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Abstract
In the world of connected automated objects, increasingly rich and
structured data are collected daily (positions, environmental variables,
etc.). In this work, we are interested in the characterization of the
variability of the trajectories of one of these objects (robot, drone, or
delivery droid for example) along a particular path from irregularly
sampled data in time and space. To do so, we model the position
of the considered object by a random field indexed in time, whose
distribution we try to estimate (for risk analysis for example). This
distribution being by construction concentrated on an unknown curve,
two phases are proposed for its reconstruction: a phase of identifica-
tion of this curve, by clustering and polynomial smoothing techniques,
then a phase of statistical inference of the random field orthogonal to
this curve, by spectral methods and kernel reconstructions. The effi-
ciency of the proposed approach, both in terms of computation time and
reconstruction quality, is illustrated on several numerical applications.

Keywords: Statistical inference, manifold learning, nonparametric
representation, data-driven sampling
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1 Introduction
An increasing number of physical systems are equipped with sensors measuring
their positions (trains, cars, drones, etc.). Often, this information is presented
in the form of a sequence of vectors in dimension 2 (in the plane) or 3 (in space)
indexed by time. The different recordings of these spatial positions between
two particular points can then be considered as particular realizations of a
random field X. Characterizing this unknown probability distribution plays a
central role in uncertainty quantification, operational safety, and data analysis,
and is the main objective of this paper.
Of particular interest is the case when this probability distribution is spatially
concentrated around a mean curve (i.e. concentrated around the standard path
of the system), and when the available information consists of a finite set of
realizations of X, which are assumed to be non-uniformly discretized in time
into a variable number of points. For this work, it is important to note that this
mean curve is a priori unknown, and that the fluctuations of the observations
around this curve will not be due to measurement noise, but rather to the
fact that the realizations of X will not follow the same path exactly. And in
addition to the mean curve, it is also these fluctuations that we would like to
characterize by estimating the distribution of X.
Given these irregularly sampled data, one possible method to address this
identification problem is to suppose that the searched probability distribution
belongs to an algebraic class of probability distributions, which can be mapped
from a relatively small number of parameters (for instance, the set of Gaus-
sian random fields whose mean and covariance functions belong to specific
parametric classes) [1–3]. Generating new sample paths of X amounts then at
identifying the parameters that best suit the available data and, in a second
step, at sampling independent realizations associated with the identified para-
metric probability distribution. However, proposing parameterisations that are
sufficiently sophisticated to include the true distribution without being too
complicated to allow its estimation, both for the mean curve, and for the fluc-
tuations around the mean curve, can be very difficult in the general case. In this
case, one generally prefers to turn to non-parametric approaches [4, 5]. Such
approaches may indeed be able to identify the hidden curve behind the data,
as was done in [6] or in [7]. However, to the best of the authors’ knowledge,
these methods most often consider the available information on X as a point
cloud rather than as a set of discretized realizations, and in this sense, have
difficulty to really exploit the statistical dependencies within the elements of
the data set that are associated with the same realization ofX. This is mainly
due to the fact that the speeds at which the system evolves have no reason to
be the same from one path to another one, nor to be constant as a function of
time along the same path. As a consequence, the realizations of X, which are
assumed to be discretized in time, will be generally difficult to compare if we
plot them as a function of time, even if they share strong similarities once rep-
resented in space. And the methods previously introduced were not designed
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to move from this parameterisation in time to another parameterisation in
space, which we can hope to be more suitable.
To circumvent this difficulty, a two-step approach is proposed in this work.
The first step is to identify the mean curve on which the distribution of X is
concentrated, using clustering [8] and spline approximation techniques [9]. It is
important to note that this first step is not motivated by a desire to reduce the
size of the data, but by a desire to break down the problem of estimating the
probability distribution of X. In this sense, even if they may share some tools,
the method proposed for this identification differs from standard nonlinear
dimension reduction methods, such as Locally Linear Embedding (LLE) or t-
distributed Stochastic Neighbor Embedding techniques [10, 11], in that we are
here more interested in the geometric characterization of the curve than in the
mapping from the high-dimensional space to the low-dimensional embedding.
In a second step, after projection of the data on the identified curve and on its
orthogonal space, the statistical properties of the random field to be identified
are estimated by spectral decomposition [12–14] and kernel density estimation
[6]. As indicated previously, an important difficulty here comes from the choice
of the index on which these fluctuations depend. Indeed, to exploit the fact that
the probability distribution of X is concentrated on a curve, it seems natural
to index X by the curvilinear abscissa along this curve. But by introducing
this non-intrinsic parametrisation, it is very likely that we end up with a non-
trivial probability distribution for X. For example, even if the probability
distribution of X is at the beginning relatively simple (stationary in time for
example), its approximation from an approximated curve, and thus from a new
index, has every chance of no longer verifying these simplifying hypotheses (by
becoming non-stationary in the chosen curvilinear abscissa for example).
The outline of this work is as follows. Section 2 introduces the general frame-
work for carrying out this identification in inverse. The coupling between
clustering techniques and spline approximation is then described in Section 3,
and Section 4 deals with the statistical inference. Since the scope of this work
is mainly methodological, it is limited in terms of applications in Section 5 to
two analytical configurations that are intended to be the most representative
of what we could have to deal with in configurations for reconstructing the
trajectories (and their variability) of physical systems from measurements dis-
cretized in time and space. Concluding remarks and prospects for this work
are finally given in Section 6.

