%) 0.41 0.39 0.4 0.68 0.29 0.22 0.4 × ×
Feasibility (%) 15.8 (14.3) 15.7 (15.6) 2.4 (13.6) 16.0 (18.5) 11.1 (12.8) 6.8 (12.2) 33.9 (4.4) 0.0 (16.0) 0.0 (23.2)
GapMAE(%) 8.3 11.1 18.7 14.2 12.1 11.9 11.2 12.9 14.0
Time (s.) 51.1 233.3 84.7 0.1 20.5 348.6 0.1 2.3 366.7

ILS-CLSP75

GapB(%) 1.85 0.31 0.09 0.99 0.74 0.21 0.19 1.41 1.49
Feasibility (%) 42.8 (3.0) 33.4 (5.9) 43.0 (4.7) 53.6 (4.5) 33.1 (4.8) 32.6 (4.4) 97.8 (1.8) 17.8 (4.3) 3.7 (6.3)
GapMAE(%) 18.7 15.9 8.8 14.7 14.4 14.4 16.5 13.5 13.4
Time (s.) 421.5 598.9 1433.5 0.5 850.8 1602.7 0.8 655.7 1797.5

ILS-Fixed

GapB(%) 0.52 1.61 4.66 2.67 1.73 2.39 0.27 2.06 4.46
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GapMAE(%) 6.2 12.8 30.0 17.5 15.6 16.0 22.6 14.4 12.1
Time (s.) 1534.9 2013.0 2834.6 443.7 2781.7 3157.1 1205.2 2369.3 2808.0

ILS-CLR

GapB(%) 3.59 1.48 1.44 3.2 1.75 1.56 0.29 1.86 4.36
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GapMAE(%) 22.9 17.5 24.9 23.2 21.0 21.1 27.1 20.3 18.0
Time (s.) 1606.5 1681.7 2190.3 208.8 2440.9 2828.8 468.8 2401.2 2608.5

ILS-CPLR

GapB(%) 3.31 1.86 1.2 2.54 1.79 2.02 0.21 1.74 4.41
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GapMAE(%) 22.7 21.8 22.9 25.0 21.1 21.3 25.1 22.1 20.2
Time (s.) 2074.1 1995.0 2018.1 286.0 2531.8 3269.5 1001.4 2402.1 2683.8

ILS-CLR95

GapB(%) 4.38 1.23 0.64 3.06 1.7 1.49 0.31 1.79 4.15
Feasibility (%) 100.0 100.0 99.3 (0.8) 100.0 99.7 (0.8) 99.7 (0.8) 100.0 99.9 (1.0) 99.4 (0.7)
GapMAE(%) 27.7 16.5 22.9 24.0 21.6 21.6 27.8 20.9 18.5
Time (s.) 1605.8 1642.1 1865.3 127.3 2412.6 2573.3 185.9 2400.9 2526.4

ILS-CPLR95

GapB(%) 3.94 1.66 0.25 2.46 1.61 1.79 0.23 1.53 4.09
Feasibility (%) 99.8 (0.3) 100.0 98.4 (1.0) 100.0 99.3 (1.7) 98.9 (0.5) 100.0 99.8 (0.4) 98.4 (0.9)
GapMAE(%) 26.3 18.4 18.8 23.0 20.2 20.3 24.2 20.8 18.5
Time (s.) 2220.5 2050.3 1814.1 213.1 2690.7 3181.1 1071.7 2401.6 2611.7

Table 2: Results for lot-sizing models aggregated by scheduling size, period, and setup costs

Table 2 reports the results on all the instances, aggregated per scheduling size, period,
and setup costs. For each of these parameters, we considered the percentage gap (denoted
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by GapB) of each model over the best solution found, the percentage of plans that are
feasible, the average absolute gap between the estimated capacity consumption and the real
makespan (denoted by GapMAE), and the computational time in seconds. For a solution
where the production plans resulted in impractical schedules, the percentage of violated
capacity is provided in brackets.

The Supplementary Materials gives detailed tables with the results for each instance.
For most instances of size 6 × 6, ILS-Exact finds at least one feasible production plan

within the time limit, but it struggles to find feasible solutions when the size of instances
increases. ILS-CLSP returns solutions within a reasonable computational time, and the
feasible ones represent the best production plan. However, the large majority of solutions
found by ILS-CLSP are not feasible at the scheduling level. Such solutions are undesirable,
and the reliability of this model remains low when compared to the other approaches. Setup
costs greatly impact the complexity of the instances since the plans resulting from their
solutions include large lot sizes for some periods to avoid high setup costs. These solutions
tighten the capacity constraints, leading to production plans that tend to be infeasible.
For the infeasible solutions of ILS-CLSP, the capacity is highly violated, particularly in
scenarios with large setup costs. The safety capacity feature prevents the model from
utilizing more than 75% of the available capacity. While this parameter enhances the
feasibility of solutions, a significant number of infeasible plans persist. This model still
exceeds the capacity by 6% for instances with large scheduling sizes. To ensure feasibility
in all instances, the model must account for a large safety capacity which would lead to
poor quality solutions.

ILS-Fixed proposes the best trade-off between objective values and feasibility for small-
size instances. However, ILS-CPLR outperforms the ILS-Fixed model when the instance size
increases. Increasing the number of periods does not impact the overall performance of ILS-
CLR and ILS-CPLR, whereas it decreases the quality of solutions for ILS-Fixed. However,
increasing the setup costs has an impact on the solutions found by all the models, even if ILS-
CLR and ILS-CPLR remain better on average. Our intuition is that lower setup costs imply
small quantities of items for each period, which remain relatively easy to approximate for
scheduling with a fixed sequence. Larger setup costs involve large lot sizes and multiple items
produced at the same time, resulting in complex scheduling problems that are inadequately
approximated with a single sequence. In this case, machine learning approaches forecast a
more accurate capacity consumption on average, leading to better solutions for medium and
large instance sizes. The models trained to reach 95% of feasibility provide the production
plans with the lowest cost at the expense of a small decrease in feasibility ratio. Finally,
machine learning based approaches are much less demanding in terms of computational
efforts than lot-sizing models that integrate the full scheduling decisions.
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The gap GapMAE between capacity consumption approximation and real makespan
varies drastically between instance types and models. Most of the solutions of ILS-CLSP
and ILS-CLSP75 models compute capacity consumptions that slightly underestimate or
overestimate the real makespan, leading to low GapMAE when compared to other ap-
proaches. ILS-Exact and ILS-Fixed compute the capacity consumption by solving the
scheduling problem and only feasible schedules are necessary. Therefore, these models may
find optimal solutions at the lot-sizing level computed with nonoptimal schedules, resulting
in a high GapMAE between the capacity consumption found at the lot-sizing level and the
optimal makespan of the resulting scheduling problems. Machine learning models predict
bad capacity consumptions for small scheduling sizes, but outperform the Fixed approach
on large scheduling sizes.

6.4. Performance on different parameters
Lot-sizing parameters significantly impact the solution quality of the optimal plans.

This subsection evaluates the performance of the proposed approach on different metrics.
For this set of experiments, we vary three standard parameters of the lot-sizing problems:
demand variations, setup times, and backlog costs as well as the non-allowance of backlog.

