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Abstract

We present REQreate, a tool to generate instances for on-demand transportation problems. Such
problems consist of optimizing the routes of vehicles according to passengers’ demand for transportation
under space and time restrictions (requests). REQreate is flexible and can be configured to generate
instances for a large number of problems in this problem class. In this paper, we demonstrate this
by generating instances for the Dial-a-Ride Problem (DARP) and On-demand Bus Routing Problem
(ODBRP). In most of the literature, researchers either test their algorithms with instances based on
artificial networks or perform real-life case studies on instances derived from a specific city or region.
Furthermore, locations of requests for on-demand transportation problems are mostly randomly chosen
according to a uniform distribution.

The aim of REQreate is to overcome these non-realistic and overfitting shortcomings. Rather than
relying on either artificial or limited data, we retrieve real-world street networks from OpenStreetMaps
(OSM). To the best of our knowledge, this is the first tool to make use of real-life networks to gener-
ate instances for an extensive catalogue of existing and upcoming on-demand transportation problems.
Additionally, we present a simple method that can be embedded in the instance generation process
to produce distinct urban mobility patterns. We perform an analysis with real life datasets reported
by rideshare companies and compare them with properties of synthetic instances generated with RE-
Qreate. Another contribution of this work is the introduction of the concept of instance similarity that
serves as support to create diverse benchmark sets, in addition to properties (size, dynamism, urgency
and geographic dispersion) that could be used to comprehend what affects the performance of algorithms.

Keywords: transportation, instance generator, on-demand public transport, REQreate

1 Introduction

REQreate is a tool designed with the main objective to generate instances for on-demand transportation
problems. Such problems consist of optimizing the routes of vehicles according to passengers’ demands
under space and time restrictions. Recent years have seen a surge of interest in advanced public trans-
portation systems, and the related planning problems are increasingly being studied in the scientific liter-
ature (Vansteenwegen et al., 2022). Many of these problems are NP-hard (Garey & Johnson, 1979), and
the computational effort to optimally solve them often grows exponentially with the size of the instance
input. Appropriately, optimization techniques have been proposed to be effective and feasible alternatives
for solving these problems.

Instances are the core for evaluating the developed methods for optimization problems. Initially, the
instances are essential because they can demonstrate that the method works. Subsequently, they can be
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used to test how sensitive the approach is to its parameters. Here it is important that the experiments
demonstrate that the method is robust and presents good results for different types of instances. Additionally,
instances are important to discover the limitations of the approach. A method should be tested both with
easy and with difficult instances, and the relationship between the size of the instances and the computation
time required to find a good (or even feasible) solution should be established. Lastly, instances are used to
compare results with previous approaches, and in some sense, prove that one is better than the other. This is
a particular challenge for on-demand public transportation problems which as been shown in a recent survey
by Vansteenwegen et al. (2022), who conclude that standard benchmark sets for these problems generally do
not exist. This lack of structure complicates any comparison between approaches. Given these previously
mentioned goals, we present REQreate, an instance generation tool for on-demand transportation problems
based on real-world networks from OpenStreetMaps. Besides using real-life networks, we will also provide a
method to generate requests with different urban mobility properties that result in various scenarios, which
the authors believe overcomes the disadvantage of artificially generating data.

An instance can be stored as one or multiple files. Usually, instances contain a request database ta-
ble stored in a Comma Separated Values (CSV) file, where each row represents a passenger’s request for
transportation and the columns are attributes. An attribute is a piece of information that determines a
specific property for each passenger’s request. For example, in the case of the Dial-a-Ride Problem (DARP)
attributes may include: a) origin location; b) destination location; c) time window for departure; d) time
window for arrival; and e) requirement for resources, such as wheelchair or stretcher. Furthermore, the re-
lations between attributes might also constitute a part of the instance, e.g., the travel time/distance matrix
between the set of origin and destination locations described in the DARP attributes.

The tool can assist researchers in testing their optimization algorithms by providing an easy and efficient
way to create instances of varying types and sizes. The difficulty in obtaining real-world data is the main rea-
son we decided for a randomly generated approach. There are several reasons to prefer artificially generated
instances over real-life data. First, real-life data is difficult to obtain, as companies that implement a specific
problem tackled by a researcher are usually not willing to share real cases. The main motives in maintaining
such information confidential are to preserve user privacy and gain competitive leverage. One possibility
to overcome this issue is to perform large and different surveys, although complexity and the likelihood of
the outcome differs from reality are major drawbacks. Second, when an on-demand transportation problem
does not yet exist in practice, obtaining real-world data might be impossible. Third, supply for on-demand
transportation creates demand, and the real-life data of today might not be representative of tomorrow’s
situation. Indeed, in Gkiotsalitis & Stathopoulos (2016), the authors take into account non-recurrent trips,
e.g. leisure, which can account for more than half of trips in some cities, to improve the operations of a
demand responsive public transportation system.

We developed the tool to be flexible and generic as possible. By providing a configuration file in JavaScript
Object Notation (JSON) format, it allows to generate instances for a diversity of problems. Such problems
include the Dial-a-Ride Problem (DARP), On-demand Bus Routing Problem (ODBRP), School Bus Routing
Problem (SBRP), and many others. Considering that new problems emerge constantly, and absence of test
instances is an issue, the tool has the potential to generate instances that could be applied to those novel
problems by providing the necessary parameters.

In summary, REQreate was developed with the capability to generate benchmark instance sets that satisfy
the following requirements: size, diversity, extensibility, and realism (Vanhoucke & Maenhout, 2007). In this
paper, besides presenting the tool, we generate instances and analyze their properties. Two problems are
used to demonstrate the potential of REQreate: the DARP and the ODBRP. We discuss how the parameters
can be easily tuned to vary the size of instances from small to large, which allows computational studies to
derive meaningful conclusions regarding the limitations of the approach, as it is common for larger instances
to place a higher computational burden. Moreover, properties of the instances such as size, dynamism,
urgency and geographic dispersion are described.

The diversity of a benchmark set can be evaluated with a measure called instance proximity, similar to an
approach introduced in Leeftink & Hans (2018). Instances are shown to be easily extensible by including or
modifying the provided attributes and parameters in the configuration file. Furthermore, the transportation
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research community is motivated by real-world problems, therefore instances should ideally resemble realistic
scenarios. We demonstrate how the synthetic instances compare with real data from rideshare companies
trips.

The remainder of this paper is organized as follows. Section 2 presents a literature review on the topic
of instance generation. Sections 3 and 4 describe the processes to retrieve realistic networks and request
generation, respectively. Section 5 outlines the simple method that can be included in the request generation
to produce different urban mobility patterns. Section 6 introduces formal notations for the DARP and
ODBRP used throughout the paper. Section 7 describes instance properties: size, dynamism, urgency and
geographic dispersion. Section 8 introduces the concept of instance similarity. The analysis between real data
and synthetic instances is performed in Section 9. Ultimately, final remarks are considered in Section 11.

2 Literature Review

Throughout the years, tools have been successfully implemented to generate instances for a diversity of
problems. Rardin, Tovey, & Pilcher (1993) introduce an instance generator for the Traveling Salesman
Problem (TSP). ProGen is a well-known instance generator for precedence and resource-constrained project
scheduling problems. The project is described as a network where nodes represent jobs (tasks) and arcs
the precedence relations. Jobs may use a set of available, often scarce, resources. ProGen is presented by
Kolisch, Sprecher, & Drexl (1995), and it is based on concepts such as the topology of the network and
resource availability to distinguish between easy and hard instances. Drexl, Nissen, Patterson, & Salewski
(2000) introduce an extension of the aforementioned generator primarily aimed to incorporate labor time
regulations, making it suitable to generate instances for problems that involve assigning individuals to
a number of jobs. Other instance generators have been also proposed for project scheduling problems,
such as DANGEN and RanGen (Agrawal, Elmaghraby, & Herroelen, 1996; Demeulemeester, Vanhoucke, &
Herroelen, 2003). Both generators introduce measures of complexity for the instances. However, RanGen
employs a wide range of parameters related to resources and network topology to overcome the shortcomings
of previous generators.

Cirasella, Johnson, McGeoch, & Zhang (2001) introduce new random instance generators for the Asym-
metric Traveling Salesman Problem (ATSP). In instances for the ATSP, the distances of moving back and
forth between a pair of cities are not always the same. The authors model instances based on real-world
applications such as Stacker Crane and Common Superstring Problems. Ultimately, they compare the per-
formance of different algorithms and conclude that there is no dominance over all instance classes.