2 Theoretical framework

2.1 Notations
Let d be in {2, 3}, (Ω,A,P) be a probability space, and X be the random
field whose probability distribution is to be identified. This random field can,
for example, characterize a set of realistic and representative trajectories of a
particular physical system between two relatively well identified points. This
random field is assumed to be a second-order random field defined on (Ω,A,P),
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Figure 1 Graphical illustration of the notations, the black solid line being one potential
M∈M1(Rd).

whose trajectories are in the set C2([0, 1],Rd) of all the twice continuously
differentiable functions from [0, 1] to Rd almost-surely:

X :=
{
X(s, ω) ∈ Rd, s ∈ [0, 1], ω ∈ Ω

}
.

The probability distribution of X is moreover assumed to be concentrated
on an unknown curve M?, which is assumed to belong to the set M1(Rd)
of simply connected and twice-differentiable curves. It is important to note
the strong link between C2([0, 1],Rd) and M1(Rd). Indeed, each function in
C2([0, 1],Rd) defines a unique curve ofM1(Rd). And we obtain an element of
C2([0, 1],Rd) by indexing each point of a curve ofM1(Rd) by the curvilinear
abscissa defined along this manifold, which has been normalized so that it is
equal to 0 at one end of the curve and 1 at the other.
To identify the probability distribution of X, which is a priori unknown, we
assume that we have access to N > 1 discrete projections of N independent
trajectories of X, which are denoted by{

X(s
(n)
1 , ωn), . . . ,X(s

(n)
Mn
, ωn)

}N
n=1

, (1)

where Mn corresponds to the number of observation points of the nth tra-
jectory. It is important to note that the values of s(n)m , which can be seen as
deterministic quantities, are all unknown here. It is nevertheless reasonable to
assume that they are sorted in increasing order (in the case of path discretiza-
tion, this is equivalent to assuming that the components of the same vector
are ordered chronologically, which is generally the case).

2.2 Two-step statistical inference
As explained in Introduction, a two-step procedure is proposed for the iden-
tification of the probability distribution of X. First, we look for the best
approximation M̂ ∈ M1(Rd) ofM?, in the sense that

max
x∈M?

min
y∈M̂

‖x− y‖ (2)
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is minimum, where we denote by 〈·, ·〉, ‖·‖, and · × · the Euclidean scalar
product, the Euclidean norm, and the cross product in Rd respectively. The
way in which this problem will be addressed will be the focus of Section 3.
The very important contribution of this estimation is to allow the indexation
of X by a new curvilinear abscissa that we can now manipulate. Indeed, once
M̂ is defined, we can orient it and associate with it a normalized curvilinear
abscissa noted t ∈ [0, 1], as well as a function m̂ in C2([0, 1],Rd) such that
m̂(t) is the point of M̂ that we find at abscissa t. Given these notations, for all
t ∈ [0, 1], we can gather in the matrix B(t) := [τ (t) ν(t)] (respectively B(t) :=

[τ (t) ν(t) κ(t)] when d = 3) a local basis for M̂, where τ := dm̂
dt /

∥∥∥dm̂dt ∥∥∥ is the

unit tangent vector, ν := dτ
dt /

∥∥dτ
dt

∥∥ is the normal unit vector (and κ := τ × ν
is the binormal unit vector). See Figure 1 for a graphical illustration of these
notations. From this local representation, we can define S(M̂) as the set of
random fields X̂ that can be written under the form

X̂(t, ω) := m̂(t) +B(t)Ŷ (t, ω), ω ∈ Ω, (3)

where Ŷ is a centered random field indexed by t ∈ [0, 1] with trajectories
in C2([0, 1],Rd−1) almost-surely. In the same manner, each observation point
X(s

(n)
m , ωn) of Eq. (1) can be decomposed as the sum of its projection on

M̂, noted m̂(t
(n)
m ), and a remaining term X⊥m(ωn) := X(s

(n)
m , ωn)− m̂(t

(n)
m ),

where:

m̂(t(n)m ) := arg min
x∈M̂

∥∥∥x−X(s(n)m , ωn)
∥∥∥ , (4)

t(n)m :=

∫ m̂(t(n)
m )

m̂(0)

dt

/∫ m̂(1)

m̂(0)

dt. (5)

By construction, for each 1 ≤ n ≤ N and 1 ≤ m ≤ Mn so that t(n)m /∈ {0, 1},
X⊥m(ωn) is in the orthogonal space at m̂(t

(n)
m ), which means that it can be

written B(t
(n)
m )Y (t

(n)
m , ωn), with

Y (t(n)m , ωn) := B(t(n)m )TX⊥m(ωn). (6)
Finally, the objective of the second step of reconstruction of the probability
distribution of X is to search in S(M̂) for the random field that is the clos-
est to X in distribution, using the information gathered in the observations
coefficients {Y (t

(n)
m , ωn)}1≤m≤Mn,1≤n≤N . This will be the subject of Section 4.