Table 3 reports the results aggregated on the three considered parameters. While the
performance of classical models (ILS-CLSP, ILS-CLSP75, ILS-Exact) varies with the pa-
rameters, the machine learning-based approaches are robust, and their performances are
competitive with the fixed scheduling approach for all types of instances. For example,
reducing the backlog costs drastically reduces the number of feasible plans found by both
ILS-CLSP and ILS-CLSP75. When backlog cost is low, the lot-sizing solutions are likely to
postpone production to reduce setups, and thus the estimated capacity consumption in a
period is closer to capacity.

Similarly, when no setup times are considered, ILS-Exact can find a large number of
feasible plans. However, the solutions found for large-size instances remain bad compared
to the other approaches considered in this work. Note that the feasibility increases with the
demand since the capacity calculation takes demands into account. For small demands, the
capacity is reduced and it becomes difficult to respect the capacity constraints. Similarly,
increasing the setup times leads to schedules with high makespans, which reduces the Gap
between the optimal makespan and the approximated one.

6.5. Iterative lot-sizing and scheduling approach
In this subsection, we investigate an iterative procedure to solve the integrated lot-

sizing and scheduling problem by repeatedly solving the scheduling problem obtained from
the lot-sizing decisions. Each iteration of this algorithm consists of solving the lot-sizing
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Metrics Backlog costs Setup times Demand
Forbidden 1 3 None ×3 ×5 [4,8] [10,50] [10,100]

ILS-Exact

GapB(%) 0.26 0.97 0.15 10.15 0.98 0.21 3.37 0.54 0.37
Feasibility (%) 49.7 45.2 70.1 89.2 53.8 41.7 44.6 89.2 90.0
GapMAE(%) 28.0 15.4 30.2 34.4 27.6 24.8 22.5 60.6 59.8
Time (s.) 2232.4 2858.1 2272.7 2113.5 2627.6 2954.4 3173.3 987.0 945.3

ILS-CLSP

GapB(%) 0.42 0.76 0.37 0.23 0.55 1.52 1.83 0.02 0.0
Feasibility (%) 33.6 (4.2) 2.3 (9.6) 33.6 (4.4) 46.7 (3.6) 18.9 (5.2) 10.4 (5.8) 2.3 (7.6) 100.0 100.0
GapMAE(%) 11.2 10.7 11.2 9.2 14.9 18.3 14.3 10.5 9.0
Time (s.) 0.1 0.3 0.1 0.2 0.2 0.4 0.3 0.1 0.1

ILS-CLSP75

GapB(%) 0.2 0.72 0.19 0.17 0.93 0.26 0.98 0.02 0.01
Feasibility (%) 97.9 (2.1) 49.0 (3.1) 96.8 (1.7) 99.0 (1.3) 91.8 (2.6) 49.0 58.7 (2.5) 100.0 100.0
GapMAE(%) 16.5 15.2 16.5 19.2 12.4 15.0 13.0 19.5 21.4
Time (s.) 0.6 3.0 0.7 0.4 800.1 0.1 440.2 0.1 0.1

ILS-Fixed

GapB(%) 0.27 0.74 0.28 0.23 0.73 0.67 1.38 0.02 0.01
Feasibility (%) 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GapMAE(%) 22.8 23.0 22.8 24.3 19.0 15.5 25.4 26.3 27.5
Time (s.) 1182.8 1776.6 1193.2 1150.6 1359.2 1510.8 1845.9 0.2 0.2

ILS-CLR

GapB(%) 0.3 0.68 0.29 0.3 0.79 0.57 1.42 0.02 0.02
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GapMAE(%) 27.0 23.0 27.0 29.9 26.6 22.6 23.6 31.2 32.2
Time (s.) 449.8 1903.0 443.5 227.8 1217.1 1404.5 2112.1 0.1 0.2

ILS-CPLR

GapB(%) 0.22 0.61 0.22 0.19 0.61 0.23 1.35 0.02 0.0
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GapMAE(%) 25.0 22.5 25.0 26.1 23.1 20.2 24.9 22.9 22.8
Time (s.) 970.0 2400.3 970.2 794.8 1890.8 2292.8 2400.2 0.2 0.2

ILS-CLR95

GapB(%) 0.33 0.7 0.31 0.3 0.79 0.57 1.53 0.03 0.04
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GapMAE(%) 27.8 23.8 27.7 29.9 26.5 22.5 25.3 30.4 31.1
Time (s.) 165.3 1801.5 144.5 246.8 1225.6 1415.7 2138.7 0.2 0.2

ILS-CPLR95

GapB(%) 0.22 0.6 0.22 0.18 0.61 0.23 1.3 0.02 0.01
Feasibility (%) 100.0 99.9 (0.6) 100.0 99.6 (2.1) 99.7 (1.5) 99.4 (1.6) 99.7 (1.0) 100.0 100.0
GapMAE(%) 23.0 19.5 22.9 24.6 23.0 20.2 23.3 24.4 25.0
Time (s.) 1059.1 2369.4 1074.6 847.2 1971.0 2306.6 2400.2 0.2 0.2

Table 3: Results for lot-sizing models by varying backlog costs, setup times, and demand

problem with safety capacities for each period and computing the schedules of the resulting
solution to adjust each safety capacity. If the capacity constraints are violated for at least
one period, the available capacity is further reduced to limit the capacity consumption.
Similarly, in the case of a feasible production plan, the capacity is increased in the hope of
reaching better solutions. We describe the iterative procedure as follows:

1. Set a percentage of available capacity σt and decay µt for each period t ∈ T .
2. Solve the lot-sizing model for 300 seconds, with capacity Ct = σt · Ct, ∀t ∈ T .
3. If the problem is infeasible or no feasible solution is reached, increase σt = σt + µt,

decrease µt = 0.5µt and go to Step 1.
4. If a feasible solution is obtained, solve the scheduling problems based on the lot sizes

obtained for each period.
5. If the schedule respects the capacity in all periods, increase the available capacity

σt = σt + µt and decrease µt = 0.5µt and go to Step 1.
6. If the capacity is violated for a set of periods T , reduce the available capacity σt =

σt − µt and decrease µt = 0.5µt for each period t ∈ T and go to Step 1.
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In our experiments, the procedure stops after a time limit of 3600 seconds or if µt is
smaller than 0.001 for any t ∈ T . To solve the lot-sizing problems, we considered both the
CLSP and CLR95 models, denoted respectively by H-CLSP and H-CLR95 in the experi-
ments. The latter model leads to the best trade-off between feasibility, solution quality, and
computational time among all other machine learning models.

Parameters σt and µt were defined for each model based on preliminary experiments.
For H-CLSP, we started with σt = 0.8 and µt = 0.1, since most of the solution obtained
with this model results in infeasible production plans. On the contrary, H-CLR95 achieved
a high number of feasible plans, so we considered σt = 1.0 and µt = 0.15 for ILS-CLR.

