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Abstract

Manufacturers use lot-sizing models within advanced planning systems to plan the produc-

tion loads of their plants. To ensure the plan is feasible, the lot-sizing model includes capac-

ity constraints. Since these constraints rely on a rough estimation of capacity consumption,

the resulting plans are often not executable on the shop floor. This paper investigates

the use of machine learning to improve the approximation of the capacity consumption

in the lot-sizing models. Integrating machine learning models into optimization models is

not straightforward since the optimizer tends to exploit constraint approximation errors to

minimize the costs. To overcome this issue, we introduce a training procedure that guaran-

tees respect of the capacity constraints in the training sample. In addition, we propose an

iterative training example generation approach. We perform numerical experiments with

standard lot-sizing instances, where we assume the shop floor is a flexible job-shop. Our

results show that the proposed approach provides 100% feasible plans and yields lower costs

compared to a classical lot-sizing model. Our methodology is competitive with the approach

that integrates lot-sizing and scheduling on small instances, but, unlike the integration ap-

proach, our approach scales well to realistic size instances.

Keywords: Production planning, Lot-sizing, Scheduling, Machine Learning, Data-driven

methods



1. Introduction

Advanced Planning and Scheduling software is crucial for operation management in

manufacturing industries. Such tools usually follow the hierarchical approach (Stadtler,

2005), where a production planning module provides the input for a scheduling model.

Production planning gives weekly (or monthly) production quantity, adjusting the capacity,

and placing orders with suppliers to meet the demand while minimizing inventories. The

scheduling modules take as input the production quantities, and they assign the operations

to machines, sequence the operations, and compute their starting times.

The computation of capacity consumption plays a crucial role in production planning

since underestimating capacity consumption leads to a plan that cannot be implemented

on the shop floor. Such a situation often results in unmet demand, and a lot of actions

must be engaged to produce the quantities on time. The capacity consumption calculation

has been included since the use of the MRPII planning system, but the resulting tools only

roughly consider the time required on each resource, and they do not take into account the

complexity of the scheduling environments. As a result, despite the inclusion of capacity

in complex optimization models provided by advanced planning systems (APS), this type

of software keeps providing plans that are too tight, and often cannot be implemented in

practice. For instance, Tenhiälä (2010) showed that APS with finite capacity do not fit well

in job-shop-like environments because the user cannot provide accurate enough values for

the required parameter (e.g., the capacity consumption per unit). As users are unsatisfied,

they tend to turn towards simpler and less cost efficient planning approaches (often relying

on simple rules to apply by hand). As a result, a large proportion of manufacturers still

rely on Excel software to plan their production (Liu et al., 2019).

To circumvent this shortcoming of APS, we investigate the use of machine learning tech-

niques to model the capacity consumption in lot-sizing models. With the rising interest in

machine learning, the operation research community recently provided several approaches

to translate machine learning models such as neural networks into mathematical programs

(e.g., Fischetti and Jo, 2018). In this work, we propose to replace the basic capacity con-
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sumption function in lot-sizing models with an approximation built using machine learning

algorithms. The capacity consumption is learned from examples that give the total amount

of time required to complete all operations. While our experiments rely on production

schedules optimized with linear and constraint programming, the methodology remains

applicable when the examples for learning capacity are generated by other means. For

instance, the examples can correspond to historical data obtained by reconciling Advance

Planning System and Manufacturing Execution System data, or they can be generated from

simulation models.

The contributions of this work are threefold: (1) We propose several extensions of the

lot-sizing problem (LSP) formulation where the capacity constraint is approximated with

machine learning techniques. These formulations correspond to approximation with linear

regressions, decision trees, and piecewise linear regressions. We study different sets of

features to train machine learning models, and our results suggest that the most important

features include the lot sizes and lower bounds on the makespan; (2) The optimal solution

of a Mixed Integer Linear Program usually lies at the extremes of the feasible region. When

a constraint is approximated by a machine learning model, approximation errors lead to

undesirable solutions. Therefore, we propose a constrained learning approach that prevents

us overestimating the capacity consumption in the training sample. In addition, we propose

an iterative learning scheme that integrates machine learning training with an optimization

approach. (3) We show that machine learning leads to good approximations of capacity

constraints. A comparison with the exact (but unpractical) approach that integrates the

lot-sizing and scheduling models shows that the proposed formulation yields close to optimal

solutions. Our results show that the computational efforts required to solve the model

depend on the complexity of the machine learning model. Simple approximations with

linear regression do not impair the computational performance, while complex models such

as deep decision trees lead models which are hard to solve.

The paper is organized as follows. Section 2 gives a literature review of production

planning and scheduling problems, as well as machine learning approaches to predict the
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makespan. Section 3 states the considered problem. Section 4 describes our data-driven

approach and the different machine learning models used in this paper. Section 5 presents

several approaches to generate relevant datasets related to the scheduling level consid-

ered. Finally, we compared our data-driven method with multiple integrated lot-sizing and

scheduling models from the literature in the numerical experiments in Section 6, before

concluding in Section 7.

2. Literature review

This section successively reviews the literature on the integration of machine-learning

models into mathematical programs, capacity consumption computation in lot-sizing mod-

els, and machine-learning models in scheduling problems.

2.1. Machine learning model in Mathematical Programs

Embedding machine learning models into mathematical programs is an increasingly pop-

ular area of research. This approach leverages machine learning techniques to incorporate

constraints or objective functions that are either computationally challenging or complex

to formulate manually. Numerous studies have explored the translation of different ma-

chine learning models into linear programs, including neural networks (Fischetti and Jo,

2018), decision trees, and ensemble methods (Mǐsić, 2020; Biggs et al., 2022), among others

(Fajemisin et al., 2023).

Very few papers investigate the incorporation of machine learning models into produc-

tion planning programs. Casazza and Ceselli (2019) consider a data-driven model for the

integration of production planning and scheduling, where the constraints related to the

scheduling problem are replaced by a decision tree. At the scheduling level, a set of jobs is

scheduled while respecting release dates and due dates, and jobs can be split in two to make

the assignment easier. The objective is to find a feasible assignment of jobs that minimizes

the number of split jobs. Dias and Ierapetritou (2019) considered the integration of a lot-

sizing model and scheduling decisions, where scheduling decisions correspond to a discrete

state-task network. The authors incorporate a machine learning model into lot-sizing to
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ensure the plan is feasible, and they consider different machine learning models such as

neural networks, decision trees, and support vector machines. The authors show that the

latter approach scales very well on high-dimensional instances when compared to methods

integrating the whole scheduling decision. The resulting method also provides accurate

approximations in the case of uncertain production capacity as by Hu et al. (2008).

In comparison with these two studies, our work considers a more generic scheduling

problem. In addition, we investigate different approaches to improve the accuracy of ma-

chine learning models when used in optimization models. In particular, we propose methods

to generate efficient datasets, including an approach that takes advantage of the scheduling

problem structure to generate adversarial examples. In addition, we introduce additional

features for our problem that improve the prediction of capacity consumption. Finally, we

compared our approach with standard mathematical models for the integrated lot-sizing

and scheduling problem, and show the potential of our data-driven approach for solving

large-scale instances.

2.2. Approximation of capacity consumption in lot-sizing model

Lot-sizing models determine the optimal production quantities in each period of the hori-

zon. Once the plan is available, the lots of each period become production jobs to schedule

on the machine. In the classical hierarchical decision framework, scheduling decisions are

made independently of production planning decisions (Axsäter, 1986). As lot-sizing models

ignore detailed scheduling constraints, finding a schedule that produces all lots within a

period is often impossible.

Several extensions (Copil et al., 2016) of the classical lot-sizing model integrate schedul-

ing decisions into lot-sizing problems. For example, the continuous setup lot-sizing problem

incorporates setup times into the lot-sizing model and determines if resource configurations

change between periods (Drexl and Kimms, 1997). However, these models typically assume

that machines can only perform one operation per period, and the capacity consumption

remains a rough approximation of the actual complexity of the shop floor.

Other models introduced the concept of macro periods subdivided into several micro-
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periods, where each micro-period produces at most one item. This methodology has led to

the general lot-sizing and scheduling problem (GLSP) presented in Fleischmann and Meyr

(1997). Multiple versions of the GLSP have been proposed in the last decades, including ver-

sions with parallel machines (Meyr, 2002) or bills of materials with multiple levels (Seeanner

and Meyr, 2012). For instance, Rohaninejad et al. (2014) propose a genetic algorithm and

particle swarm optimization to solve the GLSP in a Flexible Job-Shop Scheduling environ-

ment. While these approaches provide better approximations of the capacity consumption,

they remain aggregated models. The scheduling problems are not a detailed representation

of the operations on the shop floor. For instance, such models cannot represent a job-shop

environment precisely.

Some authors consider the integration of scheduling and lot-sizing (e.g., Lasserre, 1992).

These approaches address situations where the sequencing of lots is crucial, such as when

there are sequence-dependent setup times in the production process. Simultaneous lot-sizing

and scheduling methods typically involve iterative procedures that determine lot sizes at

the planning level and order operations on resources for fixed product quantities. Similarly,

different mathematical models have been proposed to incorporate the scheduling decisions

in each period of the production plan. Dauzère-Pérès and Lasserre (1994) propose a model

that integrates a flexible job-shop scheduling problem with setup into a lot-sizing model.

Dauzère-Pérès and Lasserre (2002) extend the model to the case of multi-level lot-sizing.

Urrutia et al. (2014) propose an efficient solution method for this problem. Their method

starts with an initial solution, and it creates this initial solution with the lot-sizing model

with fixed sequences of operations proposed in Wolosewicz et al. (2015). Afterward, the

approach iterates between a Lagrangian heuristic to solve the lot-sizing problem with a

fixed sequence of operations solved and a Tabu-search to improve the sequence with fixed

lot sizes.

Almeder et al. (2015) highlight the weakness of the classical capacitated lot-sizing formu-

lations for the multi-level bill of materials. The classical models lead to lot-sizing solutions

that are infeasible for the scheduling problem that considers each period separately. The
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authors propose an improved mathematical formulation for the batching and lot-streaming

cases.