Pellegrini & Birattari (2005) present a procedure to generate instances for the Vehicle Routing Problem
with Stochastic Demand (VRPSD). Like the Vehicle Routing Problem (VRP), the VRPSD consists of min-
imize costs while meeting the requirements for delivery of a set of customers. The distinctive characteristic
is that before reaching the customer, only a probability distribution of the demand is known. Creation of
the instances are supported by databases with information of population and distances between cities from
European countries. Scenarios for concentration of customers are inspired by the location of retail stores
in European cities, which are proportional to the number of citizens. Demand for each costumer can be
generated using uniform and Bernoulli probability distributions.

Differently from targeting on specific classes of optimization problems, instance generators that focus on
providing instances that have particular structural features are referred to as landscape generators. The geo-
metric features of the landscapes are influenced by given parameters. Accordingly, Gallagher & Yuan (2006)
propose a landscape generator for continuous, bound-constrained optimization problems. The authors argue
that useful conclusions on the performance of heuristic algorithms can be draw by conducting experiments
on the landscape space. Other methods for obtaining desired landscapes can be found in the literature
(Morrison & De Jong, 1999; Michalewicz, Deb, Schmidt, & Stidsen, 2000), including the generator proposed
by Hernando, Mendiburu, & Lozano (2015), which allows to create instances with controlled properties for
permutation-based COPs, such as a fixed number of local optima.

De Corte & Sörensen (2014) draw motivation from the absence of high-quality benchmark networks for
Water Distribution Network Design (WDND), and propose HydroGen, a tool to generate artificial Water
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Distribution Networks (WDNs) varying in size and characteristics. The tool provided by the authors allow
creating networks with the following distinguished characteristics, which are featured in realistic scenarios:
tree-like versus looped network structures; densely populated versus rural areas; domestic versus industrial
demand nodes, among others. The artificially generated WDNs with HydroGen are compared with real ones,
and according to graph-theoretical indices, they are showed to have a high resemblance.

A methodology to extend routing instances from the literature to render more realistic scenarios with
time-dependant travel times for routing problems is proposed in Maggioni, Perboli, & Tadei (2014). The
authors incorporate real data produced by traffic sensors networks from the city of Turin in Italy, and
consider the multi-path TSP with stochastic travel costs to test their technique.

M. Liu, Singh, & Ray (2014) present an instance generator and a memetic algorithm for the Capacitated
Arc Routing Problem (CARP). The authors express the need to evaluate the performance of algorithms on
classes of instances that resemble realistic scenarios, such as inspection of electric power lines, garbage collec-
tion and winter gritting. Their generator controls density, connectedness, degree and distance distribution
of the underlying road network. Instances can be further customized by tuning the demand distribution
depending on the application. As an example, for the garbage collection problem, the waste amount to be
collected can be set as a function of the arc distance combined with population density.

Macedo & Tchemisova (2017) provides an additional application of instance generators. The authors
apply the generator to construct non-regular instances for Semidefinite Programming (SDP). “SDP refers
to convex optimization problems where a linear function is minimized subject to constraints in the form
of linear matrix inequalities”, as defined by Macedo & Tchemisova (2017). The authors conduct numerical
experiments with the most popular SDP solvers at the time, and discuss the poor efficacy when applied to
non-regular instances.

Leeftink & Hans (2018) develop a novel instance generation procedure for the Surgery Scheduling Problem
and point out the lack of widely used benchmark instance sets in healthcare scheduling. Aiming to maximize
the diversity of the instances, the authors measure the similarity between two instances over a concept called
instance proximity. The approach is deterministic and compares instances that are generated based on
similar characteristics. Each pair of surgeries between two instances is compared, and they are considered
proximate if their expected duration differs less than a given threshold. Ultimately, the authors generate
instances based on real-life and theoretical data. The benchmark set is diversified by selecting a subset of
instances in which the maximum proximity between them is minimal.

Ullrich, Weise, Awasthi, & Lässig (2018) attempt to overcome limitations of numerous instance gen-
erators described in the literature, which are only suitable to specific problems. The authors propose a
versatile tool capable of producing random instances for various discrete optimization problems. They ev-
idence their tool’s flexibility by creating instances for the Traveling Salesman Problem (TSP), Maximum
Satisfiability Problem (Max-SAT), and a new load allocation problem based on the Resource-Constrainted
Project Scheduling Problem (RCPSP) with time windows. The tool is designed so the generated instances
can be easily reproduced by sharing configuration files. Ultimately, the authors aspire that this standardized
procedure supports the creation of new instances that are harder and/or larger.

To the best of our knowledge, this is the first tool that generate instances for an extensive catalogue
of existing and upcoming on-demand transportation problems. REQreate is also pioneer amongst instance
generators to make use of real-life networks. These networks can be obtained from OpenStreetMaps (OSM),
an open-source collaborative mapping project. OpenStreetMaps is consistently updated and has global
coverage, thus is widely used in the transportation literature to perform real-life case studies. For example,
Dingil, Schweizer, Rupi, & Stasiskiene (2018) perform an analysis and comparison of transport indicators
to conduct an evaluation of different transport strategies used in 151 urban areas. They use open source
data from OSM, and present results specially on the correlation of infrastructure and congestion levels. In
Navidi, Ronald, & Winter (2018), the authors also use OSM to extract a real-world network used in the
simulation study. Results lead to the conclusion of superiority of the demand responsive transit system, such
as having the benefit of reducing passengers’ perceived travel time. Likewise, Drakoulis et al. (2018) import
the network from “Trikala, Greece” using OSM. The authors study the implementation of an on-demand
public bus transportation service on the city.
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The instance generation approach described in this paper is the product of attributes, parameters, ex-
pressions, and constraints. A similar approach is presented in Ullrich, Weise, Awasthi, & Lässig (2018).
However, the authors focus more on a generic strategy instead of realism. The tool described in this paper
also differs from previous approaches by offering a diverse set of combinations for parameters and attributes
that approximately control the output of instance properties. REQreate is available on GitHub1.

3 Retrieving realistic networks

In the literature on on-demand public transport problems, researchers frequently test their algorithms with
instances based on artificial networks or perform real-life case studies on a specific city or region. For the
first case, a shortcoming is that the performance of these algorithms is evaluated in networks with non-
realistic patterns. For the second case, it is unlikely to guarantee the robustness of the proposed method,
as the results are probably overfitted to the specific case study. Aiming to overcome these obstacles and
to provide an easy way to create benchmark instances with realistic networks, we make use of the OSMnx
(Boeing, 2017) package to retrieve and analyze real-world street networks from OpenStreetMaps (OSM). By
simply providing a string, i.e., the name of the area, OSMnx downloads information on the boundaries of
the area and creates a graph. Further computations done by REQreate, e.g., distance/travel time matrix
between nodes, are done using information obtained with those graphs. On the retrieved network, requests
for transportation are subsequently generated.

The street networks built with OSMnx are primal, i.e., nodes are intersections and arcs represent street
segments. They are also non-planar, as generally street networks cannot be represented only in two dimen-
sions because of structures such as bridges, tunnels and overpasses. The arcs have weights associated with
them, which represent the distance between two nodes. Another important characteristic of the networks is
that they are multidigraphs with self-loops, as they are directed and have more than one arc between the
same two nodes. An arc that connects a single node to itself is called a self-loop.

It is possible to download different network types, representing different travel options between nodes.
Some examples are: drivable public streets (drive), streets and paths that pedestrians can use (walk), streets
and paths that cyclists can use (bike), and others. We work with both drive and walk networks because in
reality they have different aspects and distances between nodes. An example is shown in Figure 1, where
the driving (Figure 1(a)) and walking (Figure 1(b)) networks of a neighborhood (“South Lawndale”) in
“Chicago, Illinois” are obtained.

(a) (b)

Figure 1: Figures 1(a) and 1(b) depict the driving and walking networks of “South Lawndale, Chicago,
Illinois”, respectively. Note how they are significantly different, as the walking network has more nodes and
arcs when compared to the driving one.

1https://github.com/michellqueiroz-ua/instance-generator
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Bus stations that are within the boundaries of the given area are also obtained using a built in function
of OSMnx. This is done because several problems can make use of such information, such as the ODBRP, to
assign passengers to pick-up and drop-off stations. After retrieving the bus stations, we perform a verification
process to delete repeated entries and stations that are isolated in the network, i.e., unreachable stations.
Bus stations on the driving network of “South Lawndale, Chicago, Illinois” are represented in Figure 2.
Pairing locations between networks is possible with the conversion of geographic coordinates to the nearest
node on each respective network. For example, this finds useful when a passenger is assigned to be picked up
by a bus, therefore, there is a requirement to determine where approximately the bus should stop (driving
network) and the place the passenger needs to wait (walking network).

Figure 2: Location of bus stations on the driving network of “South Lawndale, Chicago, Illinois” represented
as black squares.