Metrics Scheduling Period Setup costs
6 × 6 10 × 10 20 × 5 5 30 50 15 50 100

H-CLSP
GapB(%) 0.12 0.63 2.27 0.39 0.33 2.29 0.0 0.16 2.84

Feasibility (%) 98.7 92.0 89.1 99.9 96.1 83.8 100.0 97.7 82.1
Time (s.) 854.3 1266.8 1914.2 89.9 1664.8 2280.6 410.2 1278.6 2346.4

H-CLR95
GapB(%) 0.35 0.1 1.84 0.01 0.32 1.97 0.02 0.12 2.17

Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 1601.1 1731.9 2208.8 277.3 2519.0 2745.5 478.4 2419.7 2643.8

CLR
GapB(%) 1.27 1.01 1.9 2.44 1.2 0.55 0.31 1.99 1.88

Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 1606.5 1681.7 2190.3 208.8 2440.9 2828.8 468.8 2401.2 2608.5

Table 4: Aggregated results for heuristical approach

Table 4 provides the results of the iterative approach when the main parameters of the
lot-sizing problems vary. The results show that even in the iterative framework, H-CLSP
does not reach 100% feasibility for most instances. This finding shows that ensuring a
feasible plan is a complex task, and the machine learning method provided in our work
will strongly benefit the manufacturing industry. On the contrary, embedding CLR95 in
the iterative framework reaches solutions with 100% feasibility and lower costs than the
standalone version. However, for large-size instances and for instances with large setup
costs, H-CLSP outperforms H-CLR95. As the probability of violating the capacity for one
period increases for large horizon instances, the procedure struggles to find feasible plans
in the first iterations.

7. Conclusions and discussions

This paper presents innovative lot-sizing models that rely on machine learning to im-
prove the approximation of capacity consumption. The resulting model is interesting for
application in the manufacturing industry since it leads to lower production costs, and it
ensures APS systems provide plans that are executable in the workshop. We have investi-
gated machine learning models based on linear regressions, piecewise linear regressions, and
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decision trees to predict capacity consumption. As we incorporate these machine learning
models into optimization approaches, they must be appropriately trained to avoid under-
estimating capacity consumption. Therefore, we constrain the learning process to avoid
underestimating the capacity of training samples. In addition, we propose an iterative
training sample generator that helps to train the machine learning model efficiently. The
resulting approach outperforms state-of-the-art lot-sizing models from the literature for
large-scale instances, by providing solutions with lower total costs, in short computational
time, and these solutions are feasible for each period taking into account the scheduling
constraints.

In addition, constrained machine learning models trained with the iterative procedure
result in small final datasets, that are less than 1200 samples. Also, since the large-size
scheduling instances used to train the models include a relative gap of around 15%, the
models perform well even when trained with nonoptimal schedules or with few available data
samples from scheduling. We observed that machine learning models underestimate capacity
consumption when trained on large-size datasets (more than 100,000 samples) with classical
training approaches. The iterative training approach we propose in our paper alleviates
this issue. Therefore, we recommend practitioners use all the available data samples when
training the models and, if possible, employ procedures to enhance the prediction, rather
than relying on large datasets.

While we only consider offline learning in our paper, in practice, the model could be
retrained whenever an infeasible plan occurs. More generally, we can retrain the machine
learning model regularly to account for the schedule implemented in the last periods.

Many extensions of lot-sizing problems include parameters such as setup carryover or
overtime, and our formulation may be easily adapted by involving the corresponding vari-
ables in the training process. As explained in Section 4.1, many features related to the
lot-sizing parameter can be included in the training process, and the prediction may differ
from one value to another. For example, setup carryover can be considered by adding binary
variables indicating information about the sequencing of the resources, as well as additional
constraints to allow the carryover of a setup if the conditions are met. This information
can then be easily retrieved from production schedules and integrated as features in the
training. In the same way, integrating machine learning models into lot-sizing can help
to deal with uncertainty if the schedules used to train the models are built on uncertain
environments, such as uncertain processing times or machine breakdown. Also, we restrict
our work to single-level lot-sizing problems, where all the operations related to the same
item have identical lot sizes. However, the consideration of a bill of materials for products,
such as in multi-level lot-sizing problems, provides a more detailed representation of the
operations on the shop floor and would be highly beneficial for our approach. In addition,
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the inventory level can be added as a feature for our machine learning models to express
the consumption of components for the immediate production of successors, leading to a
more accurate approximation of capacity consumption.

The proposed approach aims to complement MRP software by providing more accu-
rate capacity consumption, but not to replace advanced planning and scheduling systems.
The machine learning and lot-sizing models do not provide any information on the se-
quencing decisions. Our approaches only benefit at the lot-sizing level where quantities are
determined, and not at the scheduling level to sequence the operations on the shop floor,
although the approximation of the makespan of such approaches can help in approximating
the scheduling problem. The proposed approach aims to complement MRP software by
providing more accurate capacity consumption, but not to replace advanced planning and
scheduling systems.

This initial work was conducted in a controlled environment, where we checked if the
plans were feasible by solving a scheduling problem. Future work must investigate the
possibility of learning capacity consumption from real data collected from manufacturing
execution systems (MES), which is one of the objectives of our current European Project
ASSISTANT (Castañé et al., 2022). An intermediate step might study the case where fea-
sibility on the shop floor is checked in a detailed simulation. Such a detailed simulation will
provide data for complex shop floors with many machines and jobs, and it may incorporate
the instability commonly encountered in workshops, where a given production load may
be feasible in one week but not in the next one (because of machine breakdown, or other
uncertainties). Other interesting avenues for future research include the generalization of
machine learning tools to other machine learning models such as neural networks. The
models are also specifically trained to predict capacity consumption in a unique scheduling
environment, and each model should be retrained when changing the configuration of the
shop floor. The generalization of makespan prediction to each scheduling size would be
highly beneficial.
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Appendix A. ILS-Exact

In the following, we present an MILP, adapted from Shen et al. (2018) and denoted
here as ILS-Exact, which represents the scheduling decisions of the integrated lot-sizing
and flexible job-shop model. First, let us define the following variables:

• ϕijt : the starting time of operation Oij in period t ∈ T

• Zijkt =

1 if operation Oij is assigned to machine k ∈ Mij in period t ∈ T ,
0 otherwise

• βiji′j′t =

1 if operation Oij is performed before operation Oi′j′ in period t ∈ T ,
0 otherwise

Thus, the flexible job-shop scheduling problem considered at each period of our capaci-
tated lot-sizing problem can be implemented using the following equations:

∑
k∈Mij

Zijkt = 1, j ∈ ni, i ∈ J, t ∈ T (A.1)

ϕijt ≥ ϕi(j−1)t + pi(j−1)kXit − (1 − Zi(j−1)kt)H
∀k∈Mi(j−1),

j∈2,...,ni,
i∈J,t∈T

(A.2)

ϕijt ≥ ϕi′j′t + pi′j′kXi′t + si′ikYit − (2 − Zijkt − Zi′j′kt + βiji′j′t)H
j∈1,...,ni,j

′∈1,...,ni′ ,
(i,i′)∈{J×J |Oij ̸=Oi′j′},

k∈Mij∩Mi′j′ ,t∈T
(A.3)

ϕi′j′t ≥ ϕijt + pijkXit + sii′kYi′t − (3 − Zijkt − Zi′j′kt − βiji′j′t)H
j∈1,...,ni,j

′∈1,...,ni′ ,
(i,i′)∈{J×J |Oij ̸=Oi′j′},

k∈Mij∩Mi′j′ ,t∈T
(A.4)

ϕinit + pinikXit − (1 − Zijkt)H ≤ Ct, k ∈ Mini , i ∈ J, t ∈ T (A.5)

Zijkt ∈ {0, 1}, j ∈ 1 . . . ni, i ∈ J, k ∈ Mij , t ∈ T, i ∈ J, t ∈ T

βiji′j′t ∈ {0, 1}, j ∈ 1, . . . , ni, j′ ∈ 1, . . . , ni′ , (i, i′) ∈ {J × J |Oij ̸= Oi′j′}, t ∈ T

ϕijt ≥ 0, j ∈ 1 . . . ni, i ∈ J, k ∈ Mij , t ∈ T

These constraints define the scheduling decisions for each period t ∈ T of the production
plan. Constraints (A.1) ensure that each operation is performed by only one machine
for each period. Constraints (A.2) force the operations of the same job to be performed
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consecutively. Constraints (A.3) and (A.4) state that each pair of operations Oij and Oi′j′

performed on a same machine k ∈ Mij ∩ Mi′j′ must not overlap. Finally, Constraints (A.5)
define the capacity constraints for each period, i.e. the makespan of each flexible job-shop
scheduling problem considered at each period t ∈ T must respect the capacity.