The integration of job-shop scheduling into lot-sizing models leads to accurate compu-

tation of the capacity consumption. However, solving the resulting model is hard, and no

method exists for solving large-scale instances to optimality. In particular, for a flexible job-

shop, alternative routings increase the number of operation sequences, and the integrated

approach is impractical. In addition, shop floors may involve complex structures that are

difficult to model with mathematical equations. In our study, we aim to improve the com-

putation of capacity consumption with machine learning models. The resulting approach

yields a model that is simpler to solve than the integration of scheduling and lot-sizing.

In addition, we can train these machine learning models directly from the historic data of

the shop floor. Therefore, the model may incorporate all the complexity of the scheduling

decision process, even the parts that are difficult to model mathematically.

2.3. Machine learning for scheduling applications

A wide variety of applications of machine learning exist in the scheduling literature.

The first works to use machine learning in scheduling (e.g., Shinichi and Taketoshi, 1992;

Lee et al., 1997)) seek to predict the best dispatching rule for a given instance. Jun et al.

(2019) show this methodology is relevant for flexible job-shop scheduling problems. These

approaches can be seen as a pre-processing phase to improve the performance of heuristics.

Very few papers study predictive models to approximate the value of makespan in job-shop

scheduling problems.

Some works (e.g., Raaymakers and Weijters, 2003; Schneckenreither et al., 2020) propose

regressive models to predict lead times of incoming orders in batch processing. The problem

is to predict the lead time of incoming orders, to ensure that the shop floor can meet the

demand on time. Predicting these lead times avoid computing the whole schedule, which

saves precious time when urgent decisions have to be made in the case of incoming orders or

unanticipated event on the shop floor. Raaymakers and Weijters (2003) introduced the use

of regression analysis and neural networks to predict the makespan of scheduling problems
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in a job-shop environment. Schneckenreither et al. (2020) considered a similar approach by

considering neural networks to predict the lead times in order release planning.

Recently, Tremblet et al. (2023) considered machine learning models to predict the

makespan of flexible job-shop scheduling problems. These machine learning models have

the advantage of instantly approximating the makespan without computing the scheduling

decisions. The present study aims at integrating these powerful predictive models into

capacitated lot-sizing models, in order to replace the well know capacity constraints.

3. Problem description

This section presents the mathematical model of classical lot-sizing. The problem is to

determine optimal lot sizes at a production planning level while satisfying capacity con-

straints at each period for the scheduling. In this study, we consider a flexible job-shop

at the scheduling level, and this section provides a formal description of this scheduling

problem.

3.1. Capacitated Lot-sizing Problem (CLSP)

The capacitated lot-sizing problem (Drexl and Kimms, 1997) sizes production lots to

minimize inventory holding costs, fixed setup costs, and unit production costs. The pro-

duction plan accounts for customer demand, production capacity, and lead times.

The factory produces each item i in the set of items J in a batch of consecutive op-

erations, since the processing of a batch of item i ∈ J results in a setup time si, and a

setup cost cs
i . Each operation in the batch yields one unit of item i, and it has a cost cp

i

and a duration of pik units on machine k ∈ M . In each period t ∈ T of the horizon, the

production is limited by a given capacity of Ct units. The production plan must respect

the demand dit of item i ∈ J in period t ∈ T . The inventory I+
it refers to the quantity

of item i ∈ J stored during period t ∈ T , and I−it refers to the backlog level of item i in

period t. Inventory and backlog levels generate costs hi and bi, respectively. Therefore, the

lot-sizing model involves decision variables for the lot sizes, setup, inventory, and backlog
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for each item i ∈ J and each period t ∈ T , denoted respectively by Xit, Yit, I+
it , I−it . The

CLSP corresponds to the following Mixed-Integer Linear Program (MILP):

min
∑
t∈T

∑
i∈J

ch
i I+

it + cb
iI
−
it + cs

i Yit + cp
i Xit (1)

s. t. I+
it−1 − I−it−1 + Xit − I+

it + I−it = dit, i ∈ J, t ∈ T (2)

Xit ≤ H · Yit, i ∈ J, t ∈ T (3)∑
i∈J

pikXit + sikYit ≤ Ct, k ∈ M, t ∈ T (4)

I+
i0 = I−iT = I+

iT = 0, i ∈ J (5)

Xit ≥ 0, I+
it ≥ 0, I−it ≥ 0, i ∈ J, t ∈ T

Yit ∈ {0, 1}, i ∈ J, t ∈ T.

The objective function (1) minimizes the total cost, which includes holding costs ch
i ,

backlogging costs cb
i , setup costs cs

i , and production costs cp
i . Constraints (2) compute the

inventory level. Constraints (3) force yit to be equal to 1 if a batch of items i is produced

at a period t, using the well-known big M constraints, where H = ∑
t∈T Dt. Constraints

(4) ensure that the capacity consumption does not exceed the capacity Ct for all periods

t ∈ T . The basic formulation of the capacity constraint accounts for the process duration

per production unit and for the setup time on each resource k ∈ M . Finally, constraints (5)

ensure that there is no inventory at the beginning of the period and that there is neither

inventory nor backlogged items at the end of the planning horizon.

3.2. Flexible Job-Shop Scheduling Problem (FJSP)

This subsection describes the shop floor considered in this study and the corresponding

flexible job-shop scheduling problem (FJSP). Flexible resources are frequent in make-to-

order industries (Bish and Wang, 2004; Chod and Zhou, 2014), and their popularity is

increasing in the manufacturing industry Begnaud et al. (2009). In addition, the flexible

job-shops generalize many scheduling environments (job-shop, flexible flow shop, etc...), and

9



our results remain valid in all these environments.

At the scheduling level, each production lot becomes a job to schedule. As a result,

the set J of items in the lot-sizing model corresponds to a set of J jobs in the scheduling

problem. The flexible job-shop scheduling problem is an extension of the well-known job-

shop scheduling problem, but a set of machines can perform each operation in the routing.

A set J of n jobs have to be performed on a set M of m machines with respect to routing

constraints. Each job i ∈ J is subdivided into ni successive operations, and Oij denotes the

jth operation of job i. Each operation Oij performed on machine k ∈ Mij has a processing

time pu
ijk, where Mij ⊆ M denotes the set of machines that can perform operation Oij . We

consider a sequence-dependent setup time sk
ii′ occurs when job i′ is processed after job i

on machine k. To avoid inconsistency, we assume that setup times respect the triangular

inequalities, i.e., sk
ii” ≥ sk

ii′ + sk
i′i” for any jobs i, i′ and i” ∈ J and any machine k ∈ M . This

paper focuses on minimizing the makespan, i.e., the time required to complete all jobs i ∈ J .

In integrated lot-sizing and scheduling models, finding the makespan of the corresponding

scheduling problem is equivalent to checking the capacity consumption at one period of the

production plan.

The Supplementary Materials of this paper provides the formulation of the integrated

flexible job-shop scheduling and lot-sizing model. However, the latter approach leads to

a complex mathematical model that is not practical in large-scale instances. We use this

integrated model to benchmark the proposed approaches that rely on constraint learning

(Fajemisin et al., 2023) to replace the capacity constraints (4) by a machine learning model.

4. Machine Learning based method

To improve the accuracy of the capacity constraint, we rely on machine learning models

to predict the makespan of the schedule for the lots in each period. We integrate the fitted

machine learning model into a lot-sizing model. Given a solution (X, Y, I+, I−), the linear

program translation of the machine learning model infers a value for capacity consumption.

Machine learning models are predictive models trained with samples of past observa-
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tions, and they return appropriate forecasts for the future. The training of a machine

learning model requires a training dataset D = {X s, Ys | s = 1, . . . , N}, where N is the

number of samples, X s represents the value of the features for sample s, and Ys is a targeted

value observed for this sample. The model is trained over this dataset by minimizing an

error, typically the mean squared error, between the target and the output of the model.

We aim to predict the makespan. We assume that the flexible job-shop environment

remains the same throughout the planning horizon, but the quantity associated with each

job changes. Therefore, the training dataset corresponds to different processing durations in

a single flexible job-shop scheduling problem. Each sample of the training dataset provides

the makespan obtained when solving the flexible job-shop scheduling problem with the same

resources and routing, but with different quantities Xi associated with each job i ∈ J . For

each sample s ∈ D, the targeted value Ys represents the makespan, and the features X s are

the quantities Xi of each job i ∈ J .

The rest of this section presents the input features of the machine learning model, before

introducing three model, namely, linear regression, piecewise linear regression, and regres-

sion tree. The choice of these models is motivated by the following theoretical result, which

that shows the capacity consumption function is a piecewise linear non-convex function.

Proposition 4.1. Given any quantities X ∈ R+
|J |, the capacity consumption (i.e. the

makespan of the resulting FJSP) is defined as a piecewise linear non-convex function.

Proof. Proof: In the Supplementary Materials.

4.1. Features Selection

This section presents a set of relevant features F for our machine learning model that

predicts the makespan. Besides the lot sizes X, additional features can be considered

to improve the forecasting ability. Recent studies highlight important correlations between

features of job-shop scheduling problems and the makespan (e.g., Mirshekarian and Šormaz,

2016; Schneckenreither et al., 2020). However, to translate the resulting machine learning

model into a mathematical program, feature f ∈ F must be a linear combination of decision

11



variables of the problem. Non-linear features cannot be used for the prediction. Also, as the

production system remains the same over the entire planning horizon, features that do not

depend on the decision variables will take the same values in all examples, and they are not

relevant. For the sake of clarity, we make a distinction between a feature f ∈ F used to train

a model, the value X s
f of this feature in a data sample s ∈ D, and the decision variables Xft

that represent the feature in each period t ∈ T when embedded in a mathematical program.

The first features are the lot sizes Xi for each job i ∈ J , and they can be directly

embedded into the lot-sizing since they correspond to decision variables Xit:

Xit = Xit ∀i ∈ J, t ∈ T.

In addition, we consider the four features introduced in Tremblet et al. (2022) that are

linear combinations of lot sizes.