3 Manifold learning
The objective of this section is to propose a method to solve, using limited
and disperse data, the optimization problem defined by Eq. (2). As it stands,
sinceM? is unknown, the problem we are trying to solve is ill-defined. To rely
only on the available points, rather than directly minimizing the maximum
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distance betweenM? and a candidate curve, we propose to construct a kind
of spatial average of the observation points, which are listed in Eq. (1). To this
end, let us gather (without considering the statistical dependencies between
points) all these points in XL := {x`, 1 ≤ ` ≤ L}, with L :=

∑N
n=1Mn, and:

x1 := X(s
(1)
1 , ω1), . . . ,xL := X(s

(N)
MN

, ωN ). (7)

The square distance between eachM∈M1(Rd) and XL can then be defined
as:

d(M,XL)2 :=
∑
x`∈XL

∥∥∥∥x` − arg min
y∈M

‖x` − y‖
∥∥∥∥2 . (8)

However, seeking to minimize this distance is not sufficient to approachM?.
Indeed, any curve passing through each points of XL exactly makes this
pseudo-distance be zero. In order to avoid such overlearning, it is necessary
to penalize the complexity of the search set of candidate functions. In this
prospect, a progressive approach is proposed in the following, based on four
main steps (see Figure 2 for a graphical illustration of these steps).

Step 1 : Quantization
The first step is to define a small number of K > 1 representative points in
the dataset, noted x̂1, . . . , x̂K . The identification of these points is carried out
by clustering, and more precisely by K-means clustering [15], due to the fact
that we are interested in an average reconstruction with respect to the Eu-
clidean distance. For the three first steps, K is assumed to be predetermined.
For choosing these K representative points, we therefore look for the opti-
mal partition Ŝ1, . . . , ŜK of XL, which minimizes the Within-Cluster Sum of
Squares (WCSS), and we define:

x̂k :=
1

|Ŝk|

∑
i∈Ŝk

xi, 1 ≤ k ≤ K,

where |Ŝk| is the number of elements of Ŝk. Alternative techniques could be
used to choose these representative points, such as the ones presented in [16]
or [17], without much impact on the following.

Step 2 : Piecewise segment approximation
Once the representative points have been identified, it is possible to construct
a first approximation of M? by connecting the points x̂k by segments. Since
we are interested in curves, we expect each point to be connected to at most
two other points. However, if one imagines that the curve to be identified loops
one or more times (that is the case for the proposed application), it is possible
that some points serve as crossing points, and must be connected to more than
two points. In order to identify a single 1D path connecting all representative
points, it is then proposed to proceed as follows.
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First, each point x̂k is connected to its Nnn = 2 nearest neighbors (in the sense
of the Euclidean distance). We note a1, . . . , aNs the segments obtained, with
Ns the total number of segments. If the union of the obtained segments does
not form a connected graph, we increase the value of Nnn (see Figure 2-a).
The suitability of the curve made of these Ns segments, which is denoted by
A, to represent the available data, can then be measured by d(A,XL)2.
CurveA is nevertheless likely to gather too many segments. In order to propose
a sufficiently regular curve, we then make the assumption that the length
of a segment is small compared to the inverse of the curvature of M? in
the neighborhood of this segment. In principle, this prohibits the presence
of completely connected groups of more than two points (all points in this
group are connected by segments to all other points). To remove this excess
of segments, we propose to sequentially remove the segment aj? such that:

j? ∈ arg min
1≤j≤q

d(A\{aj},XL)2

Len(aj)2
, (9)

where a1, . . . , aq correspond to q segments of a completely connected group,
and Len(aj) is the length of segment aj . Thus, the idea is to remove the
segment with the smallest length-weighted effect on the projection error. At
the end of this sequential approach, it is then assumed that any point x̂k is
connected to only two neighboring points, except in looping cases where the
crossing points will have more connected neighbors (see Figures 2-a,b).
The last phase of this step consists of an orientation of the resulting graph. To
do this, we start from a simply connected point (if there is one, otherwise, we
pick at random a point in the graph), then we go up the graph by following
the connectivities. In the case of a point connected to more than two points,
we propose to choose for the next point the neighbor whose segment will be
the most aligned with the segment followed to reach this point (we thus favor
the most regular trajectories). We also propose to duplicate the point that
turns out to be connected to more than two neighbors, so that in the final
connection graph, any point is only connected to one or two points (see Figure
2-b). We finally note x̃1, . . . , x̃K̃ (with K̃ potentially larger than K in the case
of duplication) the oriented sequence of elements of {x̂1, ..., x̂K} such that x̃k
and x̃k+1 are connected by a segment for each 1 ≤ k ≤ K̃ − 1.