Appendix B. Proof of Proposition 1

Suppose we have a job-shop scheduling environment with a set of jobs J , composed
of ni successive operations for each job i ∈ J , to be performed on a set of machines M .
From any job-shop scheduling problem, we can derive its disjunctive graph, where nodes are
associated with operations and arcs relate to the precedence constraints between operations
(see Balas (1969) for more details). Assigning all the operations on the machines results in
a sequence z, for which we can derive its conjunctive graph C(z). Each sequence z in the
set of all possible sequences S provides the order in which the operations are performed
on all the machines. For any sequence z ∈ S, we can compute the completion time of any
path c ∈ C(z) in the conjunctive graph. This completion time corresponds to the sum of
processing times for all operations and all setups in this path, i.e.:

f(X, c) =
∑
o∈c

(
po · Xi(o) + so · Yi(o)

)
where:

Yi(o) =

1 if Xi(o) ≥ 0
0 otherwise

Here, o ∈ c stands for one operation performed by the path c, i(o) for its corresponding
job i ∈ J , po for its processing time, and so for the setup time between operation o and its
direct successor (so is equal to 0 if operation o is the last operation). For each sequence
z ∈ S, we can determine its critical path by finding the path c with the highest value, which
is achieved by finding the maximum among all paths:

max
c∈C(z)

{∑
o∈c

(
po · Xi(o) + so · Yi(o)

)}

By considering the set of all the possible sequences S, the makespan of the scheduling
problem is given by the sequence whose critical path is the shortest among all sequences.
Then, we can define a function that returns the makespan for the lot sizes represented by
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the vector X:
Cmax(X) = min

z∈S
max

c∈C(z)

{∑
o∈c

(
po · Xi(o) + so · Yi(o)

)}
Function f is piecewise linear, as well as max and min functions. Thus, Cmax being a

composition of piecewise linear functions, Cmax is also a piecewise linear function.
This proof can be extended to flexible job-shop scheduling problems since a flexible job-

shop scheduling problem can be interpreted as a job-shop scheduling problem with more
sequences (Brandimarte, 1993). It can also be extended to job-shop scheduling problems
with sequence-dependent setup times.
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Appendix C. Results

Scheduling size 6 × 6
Setup costs 15 50 100

Period 5 30 50 5 30 50 5 30 50

Exact

UB 1590.4 9382.8 15671.0 2193.6 12258.2 20463.2 2898.0 15762.3 26281.7
LB 1590.4 9382.2 15669.8 2193.4 12107.7 20098.5 2897.8 14936.1 24746.5
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 99.0 99.0 100.0 100.0 96.0
Time (s.) 1.1 60.9 361.4 18.0 3600.0 3600.0 159.7 3600.0 3600.0

CLSP

UB 1590.2 9381.7 15669.1 2167.6 12112.3 20135.3 2810.3 15123.9 25076.4
LB 1590.2 9381.4 15668.6 2167.6 12111.2 20133.6 2810.2 15122.5 25073.3
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 75.0 44.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0
Time (s.) 0.0 0.1 0.1 0.0 0.9 2.1 0.0 12.7 444.0

CLSP75

UB 1594.6 9411.0 15718.6 2235.7 12521.6 20813.7 3015.2 16329.0 27071.5
LB 1594.6 9410.5 15717.7 2235.7 12520.4 20811.7 3015.1 16326.9 27017.5
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 93.0 95.0 69.0 2.0 0.0 26.0 0.0 0.0
Time (s.) 0.0 0.1 0.1 0.0 3.3 41.0 0.0 323.9 3425.1

Fixed

UB 1593.6 9395.7 15691.2 2223.6 12301.3 20438.4 2969.8 15600.0 25871.9
LB 1593.6 9394.9 15689.7 2223.5 12275.8 20293.6 2969.7 15417.0 25337.9
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.0 2.2 7.2 0.1 3002.9 3600.0 0.3 3601.3 3600.0

CLR

UB 1598.3 9424.3 15738.1 2274.1 12642.6 21018.9 3112.0 16681.4 27679.7
LB 1598.3 9423.4 15736.6 2274.0 12504.4 20655.0 3111.9 16086.4 26388.8
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.0 3.7 45.8 0.1 3600.0 3600.0 0.2 3605.8 3602.5

CPLR

UB 1594.9 9410.1 15716.7 2252.0 12600.7 21040.7 3059.4 16671.6 27924.9
LB 1594.8 9408.9 15702.0 2251.9 12138.0 20048.6 3059.2 14864.6 24338.4
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.1 839.9 3422.6 0.9 3600.0 3600.0 3.8 3600.0 3600.0

CLR95

UB 1600.3 9438.7 15763.3 2288.7 12748.0 21190.1 3146.5 16932.9 28071.2
LB 1600.3 9437.8 15761.7 2288.7 12630.1 20869.5 3146.4 16472.2 27074.0
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.0 2.7 49.3 0.1 3600.0 3600.0 0.2 3600.0 3600.0

CPLR95

UB 1597.4 9422.6 15736.3 2266.0 12692.0 21176.3 3088.9 16855.5 28225.1
LB 1597.4 9418.7 15707.9 2265.9 12159.8 20086.9 3088.6 14966.0 24522.5
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 99.0 100.0 100.0 99.0
Time (s.) 0.1 1997.3 3581.6 1.1 3600.0 3600.0 4.4 3600.0 3600.0

H-CLSP

UB 1590.8 9384.3 15674.3 2217.2 12475.9 20797.5 3012.0 16528.2 27714.1
LB 1590.8 9384.0 15673.7 2217.2 12474.7 20795.2 3012.0 16505.8 27580.1
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.0
Time (s.) 8.0 48.2 100.0 14.6 134.4 859.6 10.3 2902.5 3600.0

H-CLR

UB 1591.5 9387.8 15679.6 2217.4 12442.3 20896.9 2992.8 16754.0 28019.4
LB 1591.5 9387.3 15678.3 2217.3 12370.4 20616.3 2992.7 16235.9 26887.3
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 15.3 72.1 160.5 9.1 3348.2 3579.6 10.5 3600.0 3600.0

Table C.5: Results for 6 × 6
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Scheduling size 10 × 10
Setup costs 15 50 100

Period 5 30 50 5 30 50 5 30 50

Exact

UB 2646.8 15670.1 26145.8 3702.0 × × 5020.9 × ×
LB 2645.8 15651.5 26075.0 3602.5 20012.0 33183.7 4633.6 24143.0 39879.6
Gap (%) 0.0 0.0 0.0 0.0 × × 0.1 × ×
Feasibility (%) 100.0 100.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0
Time (s.) 1633.4 3573.9 3600.1 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0