X(|J |+1)t = max
i∈J


ni∑

j=1
min

k∈Mij

{pijk · Xit}

 ∀t ∈ T (6)

X(|J |+2)t = max
k∈M

∑
i∈J

ni∑
j=1

∑
Mij={k}

pijk · Xit + smin
k · Yit

 ∀t ∈ T (7)

X(|J |+3)t = max
k∈M

∑
i∈J

ni∑
j=1

oijk · pijk · Xit + (ok − 1)smean
k · Yit

 ∀t ∈ T (8)

X(|J |+4)t = 1
m

∑
k∈M

∑
i∈J

ni∑
j=1

oijk · pijk · Xit + (ok − 1)smean
k · Yit

 ∀t ∈ T (9)

Feature (6) and (7) are lower bounds of the makespan. Feature (6) is the maximum

among all jobs i ∈ J of the sums of processing times of the operations of job i. If an

operation can be performed on more than one machine, the operation with the minimum

processing time is selected. Feature (7) is the sum of the processing times of all operations

processed on each machine. Since the machines are flexible, we only consider the operations

that can be performed on a single machine and the minimum setup time smin
k that occurs
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on the machine. Features (8) and (9) provide a more realistic estimate of the makespan

and average sum of processing time for each machine. These features account for flexible

machines by considering all possible operations Oij that can be performed on each machine

k ∈ M , where oijk represents the likelihood of operation Oij being performed on machine

k ∈ Mij . ok is an estimation of the number of operations performed on machine k ∈ M ,

and smean
k is the average setup time that occurs on this machine. The expression used to

compute oijk and ok are described in Tremblet et al. (2022), and we summarize them in the

Supplementary Materials.

Features (6)-(8) include max operator, and their representation in a MILP requires

big-M formulations. To avoid the cumbersome big-M formulations, we can restrict the

approximated capacity consumption function to be non-decreasing with features (6)-(8). For

instance, in a linear regression, we can force the coefficient of these features to be positive.

Since the value of the prediction should be as small as possible to respect the capacity

constraints, the decision variables associated with these three features will automatically

take the lowest values in the mathematical program. Therefore, features (6)-(8) can be

expressed as the following linear inequalities:

X(|J |+1)t ≥
ni∑

j=1
min

k∈Mij

{pijk} · Xit ∀i ∈ J, ∀t ∈ T (10)

X(|J |+2)t ≥
∑
i∈J

ni∑
j=1

∑
Mij={k}

pijk · Xit + smin
k · Yit ∀k ∈ M, ∀t ∈ T (11)

X(|J |+3)t ≥
∑
i∈J

ni∑
j=1

oijk · pijk · Xit + (ok − 1)smean
k · Yit ∀k ∈ M, ∀t ∈ T (12)

As setups are important in lot-sizing and scheduling problems, we considered another

feature that computes the number of setups in each period t ∈ T :

X(|J |+5)t =
∑
i∈J

Yi ∀t ∈ T (13)

Note that a machine learning model may give different predictions when Yit takes the
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value 1 or 0 when the value of Xit is equal to 0. In addition, the lot-sizing model (1)-(5) does

not prevent Yit taking the value 0 when Xi equals 0. If setting Yit to 1 reduces the capacity

consumption, the solution may set a setup to 1 artificially even if the CLSP minimizes the

setup costs. To avoid this situation, we impose a minimum lot size ϵ to each item i ∈ J

with a setup by adding the following constraints to the lot-sizing model (1)-(5):

ϵ · Yit ≤ Xit ∀i ∈ J, t ∈ T (14)

Note that restricting the approximated capacity consumption to increase with X(|J |+5)t

would avoid the use of constraints (14). However, this restriction is unlikely to yield good

approximations of the capacity consumption.

4.2. Model of capacity consumption with machine learning

We consider three machine learning models to predict capacity consumption, namely,

linear regression, piecewise linear regression, and regression tree.

4.2.1. Linear Regression

Linear regression is a simple choice when translating a machine learning model into a

linear program. The model fitted associates coefficients αf for each feature f ∈ F , as well

as an intercept value α0. Linear regression computes capacity consumption of vector Xj

with the following formula:

Y =
∑
f∈F

αf Xft + α0.

Therefore, the capacity constraints (4) are replaced by the following equations:

∑
f∈F

αf Xft + α0 ≤ Ct ∀t ∈ T, (15)

where Xft is the variable representing features f ∈ F in the dataset of period t ∈ T .
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4.2.2. Piecewise linear regression

Piecewise linear regression divides the value of one feature f∗ ∈ F into a discrete set of

regions R. Each region is delineated by two consecutive breakpoints in a set of breakpoints

B. Each sample of the data falls into one region r ∈ R depending on the value of the

corresponding feature, and a linear regression is trained on the data points of each region.

The vector αrf represents the coefficients of each feature f ∈ F for each region r ∈ R.

To translate piecewise linear regressions into a linear program, we add some binary

variables Z that determine the region the samples belong to. The resulting linear program

is as follows:

Xf∗t ≤ br + H · (1 − Zrt) ∀r ∈ 2..|R|, ∀t ∈ T (16)

Xf∗t ≥ br + H · (1 − Z(r+1)t) + ϵ ∀r ∈ 1..|R| − 1, ∀t ∈ T (17)∑
r∈R

Zrt = 1 ∀t ∈ T (18)

∑
f∈F

αfrXft + α0r ≤ Ct + H · (1 − Zrt) ∀r ∈ R, ∀t ∈ T (19)

Equations (16) and (17) define the region to which the regression applies, depending

on the value of the selected feature f∗ ∈ F . The sufficiently small value ϵ prevents a

feature from being included in two regions. Constraints (18) ensure that only one region

is selected for each period t ∈ T . Finally, the capacity constraints associated with this

machine learning model are given by (19). For each period, only one capacity constraint is

active, depending on the region where the regression occurs.

Finding the best feature that defines the regions requires testing each possible break-

point. Some studies proposed mathematical models that compute the best feature and

breakpoints for the fitting of a piecewise linear function (Rebennack and Krasko, 2020;

Yang et al., 2016), but these approaches remain time-consuming and impractical for large

models.

To delineate the regions, we select the feature corresponding to the number of setups

F(|J |+5) since the approximation of capacity consumption changes when the product mix
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changes. The number of breakpoints is a sensitive parameter since increasing the number of

regions requires embedding more variables and constraints for the integrated lot-sizing and

machine-learning model, which increases the computing time significantly. In this work,

we propose different sets of breakpoints depending on the size of the scheduling problem

considered in the lot-sizing problem.

4.2.3. Regression Tree

A regression tree (or decision tree regressor) is a machine learning model that iteratively

splits the search space to provide the best prediction value according to the input data X

(Breiman et al., 1983). A regression tree is composed of N nodes, which include a set

of leaf nodes L. Each splitting node works as a query prescribing the path to follow in

the tree until falling into a leaf node i ∈ L, which returns the value to predict (here the

capacity constraints). In the splitting nodes, the queries are conditions computed based on

the features of input X . Each query can be represented as a linear condition on the vector

of features X . For each node j in the set of nodes N , these equations are represented as∑
f∈F Ajf Xft ≤ bj , where parameter ajf takes the value 1 if feature f ∈ F is involved in the

splitting node j, and 0 otherwise, and parameter bj represents the threshold of the splitting

condition. If the condition is satisfied, the decision tree moves to the right child node, or

to the left child node otherwise. After a number of queries, the tree arrives at a leaf where

a score S lies, and this score corresponds to the outcome of the prediction. We adapt the

mathematical formulation of Biggs et al. (2022) to embed random forest. This formulation

adapted to the case of a single regression tree is provided in the Supplementary Materials.

5. Prediction Improvement

The training procedure of a machine learning model is a crucial step, and datasets used

to train a model have to be carefully selected. As the optimal solutions of mathematical

programs are in the extreme rays of the feasible region, the optimization model embedding

machine learning is prone to explore solutions that are not part of the training dataset.

This leads to solutions with tight capacity consumption approximations, that are often
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underestimated. This section describes a training procedure as well as methods to generate

data samples to alleviate these issues.

5.1. Training procedure to prevent infeasible solutions

Training procedures minimize the error between the prediction and the value observed

in the dataset. If a regression model does not fit a training dataset perfectly, the prediction

may underestimate the real capacity consumption for some training samples. As underes-

timating the capacity consumption lead to infeasible plans, we propose a training approach

that overestimates the prediction when fitting a linear model. In other words, the fitting

procedure forbids underestimating the capacity consumption in the training dataset.

We propose a MILP to minimize the mean absolute error between the training dataset

and the prediction of a linear regression model. This model relies on finding the best weight

αf associated with each feature f ∈ F of our regression model while minimizing an absolute

error ds between the actual capacity consumption and the prediction Ypred
s for each sample

s ∈ D.

A classical training model for a linear regression that minimizes the Mean Absolute

Error (MAE) is as follows:

min 1
|D|

∑
s∈D

ds (20)

s. t.
∑
f∈F

(X s
f αf ) + α0 = Ypred

s , ∀s ∈ D (21)

Ypred
s − Ys ≤ ds, ∀s ∈ D (22)

Ys − Ypred
s ≤ ds, ∀s ∈ D (23)

Ypred
s ≥ 0, ds ≥ 0, ∀s ∈ D

αf ∈ R, ∀f ∈ F .

The objective function (20) minimizes the mean absolute error between the output and the

prediction. Constraints (21) link the weighted sum of features and the predicted value for
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each sample of the training dataset. Constraints (22) and (23) compute the absolute errors

between the targeted output Ys and the value predicted by the linear regression.

To ensure the fitted model overestimates the capacity consumption for all in-sample data

points, we forbid negative errors during the training by replacing (23) with the following

set of constraints:

Ypred
s ≥ Ys, ∀s ∈ D (24)

The same process applies to piecewise linear regression. To train such models, we divide

the dataset D into |R| smaller datasets depending on the region where each data point

falls. We fit a linear regression to each of these datasets by using this new fitting procedure.

We then consider these two machine learning models, named constrained linear regression

(CLR) and constrained piecewise linear regression (CPLR) in the next section of this paper.

5.2. Data generation procedure

Fitting our machine learning models requires datasets that correspond to historical data

from actual production schedules implemented on the shop floor. However, we may take

advantage of available scheduling or simulation tools to generate data points that help train

the machine learning model. For proper comparison with methods from the literature,

we generate the dataset by solving flexible job-shop scheduling problems. Each dataset is

associated with one scheduling instance, where each data sample corresponds to one vector

of lot sizes X applied to each job. Generating data samples of a flexible job-shop scheduling

instance requires both the quantities of each item and the associated makespan (or capacity

consumption). The other features described in Section 4 are inferred from the lot sizes for

each data sample. To build the training dataset, we generate some lot sizes Xi for each item

i ∈ J , and associate each of them with the processing time of each operation of each job

i of the corresponding flexible job-shop scheduling problems. We solve each sample with

the MILP (see in the Supplementary Materials (A.1)-(A.5)) with a single period (|T | = 1).