Certain problems may take advantage of the existing fixed route network, which is the case in the
Integrated Dial-a-Ride Problem (IDARP) (Häll, Andersson, Lundgren, & Värbrand, 2009). However, OSM
often does not include fixed line routes, frequency or estimated travel time. Therefore, the collection of data
presented in Kujala, Weckström, Darst, Mladenović, & Saramäki (2018) assists in obtaining such information.
The authors published a curated collection of public transport (PT) network data sets for 25 cities, which
ultimately provides a testbed for developing tools for PT network studies and PT routing algorithms, and
supports an analysis of how PT is organized across the globe.

The next step is to compute vehicle travel times on the drive network, which requires a speed value.
We assume the driving speed to be fixed, which means that the travel times are not dependent on hour of
day. The NetworkX package (Hagberg, Swart, & S Chult, 2008) allows to access and manage information
associated with each node and arc of the network. Let duv and msuv be the distance and maximum speed
between nodes u and v. The travel times are then computed and stored, for each arc in the network,
according to the formula: ttuv = α · duv

msuv
. Parameter α is called “speed factor”, is a value in the interval

]0,1] determined by the user, and is used to calculate a realistic speed for each arc, which is usually far from
the maximum. The definition of α is demonstrated in Section 4. It is also possible to replace msuv by an
equal speed value to all arcs.

Travel times are important in order to measure, for example, assuming a door-to-door service, the cost of
driving a passenger from their origin to the destination. Another case is to assess the feasibility of assigning
passengers to nearby bus stations. Therefore, we build the travel time matrix using Dijkstra’s algorithm
built in function of the NetworkX package by computing the shortest paths between the nodes of the network
using travel times as the weight. Finally, OSMNx is also used to download information of school’s locations.
This data is mostly relevant to generate instances for the SBRP.
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4 Generating requests

The process of creating instances for the targeted problems in this paper requires generating a set of requests
with attributes randomly chosen according to probability density functions (pdf) or expressed as relations
between each other. Attributes and parameters that define an instance are described in a configuration
file given as input to REQreate. Similarly to Ullrich, Weise, Awasthi, & Lässig (2018), we also choose the
JSON format, considering it is simple, flexible, and easily readable by Python, the language in which our
instance generator itself is developed. In this section, we outline the values that should be provided in order
to generate requests.

4.1 JSON syntax introduction

JSON files consists of data represented by name/value pairs. The field name is written in double quotes. The
field value is separared from name by a colon (:), supports primitives data types (strings, numeric, boolean),
and more complex structures such as arrays and objects. Arrays are enclosed in square brackets ([ ]) and are
ordered sets of values. Objects are enclosed in curly brackets ({ }) and are collections of name/value pairs.
The full review of JSON syntax is out of the scope of this paper, therefore we recommend the user to study
the examples provided in the tool’s GitHub page to acquire familiarity with the format.

A simple structure of a standard configuration file in JSON format is shown in Listing 1. Default data
pairs will be referred to as items. The names for supported items are: network, seed, problem, fixed lines,
max speed factor, replicas, requests, places, parameters, attributes, and instance filename. Pairs enclosed in
objects will be referred to as sub-items, e.g., in item parameters, an object is depicted with 3 sub-items:
name, type, and value.

Listing 1: Configuration file structure

1 {
2 "network": "Chicago , Illinois",
3 "seed": 100,
4 ...
5 "places": [...],
6 "parameters": [
7 {
8 "name": "simple_parameter",
9 "type": "integer",

10 "value": 10
11 },
12 {...}
13 ],
14 "attributes": [...]
15 }

4.2 General items

Listing 2 illustrates the items network, seed, problem, fixed lines, max speed factor, replicas, requests, and
instance filename. First, network is a string used to retrieve the network details as described in Section 3.
The seed consists of a single integer value, and can be used to force the random number generator to
generate the same set of numbers at every run of the tool. This allows for reproducibility, meaning that is
only necessary to share the configuration files to obtain the same set of instances, instead of the instance files
themselves. The problem’s acronym can be specified with a string in item problem. Information regarding
fixed public transport lines can be requested by adjusting the value of binary item fixed lines to “true”. The
value of α, mentioned in Section 3, can be specified with max speed factor.

Both requests and replicas are integer numbers. The former specifies the number of requests in the
instance, while the latter indicates the number of generated request files. Each replica will share the
same configuration file, and have e.g., the same number of requests, but the requests themselves will dif-
fer because of the randomization process. The pattern of the instance filename is provided as an array in
item instance filename. The name of any item that has a single primitive as a value can be provided.
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In Listing 2, the values of “network”, “problem”, and “requests” will constitute the instance filename
separated by underscores. Additionally, as each instance must have a unique name, a number from 1
to replicas will automatically be printed at the end based on the sequence of generation. Consequently,
“Chicago,Illinois DARP 500 1” is the filename of the first instance for this particular case.

Listing 2: Example values for items network, seed, problem, fixed lines, replicas, requests, and in-
stance filename

1 { "network": "Chicago , Illinois",
2 "seed": 100,
3 "problem": "DARP",
4 "fixed_lines": true ,
5 "max_speed_factor": 0.5,
6 "replicas": 10,
7 "requests": 500,
8 "instance_filename": ["network", "problem", "requests"],
9 ...

10 }

4.3 Places

The item places is an array of objects. This item provides the option to define locations and zones. Specific
locations could be used to specify the coordinates of a garage where vehicles are kept waiting to be dispatched
(i.e. a depot). Zones are areas within the network and are suitable to characterize a city center, for example.
Tables 1 depicts the potential sub-items for places. The first column represent the default name. The second
column details the data types or possible values of the sub-item. Possible values are differentiated from
data types by being written between double quotes. The name is the identifier of the place, and could be
represented as any sequence of characters between double quotes (string), with the exception of the existing
default names. The two options for type are “location” and “zone”. For a location, longitude (lon) and
latitude (lat) must be specified (coordinates in the spherical coordinate system), or centroid (center point
of the particular network) must be set to “true”. Certain locations must have a sub-item called class. The
only option at the moment for class is “school”, but this can be easily extended.

Table 1: Summary for places
sub-items possible values
name string
type “location”, “zone”
lon longitude (geographic coordinate)
lat latitude (geographic coordinate)
centroid boolean
class “school”
length lon real
length lat real
radius real
length unit “m”, “km”, “mi”

Regarding zone, lon/lat or centroid represent the center point of the area. Apart from that, the polygon
must also be determined by providing length lon and length lat to specify the side lengths of a rectan-
gle/square shape, or radius to indicate the radius of a circumference. Finally, length unit represents the
units of length of values declared inside the object, and can be set to “m”, “km” or “mi”, which stands for
meters, kilometers and miles, respectively. Listing 3 illustrates item places. A place is categorized as a “lo-
cation” and named “location example”, including “lon” and “lat” coordinates equal to -1.6457340723441525
and 48.100199454954804, respectively. Next, a zone has “zone representation” as the identifier, and center
coordinates set to -1.6902891077472344 (“lon”) and 48.09282962664396 (“lat”). We remark that the tool
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always verifies if those given coordinates are within the boundaries of the network and raises an error other-
wise. The polygon of “zone representation” is established by fixing length lon and length lat to 1,000 meters.
Lastly, “zone center” is an area stipulated as a circumference with radius of 1,500 meters, and centroid set
to “true”.

Listing 3: Examples for item places

1 { ...
2 "places": [
3 {
4 "name": "location_example",
5 "type": "location",
6 "lon": -1.6457340723441525,
7 "lat": 48.100199454954804
8 },
9 {

10 "name": "zone_representation",
11 "type": "zone",
12 "lon": -1.6902891077472344,
13 "lat": 48.09282962664396,
14 "length_lon": 1000,
15 "length_lat": 1000,
16 "length_unit": "m"
17 },
18 {
19 "name": "zone_center",
20 "type": "zone",
21 "centroid": true ,
22 "radius": 1500,
23 "length_unit": "m"
24 },
25 ],
26 ...
27 }

4.4 Parameters

Item parameters is also an array of objects. Table 2 depicts the potential sub-items for parameters. The name
is the identifier of the parameter. Possible options for type are “string”, “integer”, “real”, “array primitives”,
“array locations” and “array zones”. Sub-item value is type dependent: a) a sequence of characters for
“string”; b) an integer number for “integer”; c) a real number for “real”; d) an array with primitive values
for “array primitives”; e) an array with the names of locations declared in places for “array locations”; and
e) an array with the names of zones declared in places for “array zones”.