CLSP

UB 2645.6 15651.5 26075.1 3594.4 20102.5 33352.8 4622.8 24931.5 41278.9
LB 2645.6 15651.4 26074.7 3594.4 20100.8 33349.9 4622.7 24929.0 41262.3
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 63.0 47.0 31.0 0.0 0.0 0.0 0.0 0.0 0.0
Time (s.) 0.0 0.1 0.2 0.0 1.6 3.2 0.0 58.9 2036.1

CLSP75

UB 2649.8 15677.4 26118.7 3680.7 20676.4 34310.6 4928.6 26742.8 44286.9
LB 2649.8 15676.5 26117.2 3680.6 20674.3 34307.1 4928.5 26731.6 44166.6
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 98.0 96.0 98.0 8.0 0.0 0.0 1.0 0.0 0.0
Time (s.) 0.0 0.1 0.2 0.0 7.7 157.0 0.0 1625.3 3600.0

Fixed

UB 2652.6 15677.7 26118.6 3742.4 20916.3 34850.9 5095.6 27557.7 46373.7
LB 2652.5 15676.0 26110.0 3742.1 20209.0 33392.0 5093.4 24832.4 40656.4
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.1 428.9 3206.8 3.2 3600.0 3600.0 77.8 3600.0 3600.0

CLR

UB 2655.4 15690.2 26139.2 3761.9 20901.0 34682.6 5141.8 27431.5 45500.0
LB 2655.4 15688.6 26136.2 3761.7 20550.9 33968.3 5141.4 26110.9 42904.9
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.0 21.4 710.9 0.5 3600.0 3600.0 2.7 3600.0 3600.0

CPLR

UB 2654.7 15688.6 26137.0 3756.0 20982.9 34919.3 5121.0 27701.2 46380.4
LB 2654.6 15687.1 26126.8 3755.7 20353.3 33657.3 5120.5 25506.9 41936.4
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.1 244.6 3299.5 1.5 3600.0 3600.0 9.5 3600.0 3600.0

CLR95

UB 2654.3 15686.4 26133.1 3749.9 20862.0 34619.3 5112.3 27325.5 45300.6
LB 2654.3 15684.9 26130.4 3749.6 20552.9 33983.4 5111.8 26144.7 42992.6
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.0 11.4 364.9 0.4 3600.0 3600.1 2.1 3600.0 3600.0

CPLR95

UB 2654.3 15686.4 26132.4 3751.2 20917.6 34844.2 5110.8 27593.1 46192.9
LB 2654.2 15684.5 26119.0 3750.8 20303.3 33570.8 5110.3 25301.7 41658.8
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.1 609.2 3425.2 1.7 3601.7 3600.0 14.8 3600.0 3600.0

H-CLSP

UB 2646.7 15653.5 26078.9 3688.0 20778.6 34575.2 5025.0 27766.7 46126.8
LB 2646.7 15653.2 26078.4 3687.9 20776.4 34559.1 5024.9 27672.8 45869.6
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 99.0 99.0 83.0 47.0
Time (s.) 63.8 167.1 232.6 110.0 597.5 3130.2 51.4 3600.0 3600.0

H-CLR

UB 2646.3 15652.9 26077.4 3674.0 20633.6 34605.5 4965.4 27238.3 45881.8
LB 2646.3 15652.3 26076.1 3673.8 20375.6 33850.2 4965.0 25889.5 42787.7
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 75.1 200.6 545.8 170.0 3600.0 3600.0 60.6 3600.0 3600.0

Table C.6: Results for 10 × 10
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Scheduling size 20 × 5
Setup costs 15 50 100

Period 5 30 50 5 30 50 5 30 50

Exact

UB 5361.1 36705.6 × × × × × × ×
LB 5297.4 31237.9 51975.7 7064.0 39733.8 65866.9 8364.4 47332.3 78006.0
Gap (%) 0.0 0.1 × × × × × × ×
Feasibility (%) 73.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Time (s.) 3600.0 3600.0 3600.0 3600.0 3600.0 3600.3 3600.0 3600.1 3600.1

CLSP

UB 5299.0 31239.2 51977.6 7199.7 39874.1 66010.0 9061.4 48002.4 79199.8
LB 5298.8 31238.5 51976.3 7199.1 39870.4 66004.1 9060.5 47997.8 79192.0
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 6.0 9.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0
Time (s.) 0.0 0.2 0.4 0.1 4.4 8.5 1.0 105.6 642.3

CLSP75

UB 5323.4 31265.9 52008.0 7467.1 40187.3 66376.2 9718.5 49121.3 80695.6
LB 5323.0 31263.1 52003.5 7466.3 40180.8 66348.1 9717.6 48984.7 80397.5
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Feasibility (%) 100.0 100.0 100.0 74.0 7.0 0.0 6.0 0.0 0.0
Time (s.) 0.1 1.9 4.6 0.6 2094.7 3596.6 3.4 3600.0 3600.0

Fixed

UB 5339.5 31389.0 52229.5 7716.6 42545.3 71501.6 10445.6 56491.2 97473.1
LB 5339.0 31318.7 52080.8 7715.9 40342.2 66561.4 10247.8 48907.0 80247.7
Gap (%) 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.2
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 1.2 3600.0 3600.0 317.4 3600.0 3600.0 3592.8 3600.0 3600.0

CLR

UB 5324.0 31288.9 52046.4 7590.4 41205.4 68325.2 10215.1 53461.7 88587.3
LB 5323.6 31285.8 52037.0 7589.7 40379.2 66589.3 10204.0 49389.1 80604.9
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.1 337.2 3099.9 10.5 3600.0 3600.0 1865.3 3600.0 3600.0

CPLR

UB 5317.7 31269.2 52015.4 7520.7 41104.1 68606.2 10095.1 53367.5 88814.7
LB 5317.3 31266.1 52010.0 7520.0 40130.2 66234.0 10060.8 48392.4 79386.2
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 0.1 101.5 1103.8 16.8 3600.0 3600.0 2540.8 3600.0 3600.0

CLR95

UB 5319.8 31277.9 52028.9 7532.8 40916.5 67796.4 10080.4 52555.3 87117.9
LB 5319.4 31274.8 52023.6 7532.1 40307.5 66507.4 10076.4 49188.8 80438.3
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 99.0 100.0 97.0 98.0
Time (s.) 0.1 99.5 1145.1 7.2 3600.0 3600.0 1135.4 3600.0 3600.0

CPLR95

UB 5312.8 31256.9 51999.1 7461.2 40705.8 67634.9 9963.3 52363.6 87192.5
LB 5312.5 31254.0 51994.3 7460.5 40101.4 66215.5 9949.2 48344.5 79366.9
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 99.0 100.0 94.0 93.0
Time (s.) 0.1 8.4 23.3 9.5 3600.0 3600.0 1885.9 3600.0 3600.0

H-CLSP

UB 5303.6 31243.0 51981.4 7355.0 40169.4 66452.4 9848.1 51996.4 105529.9
LB 5303.3 31241.7 51979.5 7354.3 40149.0 66379.0 9847.2 51114.0 82683.6
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Feasibility (%) 100.0 100.0 100.0 100.0 98.0 82.0 100.0 84.0 38.0
Time (s.) 217.9 1176.9 1677.7 212.4 2842.5 3600.0 120.5 3600.0 3600.0

H-CLR

UB 5305.0 31243.1 51982.0 7348.0 40161.8 66782.9 9735.0 52781.6 101475.1
LB 5304.8 31241.4 51979.4 7347.3 40068.7 66274.4 9726.1 48837.8 80077.1
Gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
Feasibility (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Time (s.) 290.1 1003.8 1942.5 269.0 3540.7 3600.0 1596.0 3600.0 3600.0

Table C.7: Results for 20 × 5
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Appendix D. Features description

This subsection describes the parameters used to describe features X(|J |+1)t, X(|J |+2)t,
X(|J |+3)t, and X(|J |+4)t. Each of these features relates to a sum of processing times and uses
the precomputed parameters described as follows:

oijk : The “operating ratio” for each operation Oij performed on machine k.
ok : Estimation of the total number of operations performed on machine k ∈ M .
smin

k : Minimum setup times between all pairs of jobs that can be performed on machine k.
smean

k : Average setup times between all pairs of jobs that can be performed on machine k.