Note that the hardest instances were solved with constraint programming approaches. The

rest of this section describes approaches to generate lot sizes examples.
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5.2.1. Random procedure

One standard idea for data sampling is to generate the lot sizes Xi randomly. Advanced

sampling methods such as Latin Hypercube Sampling (LHS) generate samples that cover

the input space more evenly than simple Monte Carlo procedures (Mckay et al., 2000). This

sampling method works by dividing the input space into |F| bins of identical sizes. The

data samples are generated so that no two samples fall into the same bin. However, the

samples generated using LHS may not represent the solutions that can be found by solving

a lot-sizing model. For instance, randomly sampled lot sizes may have very small lots for

some item i ∈ J , which is not coherent with the high setup costs that can be encountered

in lot-sizing problems.

5.2.2. Iterative training procedure

This section suggests a practical enhancement where we look for adversarial examples

by running a simulation. Figure 5.2.2 summarizes the procedure. In each iteration, we

solve a randomly generated instance of the lot-sizing problem, and we solve the associated

scheduling problems to check if the capacity is violated in any period. Each sample that

is underestimated by the machine learning method is added to the training dataset D,

and the machine learning method is fitted into this new dataset. The method stops after

solving a given number itermax of lot-sizing instances without finding periods where the

capacity is violated. However, the approach remains time-consuming for complex instances,

with large scheduling sizes or parameters such as setup costs. We proposed an approach

(denoted as ILS-KP), that better identifies wrongly predicted samples better. The idea is to

generate lot-sizing solutions with tight capacity and with different structures. To generate

a wide variety of production plans, we randomly associate a profit λi with each item i, and

we seek solutions that maximize the profit while respecting the capacity constraint. The

capacity consumption is determined through the machine learning model ML translated

into a mathematical program as described in Section 4. Solving the following MILP a large
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Figure 1: Flow chart for ILS-based

number of times with different weights yields various solutions with tight capacities:

max
∑
i∈J

λiXi (25)

s. t. (6) − (14) (26)

ML(X ) ≤ C (27)

Yi ∈ {0, 1}, Xi ≥ 0 i ∈ J

The objective function (25) maximizes the profit of each item i ∈ J while satisfying

the capacity constraint (27). Constraints (6)-(14) compute the features. Constraint (27)

approximates the capacity consumption with a machine learning model ML translated into

a mathematical program for the input vector X . Each iteration of this procedure generates

a vector of profit λ as well as a capacity C, and we solve (25)-(27).

In the case of linear regression, this approach is close to a continuous knapsack formu-

lation with a profit λi ∈ R for each item and a capacity C. In the numerical experiments,

we run this procedure with the ILS-KP model with a maximum iteration of 10, 000. To

ensure that our machine learning models always overestimate the capacity consumption,

the intercept of the constrained linear regression trained using this procedure is increased

by the difference between the forecast and the real makespan of the last example that was
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underpredicted.

In addition to this iterative procedure, an exact method for finding adversarial examples

is presented in Appendix H.

6. Numerical experiments

This section summarizes the results of the computational experiments. The first set of

experiments investigates the performance of lot-sizing formulation that embeds these ma-

chine learning models. Then, the second set compares the proposed data-driven method

versus state of-the-art approaches that integrate lot-sizing with scheduling decisions. Exper-

iments assessing both the prediction performance of models that approximate the capacity

consumption and the data generation procedures are also proposed in the Appendix. All

the experiments were conducted on a computer with an Intel Xeon Broadwell EP E5-2630v4

@ 2,20GHz with 124 Go of RAM. The mathematical models were solved using IBM ILOG

CPLEX 20.1.0.0 running with one thread. The linear regression and regression tree were

trained using the Scikit-learn (Pedregosa et al., 2011) package from Python, with a maxi-

mum depth of 10 to limit the number of variables and constraints in the MILP formulation.

The constrained linear regression and constrained piecewise linear regression were fitted

using CPLEX to minimize the mean absolute error. Note that we also tried to fit these

machine learning models using the same mathematical model but minimizing the mean

squared error using a quadratic objective. However, we observed no significant improve-

ment by considering the mean squared error instead of the mean absolute error.

6.1. Instance definition

To generate the lot-sizing instances we adopt the procedure given in Wolosewicz et al.

(2015). At the scheduling level, the flexible job-shop scheduling instances mt06, mt10, and

mt20 from Hurink et al. (1994) are considered. The Supplementary Materials details the

instances generation procedure.

We compare the proposed approach with two methods from the literature, denoted by

ILS-Exact and ILS Fixed. ILS-Exact is similar to ILS but it replaces constraints (4) with
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constraints (A.1)-(A.5). The resulting MILP solves the integrated lot-sizing and flexible

job-shop problem. This model provides perfect information on capacity consumption at

each period since it simultaneously finds the best quantities for each item and sequences

the operations on the shop floor.

Wolosewicz et al. (2015) propose an approach that solves the lot-sizing problem with a

fixed sequence of operations for the job-shop scheduling problem. The new lot-sizing model

is less complex and solved with a heuristic based on Lagrangian relaxation. However, they

only considered one possible sequence of operations for the scheduling problem. We denote

by ILS-Fixed the lot-sizing model with a fixed sequence of operations for the scheduling

problem as presented in Wolosewicz et al. (2015). We consider the sequence that is the

solution to the flexible job-shop scheduling problem with lot sizes equal to 1 for each job.

We summarize below all the mathematical models used to solve the lot-sizing instances:

• ILS-CLSP: Capacitated Lot-sizing problem (1)-(5)

• ILS-Exact: Integrated Lot-sizing and Flexible Job-shop Scheduling (A.1)-(A.5)

• ILS-Fixed: Integrated Lot-sizing and Scheduling with a fixed sequence

• ILS-LR: Integrated Lot-sizing and Scheduling with Linear Regression (15)

• ILS-PLR: Integrated Lot-sizing and Scheduling with Piecewise Linear Regression (16)-

(19)

• ILS-RT: Integrated Lot-sizing and Scheduling with Regression Tree (E.1)-(E.5)

• ILS-CLR: Integrated Lot-sizing and Scheduling with Constrained Linear Regression

• ILS-CPLR: Integrated Lot-sizing and Scheduling with Constrained Piecewise Linear

Regression

All these models were solved by CPLEX with a time limit of 1 hour.

6.2. Machine learning models comparison

This section reports the performance of different lot-sizing models that embed machine

learning methods to approximate the capacity constraint. We compare the performance
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Size 6 × 6 10 × 10 20 × 5
T 5 30 50 5 30 50 5 30 50

ILS-LR

UB 1600 9368 15517 2659 15309 25746 5323 30423 51996
LB 1600 9368 15517 2659 15309 25746 5323 30423 51996

Gap(%) 0 0 0 0 0 0 0 0 0
Feasibility 88 18 5 89 12 7 83 72 67
Time (s.) 0.08 3.11 8.1 0.15 11.5 81.7 0.07 1.2 2.07

ILS-CLR

UB 1603 9382 15537 2664 15361 25833 5332 30470 52034
LB 1603 9382 15537 2664 15361 25819 5332 30470 52034

Gap(%) 0 0 0 0 0 0.05 0 0 0
Feasibility 100 100 98 100 99 96 100 100 100
Time (s.) 0.02 1.66 7.5 0.03 325.0 3409 0.09 19.1 142.1

ILS-RT

UB 1600 9367 15518 2659 15308 25742 5324 30443 52153
LB 1600 9367 15518 2659 15308 25739 5324 30424 51996

Gap(%) 0 0 0 0 0 0.004 0 0.06 0.3
Feasibility 91 50 28 88 19 3 72 59 53
Time (s.) 2.99 327.0 1154.5 10.8 1443.6 3263.6 111.1 3568.7 3600

ILS-PLR

UB 1601 9371 × 2659 15308 × 5321 30420 ×
LB 1601 9371 × 2659 15308 × 5321 30420 ×

Gap(%) 0 0 × 0 0 × 0 0 ×
Feasibility 64 5 0 64 3 0 7 1 0
Time (s.) 0.02 0.2 0.4 0.02 0.3 0.43 0.07 0.7 1.45

ILS-CPLR

UB 1602 9379 15527 2665 15342 25742 5333 30462 52023
LB 1602 9379 15527 2665 15342 25718 5333 30462 52023

Gap(%) 0 0 0 0 0 0.09 0 0 0
Feasibility 91 75 67 100 97 91 100 100 98
Time (s.) 0.05 14.4 321.3 0.06 1645.7 3597.1 0.1 6.7 15.1

Table 1: Comparison between constrained and standard machine learning models

of different machine learning models and different training methods. First, we analyze the

solution quality and the feasibility of production plans obtained by embedding different

machine learning models. For each scheduling size and each period horizon, we generate

100 lot-sizing instances. To check the feasibility of the solution returned by the models,

the production quantities in each period are associated with a scheduling problem, and the

solution of this scheduling problem gives the actual capacity consumption. A solution to

the lot-sizing model is infeasible either if no feasible solution has been found by the solver

after reaching the time limit or the solution returned by the solver includes at least one

period where the capacity is exceeded.

Table 1 reports the performance of all the embedded machine learning and lot-sizing
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models presented in Section 6.1. The metrics used to compare the solutions are the upper

bounds UB, lower bounds LB, and the relative gap found returned by CPLEX. Note that

these metrics are provided only for the instances where all methods find a feasible solution.

Table 1 shows that most of the solutions returned by the linear regression and regression

tree are infeasible, while the constrained approach leads to a large percentage of feasible

solutions. When compared to linear regression, regression trees appear to perform badly,

since this approach requires a significant computational time to find optimal solutions. The

number of variables and constraints grows exponentially with the size of the tree. For ex-

ample, a regression tree with a depth of 20 can include a total of 220 nodes, which leads to

at least 220 variables and three times more constraints for each period in the horizon. The

resulting mathematical model rapidly becomes impractical when the number of periods in-

creases. Although models learned without the constraint that prevents underapproximation

of the capacity consumption have high precision, they struggle to find solutions that respect

capacity consumption. The importance of the constrained learning approach is clear, and

we keep only the constrained machine learning models for the rest of the experiments.