Step 3 : Points projection and spline approximation
In order to reconstruct a sufficiently regular curve from the points x̃1 to x̃K̃ ,
a piecewise polynomial reconstruction is now proposed.
To begin, for each 1 ≤ k ≤ K̃− 1, we denote by ãk the segment connecting x̃k
and x̃k+1 (these segments are the same than the ones identified in Step 2 up
to a modification of the numbering). Curve M̃ K̃ :=

⋃K̃−1
k=1 ãk can therefore be

seen as a piecewise linear approximation of the searched curve M?. We can
then project each point x` of XL on M̃ K̃ , and associate with each of them a
segment index i` and a curvilinear abscissa t`, such that for all 1 ≤ ` ≤ L,



Springer Nature 2021 LATEX template

8 Data-driven manifold learning

(a) Quantization and segment approxima-
tion

(b) Graph reduction

(c) Point duplication and graph orientation (d) Polynomial approximation

Figure 2 Graphical representation of steps 1, 2 and 3 for curve learning. The grey points
correspond to the observation points, the big black points are the representative points, the
black star indicates a point that is duplicated, the segments connecting the representative
points are in blue, and the the blue curve is the final curve.

t` :=
∥∥∥x̃i` −Π(x`; M̃

K̃)
∥∥∥+

i`−1∑
k=1

Len(ãk), (10)

where Π(x`; M̃
K̃) is the projection of x` on ãi` .

To recover the expected regularity (we restrict ourselves to twice-differentiable
functions), we finally replace each segment ãk by a parabola, pa(b(k)), param-
eterized by a 3d-dimensional vector b(k) (the parabola being characterized in
each dimension by a second-order polynomial based on 3 independent con-
stants) so that M? is now searched as the concatenation of K̃ − 1 pieces of
parabolas (see Figure 2-c):

M̃
(K̃)
B :=

K̃−1⋃
k=1

pa(b(k)) = {x(t; B), 0 ≤ t ≤ 1} , (11)

where the value ofB =
[
b(1) · · · b(K̃−1)

]
is a priori unknown, but needs to be

estimated from data. In that prospect, we propose to choose B that minimizes

e2(B) :=

L∑
`=1

‖x` − x(t`; B)‖2 (12)
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under the constraint that the reconstructed curve is twice continuously differ-
entiable. By construction, this only requires that B guarantees the continuity
of the curve at the junction indices, as well as the continuity of its derivatives
with respect to t. Without going into too much details, we underline that error
e2(B) can be written as the sum of a constant independent of B and K̃ − 1

terms e2k(b(k)) depending quadratically in b(k). As a consequence, if we choose
to impose the continuity constraints using standard `2 penalty techniques [18],
we obtain a constrained least squares problem that admits an explicit solution
(to the value of the penalty constant λ). Denoting by B̃(λ) this solution, the
curve M̃ (K̃)

B̃(λ)
can finally be chosen for the approximation ofM? inM1(Rd).

Step 4 : Choice of K and λ
The former construction depends on two constants: the penalty constant λ,
and the numberK (or K̃ if we consider the duplicated points) of representative
points. Whereas λ is chosen as large as possible, the value of K results from
a convergence analysis. For this purpose, we plot the mean-square distance,
d(M̃

(K̃)

B̃(λ)
,XL), with respect to K, and we consider the "elbow" method (see

[19] fore more details about this selection criterion) to determine the optimal
value ofK. The intuition behind this heuristic is that by increasing the number
of representative points, we naturally reduce the projection error, since we are
projecting the points on a more complex (and a priori longer) curve, but at
some point, there is over-fitting: we focus on data rather than on the curve we
are interested in.

Remarks
• At step 3, one may or may not want to make the estimated curve pass

through the representative points. From the few numerical examples we have
dealt with, we have nevertheless observed a better reconstruction when this
passage through the representative points is not imposed. We will therefore
not consider this constraint in the numerical examples that will be presented
in the following.

• On its own, this curve identification approach can be seen as a particular
nonlinear dimension reduction technique (going from a dimension d to a
dimension one), or seen as a denoising method under the assumption that
the fluctuations aroundM? correspond to noise.

4 Statistical inference

4.1 Approximation class and learning set
As explained in Section 2, the estimation of the probability distribution of
X relies on the estimation of two quantities: the approximation M̂ of M?,
on which the probability distribution of X is assumed to be concentrated,
and the probability distribution of the projection coefficients of X on the
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Figure 3 Graphical illustration of several difficulties related to the reconstruction of the
probability distribution of Ŷ : potential presence of local oscillations, difficulties at the cross-
ings and extremities, distortions related to the projection operation. For this example, the
true curveM? is shown in grey dashed line and its oriented approximation M̂ in blue solid
line. A potential realization of X associated with a translation ofM? is shown in red dotted
line, and the black stars correspond to the projections of the grey points on M̂.

orthogonal space of M̂. Indeed, once M̂ has been chosen (unless otherwise
stated, M̂ = M̃

(K̃)