As mentioned in Section 4.1, the operation ratio oijk provides the likeliness of an opera-
tion being performed on machine k. Depending on the scheduling problem, operations that
can be performed on more than one machine are more likely to be performed on machines
that lead to a minimal makespan. Several factors can be considered to assess the likelihood
of an operation being performed on one machine instead of another. One idea is to take
the processing times into account when choosing on which machine an operation has to be
performed. Thus, we compute the operation ratios as follows:

oijk =


0 if k /∈ Mij

1 if Mij = {k}
1

pijk·
∑

k′∈Mij

1
pijk′

otherwise

These ratios are computed such that operations that can be performed on only one
machine has a ratio of 1, while the other operations have a ratio that depends on the
processing times and the machine. Using these ratios, we can compute the estimated number
ok of operations on machine k ∈ M as follows:

ok =
∑
i∈J

∑
j∈ni

∑
k∈M

oijk.

Appendix E. Instance Generation

Lot-sizing instances
To generate lot-sizing instances, we adapt the procedure given in Wolosewicz et al.

(2015). The horizon length T takes values 5, 30, and 50 periods. We also vary the setup
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costs by considering values of 15, 50, and 100. The default setup cost is 15. The pro-
duction, holding, and backlogging costs remain identical between the instances, and we
consider respective values of 4 for the production costs, 1 for the holding costs, and 5 for
the backlogging costs. The demand d for each item is generated randomly in the interval
[5, 15]. For capacity tightness, the required capacity at each period is obtained by summing
the processing times and the mean setup time required to satisfy the whole demand and
then dividing this sum by the number of machines. This capacity is then multiplied by an
average utilization cap equals 0.55 for 6 × 6 instances. For 10 × 10 and 20 × 5 we select an
average utilization of 0.35 instead of 0.55 as in Wolosewicz et al. (2015) since the capacity
was large enough to solve all the instances optimally without exceeding the capacity for
each period. We adapted the formula to the flexible job-shop case as follows:

Cl = cap
∑
i∈|J |

∑
j∈ni

∑
k∈Mij

1
|Mij |

pijkDil + smean
k ∀t ∈ T

Scheduling instances
We considered the flexible job-shop scheduling instances mt06, mt10, and mt20 from

Hurink et al. (1994), which are standard job-shop instances from (Fisher, 1963) modified to
include flexible operations. There are three sizes of instances, namely, 6 jobs for 6 machines
(6 × 6), 10 jobs for 10 machines (10 × 10), and 20 jobs for 5 machines (20 × 5), where each
job is composed of a number of operations equal to the number of machines. We considered
the set of benchmark instances edata, which includes an average number of machines per
operation equal to 1.15. The setup times were generated following a uniform distribution
with support [1, 100], with valid triangular inequalities. To obtain the best makespan for
each data sample, we compare the MILP (A.1)-(A.5) solved with CPLEX on a single period
and a constraint programming model for the flexible job-shop scheduling problem with
sequence-dependent setup times solved using IBM ILOG CP Optimizer, within a time limit
of 60 seconds for each data sample. Although the two methods can solve sample data of
size 6 × 6 and 10 × 10 to optimality, the constraint programming approach provided the
best solutions for the large-scale instance 20 × 5, with an average gap that never exceeds
15%. Thus, we chose to solve each of our data samples with the constraint programming
approach.

Appendix F. Capacity consumption prediction

This section investigates the performance of the machine learning models in predicting
capacity consumption. We consider the following predictive models:

• RT : Regression Tree
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• LR: Linear Regression

• CLR: Constrained Linear Regression

• CPLR: Constrained Piecewise Linear Regression

• Fixed: Capacity consumption computed as in the ILS-Fixed model

• Approx: Capacity consumption computed as in the ILS-CLSP model

Approx represents the capacity consumption commonly used in the classical lot-sizing
models. Approx considers the maximum between the capacity consumption for each item
and for each machine, i.e. max{X(|J |+1)t, X(|J |+2)t}. Fixed considers a given sequence of
the scheduling problem, and it computes the makespan with the critical path method. For
the piecewise linear regression, we considered breakpoints [1, 2, 3, 4, 5, 6], [1, 5] and [1, 9]
for respectively the 6 × 6, 10 × 10 and 20 × 5 scheduling sizes. For the 6 × 6 case, one
region is considered for all the possible number of setups, which leads to a more precise
approximation but a more complex embedding compared to the scheduling sizes 10 × 10
and 20 × 5 with 3 regions each.

The approaches are compared on three datasets of 10, 000 scheduling samples generated
with the Lot-sizing based approach described in Section 5.2.2 with the lot-sizing model ILS-
Fixed. To evaluate the performance of each model, we considered a binary classification
problem where the machine model predicts if the given lot sizes respect the capacity or
not. For each dataset, we consider the median makespan as the capacity limit. Each data
sample was labeled as ”Feasible” or ”Infeasible” if the makespan found for each of these
samples is lower than the capacity limit or not. The predictive performance of each model
is evaluated on its ability to correctly predict whether an unseen data sample is Feasible
or Infeasible. Therefore, each machine learning model was trained to predict the makespan
of each data sample, and the prediction return for each testing sample is labeled afterward
as Feasible or Infeasible depending on the value returned. For each dataset, we randomly
sampled 80% of our dataset for training and 20% for testing.

Table F.8 reports the performance of the machine learning models and the approxi-
mation of capacity consumption. For each model and each scheduling size, we considered
the Accuracy, Precision, and Recall, which are the common metrics used in classification
evaluation. Accuracy corresponds to the proportion of schedules that were correctly clas-
sified as Feasible or Infeasible. Precision represents the percentage of schedules correctly
predicted as Feasible over the total number of schedules predicted as Feasible, including
false positives. Finally, Recall provides the percentage of schedules correctly predicted as
feasible and the actual number of feasible schedules in the test dataset. The MAE reports
the mean absolute error between the outcome of our methods and the real makespan.
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Since Approx is based on the theoretical lower bounds of the makespan, it cannot classify
as infeasible schedules that are feasible. Similarly, no false positive can result from the Fixed
method since the given sequence provides an upper bound of the makespan.