6.3. Performance of the proposed approach

This section compares the state-of-the-art models ILS-Exact, ILS-CLSP, and ILS-Fixed

with lot-sizing models that embed constrained regression, namely ILS-CLR and ILS-CPLR.

We generate instances for this experiment by varying the scheduling size, horizon length,

and setup costs.Machine learning models were trained using the ILS-KP method proposed

in Section 5.2.2.

Table 2 reports the results on all the instances, aggregated per size, period, and setup

costs. For each of these parameters, we considered the percentage gap (denoted by GapB)

of each model over the best solution found, the percentage of plans that are feasible, and

the computational time. The Supplementary Materials gives detailed tables with the results

for each instance.

For most instances of size 6 × 6, ILS-Exact finds at least one feasible production plan

within the time limit, but it struggles to find feasible solutions when the size of instances
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Metrics Scheduling Period Setup costs
6 × 6 10 × 10 20 × 5 5 30 50 15 50 100

ILS-Exact
GapB(%) 0.08 0.38 0.71 0.10 0.07 0.50 0.32 0.0 0.19

Feasibility (%) 99.9 54.1 5.3 72.0 44.1 43.2 70.5 44.3 44.4
Time (s.) 1642.7 3357.5 3600 2174.5 3207.4 3218.3 2183.3 3203.1 3213.7

ILS-CLSP
GapB(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -

Feasibility (%) 15.8 8.4 0.7 15.5 6.55 2.77 24.8 0 0
Time (s.) 69.6 385.4 358.4 0.2 107.3 706.0 0.1 6.9 806.4

ILS-Fixed
GapB(%) 0.92 2.13 7.19 1.75 2.51 5.98 0.45 3.53 6.26

Feasibility (%) 100 100 100 100 100 100 100 100 100
Time (s.) 1609.3 2433.6 2903.4 537.6 3201.1 3207.5 1609.1 2504.2 2832.9

ILS-CLR
GapB(%) 3.52 0.41 0.74 1.73 1.41 1.52 0.36 1.62 2.69

Feasibility (%) 100 100 100 100 100 100 100 100 100
Time (s.) 1640.5 2018.0 2656.6 257.2 2845.6 3212.4 1258.0 2401.6 2655.5

ILS-CPLR
GapB(%) 2.95 0.80 0.05 1.26 1.09 1.45 0.29 1.21 2.31

Feasibility (%) 100 100 100 100 100 100 100 100 100
Time (s.) 2168.8 2380.2 2701.8 307.1 3343.8 3600 2143.9 2402.8 2704.2

Table 2: Aggregated results for lot-sizing models

increases. ILS-CLSP returns solutions within a reasonable computational time, and the

feasible ones represent the best production plan. However, the large majority of solutions

found by ILS-CLSP are not feasible at the scheduling level, especially for instances with

high setup costs. Such solutions are undesirable, and the reliability of this model remains

low when compared to the other approaches. ILS-Fixed proposes the best trade-off between

objective values and feasibility for small-size instances. However, ILS-CPLR outperforms

the ILS-Fixed model when the instances size increases. Increasing the number of periods

does not impact the overall performance of ILS-CLR and ILS-CPLR, whereas it decreases

the quality of solutions for ILS-Fixed. However, increasing the setup costs has an impact

on the solutions found by all the models, even if ILS-CLR and ILS-CPLR remain better

on average. Our intuition is that lower setup costs imply small quantities of items for each

period, which remain relatively easy to approximate for scheduling with a fixed sequence.

Larger setup costs involve large lot sizes and multiple items produced at the same time,

resulting in complex scheduling problems that are inadequately approximated with a single

sequence. In this case, machine learning approaches forecast a more accurate capacity

consumption on average, leading to better solutions for medium and large instance sizes.

Finally, ILS-CLR and ILS-CPLR are much less demanding in terms of computational efforts

than lot-sizing models that integrate the full scheduling decisions.
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7. Conclusion

This paper presents innovative lot-sizing models that rely on machine learning to im-

prove the approximation of capacity consumption. The resulting model is interesting for

application in the manufacturing industry since it leads to lower production costs, and it

ensures APS systems provide plans that are executable in the workshop. We have investi-

gated machine learning models based on linear regressions, piecewise linear regressions, and

decision trees to predict capacity consumption. As we incorporate these machine learning

models into optimization approaches, they must be appropriately trained to avoid under-

estimating capacity consumption. Therefore, we constrain the learning process to avoid

underestimating the capacity of training samples. In addition, we propose an iterative

training sample generator that helps to train the machine learning model efficiently. The

resulting approach outperforms state-of-the-art lot-sizing models from the literature for

large-scale instances, by providing solutions with lower total costs, in short computational

time, and these solutions are feasible for each period taking into account the scheduling

constraints.

This initial work was conducted in a controlled environment, where we checked if the

plans are feasible by solving a scheduling problem. Future work must investigate the pos-

sibility of learning capacity consumption from real data collected from manufacturing ex-

ecution systems (MES), which is one of the objectives of our current European Project

Assistant (Castañé et al., 2022). An intermediate step might study the case where feasi-

bility on the shop floor is checked in a detailed simulation. Such a detailed simulation will

provide data for complex shop floors with many machines and jobs, and it may incorporate

the instability commonly encountered in workshops, where a given production load may

be feasible in one week but not in the next one (because of machine breakdown, or other

uncertainties). Other interesting avenues for future research include the generalization of

machine learning tools to multi-level lot-sizing problems, as well as the consideration of

other machine learning models such as neural networks.
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Appendix A. ILS-Exact

In the following, we present an MILP, adapted from Shen et al. (2018) and denoted

here as ILS-Exact, which represents the scheduling decisions of the integrated lot-sizing

and flexible job-shop model. First, let us define the following variables:

• µijt : the starting time of operation Oij in period t ∈ T
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• σijkt =


1 if operation Oij is assigned to machine k ∈ Mij in period t ∈ T ,

0 otherwise

• βiji′j′t =


1 if operation Oij is performed before operation Oi′j′ in period t ∈ T ,

0 otherwise

Thus, the flexible job-shop scheduling problem considered at each period of our capaci-

tated lot-sizing problem can be implemented using the following equations:

∑
k∈Mij

σijkt = 1, j ∈ ni, i ∈ J, t ∈ T (A.1)

µijt ≥ µi(j−1)t + pi(j−1)kXit − (1 − σi(j−1)kt)H
∀k∈Mi(j−1),

j∈2,...,ni,
i∈J,t∈T

(A.2)

µijt ≥ µi′j′t + pi′j′kXi′t + si′ikYit − (2 − σijkt − σi′j′kt + βiji′j′t)H
j∈1,...,ni,j

′∈1,...,ni′ ,
(i,i′)∈{J×J |Oij ̸=Oi′j′},

k∈Mij∩Mi′j′ ,t∈T
(A.3)

µi′j′t ≥ µijt + pijkXit + sii′kYi′t − (3 − σijkt − σi′j′kt − βiji′j′t)H
j∈1,...,ni,j

′∈1,...,ni′ ,
(i,i′)∈{J×J |Oij ̸=Oi′j′},

k∈Mij∩Mi′j′ ,t∈T
(A.4)

µinit + pinikXit − (1 − σijkt)H ≤ Ct, k ∈ Mini , i ∈ J, t ∈ T (A.5)

σijkt ∈ {0, 1}, j ∈ 1 . . . ni, i ∈ J, k ∈ Mij , t ∈ T, i ∈ J, t ∈ T

βiji′j′t ∈ {0, 1}, j ∈ 1, . . . , ni, j′ ∈ 1, . . . , ni′ , (i, i′) ∈ {J × J |Oij ̸= Oi′j′}, t ∈ T

µijt ≥ 0, j ∈ 1 . . . ni, i ∈ J, k ∈ Mij , t ∈ T

These constraints define the scheduling decisions for each period t ∈ T of the production

plan. Constraints (A.1) ensure that each operation is performed by only one machine

for each period. Constraints (A.2) force the operations of the same job to be performed

consecutively. Constraints (A.3) and (A.4) state that each pair of operations Oij and Oi′j′

performed on a same machine k ∈ Mij ∩ Mi′j′ must not overlap. Finally, Constraints (A.5)

define the capacity constraints for each period, i.e. the makespan of each flexible job-shop

scheduling problem considered at each period t ∈ T must respect the capacity.
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Appendix B. Proof of Proposition 1

Suppose we have a job-shop scheduling environment with a set of jobs J , composed

of ni successive operations for each job i ∈ J , to be performed on a set of machines M .

From any job-shop scheduling problem, we can derive its disjunctive graph, where nodes are

associated with operations and arcs relate to the precedence constraints between operations

(see Balas (1969) for more details). Assigning all the operations on the machines results in

a sequence z, for which we can derive its conjunctive graph C(z). Each sequence z in the

set of all possible sequences S provides the order in which the operations are performed

on all the machines. For any sequence z ∈ S, we can compute the completion time of any

path c ∈ C(z) in the conjunctive graph. This completion time corresponds to the sum of

processing times for all operations and all setups in this path, i.e.:

f(X, c) =
∑
o∈c

(
po · Xi(o) + so · Yi(o)

)
where:

Yi(o) =


1 if Xi(o) ≥ 0

0 otherwise

Here, o ∈ c stands for one operation performed by the path c, i(o) for its corresponding

job i ∈ J , po for its processing time, and so for the setup time between operation o and its

direct successor (so is equal to 0 if operation o is the last operation). For each sequence

z ∈ S, we can determine its critical path by finding the path c with the highest value, which

is achieved by finding the maximum among all paths:

max
c∈C(z)

{∑
o∈c

(
po · Xi(o) + so · Yi(o)

)}

By considering the set of all the possible sequences S, the makespan of the scheduling

problem is given by the sequence whose critical path is the shortest among all sequences.
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Then, we can define a function that returns the makespan for the lot sizes represented by

the vector X:

Cmax(X) = min
z∈S

max
c∈C(z)

{∑
o∈c

(
po · Xi(o) + so · Yi(o)

)}

Function f is piecewise linear, as well as max and min functions. Thus, Cmax being a

composition of piecewise linear functions, Cmax is also a piecewise linear function.