B̃(λ)
in the following), we can orient it, associate with it a

function m̂ in C2([0, 1],Rd), and gather in B(t) a local basis of it. In line with
Eq. (3), this allows us to search X under the form

m̂(t) +B(t)Ŷ (t, ω), 0 ≤ t ≤ 1, ω ∈ Ω,

where we recall that the knowledge of M̂ implies the knowledge of m̂ and
B. Characterizing the probability distribution of X amounts therefore at
estimating the probability distribution of Ŷ .
This estimation remains particularly difficult for several reasons (see Figure 3
for a graphical illustration of some of these difficulties). First, the identified
curve is likely to introduce parasitic oscillations with respect to the true (but
unknown) curve M?. In a second step, the identification of the probability
distribution of Ŷ relies on the post-processing of the projections of the obser-
vation points. However, such a projection is itself a source of complications.
In particular, there is the problem of the projections at the extremities of M̂,
which are likely to concentrate entire sections of realizations of X at a single
point. The presence of crossings in the curve to be identified poses another
problem, in the sense that a direct projection based on the search of the near-
est point of M̂ may be flawed. Indeed, at the crossings, two points that are
close from a Euclidean norm point of view can be associated with very differ-
ent curvilinear abscissas, and thus be very far from each other when travelling
along the curve. Thirdly, the probability distribution of Ŷ may well be much
more complicated than that of X. For example, one can imagine that the re-
alizations of X are particular translations ofM?. In this case, the probability
distribution of X is then of very low statistical dimension, when the one of
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Ŷ , by the game of projections on the approximate curve, is likely to be non-
stationary (two points projected on the curve can in particular move closer or
further away depending on the local curvature).
Keeping these difficulties in mind, we first assume that Ŷ is centered, and we
choose to neglect the problems at the extremities of the curve, in the sense
that all the (a priori few) observation points whose projection will be at one
of the extremities of the estimated curve will be discarded (the integration
of these points is thus left as a working perspective). Hence, the learning set
for the estimation of the probability distribution of Ŷ gathers the elements
of the set {Y (t

(n)
m , ωn), 1 ≤ m ≤ Mn}Nn=1 (defined by Eq. (6)) that verify

0 < t
(n)
m < 1. These points are then considered as (potentially statistically

dependent) realizations of Ŷ .

4.2 Spectral decomposition
In this part, we try to estimate the probability distribution of the random
field Ŷ with, as maximum knowledge, the observation points listed in previous
section. To this end, we propose to consider a spectral approach, which consists,
first, in projecting Ŷ on a finite set of deterministic functions f (1), . . . ,f (Q),
and secondly, in inferring the joint probability distribution of the projection
coefficients.
Assuming that Ŷ is a Rd−1-valued second-order random field, and that its
covariance function, which is noted CY , is continuous on [0, 1] × [0, 1], it is
well known (projection theorem in Hilbert space) that the best choice for the
projection functions is the set of eigenfunctions of CY associated with the
highest eigenvalues, in the sense that is allows minimizing the signal energy of
the difference between Ŷ and its projection at any Q.
To estimate these projection functions, we therefore need to estimateCY . Such
an approximation using projections of Ŷ at distinct values of t is often based on
the assumption that CY belongs to a chosen parametric class. Unfortunately,
there is no reason why Ŷ should be parameterized by a reduced number of
parameters. In particular, the dependence structure between the components
of Ŷ is non-trivial due to the projection. For all these reasons, we focus instead
on the following empirical approximation ĈY (t, t′) of CY (t, t′):

ĈY (t, t′) :=
1

N

N∑
n=1

Y int(t, ωn)Y int(t
′, ωn)T , (13)

where for each 1 ≤ n ≤ N , t 7→ Y int(t, ωn) is an interpolation of t 7→ Ŷ (t, ωn)

over [0, 1] such that Y int(t
(n)
m , ωn) = Y (t

(n)
m , ωn) for each 1 ≤ m ≤ Mn as

long as t(n)m /∈ {0, 1}. For this work, we limit ourselves to interpolations based
on a Gaussian process regression, because of their flexibility and their very
good properties for the approximation of functions defined on low-dimensional
compacts [20]. But this interpolation phase can be carried out in other ways

[21, 22]. Let {f̂
(q)
, 1 ≤ q ≤ Q} be the set gathering the Q eigenfunctions
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associated with the Q largest eigenvalues of ĈY , and Ŷ
(Q)

be the projection
of Y int on it. As this family is orthonormal, we can write:

Y int ≈ Ŷ
(Q)

:=

Q∑
q=1

ξqf̂
(q)
, (14)

where ξ := (ξ1, . . . , ξQ) is a centered random vector (remind that Ŷ is as-
sumed centered), whose components are uncorrelated. In addition, using this
formalism, N independent realizations of ξ can be computed by projecting
each function Y int(·, ωn) on {f̂

(q)
, 1 ≤ q ≤ Q}.