Table 2: Summary for parameters
sub-items possible values
name string
type “string”, “integer”, “real”,

“array primitives”, “array locations”, “array zones”
value type dependent
time unit ”s”, ”min”, ”h”
length unit ”m”, ”km”, ”mi”
speed unit ”mps”, ”kmh”, ”miph”
size integer
locs ”schools”, ”random”

Units of measurement for time, length and speed are expressed in time unit, length unit, and speed unit,
respectively. The abbreviations “s”, “min” and “h” for time unit refer to seconds, minutes and hours,
respectively. The possible values for length unit were previously explained, whereas in speed unit, “mps”
“kmh” and “miph” represent meters per second, kilometers per hour and miles per hour, respectively. We
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remark the importance of providing these units of measurement, so these values can be properly converted
by the generator, since all internal operations are done in meters, seconds, and meters per second. Assuming
the value for a parameter to be array locations or array zones, an integer number must be specified in size
to delimit its size. In the event of size being greater than the number of input names on the given array,
random locations will be randomly chosen according to locs. Values accepted for locs are “random” and
“schools”. We emphasize that in both cases coordinates within the boundaries of the network are randomly
chosen.

Examples for parameters are shown in Listing 4. Parameter “min early departure” has type established
as an integer, its value equals to 5, and reported with “h” (hour) as the unit of time, and in the 24-hour
clock format can be interpreted as 5:00. The 24-hour clock format will be the notation used throughout
this paper, however in REQreate time is represented in seconds. Representation of a set of locations with
size 3 can be seen in parameter named “many locations”. The value for this parameter is an array con-
taining the name “location example” (defined in Listing 3), and its 2 remaining locations will be randomly
chosen. Furthermore, “pair zones” lists 2 zones: “zone representation” and “zone center”, both defined in
in Listing 3.

Listing 4: Example for item parameters

1 { ...
2 "parameters":[
3 {
4 "name": "min_early_departure",
5 "type": "integer",
6 "value": 5,
7 "time_unit": "h"
8 },
9 {

10 "name": "many_locations",
11 "type": "array_location",
12 "value": ["location_example"],
13 "size": 3,
14 "locs": "random"
15 },
16 {
17 "name": "pair_zones",
18 "type": "array_zones",
19 "value": ["zone_representation", "zone_center"],
20 "size": 2
21 }
22 ],
23 ...
24 }

4.5 Attributes

The attributes of an instance are declared in an array of objects. They are usually represented by a range
of possible values, or by a relation between other attributes and parameters. Table 3 depicts the potential
sub-items for attributes. The sub-items name, type, time unit, length unit, and speed unit are equivalent to
the ones previously presented for places and parameters. The sub-item pdf (probability density function)
is an object to represent a range of values for the attribute, and its structure is detailed in Table 4. The
value of an attribute that carries a pdf in its declaration is randomly chosen according to the following types
of probabilistic distribution functions: “cauchy”, exponential (“expon”), “gamma”, “gilbrat”, lognormal
(“lognorm”), “normal”, “powerlaw”, “uniform” and “wald”. Other distributions can be made available
in the future. The sub-items “loc” and “scale” for “uniform” indicate the closed interval ([“loc”,“loc” +
“scale”]) in which values will be randomly chosen according to an uniform distribution. Regarding “normal”,
the mean and standard deviation of the distribution are expressed by “loc” and “scale”, respectively. Besides
“loc” and “scale”, some functions require an additional parameter “aux”. For a full rundown on what each
parameter means for each distribution, we refer to SciPy’s documentation2. The declared values must be in

2https://docs.scipy.org/doc/scipy/index.html
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conformity with the unit of measurement given for the attribute. Moreover, an attribute can be represented
as a mathematical expression transmitted as a string. Restrictions are imposed with constraints, which is an
array of formulas to be evaluated as true or false. The syntax for expression and constraints follow Python
standards and can contain numbers, identifiers for other attributes or parameters, mathematical symbols,
and parentheses.

Table 3: Summary for attributes
items possible values
name string
type “string”, “integer”, “real”,

“location”, “array primitives”
time unit ”s”, ”min”, ”h”
length unit ”m”, ”km”, ”mi”
speed unit ”mps”, ”kmh”, ”miph”
pdf object
expression string
constraints array of strings
subset primitives string
subset locations string
subset zones string
weights array of numbers
output csv boolean

Table 4: Summary for pdf
sub-items possible values
name string
type “cauchy”, “expon”, “gamma”,

“gilbrat”, “lognorm”, “normal”,
“powerlaw”, “uniform”, “wald”

loc real
scale real
aux real

Sub-item subset primitives takes as value an identifier of a parameter previously declared as an array
of primitives, and whenever set, the value of the attribute will be chosen considering the given array. Re-
garding attributes that have “location” as a type, coordinates will be randomly chosen taking into account
the full network area. Exceptions are when a method later explained in Section 5 is set, or when either
subset locations or subset zones are declared, whose values consist of a string containing the name of a pa-
rameter stated as an array of locations or zones. Regarding subset locations a location will be randomly
chosen from the declared array, but in the case of subset zones, one zone is first randomly chosen and then a
coordinate within its boundaries is selected. The option to influence the possibility of randomly choosing a
value from subset primitives, a location from subset locations, or a zone from subset zones, is supported with
weights, which contains an array of numbers indicating the probability of an element to be selected. Note
that the numbers in weights must be sequentially declared in accordance with the values of the array it refers
to. Item output csv indicates if the attributed is printed in the instance csv file (“true”, which is default)
or not (“false”). The attributes that are not printed have merely the purpose to assist in the definition of
other attributes or to impose more constraints.

Lastly, we provide the opportunity to expresses the interaction of locations through a travel time matrix,
i.e., a structure formed by cells indicating the journey time between origin and destination pairs. For
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this purpose, travel time matrix must be reported containing an array with names of locations originally
declared in parameters or attributes. The tool computes the trip duration for every location pair using
Dijkstra’s algorithm, and populates the cells of a separate CSV file, whose first row and column are headers
indicating the source and target, respectively. A graph is also created, in which nodes are locations, and
arcs have an weight associated indicating the travel time. The graph is saved as GraphML format.

Examples for attributes and travel time matrix are depicted in Listing 5. First, “earliest departure” has
type “integer”, and its values are randomly chosen according to a normal probability distribution with mean
30600 seconds (8:30), standard deviation of 3600 seconds (1 hour), and constrained to be greater than or
equal to parameter “min early departure” (declared in Listing 4). Meanwhile, attribute “latest arrival” is
calculated after the mathematical expression “earliest departure + 1800”. The coordinates for “origin” can
be a part of anywhere in the network, whereas for “destination”, the coordinate will belong to either zone in
“pair zones” (see Listing 4), with “zone center” being 3 times more likely to be chosen according to weights.
The locations that will constitute travel time matrix are the values of attributes “origin” and “destination”
of each request.

Listing 5: Examples for items attributes and travel time matrix

1 { ...
2 "attributes": [
3 {
4 "name": "earliest_departure",
5 "type": "integer",
6 "time_unit": "s",
7 "pdf": {
8 "type": "normal",
9 "loc": 30600,

10 "scale": 3600
11 },
12 "constraints": [ "earliest_departure >= min_early_departure"]
13 },
14 {
15 "name": "latest_arrival",
16 "type": "integer",
17 "time_unit": "s",
18 "expression": "earliest_departure + 1800"
19 },
20 {
21 "name": "origin",
22 "type": "location"
23 },
24 {
25 "name": "destination",
26 "type": "location",
27 "subset_zones": "pair_zones",
28 "weights": [1, 3]
29 }
30 ],
31 "travel_time_matrix": ["origin", "destination"]
32 }

4.6 Invoking method

The set of instances will be generated after invoking a method with the configuration file name as an argument
(see Listing 6). The generator creates one request at a time. Analogous to the technique described in Ullrich
et al. (2018), a directed graph is built with attributes representing nodes, and arcs defined by expressions
or constraints. Then, the attributes (nodes) are topologically sorted in conformity with their dependencies
(expressions and constraints). Initially, in accordance with the topological ordering, a value for an attribute
is generated. Furthermore, the feasibility is checked based on the disclosed constraints and if any of them
is violated, the procedure restarts by discarding the current attribute or the entire request. This process is
repeated until all attributes for a request are valid. The instance is then completed upon the given number
in requests is accomplished. We remark that is beyond the scope of the tool to certify if the set of constraints
creates dependencies that can not be met, i.e., every possible combination of attribute values are infeasible.
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Thus, after a large number of unsuccessful iterations, the generator will halt, raising an error informing it
was unable to meet the requirements.