This proof can be extended to flexible job-shop scheduling problems since a flexible job-

shop scheduling problem can be interpreted as a job-shop scheduling problem with more

sequences (Brandimarte, 1993). It can also be extended to job-shop scheduling problems

with sequence-dependent setup times.
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Appendix C. Results

Scheduling Setup
T Metrics ILS-Exact ILS-CLSP ILS-Fixed ILS-CLR ILS-CPLR

size cost 1h 1h 1h 1h 1h

6 × 6

15

5

UB 1639 1639 1641 1645 1646
LB 1639 1639 1641 1645 1646

Gap (%) 0 0 0 0 0
Feasibility 100 75 100 100 100
Time (s.) 1.1 0.01 0.06 0.03 0.07

30

UB 9542 9542 9556 9591 9565
LB 9542 9542 9556 9591 9565

Gap (%) 0 0 0 0 0
Feasibility 100 44 100 100 100
Time (s.) 66.7 0.08 14.2 12.7 1509.9

50

UB 15438 15438 15476 15526 15505
LB 15438 15438 15476 15526 15501

Gap (%) 0 0 0 0 0.2
Feasibility 100 23 100 100 100
Time (s.) 164.7 0.1 68.2 352.0 3600

50

5

UB 2231 × 2279 2297 2286
LB 2231 × 2279 2297 2286

Gap (%) 0 × 0 0 0
Feasibility 100 0 100 100 100
Time (s.) 28.1 0.02 0.3 0.1 1.51

30

UB 12163 × 12270 12590 12522
LB 11980 × 12135 12388 11971

Gap (%) 1.5 × 1.1 1.6 4.4
Feasibility 100 0 100 100 100
Time (s.) 3600 1.4 3600 3600 3600

50

UB 20234 × 20303 21296 20840
LB 19809 × 19998 20763 19735

Gap (%) 2.1 × 1.5 2.5 5.3
Feasibility 99 0 100 100 100
Time (s.) 3600 3.3 3600 3600 3600

100

5

UB 2929 × 3065 3139 3102
LB 2929 × 3065 3139 3102

Gap (%) 0 × 0 0 0
Feasibility 100 0 100 100 100
Time (s.) 123.9 0.1 1.2 0.5 8.5

30

UB 15877 × 15873 16864 16646
LB 15067 × 15825 16105 14615

Gap (%) 6.1 × 3.0 4.5 12.2
Feasibility 100 0 100 100 100
Time (s.) 3600 18.6 3600 3600 3600

50

UB 26039 × 25847 27610 27809
LB 24372 × 24994 26063 23832

Gap (%) 6.4 × 3.3 5.6 14.3
Feasibility 100 0 100 100 100
Time (s.) 3600 603.4 3600 3600 3600

Table C.3: Results for 6 × 635



Scheduling Setup
T Metrics ILS-Exact ILS-CLSP ILS-Fixed ILS-CLR ILS-CPLR

size cost 1h 1h 1h 1h 1h

10 × 10

15

5

UB 2617 2617 2626 2624 2624
LB 2617 2617 2626 2624 2624

Gap (%) 0 0 0 0 0
Feasibility 100 63 100 100 100
Time (s.) 1418 0.01 0.44 0.04 0.1

30

UB 15733 15691 15754 15762 15759
LB 15689 15691 15741 15762 15743

Gap (%) 0.2 0 0.08 0 0.1
Feasibility 97 11 100 100 100
Time (s.) 3600 0.1 3596.4 397.9 3384.9

50

UB 26631 26295 26444 26386 26386
LB 26294 26295 26358 26386 26359

Gap (%) 1.2 0 0.3 0 0.1
Feasibility 90 2 100 100 100
Time (s.) 3600 0.3 3600 3359.9 3600

50

5

UB 3709 × 3763 3762 3755
LB 3599 × 3763 3762 3755

Gap (%) 2.9 × 0 0 0
Feasibility 100 0 100 100 100
Time (s.) 3600 0.01 9.6 0.6 3.0

30

UB × × 21493 21239 21344
LB × × 20246 20751 20319

Gap (%) × × 5.8 2.3 4.8
Feasibility 0 0 100 100 100
Time (s.) 3600 2.9 3600 3600 3600

50

UB × × 36219 34906 35245
LB × × 33068 33929 33271

Gap (%) × × 8.7 2.8 5.6
Feasibility 0 0 100 100 100
Time (s.) 3600 8.3 3600 3600 3600

100

5

UB 5053 × 5125 5117 5115
LB 4679 × 5125 5117 5115

Gap (%) 7.4 × 0 0 0
Feasibility 100 0 100 100 100
Time (s.) 3600 0.03 296.2 4.1 34.3

30

UB × × 29071 28390 28647
LB × × 24623 26800 25295

Gap (%) × × 15.3 5.6 11.7
Feasibility 0 0 100 100 100
Time (s.) 3600 260.6 3600 3600 3600

50

UB × × 50935 46925 47575
LB × × 40290 43359 41485

Gap (%) × × 20.9 7.6 12.8
Feasibility 0 0 100 100 100
Time (s.) 3600 3196.8 3600 3600 3600

Table C.4: Results for 10 × 10
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Scheduling Setup
T Metrics ILS-Exact ILS-CLSP ILS-Fixed ILS-CLR ILS-CPLR

size cost 1h 1h 1h 1h 1h

20 × 5

15

5

UB 5352 5314 5344 5328 5326
LB 5314 5314 5344 5328 5326

Gap (%) 0.7 0 0 0 0
Feasibility 48 2 100 100 100
Time (s.) 3600 0.02 2.9 0.09 0.17

30

UB × 30420 30865 30541 30495
LB × 30420 30556 30523 30486

Gap (%) × 0 1.0 0.06 0.03
Feasibility 0 4 100 100 100
Time (s.) 3600 0.3 3600 3600 3600

50

UB × × 52348 51787 51712
LB × × 51772 51746 51671

Gap (%) × × 1.1 0.08 0.08
Feasibility 0 0 100 100 100
Time (s.) 3600 0.7 3600 3600 3600

50

5

UB × × 7680 7582 7509
LB × × 7680 7582 7509

Gap (%) × × 0 0 0
Feasibility 0 0 100 100 100
Time (s.) 3600 0.2 928.7 14.4 21.0

30

UB × × 44683 42446 42172
LB × × 40796 40833 40443

Gap (%) × × 8.7 3.8 4.1
Feasibility 0 0 100 100 100
Time (s.) 3600 12.9 3600 3600 3600

50

UB × × 80803 69387 69176
LB × × 66258 66403 65925

Gap (%) × × 18.0 4.3 4.7
Feasibility 0 0 100 100 100
Time (s.) 3600 33.8 3600 3600 3600

100

5

UB × × 10109 9942 9795
LB × × 9947 9932 9766

Gap (%) × × 1.6 0.1 0.3
Feasibility 0 0 100 100 100
Time (s.) 3600 1.5 3599 2295.7 2695.6

30

UB × × 62577 56156 55314
LB × × 49624 50372 48787

Gap (%) × × 20.7 10.3 11.8
Feasibility 0 0 100 100 100
Time (s.) 3600 668.9 3600 3600 3600

50

UB × × 123312 92730 91817
LB × × 79536 80656 78595

Gap (%) × × 35.5 13.02 14.4
Feasibility 0 0 100 100 100
Time (s.) 3600 2508.0 3600 3600 3600

Table C.5: Results for 20 × 5
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Appendix D. Features description

This subsection describes the parameters used to describe features X(|J |+∞)⊔, X(|J |+∈)⊔,

X(|J |+∋)⊔, and X(|J |+△)⊔. Each of these features relates to a sum of processing times and

uses the precomputed parameters described as follows:

oijk : The “operating ratio” for each operation Oij performed on machine k.

ok : Estimation of the total number of operations performed on machine k ∈ M .

smin
k : Minimum setup times between all pairs of jobs that can be performed on machine k.

smean
k : Average setup times between all pairs of jobs that can be performed on machine k.

As mentioned in Section 4.1, the operation ratio oijk provides the likeliness of an opera-

tion being performed on machine k. Depending on the scheduling problem, operations that

can be performed on more than one machine are more likely to be performed on machines

that lead to a minimal makespan. Several factors can be considered to assess the likely

of an operation being performed on one machine instead of another. One idea is to take

the processing times into account when choosing on which machine an operation has to be

performed. Thus, we compute the operation ratios as follows:

oijk =



0 if k /∈ Mij

1 if Mij = {k}

1
pijk·

∑
k′∈Mij

1
pijk′

otherwise

These ratios are computed such that operations that can be performed on only one

machine have a ratio of 1, while the other operations have a ratio that depends on the

processing times and the machine. Using these ratios, we can compute the estimated number
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ok of operations on machine k ∈ M as follows:

ok =
∑
i∈J

∑
j∈ni

∑
k∈M

oijk.

Appendix E. Regression Tree formulation

In this formulation, binary variables qt
ij indicate, for every node j ∈ N , if the input

X lies in a leaf node that is a descendant of node k. For each node j ∈ N , the left and

right child nodes are respectively given by lj and rj , and the parent node is provided as

pj . This formulation with binary variables represents the path followed in the tree for each

data sample X . The score of each leaf j ∈ L is provided by Sj . The model is described as

follows:

∑
f∈F

ajf Xft − M(1 − qt
j,lj ) ≤ bj , ∀t ∈ T, j ∈ N (E.1)

∑
f∈F

ajf Xft + M(1 − qt
j,rj

) ≥ bj + ϵ, ∀t ∈ T, j ∈ N (E.2)

qt
j,rj

+ qt
j,lj = qt

pj ,j , ∀t ∈ T, j ∈ N (E.3)∑
j∈L

qt
pj ,j = 1, ∀t ∈ T (E.4)

∑
j∈L

Sj · qt
pj ,j ≤ Ct ∀t ∈ T (E.5)

qt
j,lj , qt

j,rj
, qt

pj ,j ∈ {0, 1}, ∀t ∈ T, i ∈ N

Constraints (E.1) state that variable qt
j,lj

takes value 1 if the query at node j ∈ N is

satisfied, so the predicted value lies in the left subtree of node j. Alternatively, constraints

(E.2) ensure that variable qt
j,rj

takes value 1 if the value predicted by the tree lies in the

right subtree of j ∈ N . Equations (E.3) and (E.4) state that only one node is active at each

stage of the regression tree. Equations (E.5) compare the predicted value provided by the

tree and the capacity.
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Appendix F. Instance Generation

Lot-sizing instances

To generate lot-sizing instances, we adapt the procedure given in Wolosewicz et al.