Size Metric RT LR CLR CPLR Approx Fixed

6 × 6

Accuracy (%) 97.2 96.2 87.7 87.1 93.9 94.7
Recall (%) 97.6 96.2 75.5 74.3 100 89.6
Precision (%) 96.8 96.2 100 100 88.4 100
MAE 19.5 31.9 140.6 118.6 44.2 64.3

10 × 10

Accuracy (%) 95.9 97.0 86.1 86.5 82.9 71.2
Recall (%) 96.0 97.2 72.2 73 100 43.5
Precision (%) 95.8 96.8 100 100 74.5 100
MAE 468.5 463.3 2364.7 1960.3 1529.4 4282.8

20 × 5

Accuracy (%) 94.6 95.2 82.6 87.2 60.2 64.0
Recall (%) 95.6 94.2 65.2 74.4 100 30.2
Precision (%) 93.7 96.1 100 100 55.6 100
MAE 380.9 327.4 1679.0 1042.5 2452.5 5651.9

Table F.8: Prediction performance of machine learning and other approximations of capacity consumption

In the context of capacity consumption approximation, a model with high precision
is crucial to limit the number of instances wrongly predicted as feasible by our model.
These infeasible schedules are undesirable since they lead to unfeasible production plans,
resulting in firefighting on the shop floor, delays in deliveries, and increasing costs of raw
material ordering costs for express deliveries, etc (Thevenin et al., 2017). On the contrary,
an approach with low recall removes feasible solutions, but the obtained production plan
remains feasible. Therefore, a low recall may lead to sub-optimal planning. While a model
with low recall results in larger costs at the planning level, it is preferred over a model with
low precision which leads to infeasible plans.

Table F.8 shows that linear regression or regression trees have the highest accuracy and
the smallest mean absolute error. However, these models did not yield a precision of 100%,
which means that the capacity consumption of some testing samples was underestimated
by both regression trees and linear regression. Although the precision remains really high
(around 95%), these models are expected to provide solutions for the lot-sizing that are
not feasible at the scheduling level. On the other hand, constrained linear and piecewise
linear regression provide a precision of 100% for each testing dataset. However, there is
no theoretical guarantee these methods don’t underestimate capacity consumption. For
small-size scheduling samples, Fixed outperforms constrained machine learning methods.
However, these latter methods provide the best results for large-scale scheduling instances
10 × 10 and 20 × 5. This information is surprising since the dataset of 10,000 scheduling
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examples was generated using the Lot-sizing based generation with ILS-Fixed, the lot sizes
associated with each of these examples are supposed to be the best possible schedules found
by ILS-Fixed. However, the machine learning models are able to predict a better capacity
consumption than Fixed in these examples. Finally, while Approx has the best Recall
value, this method has very bad precision, which decreases as the scheduling complexity
increases.

Appendix G. Adversarial examples generation

This section presents a MILP that generates adversarial data samples for a given trained
machine learning model. These adversarial data samples correspond to lot sizes where the
prediction of capacity consumption is lower than its actual value. These points are potential
solutions to the lot-sizing model that violates the capacity constraints.

We embed the adversarial data sample generator in an iterative training approach that
successively trains the model and searches for an adversarial example. A mathematical
model searches for examples that lead to an underprediction of capacity consumption. This
MILP for adversarial data samples generation integrates the scheduling decisions of the
flexible job-shop, the decision variables associated with the features (6)-(14), and the em-
bedded machine learning model. The objective is to determine the lot sizes that maximize
the distance between the machine learning prediction Y pred and the real makespan of the
scheduling.

Note that the full scheduling decision (A.1)-(A.5) cannot be integrated in a straightfor-
ward manner. As the model maximizes the error, it would maximize the makespan instead
of minimizing it. We propose a formulation that relies on the set S of all possible sequences
for the flexible job-shop scheduling problem. The flexible job-shop scheduling problem can
be represented as a problem of finding the best sequence of operation among a set S of
possible sequences (see Proposition 4.1). Sequence z ∈ S defines the production sequence
on the machine, and it can be represented with a conjunctive graph C(z). This conjunctive
graph models all the possible paths in the sequence z (see Wolosewicz et al., 2015, for fur-
ther details). The makespan for a feasible schedule of a fixed sequence corresponds to the
length of the longest path in the conjunctive graph. When more than one sequence is con-
sidered in set S, the best sequence corresponds to the one whose longest path has the lowest
makespan among all the sequences. This representation leads to a min-max formulation for
the determination of the makespan.

The model maximizes the distance d− between the machine learning prediction Ypred

and makespan Cmax. For a fixed flexible job-shop scheduling problem and a given set of
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sequences S, the adversarial samples generation method is formulated by a MILP as follows:

max d− (G.1)
s. t. (6) − (14)

ML(X ) = Ypred (G.2)

min
z∈S

max
c∈C(z)

 ∑
(o)∈c

po · Xi(o) + so · Yi(o)

 ≥ Cmax (G.3)

Cmax − Ypred ≥ d− (G.4)
0 ≤ d−

Yi ∈ {0, 1}, UBi ≥ Xi ≥ 0 i ∈ J.

The objective function (G.1) maximizes the negative distance between the prediction and
the makespan. Equations (6)-(14) compute the features. Constraint (G.2) gives the predic-
tion returned by machine learning model ML, which refers to the translation of machine
learning models as described in section 4. Constraints (G.3) set the makespan to the critical
path of the sequence. In these constraints, c corresponds to a path of the set of paths in
the conjunctive graph C(z) of the sequence z. Finally, the negative distance between the
makespan and the prediction is determined through expression (G.4). We set maximum lot
sizes for each product to avoid having an unbounded feasible region.

Model (G.1)-(G.4) with the entire set S of sequences returns the lot sizes that lead
to the least accurate prediction of the makespan. However, the approach is not practical
since the entire set S of sequences is too large. Therefore, we iteratively generate the set
of sequences in a raw generation scheme. First, we start with a single sequence for set S
with a machine learning model trained on an initial dataset D. The solution X of (G.1)-
(G.4) gives the lot sizes X that lead to an underestimation of the makespan by machine
learning model ML for the scheduling problem with fixed sequences. As the makespan
in (G.1)-(G.4) is computed on a restricted set of sequences, we check that the lot sizes X

underestimate the makespan when computed by solving the full flexible job-shop scheduling
problem (A.1)-(A.5). If the makespan C∗max of the optimal sequence z∗ is greater than the
prediction, we add the adversarial example X to D and retrain the model. Otherwise, if the
prediction is greater than C∗max, then the scheduling problem with fixed sequences provided
a bad estimation of the makespan, and we add sequence z∗ to S and resolve the adversarial
program. This procedure is repeated until the solver declares the problem is unfeasible, or it
finds an optimal solution with d− = 0. Meeting these two cases for this problem means that
no adversarial example can be found for the finite set of the sequence S. Model (G.1)-(G.4)
can be either solved to optimality or stopped when an incumbent solution is found.
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When the method is trained to not underpredict the capacity, this iterative training ap-
proach converges to a model that does not underpredict the capacity. Proposition Appendix
G.1 and Appendix G.2 show that coupling the adversarial approach with machine learning
models providing perfect approximations of the capacity consumption yields the optimal so-
lution to the integrated lot-sizing and scheduling problem. While these propositions require
assumptions that would make the approach inefficient, they provide a theoretical basis for
the approach considered.

Proposition Appendix G.1. The adversarial example generation stops after a finite
number of iterations when applied to piecewise linear machine learning models trained to
never underestimate the makespan and whose breakpoints remain identical between each
training procedure.