Listing 6: Demonstration of invoking method to generate instances declared in configuration file “exam-
ple config.json”

import i n p u t j s o n

i n p u t j s o n ( ‘ example con f ig . j son ’ )

5 Urban mobility patterns

In this section we describe the method to generate various mobility patterns, which can be defined by
the different probabilities of a place serving as origin and/or destination of a trip. Previous literature
has revealed significant regularity in human mobility patterns, which directly affects process driven by it,
such as urban planning, traffic engineering and even epidemic modeling (Song, Qu, Blumm, & Barabási,
2010). The distribution of distances between positions of two consecutive visited locations (often referred as
displacement) have been well approximated by the Levy flight or truncated Levy flight models (Barbosa et
al., 2018).

Conventionally, (truncated) Levy flight models are random walks processes in which the step lengths are
distributed according to a (truncated) power law tail probability distribution. In addition, travel directions
are random and isotropic. More specifically, it has been demonstrated that the step size denoted by ∆d
quantifying the distance between consecutive locations follows a power law distribution P (∆d) ∼ ∆d(−1+β)

or a truncated power law distribution P (∆d) ∼ (∆d+ d0)(−β)exp(−∆d/κ), where 0 < β < 2, and d0 and κ
symbolizes cutoffs at small and large values of d. Given that short trips are more common than long trips,
the proven distributions of distance decays are coherent.

However, Levy flight models have some limitations, as they do not account for geographical heterogeneity,
which expresses that the probability of a location serving as a possible stop in a journey fluctuates according
to geographical space. In order to overcome these limitations, the conventional Levy flight model can be
extended. For example, Y. Liu, Kang, Gao, Xiao, & Tian (2012) represent geographical heterogeneity as
a function of population density, which means that high populated areas are expected to attract greater
number of trips.

Furthermore, points of interest (POIs) such as airports, parks, shops, offices, among others, can increase
the number of trips when compared to the estimation by population density. So, inspired by Stouffer’s
theory of intervening opportunities (Stouffer, 1940), which states that “the number of people going a given
distance is directly proportional to the number of opportunities at that distance and inversely proportional
to the number of intervening opportunities”, led Noulas, Scellato, Lambiotte, Pontil, & Mascolo (2012) to
propose the rank-distance model, which was shown to perform well and captured with high accuracy the
displacements in an urban environment.

We integrated ideas from the previous mentioned works in order to create a simple method to approximate
urban mobility patterns and generate transportation requests that are more realistic. The purpose is to
identify how closely the density of POIs combined with randomly chosen distances according to a probabilistic
density function can resemble real trips reported by rideshare companies. First, a zone u to contain either
the origin/destination (order is uniformly randomly chosen) location is selected with a probability (Pu) that
is directly proportional to the number of POIs in this zone. We thus have:

Pu ∝ number POIs(u) (1)

Function number POIs(u) returns the number of POIs in zone u. Then, distances are randomly chosen
according to the probability distribution function that best fits the data under consideration. To identify
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the distribution we use the FITTER package (Cokelaer, n.d.). Finally, coordinates for a second location
are generated guaranteeing that their distance from the first location approximate the randomly selected
distance value, and at this stage, the direction is randomly chosen according to a uniform distribution.
In summary, locations are randomly generated considering: a) proportionality to the presence of POIs in
the area, which means that regions with greater concentration of POIs will attract more requests; and b)
inverse proportionality to the traveled distance, i.e., the higher the distance between two locations lower the
probability that they will represent the origin and destination of a request.

Listing 7 depicts an example of how to integrate the previously mentioned procedure. A supplementary
item named “method pois” is included containing two sub-items: “locations” and “pdf”. The former contains
a list with the two locations from attributes that will be either selected according to the higher density of
POIs or based on a random distance value from the preceding location, meanwhile the latter describes the
parameters of the probabilistic density function to which the distances will be randomly chosen. Results of
the comparison between real data and synthetic instances are shown later in Section 9.

Listing 7: Demonstration of how the method can be embedded in the instance generation process

1 { ...
2 "attributes": [
3 ...
4 {
5 "name": "origin",
6 "type": "location"
7 },
8 {
9 "name": "destination",

10 "type": "location"
11 },
12 ...
13 ],
14 "method_pois": [
15 {
16 "locations": ["origin", "destination"],
17 "pdf": {
18 "type": "normal",
19 "loc": 6500,
20 "scale": 5000
21 }
22 }
23 ],
24 ...
25 }

6 Examples

In this section we describe two problems that the tool can generate instances for. The on-demand transporta-
tion problems under consideration in Subsections 6.1 and 6.2 are the DARP and the ODBRP, respectively.
We briefly define each problem, and formally present the notations for the attributes that will be used
throughout this paper.

6.1 DARP

The DARP consists of planning vehicle routes to serve users that indicate origin (pick-up/departure point)
and destination (drop-off/arrival point) through requests. The DARP arises in various contexts and has
many variations, but one of the most common is the door-to-door transportation service of elderly or disabled
people. Different applications yield distinct constraints or objectives, although cost minimization is the most
common goal. Variants of the DARP are either static or dynamic. In the static DARP, all request are known
beforehand, while in the dynamic case, requests are announced to the system during the day and the vehicle
routes must be adjusted in real-time. For complete surveys on research development of DARP variants we
refer to Cordeau & Laporte (2007) and Ho et al. (2018).
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In this paper we consider the dynamic DARP. Instances for this problem consist of a set of requests R
and a travel time matrix. Each request r ∈ R contains a couple (or, dr), which express, respectively, its
origin and destination location. The set of origins and destinations of the users are denoted as O =

⋃
r∈R or

and D =
⋃
r∈R dr, respectively. The moment each request r is announced to the system is denoted time

stamp tsr. Additionally, every request has two time windows, i.e., the earliest and latest times for pick-up
and drop-off. The earliest and latest departure times are denoted eur and lur , respectively. Meanwhile, the
earliest and latest arrival times are denoted eor and lor , respectively. Some requests may include requirements
for vehicles that support wheelchairs. The fleet of vehicles are located in a set W of designated locations
named depots. The travel time matrix consists of the travel times between all pair of locations among the
following sets: depot(s) (W ), origins (O) and destinations (D). Let L be the complete set of locations, i.e.,
L = W ∪ O ∪D. The planning period is expressed as: Te = [tsmin, tsmax], where tsmin and tsmax denote,
respectively, the earliest time a request can be picked up and latest time it can be dropped off. Te also
indicates the period dynamic requests may be announced to the system. An example configuration file for
the DARP is showed in Appendix A.

6.2 ODBRP

The ODBRP involves the routing and scheduling of on-demand buses. For this problem, as opposed to being
assigned to their origin or destination locations, passengers are picked up and dropped off at designated bus
stations. Objectives include to effectively serve all the requests and minimize total user ride time. Melis &
Sörensen (2020) have recently tackled this problem. The OBDRP can also be operated in the static and
dynamic modes.

Instances for the on-demand bus routing problem consist of a set of requests R and a travel time matrix.
Each request r ∈ R figures one passenger and contains a set of potential stops that r can be assigned for
pick-up Sur and a set of potential stops that r can be assigned for drop-off Sor . The maximum walking time,
representing the passenger’s willingness to walk, is denoted by ur. The stations in Sur and Sor are at most
ur from the origin (or) and destination (dr) locations, respectively. Each request also has a time window
consisting of an earliest departure time (eur ) and a latest arrival time (lor). Note that the decision to define
a latest departure time (lur ) is left to the system, therefore the journey is considered feasible as long as it
is completed before lor . L is defined as the complete set of bus station locations. The planning period is
expressed as: Te = [tsmin, tsmax], and was previously described in Subsection 6.1. The travel time matrix
consists of the estimated travel times between all the bus stations in L. An example configuration file for
the ODBRP is showed in Appendix B.

7 Instance properties

In this section we define several properties of instances for a diversity of on-demand transportation problems,
including the ones described in Section 6. For each instance, we measure the size, value of dynamism, urgency,
and geographic dispersion. First, we formally describe these characteristics, and discuss their behavior and
impact in realistic scenarios. The terminology used in the following definitions is aligned with the notations
of attributes presented in Section 6. However, they can be extended to evaluate the properties of other
problems that display similar traits. Our main goal is to assist researchers in the investigation of instance
characteristics that affect the performance of algorithms, primarily the ones that influence negatively, which
eventually supports the development of more robust methods capable of dealing with real life situations.

7.1 Size

The size of an instance is a measure that depend on to the problem under consideration, e.g., the number of
cities determines the size of an instance for the TSP. In previous works addressing the DARP, ODBRP, and
similar problems, the instance size is usually expressed as the number of requests (Cordeau & Laporte, 2007;
Melis & Sörensen, 2020). The size of instances is an important aspect, since larger instances frequently impose
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a greater challenge during experiments. Such behavior is especially evident with exact solvers: as the number
of variables increase, the time required to obtain an optimal or even feasible solution grows substantially.
Concerning heuristics, the computational time also rises and the solution quality often degrades as instances
get larger. Instances of various sizes can be efficiently generated with REQreate, thus used during experiments
to evaluate the influence of other variables such as number of available vehicles and their capacity. Testing
the limits of a method regarding instance size is crucial, as these systems will be used in real world scenarios
where demand can casually increase and the efficiency needs to be maintained.