(2015). The horizon length T takes values 5, 30, and 50 periods. We also vary the setup

costs by considering values of 15, 50, and 100. The default setup cost is 15. The pro-

duction, holding, and backlogging costs remain identical between the instances, and we

consider respective values of 4 for the production costs, 1 for the holding costs, and 5 for

the backlogging costs. The demand d for each item is generated randomly in the interval

[5, 15]. For capacity tightness, the required capacity at each period is obtained by summing

the processing times and the mean setup time required to satisfy the whole demand and

then dividing this sum by the number of machines. This capacity is then multiplied by an

average utilization cap equal 0.55 for 6 × 6 instances. For 10 × 10 and 20 × 5 we select an

average utilization of 0.35 instead of 0.55 as in Wolosewicz et al. (2015) since the capacity

was large enough to solve all the instances optimally without exceeding the capacity for

each period. We adapted the formula to the flexible job-shop case as follows:

Cl = cap
∑
i∈|J |

∑
j∈ni

∑
k∈Mij

1
|Mij |

pijkDil + smean
k ∀t ∈ T

Scheduling instances

We considered the flexible job-shop scheduling instances mt06, mt10, and mt20 from

Hurink et al. (1994), which are standard job-shop instances from (Fisher, 1963) modified to

include flexible operations. There are three sizes of instances, namely, 6 jobs for 6 machines

(6 × 6), 10 jobs for 10 machines (10 × 10), and 20 jobs for 5 machines (20 × 5), where each

job is composed of a number of operations equal to the number of machines. We considered

the set of benchmark instances edata, which includes an average number of machines per

operation equal to 1.15. The setup times were generated following a uniform distribution

with support [1, 100], with valid triangular inequalities. To obtain the best makespan for

each data sample, we compare the MILP (A.1)-(A.5) solved with CPLEX on a single period
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and a constraint programming model for the flexible job-shop scheduling problem with

sequence-dependent setup times solved using IBM ILOG CP Optimizer, within a time limit

of 60 seconds for each data sample. Although the two methods can solve sample data of

size 6 × 6 and 10 × 10 to optimality, the constraint programming approach provided the

best solutions for the large-scale instance 20 × 5, with an average gap that never exceeds

15%. Thus, we chose to solve each of our data samples with the constraint programming

approach.

Appendix G. Capacity consumption prediction

This section investigates the performance of the machine-learning models in predicting

capacity consumption. We consider the following predictive models:

• RT : Regression Tree

• LR: Linear Regression

• CLR: Constrained Linear Regression

• CPLR: Constrained Piecewise Linear Regression

• Fixed: Capacity consumption computed as in the ILS-Fixed model

• Approx: Capacity consumption computed as in the ILS-CLSP model

Approx represents the capacity consumption commonly used in the classical lot-sizing

models. Approx considers the maximum between the capacity consumption for each item

and for each machine, i.e. max{X(|J |+1)t, X(|J |+2)t}. Fixed considers a given sequence of

the scheduling problem, and it computes the makespan with the critical path method. For

the piecewise linear regression, we considered breakpoints [1, 2, 3, 4, 5, 6], [1, 5] and [1, 9]

for respectively the 6 × 6, 10 × 10 and 20 × 5 scheduling sizes. For the 6 × 6 case, one

region is considered for all the possible number of setups, which leads to a more precise

approximation but a more complex embedding compared to the scheduling sizes 10 × 10

and 20 × 5 with 3 regions each.
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The approaches are compared on three datasets of 10, 000 scheduling samples generated

with the Lot-sizing based approach described in Section 5.2.2 with the lot-sizing model ILS-

Fixed. To evaluate the performance of each model, we considered a binary classification

problem where the machine model predicts if the given lot sizes respect the capacity or

not. For each dataset, we consider the median makespan as the capacity limit. Each data

sample was labeled as ”Feasible” or ”Infeasible” if the makespan found for each of these

samples is lower than the capacity limit or not. The predictive performance of each model

is evaluated on its ability to correctly predict whether an unseen data sample is Feasible

or Infeasible. Therefore, each machine learning model was trained to predict the makespan

of each data sample, and the prediction return for each testing sample is labeled afterward

as Feasible or Infeasible depending on the value returned. For each dataset, we randomly

sampled 80% of our dataset for training and 20% for testing.

Table G.6 reports the performance of the machine learning models and the approxi-

mation of capacity consumption. For each model and each scheduling size, we considered

the Accuracy, Precision, and Recall, which are the common metrics used in classification

evaluation. Accuracy corresponds to the proportion of schedules that were correctly clas-

sified as Feasible or Infeasible. Precision represents the percentage of schedules correctly

predicted as Feasible over the total number of schedules predicted as Feasible, including

false positives. Finally, Recall provides the percentage of schedules correctly predicted as

feasible and the actual number of feasible schedules in the test dataset. The MAE reports

the mean absolute error between the outcome of our methods and the real makespan.

Since Approx is based on the theoretical lower bounds of the makespan, it cannot classify

as infeasible schedules that are feasible. Similarly, no false positive can result from the Fixed

method since the given sequence provides an upper bound of the makespan.

In the context of capacity consumption approximation, a model with high precision

is crucial to limit the number of instances wrongly predicted as feasible by our model.

These infeasible schedules are undesirable since they lead to unfeasible production plans,

resulting in firefighting on the shop floor, delays in deliveries, and increasing costs of raw
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Size Metric RT LR CLR CPLR Approx Fixed

6 × 6

Accuracy (%) 97.2 96.2 87.7 87.1 93.9 94.7
Recall (%) 97.6 96.2 75.5 74.3 100 89.6
Precision (%) 96.8 96.2 100 100 88.4 100
MAE 19.5 31.9 140.6 118.6 44.2 64.3

10 × 10

Accuracy (%) 95.9 97.0 86.1 86.5 82.9 71.2
Recall (%) 96.0 97.2 72.2 73 100 43.5
Precision (%) 95.8 96.8 100 100 74.5 100
MAE 468.5 463.3 2364.7 1960.3 1529.4 4282.8

20 × 5

Accuracy (%) 94.6 95.2 82.6 87.2 60.2 64.0
Recall (%) 95.6 94.2 65.2 74.4 100 30.2
Precision (%) 93.7 96.1 100 100 55.6 100
MAE 380.9 327.4 1679.0 1042.5 2452.5 5651.9

Table G.6: Prediction performance of machine learning and other approximations of capacity consumption

material ordering costs for express deliveries, etc (Thevenin et al., 2017). On the contrary,

an approach with low recall removes feasible solutions, but the obtained production plan

remains feasible. Therefore, a low recall may lead to sub-optimal planning. While a model

with low recall results in larger costs at the planning level, it is preferred over a model with

low precision which leads to infeasible plans.

Table G.6 shows that linear regression or regression trees have the highest accuracy and

the smallest mean absolute error. However, these models did not yield a precision of 100%,

which means that the capacity consumption of some testing samples was underestimated

by both regression trees and linear regression. Although the precision remains really high

(around 95%), these models are expected to provide solutions for the lot-sizing that are

not feasible at the scheduling level. On the other hand, constrained linear and piecewise

linear regression provide a precision of 100% for each testing dataset. However, there is

no theoretical guarantee these methods don’t underestimate capacity consumption. For

small-size scheduling samples, Fixed outperforms constrained machine learning methods.

However, these latter methods provide the best results for large-scale scheduling instances

10 × 10 and 20 × 5. This information is surprising since the dataset of 10,000 scheduling

examples was generated using the Lot-sizing based generation with ILS-Fixed, the lot sizes

associated with each of these examples are supposed to be the best possible schedules found
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by ILS-Fixed. However, the machine learning models are able to predict a better capacity

consumption than Fixed in these examples. Finally, while Approx has the best Recall

value, this method has very bad precision, which decreases as the scheduling complexity

increases.

Appendix H. Adversarial examples generation

This section presents a MILP that generates adversarial data samples for a given trained

machine-learning model. These adversarial data samples correspond to lot sizes where the

prediction of capacity consumption is lower than its actual value. These points are potential

solutions to the lot-sizing model that violates the capacity constraints.

We embed the adversarial data sample generator in an iterative training approach that

successively trains the model and searches for an adversarial example. A mathematical

model searches for examples that lead to an underprediction of capacity consumption. This

MILP for adversarial data samples generation integrates the scheduling decisions of the

flexible job-shop, the decision variables associated with the features (6)-(14), and the em-

bedded machine learning model. The objective is to determine the lot sizes that maximize

the distance between the machine learning prediction Y pred and the real makespan of the

scheduling.

Note that the full scheduling decision (A.1)-(A.5) cannot be integrated in a straightfor-

ward manner. As the model maximizes the error, it would maximize the makespan instead

of minimizing it. We propose a formulation that relies on the set S of all possible sequences

for the flexible job-shop scheduling problem. The flexible job-shop scheduling problem can

be represented as a problem of finding the best sequence of operation among a set S of

possible sequences (see Proposition 4.1). Sequence z ∈ S defines the production sequence

on the machine, and it can be represented with a conjunctive graph C(z). This conjunctive

graph models all the possible paths in the sequence z (see Wolosewicz et al., 2015, for fur-

ther details). The makespan for a feasible schedule of a fixed sequence corresponds to the

length of the longest path in the conjunctive graph. When more than one sequence is con-
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sidered in set S, the best sequence corresponds to the one whose longest path has the lowest

makespan among all the sequences. This representation leads to a min-max formulation for

the determination of the makespan.

The model maximizes the distance d− between the machine learning prediction Ypred

and makespan Cmax. For a fixed flexible job-shop scheduling problem and a given set of

sequences S, the adversarial samples generation method is formulated by a MILP as follows:

max d− (H.1)

s. t. (6) − (14)

ML(X ) = Ypred (H.2)

min
z∈S

max
c∈C(z)

 ∑
(o)∈c

po · Xi(o) + so · Yi(o)

 ≥ Cmax (H.3)

Cmax − Ypred ≥ d− (H.4)

0 ≤ d−

Yi ∈ {0, 1}, UBi ≥ Xi ≥ 0 i ∈ J.