Note that if Y int was Gaussian, the components of ξ would be Gaussian and
therefore would be statistically independent. But in the general case, although
uncorrelated, the components of ξ are likely to be statistically dependent. Once
again, this dependence structure may be complex, which leads us to focus on
nonparametric approaches for the estimation of the probability distribution
of ξ. Among these methods, the multidimensional Gaussian kernel-density
estimation (G-KDE) method proposes to write the probability density function
(PDF) of ξ, if it exists, as a sum of N multidimensional Gaussian PDFs with
the same covariance matrix H (generally called "the bandwidth matrix"),
which are centered at the available realizations of ξ. Correctly adapting the
value of H is particularly important for this approximation, as this matrix
controls the influence of each realization of ξ on the final PDF approximation.
Many contributions can be found in the literature on this subject (see for
instance [6, 23, 24]).

In summary, once projection family {f̂
(1)
, . . . , f̂

(Q)
} and matrix H have been

estimated, we have a statistical model for ξ (a very large number of indepen-

dent realizations of ξ can be quickly generated), and therefore one for Ŷ
(Q)

thanks to Eq. (14), and therefore one for the approximation X̂ := m̂+BŶ
(Q)

of X, which was the initial goal of this paper.

Relying on eigenvalue decay and restored variance is a classic choice for select-
ing the number of eigenvectors. Other considerations could also be taken into
account for this choice. Indeed, the larger Q is, the closer the covariance ma-
trix of the reconstructed vector Ŷ

(Q)
approaches ĈY . But since ĈY is itself an

approximation of CY , we could also choose Q so that the loss of information
due to truncation is of the same order of magnitude as the loss of information
due to the approximation of CY by ĈY (assuming that we are able to estimate
this difference). Furthermore, it’s important to note that the larger Q is, the
larger the projection vector will be, and therefore the more difficult the PDF
estimation phase will be, which could again be incorporated into this choice of
Q. These considerations will be taken into account for the examples discussed
in Section 5: we will be looking for a value for Q that is large enough to limit
the loss of information on the covariance of the projection vector, without be-
ing too large to allow a satisfactory estimation of the joint distribution, in the
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sense that further increasing Q would have only a very small impact on the
statistical properties of the reconstructed random field.

4.3 Validation attempt
Validating the method of reconstructing the probability distribution of X is
a delicate question. The random field X being a priori non-Gaussian, its
probability distribution is indeed a complex mathematical object. In contrast,
the maximal information onX is very partial, consisting of a supposed reduced
numberN of realizations (N being nevertheless a priori much larger thanQ for
identifiability reasons), which are themselves discretized into an also reduced
number of curvilinear abscissae, the values of these curvilinear abscissae being
unknown.
What seems more reasonable to do is to find out if the distance between two
sets of trajectories of the estimated process is of the same order of magnitude
as the distance between the training base and one of these sets of generated
trajectories. In this prospect, let Ω1, . . . ,ΩP be P independent sets of N inde-
pendent realizations of X̂, which was defined at the end of Section 4.2, such
that for all 1 ≤ p ≤ P ,

Ωp := {X̂(·, ωn,p), 1 ≤ n ≤ N, ωn,p ∈ Ω}, (15)
and Ωref be the set gathering the continuous reconstructions of the N re-
alizations of X, which are noted X(n)

rec and which are constructed from the
interpolated process Y int defined in Section 4.2:

X(n)
rec (t) = m̂(t) +B(t)Y int(t, ωn), 0 ≤ t ≤ 1. (16)

Under these notations, Ωref should be seen as the reference set, and Ωp as a
candidate set, whose statistical content is hopefully close to that of Ωref. Two
types of criteria are considered to compare the statistical content of these two
sets. First, we will compare the mean and variance functions as a function of
t. In a second step, somewhat like the non-asymptotic Kolmogorov test of law
adequacy [25], we propose to consider the following statistic for comparing two
different sets Ω1 := {Z(1)

n , 1 ≤ n ≤ N} and Ω2 := {Z(2)
n , 1 ≤ n ≤ N}:

ζN (Ω1,Ω2) := max
h∈B(1),z∈R

∣∣F 1(h, z)− F 2(h, z)
∣∣ , (17)

F i(h, z) :=
1

N

N∑
n=1

1
(h,Z

(i)
n )≤z, 1 ≤ i ≤ 2, (18)

where (·, ·) is the scalar product in L2([0, 1],Rd), and B(1) defines the set of
realizations of the restriction to [0, 1] of the Gaussian white noise indexed by
R with values in Rd, whose components are independent, and whose integral
of the square of its values over [0, 1] is equal to 1. To evaluate the relevance of
the proposed approach to construct a good approximation of the probability
distribution of X, we can therefore put the values of

(
ζN (Ωref,Ωp)

)
1≤p≤P in

perspective with those of (ζN (Ωp,Ωp′))1≤p6=p′≤P .
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(a) x(3) (b) X(3)(ωn), n ∈ {1, 2, 3}

(c) x(2) (d) X(2)(ωn), n ∈ {1, 2, 3}

Figure 4 Graphical representation of the test cases studied. Figures (a) and (c) show
the statistical dispersion of all the available points (two points of different trajectories are
represented with two different colors) around their mean functions x(2) and x(3) in black
solid line. Figures (b) and (d) represent the graphs of three independent realizations of X(2)

and X(3), as well as their discretizations (black points, red triangles and blue squares) to
be used for the statistical inference.