7.2 Dynamism

Dynamism captures the periodicity aspect of new information revealed during the planning period. Regarding
the problems contemplated in this paper, this new information comes in the form of transportation requests
issued by users of the system. Therefore, dynamism is measured as the frequency that new requests are
revealed to the system. In a highly dynamic scenario requests will arrive continuously. On the contrary,
if there are long intervals without new information, the instance can be considered less dynamic. Different
scenarios with various levels of dynamism are represented in Figure 3.

time0 1 2 3 4 5 6 7 8 9 10

(a)

time0 1 2 3 4 5 6 7 8 9 10

(b)

time0 1 2 3 4 5 6 7 8 9 10

(c)

time0 1 2 3 4 5 6 7 8 9 10

(d)

Figure 3: Depiction of different levels of dynamism. Colored dots represent the time one request was
announced to the system. The scenario in Figure 3(a) changes continuously in evenly timed intervals,
therefore it represents a very dynamic scenario. The dynamism levels decreases in Figure 3(b) and 3(c), as
both scenarios have larger intervals without new announcements. In Figure 3(d) all information is known at
the same time which results in a case with no dynamism.

According to observations made by Kilby, Prosser, & Shaw (1998) and Pillac, Gendreau, Guéret, &
Medaglia (2013), direct implications of dynamism are the required number of restarts and the available time
for optimization, i.e., constant announcements imply limited time to perform iterations intended to improve
the solution. Borndörfer, Grötschel, Klostermeier, & Küttner (1999) comment on how planning operations
for the DARP are impacted by dynamism. The authors remark that the schedule executed during operational
hours is often different from the computed version for the static problem, because of several circumstances,
such as new requests, cancellations, accidents, and many others. So, since static problems are usually
unrealistic, dynamism and its consequences should be investigated.

Lund, Madsen, & Rygaard (1996) presented an earlier definition where dynamism is the proportion
between dynamic and static requests. Since the relative timing distribution of arrivals are not accounted
in the measure, scenarios where no previous information is known before the planning period can not be
distinguished. In Larsen, Madsen, & Solomon (2002), a request is reportedly more dynamic when revealed
to the system with a tight interval between the time stamp and the latest possible time to begin servicing the
request. However, as discussed later, the authors actually incorporate the urgency feature in their definition,
leading to difficulties in drawing separate conclusions on the correlation of dynamism and urgency related to
solution quality. More recently, Van Lon et al. (2016) provided separate measures for dynamism and urgency
that addresses these limitations, which will be presented in the following paragraphs.

In order to present the dynamism measure, we start by giving some supporting definitions. Consider Rd =
{r1, r2, ..., r|Rd|} to be the set of requests introduced after the start of planning period (dynamic requests),
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and sorted by non decreasing order of time stamps, i.e., tsrj ≥ tsri , ∀j > i. Let ∆ = {δ1, δ2, ..., δ|Rd|−1} =
{tsrj − tsri | j = i + 1 ∀ri, rj ∈ Rd} be the set of interarrival times. Cases with 100% dynamism are
characterized by requests being presented in evenly timed intervals (Figure 3(a)), thus possessing the perfect
interarrival time (θ), computed as follows: θ = Te

|Rd| . For each interarrival δk ∈ ∆ is now possible to compute

its deviation (σk) from the 100% dynamism case:

σk =


θ − δk if (k = 1) ∧ (δk < θ)

θ − δk + θ−δk
θ · σk−1 if (k > 1) ∧ (δk < θ)

0 otherwise

(2)

The deviation of an entire scenario (λ) is then given by the following summation: λ =
∑
δk∈∆ σk. Consider

bursts as announcements that occur in short periods, consequently leading to iterarrival times smaller than
θ. Note that the therm θ−δk

θ · σk−1 penalizes those bursts by adding a proportion of the deviation from the
previous interarrival time. Moreover, consider η =

∑
δk∈∆ σk, where:

σk = θ +

{
θ−δk
θ · σk−1 if (k > 1) ∧ (δk < θ)

0 otherwise
(3)

The factor η theoretically captures the maximum deviation for a scenario (0% dynamism), and plays the
role of normalizing the deviation from the 100% case. Therefore, dynamism of an instance is measured by:

ρ = 1− λ

η
(4)

Following the provided definitions, we now can compute the dynamism for scenarios shown in Figure 3.
Each of these scenarios exhibit 5 dynamic requests and a perfect interarrival time of 2, i.e., θ = 10.00

5.00 = 2.00.
The latter permits us to compute the necessary sets and values to determine the dynamism, which are
reported in Table 5. In this table, the first column specifies the scenario (Figures 3(a)-3(d)). The second
and third columns indicate the set of deviation values (σ) and its summation (λ), respectively. Meanwhile,
fourth and fifth column report the normalization set values (σ) and its summation (η), respectively. The
last column in the table gives the dynamism value (ρ) for the corresponding scenario. Note that Figure 3(a)
represents the 100% dynamism case, since all interarrival times are equal to θ. Furthermore, dynamism levels
decrease in Figures 3(b) and 3(c), as they exhibit requests that are revealed close to one another (δk < θ).
Ultimately, the 5 requests depicted in Figure 3(d) were announced at the same time, so in such circumstance,
the dynamism is zero.

Table 5: Sets and values necessary to determine dynamism for scenarios shown in Figure 3.
Scenario ∆ σ λ σ η ρ

Figure 3(a) {2.00, 2.00, 2.00, 2.00} {0.00, 0.00, 0.00, 0.00} 0.00 {2.00, 2.00, 2.00, 2.00} 8.00 1.00
Figure 3(b) {1.00, 3.00, 3.00, 1.00} {1.00, 0.00, 0.00, 1.00} 2.00 {2.00, 2.00, 2.00, 2.00} 8.00 0.75
Figure 3(c) {1.00, 1.00, 1.00, 1.00} {1.00, 1.50, 1.75, 1.87} 6.12 {2.00, 2.50, 2.75, 2.87} 10.12 0.39
Figure 3(d) {0.00, 0.00, 0.00, 0.00} {2.00, 4.00, 6.00, 8.00} 20.00 {2.00, 4.00, 6.00, 8.00} 20.00 0.00

7.3 Urgency

The interval between the time stamp of a request and the latest pickup time is referred as reaction time.
Urgency is a feature that indicates the length of this interval, i.e., the available time to perform actions
regarding a new dynamic request. Let χ = {fr1 , fr2 , ..., fr|Rd|} be the set of urgency values of an instance,

where the urgency (fri) of a single request ri is computed as follows: fri = luri − tsri . Consider fri and
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frj as the urgency of requests ri and rj , respectively. Supposing fri < frj , ri is said to be more urgent
than rj . Accordingly, rj is considered to be less urgent. The mean (χ) and standard deviation (χs) of

χ denote the urgency of the corresponding instance. They are computed as follows: χ =
∑

ri∈Rd
fri

|χ| and

χs =

√∑
ri∈Rd

(fri−χ)2

|χ| . The standard deviation is part of the urgency measure because the mean alone is

not a very distinctive feature, since scenarios with the same mean and different standard deviations may
contain different numbers of higher and lower urgency values. Note that urgency is expressed in time units.
The concept of urgency is depicted in Figure 4, which represents a scenario with the following set of urgency

values: χ = {3, 1}. As a result, the urgency of this instance is: χ = 3+1
2 = 2 and χs =

√
1+1

2 = 1.

time

tsri luri

0 1 2 3 4

fri = 3

(a)

time

tsrj lurj

0 1 2 3 4

frj = 1

(b)

Figure 4: Depiction of different urgency scenarios. Figures 4(a) and 4(b) exhibits the reaction times for
requests ri and rj , respectively. Note that frj < fri , therefore rj is more urgent than ri.

Van Lon et al. (2016) perform computational experiments to evaluate the impact of dynamism and
urgency on route quality for the dynamic Pickup and Delivery Problem with Time Windows (PDPTW). In
the PDPTW, a fleet of vehicles is used to transport items from pickup to delivery locations according to set
of requests made by costumers. The objective is to minimize route costs, which is inversely proportional to
route quality. The instances generated by the authors were grouped by sets that share similar characteristics,
apart from values of dynamism and urgency. The investigated hypotheses led to conclude that these features
have different influences on operating costs, as dynamism has a reasonably small effect on operating costs
but is negatively correlated with it, while urgency is positively correlated.