The objective function (H.1) maximizes the negative distance between the prediction and the

makespan. Equations (6)-(14) compute the features. Constraint (H.2) gives the prediction

returned by machine learning model ML, which refers to the translation of machine learning

models as described in section 4. Constraints (H.3) set the makespan to the critical path

of the sequence. In these constraints, c corresponds to a path of the set of paths in the

conjunctive graph C(z) of the sequence z. The complete formulation of these constraints is

given in the Supplementary Materials of this paper. Finally, the negative distance between

the makespan and the prediction is determined through expression (H.4). We set maximum

lot sizes for each product to avoid having an unbounded feasible region.

Model (H.1)-(H.4) with the entire set S of sequences returns the lot sizes that lead

to the least accurate prediction of the makespan. However, the approach is not practical

since the entire set S of sequences is too large. Therefore, we iteratively generate the set
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of sequences in a raw generation scheme. First, we start with a single sequence for set S

with a machine learning model trained on an initial dataset D. The solution X of (H.1)-

(H.4) gives the lot sizes X that lead to an underestimation of the makespan by machine

learning model ML for the scheduling problem with fixed sequences. As the makespan

in (H.1)-(H.4) is computed on a restricted set of sequences, we check that the lot sizes X

underestimate the makespan when computed by solving the full flexible job-shop scheduling

problem (A.1)-(A.5). If the makespan C∗max of the optimal sequence z∗ is greater than the

prediction, we add the adversarial example X to D and retrain the model. Otherwise, if the

prediction is greater than C∗max, then the scheduling problem with fixed sequences provided

a bad estimation of the makespan, and we add sequence z∗ to S and resolve the adversarial

program. This procedure is repeated until the solver declares the problem is unfeasible, or it

finds an optimal solution with d− = 0. Meeting these two cases for this problem means that

no adversarial example can be found for the finite set of the sequence S. Model (H.1)-(H.4)

can be either solved to optimality or stopped when an incumbent solution is found.

When the method is trained to not underpredict the capacity, this iterative training ap-

proach converges to a model that does not underpredict the capacity. Proposition Appendix

H.1 and Appendix H.2 show that coupling the adversarial approach with machine learning

models providing perfect approximations of the capacity consumption yields the optimal so-

lution to the integrated lot-sizing and scheduling problem. While these propositions require

assumptions that would make the approach inefficient, they provide a theoretical basis for

the approach considered.

Proposition Appendix H.1. The adversarial example generation stops after a finite

number of iterations when applied to piecewise linear machine learning models that never

underestimate the makespan and whose breakpoints remain identical between each training

procedure.

Proof. Proof:

As explained in Proposition 4.1, since the makespan Cmax of any FJSP is defined as a

piecewise linear function, there are a finite set of regions R1 =
{

[a, b] | a, b ∈ R|J |, ai ≤ bi ∀i ∈ J
}
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of lot sizes X where Cmax(X) is linear for all X ∈ r and any r ∈ R1. Suppose we have

a piecewise linear machine learning model ML trained on a dataset D to never under-

estimate its output, here the makespan of an FJSP. Similarly, we can define R2 as the

finite set of intervals of lot sizes X where the prediction of ML is linear. Therefore,

there are a finite set of intervals of lot sizes R where both Cmax and ML are linear, i.e.

R = {r1 ∩ r2 | r1 ∈ R1, r2 ∈ R2}. Applying the adversarial example method on machine

learning model ML is equivalent to looking for the lot sizes X∗ ∈ R|J | where the absolute

distance between prediction ML(X∗) and Cmax(X∗) is maximal. Such a solution, if it ex-

ists, lies in a region r∗ ∈ R where both function Cmax and ML are linear. If an optimal

solution X∗ can be found, two cases can occur:

1. X∗ is not unique and lies in a k-face of r∗, k ∈ 1..|J |

2. X∗ is unique

In the first case, there is a k-face K of r∗ where Cmax(X1) − ML(X1) = Cmax(X2) −

ML(X2), ∀X1, X2 ∈ K. In this situation, machine learning model ML is parallel to Cmax

for all solutions lying in k-face K. For example, for a k-face K with k = |J |, finding optimal

solutions X for all X ∈ K means ML is parallel and strictly lower to Cmax within region

r∗. Training machine learning ML with the newly added X∗ will prevent this case occuring

for region r∗ since the prediction of ML over k-face K will lie above Cmax. In the second

case, X∗ is an extreme point (or a bound) of region r∗, and training ML by including this

new extreme point automatically forbids the procedure to return this same point. For each

region r ∈ R, repeatedly applying the adversarial generation procedure to ML will, in the

worst case, generate one data point for each k-face of region r and one data point for all

the extreme points of region r. Once all the extreme points of a region r ∈ R have been

added to dataset D, machine learning model ML cannot underpredict the makespan for

any lot size X ∈ r. R having a finite set of regions and each region being represented by

a finite set of extreme points and facets, the adversarial generation procedure ends after a

finite number of iterations.
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Proposition Appendix H.2. If a machine learning model always returns exact approx-

imations of the capacity consumption in the training dataset and never overestimates the

capacity consumption in any other data sample, applying the adversarial examples genera-

tion converges to a model that returns perfect estimations of the makespan.

Proof. Proof: As the machine learning model does not overestimate the capacity consump-

tion, the solution to the model provides a lower bound to the optimal solution of the

integrated lot-sizing and scheduling problem. The solution is either optimal or it is infeasi-

ble because it violates the actual capacity constraints. If no adversarial example exists, the

solution is optimal.

An example of the perfect approximation of the capacity consumption is a machine

learning model that integrates the makespan Cmax as a feature through equation (H.3).

Such a model will represent the capacity consumption perfectly, but its integration into

the lot-sizing model leads to an inefficient program. As a consequence, machine learning

models as well as the features used for the approximation should be chosen appropriately

to balance the trade-off between accuracy and computational efficiency. We provide below

additional practical implementation detail for the approach.

For piecewise linear regression, we decompose the problem into |R| subproblems, one

for each linear regression associated with each region. This procedure may require a long

time to find the first feasible solutions due to the complexity of the constraints (H.3), these

constraints require a large set of binary variables and big-M constraints. To avoid generating

unrealistic lot sizes, we set appropriate domains in the model for the value of Ypred, and

Cmax.

To speed up the solution process further, we decompose the problem into |J | subproblems

depending on the number of product setups. We first solve the MILP above with a constraint

that sets the number of setups Y to 1, and we solve the procedure until unfeasibility is

reached. In fact, when a single product is set up for the scheduling problem, only one

sequence is required to represent the full scheduling problem. As a result, we solve or prove

the infeasibility of the mathematical program (H.1)-(H.4) more rapidly. We then increase
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the number of setups by one and repeat the process until we reach unfeasibility for any

number of products set up. Increasing the number of setups also increases the number of

sequences required to represent the scheduling problem exhaustively, but it is faster than

considering all the possible number of setups. Note that each time an adversarial example

is found, all the |J | subproblems are checked.

Appendix I. Evaluation of the training approach

The rest of this section evaluates the iterative training approaches given in Section 5.

We consider three constrained linear regressions trained on three datasets, namely Latin

Hypercube Sampling (DLHS), the ILS-KP method (DKP ), and the adversarial example

approach (DADV ). We only consider instances with scheduling size 6 × 6 in these experi-

ments since the adversarial approach does not scale well for large-scale instances. However,

we vary the cost values since these parameters have a significant impact on the quantities

produced at each period, and thus the capacity consumption. Dataset DLHS was computed

by generating 10, 000 data samples composed of different combination lot sizes. To generate

datasets DKP and DADV , the first 100 data samples from DLHS are selected to compose

the initial dataset and used to fit the constrained linear regression. The remaining data

samples were generated as explained in Section 5.2.2 and Appendix H, and led to final

datasets with less than 500 samples.

Table I.7 reports the results of the embedded constrained linear regression trained using

the three data generation procedures. Table I.7 shows that Latin Hypercube Sampling yields

solutions with lower objective values. However, this method leads to a low number of feasible

solutions for instances with high setup costs. The adversarial example approach however

can guarantee the feasibility for any lot-sizing instances, since the datasets are generated

so that no constrained linear regressions trained with this dataset can underestimate the

capacity consumption. The ILS-KP approach shows results that are relatively similar to

the adversarial example one, with a feasibility of 100 for all the lot-sizing instances, despite

finding solutions with slightly higher objective values. Nevertheless, the ILS-KP approach
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Setup costs 15 50 100
T 5 30 50 5 30 50 5 30 50

ILS-CLR (DLHS)

UB 1595 9409 15716 2252 12603 20970 3076 16605 27574
LB 1595 9409 15716 2252 12401 20487 3076 15924 26057

Gap(%) 0 0 0 0 1.6 2.3 0 4.1 5.5
Feasibility 100 100 100 100 99 97 98 91 86
Time (s.) 0.02 5.0 79.9 0.12 3600 3600 0.48 3600 3600

ILS-CLR (DKP )

UB 1600 9435 15756 2289 12721 21162 3144 16867 27987
LB 1600 9435 15756 2289 12530 20696 3144 16141 26419

Gap(%) 0 0 0 0 1.5 2.2 0 4.3 5.6
Feasibility 100 100 100 100 100 100 100 100 100
Time (s.) 0.03 12.1 495.3 0.15 3600 3600 0.53 3600 3600

ILS-CLR (DADV )

UB 1600 9434 15754 2289 12704 21134 3141 16826 27919
LB 1600 9434 15754 2289 12513 20647 3141 16085 26327

Gap(%) 0 0 0 0 1.5 2.3 0 4.4 5.7
Feasibility 100 100 100 100 100 100 100 100 100
Time (s.) 0.03 14.75 526.1 0.15 3600 3600 0.56 3600 3600

Table I.7: Comparison of the constrained linear regression trained on different datasets with scheduling size
6 × 6

can scale to large-scale lot-sizing instances with large scheduling sizes. Therefore, for the

next numerical experiments of this paper, we considered constrained linear and piecewise

linear regression trained using datasets generated with the ILS-KP approach.
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