5 Application

5.1 Presentation of the test cases
In this section, two numerical applications are introduced to show to what
extent the proposed method proves to be efficient. As indicated in the introduc-
tion, these examples, although analytical, are intended to be at the same time
challenging (presence of loops, significant dispersion of the trajectories around
their mean, etc.) and representative of real situations in dimensions 2 and 3,
where one would seek to quantify the dispersion of trajectories of physical
systems designed to connect two points according to an a priori route.
In the first case, we place ourselves in dimension d = 2, and we are interested in
the reconstruction of the probability distribution of X(2), while in the second
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case, we place ourselves in dimension d = 3, and we are interested in the
probability distribution of X(3). For d = 2, 3, X(d) is decomposed as:

X(d) = x(d) +Z(d),

where x(d) is a deterministic function in C2([0, 1],Rd), and Z(d) is the restric-
tion to [0, 1] of a centered and stationary Gaussian process indexed by s ∈ R
with values in Rd. For d ∈ {2, 3}, the graphs of x(d) are shown in Figure 4,
and the covariance functions of Z(d), noted C(d), are given, for all s, s′ in [0, 1]
and all 1 ≤ i, j ≤ d, by:

(C(d)(s, s′))ij = δijσ
2
i exp{−(s− s′)2/`2i }, (19)

with (σ2
1 , σ

2
2 , σ

2
3) = (0.2, 0.1, 0.03) and (`1, `2, `3) = (0.2, 0.1, 0.15). In each

case, we randomly generate N = 100 independent trajectories of X(d), which
we discretize into Mn values of s randomly and uniformly chosen between 0
and 1. The values of Mn are also randomly and uniformly chosen between
50 and 100, which leads, for the two cases considered, to a total number of
available points equal to L = 7737 for d = 2, and to L = 7529 for d = 3.

5.2 Estimation of the mean function
The first step to reconstruct the probability distribution of X(d) is to con-
struct an approximation of its mean function. This approximation is based
on the identification of K representative points, which we want to be suffi-
ciently numerous to precisely describe the function to be approximated, but
not too numerous to avoid overlearning. As explained in Section 3, we pro-
ceed sequentially, progressively increasing the value of K, until the decrease of
the projection error, which was noted d(M̃

(K̃)

B̃(λ)
,XL), slows down significantly

("elbow" method). For d ∈ {2, 3}, the influence of the value of K on the piece-
wise linear approximation of x(d) and the evolution of the projection error are
represented in Figure 5, and the comparison between the curve identified for
K = K? and the mean functions of X(d) is shown in Figure 7. From these
two sets of figures, we can visualize the two anticipated phases: a first phase
(K ≤ K?) where the increase of K results in a finer description of x(d), and
a second phase (K > K?) where the increase of K adds irregularities that are
not necessarily informative, and which can be associated with over-learning.
Focusing on Figure 7, we note the very close proximity between the functions
x(d) and the identified curves, which reflects the relevance of the proposed
approach for these two test cases. Note that the approximated curves do not
necessarily pass through the representative points, as indicated at the end of
Section 3.

In order to quantify the numerical efficiency of the proposed method, Figure 6
indicates the time needed to estimate the mean curve for the two studied cases
and for different values of L and K, which are respectively the total number
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(a) K = 11 (b) K = 20 (c) K = 40

(d) K = 10 (e) K = 19 (f) K = 35

(g) d = 2 (h) d = 3

Figure 5 Illustration of the influence of the value of K on the piecewise linear approxima-
tion of the mean functions of X(2) and X(3) (the representative points correspond to the
big black points). Figures (g) and (h) represent the projection-error decrease with respect
to K for the two considered test cases. The vertical line corresponds to K = K?, which is
the value of K we recommend.
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(a) d = 2 (b) d = 3

Figure 6 Evolution of the time needed (in seconds s) to estimate the mean curve with
respect to the total number of available points L and the number of representative points K.

of available points and the number of considered representative points. For
illustration purposes, these values can be chosen higher or smaller than the
ones chosen for the two cases studied in the rest of Section 5. These results
were obtained on a standard laptop (2.7 GHz Intel Core i5 with 8MB memory).
Unsurprisingly, the larger L and K are, the longer it takes to estimate this
mean curve. These estimation times are moreover relatively independent of d,
and quite reasonable, in spite of the polynomial evolution in L associated with
the local spline approximation.