7.4 Geographic dispersion

Geographic dispersion is a criterion that express the spread of important locations across the network. It
can be expected that a large geographic dispersion, and thus a large distance between important locations
in the network, will give rise to longer routes. The definition presented in this paper is based on the
approach described in Reyes, Erera, Savelsbergh, Sahasrabudhe, & O’Neil (2018), although we perform
slight modifications to make it suitable for the DARP and ODBRP. First, we sum the estimated direct

travel times for each request and calculate their average: µ =
∑

ri∈R ttoridri
|R| , where for the DARP ttoridri

represents the estimated direct travel time between origin and destination, while for the ODBRP it depicts
an estimated average travel time between stations surrounding the origin and destination. Since, requests
can be served simultaneously by the vehicles, we incorporate the average travel time from the origin and
destination to the nearest neighbors locations of requests, namely ω. First, consider Lori and Ldri to be subset
of locations that can potentially be served after the origin and destination of ri, respectively. Consider ths
to be a time threshold indicating that the time windows are close enough to possibly coincide. Specifically,
Lori = {orj | ‖euri − e

u
rj‖< ths ∀rj ∈ R \ ri}∪{drj | ‖euri − l

o
rj‖< ths ∀rj ∈ R \ ri} and Ldri = {orj | ‖lori − e

u
rj‖<

ths ∀rj ∈ R \ ri} ∪ {drj | ‖lori − l
o
rj‖< ths ∀rj ∈ R \ ri}. The at most n nearest locations in Lori and Ldri are

depicted as No
ri and Nd

ri , respectively. Let tnori and tndri correspond to the average travel times from the
origin and destination of ri to locations in No

ri and Nd
ri :
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tnori =


∑

v∈No
ri
ttori v

|No
ri
| , if |No

ri | > 0

0, otherwise
(5)

tndri =


∑

v∈Nd
ri
ttdriv

|Nd
ri
| , if |Nd

ri | > 0

0, otherwise
(6)

Accordingly, ω is used to approximate the duration of detours and can be computed as follows: ω =∑
ri∈R tn

o
ri

+tnd
ri

2·|R| . The definition of geographic dispersion (gd) then is calculated as:

gd = µ+ ω (7)
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Figure 5: Illustration of an instance with 4 requests to support computations for geographic dispersion.

We exemplify geographic dispersion of an instance using Figure 5. The instance consists of 4 requests
R = {ri, rj , rk, rm}. Assume ths = 10 and n = 2. Travel times between locations are represented by the
numbers adjacent to the dashed lines. These values are measured in fictitious units of time. First, according
to Figure 5(a), the average of estimated direct travel times is measured as follows: µ = 102+84+85+89

4 = 90.
The sets and values necessary to determine geographic dispersion are reported in Table 6.

Table 6: Sets and values necessary to determine geographic dispersion for instance shown in Figure 5.
Request No

r tnor Nd
r tndr

rm {∅} 0.00 {ori , ork} 17.00
ri {orj , ork} 10.00 {drj , drk} 13.00
rj {ori , ork} 13.00 {dri , drk} 17.00
rk {ori , drm} 12.00 {dri , drj} 22.00

In this table, the first column specifies the request. The second and third columns indicate the n nearest
locations to the origin of the request and the average travel time between the origin to these locations,

19



respectively. The fourth and fifth columns report the n nearest locations to the destination of the request
and the average travel time between the destination to these locations, respectively. Now, it has become
possible to calculate ω, thus: ω = 104.00

8.00 = 13.00. Finally, the geometric dispersion for this instance is:
gd = 90.00 + 13.00 = 103.00.

Reyes, Erera, Savelsbergh, Sahasrabudhe, & O’Neil (2018) evaluated the effect of dynamism, urgency
and geographic dispersion features on performance metrics towards solutions for the Meal Delivery Rout-
ing Problem (MDRP). The MDRP consists of building routes for couriers to deliver meals requested by
costumers. Couriers pick up orders as soon as they are available from the restaurant and deliver them at
the designated costumer’s location. The objective function may include multiple metrics, such as courier
compensation, the difference between the announcement of an order and its delivery (click-to-door), and the
interval between the release time of an order from the restaurant to arrival time at the drop-off location
(ready-to-door). Addressing the MDRP accompanies many challenges, as orders arrive constantly (very
dynamic) and are expected to be delivered quickly (high urgency), which poses obstacles to optimize per-
formance measures, specially if the number of couriers is small. The authors observe that higher dynamism
increases the route costs, as it is less like to combine orders in a single route to reduce costs. Increases in the
geographic dispersion measure are converted in higher click-to-door and ready-to-door mean times. In the
meantime, stronger negative effect on these performance measures were observed with increased urgency.

As previously mentioned, we designed REQreate with the capacity of generating instances with different
sizes, levels of urgency, dynamism and geographic dispersion. Consequently, similar studies to Van Lon et
al. (2016) and Reyes et al. (2018) can be performed to explore the potential effects of these measures on
solution quality for a comprehensive list of existing and future on-demand transportation problems. A major
benefit is to design methods that overcome pitfalls leading to poor performance. For example, upon arrival
of very urgent requests it might be interesting to change momentarily the target from building routes with
minimal traveled distance to reduce delay times, in favor of meeting a reasonable balance between customer
satisfaction and profit for service providers.

8 Instance similarity

To perform informative analyses algorithms should be tested on a diverse benchmark set. The direct ratio-
nality is that similar instances are unlikely to contribute with meaningful additional knowledge. Therefore,
we present a concept of instance similarity, based on the approach introduced in Leeftink & Hans (2018). In
order to assess the similarity of two instances of the same size I and J , we take into account that instances
for the problems described in this paper consist of a set of requests distributed over a network during a
time period. First, we measure the proximity between locations of two distinct requests ri and rj , where
ri ∈ I and rj ∈ J . We compute and sum the travel times between the origins and destinations of ri and rj :
φ = ttoriorj + ttdridrj . Requests ri and rj are φ-proximate if φ is below a given threshold, i.e., φ < thtt.

On the assumption that two requests are φ-proximate, we also compare if they have a similar time
stamp and earliest departure times. Let: a) τ = ‖tsri − tsrj‖; and b) ϑ = ‖euri − e

u
rj‖, be the difference of

time stamps and earliest departure times between ri and rj , respectively. Similarly to measuring proximity
between location pairs, two requests are τ -proximate and ϑ-proximate if τ and ϑ are lower than specified
thresholds, i.e., τ < thts and ϑ < the. Combining the definitions given so far, the similarity level between
two requests ri and rj (ξrirj ) becomes:

ξrirj =


1.00 if (φ < thtt) ∧ (τ < thts) ∧ (ϑ < the)

0.75 if (φ < thtt) ∧ ((τ < thts) ⊕ (ϑ < the))

0.50 if (φ < thtt) ∧ (τ ≥ thts) ∧ (ϑ ≥ the)
0.00 otherwise

(8)

We exemplify the concept of similiarity with Figure 6. In each figure we depict different requests, and
we analyze their level of similarity regarding ri. Hypothetically, consider threshold levels to be thtt = 20,
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thts = 10, and the = 10. Identical to Figure 5, travel times between locations are represented by the numbers
adjacent to the dashed lines. These values are again measured in fictitious units of time.
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Figure 6: Examples of requests with different levels of similarity.

The values necessary to determine similarity between the pictured requests are reported in Table 7. In
this table, the first column specifies which pair of requests the similarity is being computed for. The following
three columns give the computed values for φ, τ and ϑ, respectively. In these columns, the marks 3 and 7
besides the numbers indicate if the values are, respectively, below or above their corresponding thresholds.
The last column report the level of similarity between the pair of requests. The first two lines indicate the
requests shown in Figure 6(a). Since all values for requests ri and rj are below the given thresholds, then
ξrirj = 1.00. Meanwhile, the difference of earliest departure times (ϑ) is the only value that exceeds the
threshold for requests ri and rk, therefore ξrirk = 0.75. The final two lines indicate the requests represented
in Figure 6(b). Note that requests ri and rm are only φ−proximate, so ξrirm = 0.50. Meanwhile, the sum
distance between locations of ri and rq exceeds thtt, for this reason ξrirq = 0.00.