Proof. Proof:
As explained in Proposition 4.1, since the makespan Cmax of any FJSP is defined as a

piecewise linear function, there are a finite set of regions R1 =
{

[a, b] | a, b ∈ R|J |, ai ≤ bi ∀i ∈ J
}

of lot sizes X where Cmax(X) is linear for all X ∈ r and any r ∈ R1. Suppose we have
a piecewise linear machine learning model ML trained on a dataset D to never under-
estimate its output, here the makespan of an FJSP. Similarly, we can define R2 as the
finite set of intervals of lot sizes X where the prediction of ML is linear. Therefore,
there are a finite set of intervals of lot sizes R where both Cmax and ML are linear, i.e.
R = {r1 ∩ r2 | r1 ∈ R1, r2 ∈ R2}. Applying the adversarial example method on machine
learning model ML is equivalent to looking for the lot sizes X∗ ∈ R|J | where the absolute
distance between prediction ML(X∗) and Cmax(X∗) is maximal. Such a solution, if it ex-
ists, lies in a region r∗ ∈ R where both function Cmax and ML are linear. If an optimal
solution X∗ can be found, two cases can occur:

1. X∗ is not unique and lies in a k-face of r∗, k ∈ 1..|J |
2. X∗ is unique

In the first case, there is a k-face K of r∗ where Cmax(X1) − ML(X1) = Cmax(X2) −
ML(X2), ∀X1, X2 ∈ K. In this situation, machine learning model ML is parallel to Cmax

for all solutions lying in k-face K. For example, for a k-face K with k = |J |, finding optimal
solutions X for all X ∈ K means ML is parallel and strictly lower to Cmax within region
r∗. Training machine learning ML with the newly added X∗ will prevent this case occuring
for region r∗ since the prediction of ML over k-face K will lie above Cmax. In the second
case, X∗ is an extreme point (or a bound) of region r∗, and training ML by including this
new extreme point automatically forbids the procedure to return this same point. For each
region r ∈ R, repeatedly applying the adversarial generation procedure to ML will, in the
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worst case, generate one data point for each k-face of region r and one data point for all
the extreme points of region r. Once all the extreme points of a region r ∈ R have been
added to dataset D, machine learning model ML cannot underpredict the makespan for
any lot size X ∈ r. R having a finite set of regions and each region being represented by
a finite set of extreme points and facets, the adversarial generation procedure ends after a
finite number of iterations.

Proposition Appendix G.2. If a machine learning model always returns exact approx-
imations of the capacity consumption in the training dataset and never overestimates the
capacity consumption in any other data sample, applying the adversarial examples genera-
tion converges to a model that returns perfect estimations of the makespan.

Proof. Proof: As the machine learning model does not overestimate the capacity consump-
tion, the solution to the model provides a lower bound to the optimal solution of the
integrated lot-sizing and scheduling problem. The solution is either optimal or it is infeasi-
ble because it violates the actual capacity constraints. If no adversarial example exists, the
solution is optimal.

An example of the perfect approximation of the capacity consumption is a machine
learning model that integrates the makespan Cmax as a feature through equation (G.3).
Such a model will represent the capacity consumption perfectly, but its integration into
the lot-sizing model leads to an inefficient program. As a consequence, machine learning
models as well as the features used for the approximation should be chosen appropriately
to balance the trade-off between accuracy and computational efficiency. We provide below
additional practical implementation details for the approach.

For piecewise linear regression, we decompose the problem into |R| subproblems, one
for each linear regression associated with each region. This procedure may require a long
time to find the first feasible solutions due to the complexity of the constraints (G.3), these
constraints require a large set of binary variables and big-M constraints. To avoid generating
unrealistic lot sizes, we set appropriate domains in the model for the value of Ypred, and
Cmax.

To speed up the solution process further, we decompose the problem into |J | subproblems
depending on the number of product setups. We first solve the MILP above with a constraint
that sets the number of setups Y to 1, and we solve the procedure until unfeasibility is
reached. When a single product is set up for the scheduling problem, only one sequence
is required to represent the full scheduling problem. As a result, we solve or prove the
infeasibility of the mathematical program (G.1)-(G.4) more rapidly. We then increase the
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Setup costs 15 50 100
T 5 30 50 5 30 50 5 30 50

ILS-CLR (DLHS)

UB 1595 9409 15716 2252 12603 20970 3076 16605 27574
LB 1595 9409 15716 2252 12401 20487 3076 15924 26057

Gap(%) 0 0 0 0 1.6 2.3 0 4.1 5.5
Feasibility 100 100 100 100 99 97 98 91 86
Time (s.) 0.02 5.0 79.9 0.12 3600 3600 0.48 3600 3600

ILS-CLR (DKP )

UB 1600 9435 15756 2289 12721 21162 3144 16867 27987
LB 1600 9435 15756 2289 12530 20696 3144 16141 26419

Gap(%) 0 0 0 0 1.5 2.2 0 4.3 5.6
Feasibility 100 100 100 100 100 100 100 100 100
Time (s.) 0.03 12.1 495.3 0.15 3600 3600 0.53 3600 3600

ILS-CLR (DADV )

UB 1600 9434 15754 2289 12704 21134 3141 16826 27919
LB 1600 9434 15754 2289 12513 20647 3141 16085 26327

Gap(%) 0 0 0 0 1.5 2.3 0 4.4 5.7
Feasibility 100 100 100 100 100 100 100 100 100
Time (s.) 0.03 14.75 526.1 0.15 3600 3600 0.56 3600 3600

Table H.9: Comparison of the constrained linear regression trained on different datasets with scheduling size
6 × 6

number of setups by one and repeat the process until we reach unfeasibility for any number
of products set up. Increasing the number of setups also increases the number of sequences
required to represent the scheduling problem exhaustively, but it is faster than considering
all the possible number of setups. Note that each time an adversarial example is found, all
the |J | subproblems are checked.

Appendix H. Evaluation of the training approach

The rest of this section evaluates the iterative training approaches given in Section 5.
We consider three constrained linear regressions trained on three datasets, namely Latin
Hypercube Sampling (DLHS), the ILS-KP method (DKP ), and the adversarial example
approach (DADV ). We only consider instances with scheduling size 6 × 6 in these experi-
ments since the adversarial approach does not scale well for large-scale instances. However,
we vary the cost values since these parameters have a significant impact on the quantities
produced at each period, and thus the capacity consumption. Dataset DLHS was computed
by generating 10, 000 data samples composed of different combination lot sizes. To generate
datasets DKP and DADV , the first 100 data samples from DLHS are selected to compose
the initial dataset and used to fit the constrained linear regression. The remaining data
samples were generated as explained in Section 5.2.2 and Appendix G, and led to final
datasets with sizes varying from 107 to 1134 samples.

Table H.9 reports the results of the embedded constrained linear regression trained us-
ing the three data generation procedures. Table H.9 shows that Latin Hypercube Sampling
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yields solutions with lower objective values. However, this method leads to a low number
of feasible solutions for instances with high setup costs. The adversarial example approach
however can guarantee the feasibility for any lot-sizing instances, since the datasets are gen-
erated so that no constrained linear regressions trained with this dataset can underestimate
the capacity consumption. The ILS-KP approach shows results that are relatively similar to
the adversarial example one, with a feasibility of 100 for all the lot-sizing instances, despite
finding solutions with slightly higher objective values. Nevertheless, the ILS-KP approach
can scale to large-scale lot-sizing instances with large scheduling sizes. Therefore, for the
next numerical experiments of this paper, we considered constrained linear regression and
constrained piecewise linear regression trained using datasets generated with the ILS-KP
approach.
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