5.3 Statistical inference
Once one has identified a satisfactory approximation of the mean of X(d),
its available realizations can be projected onto it, and one can focus on ap-
proximating the probability distribution of the statistical fluctuations of X(d)

around it. This identification is done in three steps. First, we empirically esti-
mate the covariance function of the part of X(d) that is locally orthogonal to
the identified curve using interpolated approximations of its trajectories. We
then project X(d) on the Q eigenfunctions associated with the highest eigen-
values of this approximated covariance function. For the test cases considered
here, Q = 22 for d = 2, and Q = 36 for d = 3, which correspond to a restitution
of 99.9% of the total sum of the eigenvalues. The probability distribution of the
projection coefficients is then reconstructed by using the Gaussian-kernel den-
sity estimation, as detailed in Section 4.2. Once these steps are done, we have

identified an approximation of X(d), which is noted X̂
(d)

. As an illustration,

Figures 7-b,d show three independent realizations of X̂
(d)

. A visual validation
of the relevance of the inference step can thus be made by comparing these
figures to Figures 4-b,d. To compare these results in a more quantitative way,
we gather in Ωref the continuous reconstructions of the N = 100 realizations
of X(d), and we generate P = 100 sets Ω1, . . . ,ΩP each containing N = 100
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(a) K? = 16 (b) X̂(3)
(ωn), n ∈ {1, 2, 3}

(c) K? = 17 (d) X̂(2)
(ωn), n ∈ {1, 2, 3}

Figure 7 Figures (a) and (c) compare the graphs of x(d) (in black dotted lines) and M̃(K?)

B̃(λ)

(in red solid lines), which is the curve approximation we propose for K = K?. On these two
figures, the big blue points correspond to the positions of the K? identified representative
points. Figures (b) and (d) show three particular trajectories of the approximated field X̂

(d)
,

for d ∈ {2, 3}.

independent continuous realizations of X̂
(d)

. We refer to Figures 8 and 9 for a
comparison of the statistical content of these sets. On the one hand, Figure 8
shows a very good accuracy between the component by component mean and
variance functions, whether they are calculated empirically from Ωref or from
the Ωp.
On the other hand, Figure 9 compares the dispersion of the values of(
ζN (Ωref,Ωp)

)
1≤p≤P with those of (ζN (Ωp,Ωp′))1≤p 6=p′≤P , where statistic ζN

is defined by Eq. (17). This dispersion is represented in the form of a probabil-
ity density function (PDF) estimated by a kernel method, and we recall that a
large value for this statistic indicates a significant difference in the statistical
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(a) Mean functions, d = 2 (b) Variance functions, d = 2

(c) Mean functions, d = 3 (d) Variance functions, d = 3

Figure 8 Comparison of the mean and variance functions computed from Ωref (in black
dotted lines for the mean functions, and in shaded areas for the 95% confidence intervals
for the variance functions) and from Ω1, . . . ,ΩP (in red solid line). For the sake of brevity,
the functions associated with each component of the random fields are juxtaposed with each
other in the different figures.

content of the two sets being compared. The confrontation of reference and
generated values is represented as a red solid line, when the confrontations of
each generated set to the other ones are represented in light grey. The gener-
ation model being by construction imperfect, we observe without surprise for
the cases d = 2 and d = 3 higher values of the statistics on average when the
generated trajectories are compared to the reference trajectories. But this in-
crease remains quite reasonable, which makes these results very encouraging,
in the sense that out of the P = 100 generated sets, several sets lead to even
higher values of the statistic on average.

6 Conclusions and prospects
Identifying reasonable approximations of the probability distribution (and thus
the statistical dependencies) of random fields from their observations in a fi-
nite and often reduced number of points in space is a difficult challenge. In
this work, we place ourselves in the particular case where this probability
distribution is concentrated on an unknown curve. This is in particular the
configuration in which we find ourselves when we try to characterize the set of
probable trajectories that a certain system could follow to connect two points.
The approach we propose for this identification decomposes the problem into
two steps. First, we are interested in the estimation of the mean of the random
field, which is likely to provide an interesting approximation of the curve on
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(a) Case d = 2 (b) Case d = 3

Figure 9 Evaluation of the representativeness of the generated data with respect to the
reference data. The red dashed line characterizes the dispersion of the statistic ζN when
confronting the reference set and P = 100 generated sets of trajectories. The light grey lines
are associated with the dispersion of the same statistic but when confronting one generated
set to the P − 1 other sets of generated trajectories. The higher the statistic, the more
statistical differences in the compared sets.

which the random field is concentrated. The developments presented for this
first step, based on clustering, graph manipulations, and polynomial smooth-
ing, are quite generalizable to dimension reduction or automatic denoising
issues. In a second step, we build a model for the statistical fluctuations of
the random process around its mean, using interpolation techniques, spectral
methods, and kernel reconstruction. Two important assets of the proposed ap-
proach are its robustness and its reasonable numerical cost for the analysis of
configurations close to the numerical test cases presented. Indeed, the different
bricks of the proposed method are essentially based on matrix computation
which is fast to execute.
The perspectives for this work are numerous, whether it is to tackle configura-
tions that could exploit a much larger number of observations, using automatic
domain decomposition for instance, or to be able to consider larger dimen-
sions, both at the level of the space in which the points evolve and at the level
of the dimension of the manifold on which the points are concentrated. And at
the time of the Internet of Things, there is no doubt that the industrial appli-
cations related to these issues will multiply. From a more theoretical point of
view, proving the consistency of the approach presented when the number of
observations tends towards infinity would also be a very interesting continua-
tion for this work, whether at the level of the reconstruction of the mean curve,
than the estimation of the statistical properties of the process orthogonal to
this mean curve.
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