Table 7: Computed values necessary to determine similarity between requests shown in Figure 6.
Request pair φ τ ϑ ξ
rirj 12.00 3 1.00 3 1.00 3 1.00
rirk 16.00 3 2.00 3 15.00 7 0.75
rirm 15.00 3 14.00 7 15.00 7 0.50
rirq 33.00 7 0.00 3 0.00 3 0.00

We introduce the following definition to help determine the similarity between two instances: consider a
bipartite graph Gs = (Vs, Es), where the set of vertices Vs represent the requests, and there is a non negative
weight we associated with each edge e ∈ Es. The weights represent the similarity level between the two
requests of opposite instances. Similarity is computed for every pair of requests between the two instances,
and as a result, the same request will most likely exhibit a different level of similarity from multiple requests.
Therefore, to determine the similarity between I and J , we identify the maximal matching Ms ⊂ Es and

measure the average weight of edges: ΩIJ =
∑

m∈Ms
wm

|M | .

Essentially, this approach attempts to capture requests that are likely to impose similar restrictions
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during the execution of the algorithm, e.g., occupy vehicles that travel between the same areas at a similar
period of times. We acknowledge the fact that instances sharing the same configuration file (replicas) are
expected to have a higher level of similarity when compared to the remainder. Nevertheless, our objective
is also to ensure that those instances are still distinct enough to justify performing experiments to extract
insightful results.

9 Comparison between real data and synthetic instances

In this section, we analyze the mobility patterns of real trips performed by rideshare companies. We use
datasets that were made available publicly from “Chicago, Illinois” (“Chicago Department of Business Affairs
& Consumer Protection”, n.d.). We divide these datasets in different time periods and study statistical
properties, such as spatial and distance distributions. We generate synthetic instances that attempt to
approximate the observed patterns in the real datasets and discuss some results. The instances for this
Section were generated according to attributes for the DARP.

The period selected in which all trips were performed is from September 1, 2019 to September 30, 2019.
Ridesharing companies dataset from “Chicago, Illinois” documents more than 7 million trips during the
given period of time. Each record contains information on the pick up and drop off time and locations of
the trips, traveled distance, fare paid, along with many other fields. All records are anonymous. Besides,
privacy is also preserved by rounding times to the nearest 15 minutes. Therefore, results regarding each of
those fields will be an approximation of reality.

Considering that travel patterns change according to time and day of the week, it is reasonable to
conduct this examination on different days and time intervals. First, we split the datasets by days according
to working days (business days) and non-working days (weekends and holidays). Second, for working days
we extract two time periods of higher demand: a) between 7:00 and 10:00; and b) between 16:00 and 20:00.
During non-working days, the time period considered was between 16:00 and 20:00, since in the morning the
activity is almost negligible. To generate the synthetic instances, the origin and destinations were randomly
chosen according to the method described in Section 5, i.e., following the number of POIs and the best fitted
distribution of distances corresponding to each combination of days and time periods.

Figure 7 illustrates the spatial distribution of origin and destination locations referring to trips reported
by rideshare companies in the city of “Chicago, Illinois” and the set of synthetic generated instances. The
three plotted periods for the set of real trips portray similar distribution patterns, as the same regions
attracted a large amount of individuals during both working and non-working days (orange and red colored
portions). Certainly, this behaviour can be explained as the number of POIs is higher in the aforementioned
region (see the yellow area with some orange and red spots in Figure 8). This is further evidence of the
positive correlation between spatial distribution of POIs and the potential of a location to be associated
with individual’s trajectories. Despite being more evenly spread than the locations in the real life datasets,
the synthetic instances also display a slightly denser concentration in the region where most of the POIs are
situated.

Distance distributions were also similar during working and non-working days. They are depicted in
Figure 9(a). Such statistical measure capture the extent of the population’s interactivity within the urban
environment. It is imported to note that the magnitude and shape of the studied area plays an important
role, as for example smaller cities impose a more limited upper bound to trip lengths when compared to
bigger ones. For the city of “Chicago, Illinois”, the distances of 75% of the trips performed by rideshare
companies were under 9.17 km for the morning period and below 8.37 km for the afternoon period during
working days. Meanwhile, for the interval between 16:00 and 20:00 during non-working days, 75% of the trips
had a smaller length than 8.84 km. A potential reason is that citizens prefer taking part in activities within a
short to middle range distance from the areas they spend most of the time (e.g. home and workplace). After
reaching its peak (around 2 km), the probability of distance decreases continuously, except when reaching
about 27.00 to 30.00 km. This might due to the presence of “O’Hare International Airport”, as it is located
rather far from the city.

As previously indicated, the function and parameters that returns the best fit for the distance distributions
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are used for the synthetic instances. The distributions used to generate the synthetic instances are illustrated
in Figure 9(b). The shape of the graphs are relatively similar, however, for the synthetic instances, the
occurrence of small to medium distances was somewhat lower when compared to the real journeys. 75% of
the distances from generated requests were below 10.22 km and 9.75 km for periods 7:00 to 10:00 and 16:00
to 20:00, respectively, during working days. Also, 75% of rides for the interval between 16:00 to 20:00 during
non-working days reported distances lower than 10.28 km. These values are slightly higher (about 10% to
15%) when compared with those of real trips from rideshare companies.

(a) Spatial distribution between 07:00 and 10:00 during working days.

(b) Spatial distribution between 16:00 and 20:00 during working days.

(c) Spatial distribution between 16:00 and 20:00 during non-working days.

Figure 7: Spatial distribution of origin and destination locations. Figures on the left refer to trips reported
by rideshare companies in “Chicago, Illinois”, meanwhile figures on the right concern synthetic generated
instances. The color bar accounts for the number of locations.

Based on the traveled distances and the duration of the trips, the average speed can be evaluated. Speed
values were slightly higher during non-working days when compared to working days. For the latter, the
computed averages of speeds were 22.11 km/h and 21.30 km/h for the intervals between 07:00 to 10:00 and
16:00 to 20:00, respectively. From 16:00 to 20:00 during non-working days, the average speed was 24.79
km/h.

According to Figure 8, one could argue that considering solely the concentration of POIs can possibly
improve the spatial distributions of origin and destinations displayed in synthetic instances, however, the
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distances decay effect presented in Figure 9 might be lost. For this reason, new methods that balance both
aspects may be elaborated in further research.

Figure 8: Spatial distribution for Points of Interest (POIs) in the city of “Chicago, Illinois” according to
reported locations in OpenStreetMaps (OSM). The color bar accounts for the number of POIs.

Before concluding this analysis we make three remarks. First, some results are influenced by the method
of transport (car, bus, etc.). Since we utilize data from rideshare companies, the trips have also an economic
constraint factor, as it is unlikely for citizens to favor this transportation modality as fares rise significantly
with long distances. One should bear in mind that an investigation of subway rides, for example, may return
a rather different distance distribution, in which higher distances are expected to occur more frequently.
Second, the observed spatial and distance distributions were similar for the studied day and time intervals,
however, this might change based on the city. Finally, the outcome is sensitive to the available information
provided concerning POIs locations. Details are provided by OSM users and some of them might be missing.

(a) (b)

Figure 9: Distance distribution referring to trips reported by rideshare companies in the city of “Chicago,
Illinois” (on the left) and for the set of synthetic instances (on the right).

10 Benchmark set

In this section we generate a benchmark set for the ODBRP. Instances are generated according to different
sizes, levels of dynamism, urgency and geographic dispersion. The set was built to be diverse so it is possible
to evaluate the influence of these properties on proposed methods for the ODBRP. First, we explain how we
approximately control the output of each instance property. Then, we describe how instances are organized.
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Size can be easily adjusted with item requests, as shown in Section 4.2. Listing 8 depicts a configuration
file for an instance with 500 requests. Meanwhile, dynamism can be regulated by adding a sub-item inside
an attribute called “time stamp”, as seen in Listing 8. In this example, the instance would have 50%
(0.50) dynamism. We note that for example, an exact 100% dynamism case can only be generated if the
number of dynamic requests is a factor (exact divisor) to the size of the planning period, i.e., exactly one
request arriving every tsmax−tsmin

|Rd| seconds. Therefore one should be careful when setting a specific value

for dynamism, since according to the planning period and number of requests, only approximate levels of
dynamism are achievable.

Listing 8: Example on how to control properties.

1 { ...
2 "attributes": [
3 "requests": 500,
4 {
5 "name": "time_stamp",
6 "type": "integer",
7 "time_unit": "s",
8 "pdf": {
9 "type": "uniform",

10 "loc": 30000,
11 "scale": 500
12 },
13 "dynamism": 50
14 },
15 {
16 "name": "reaction_time",
17 "type": "integer",
18 "time_unit": "s",
19 "pdf": {
20 "type": "normal",
21 "loc": 600,
22 "scale": 60
23 }
24 },
25 {
26 "name": "latest_departure",
27 "type": "integer",
28 "time_unit": "s",
29 "expression": "time_stamp + reaction_time"
30 },
31 {
32 "name": "direct_travel_time",
33 "type": "integer",
34 "time_unit": "s",
35 "expression": "dtt(origin ,destination)",
36 "constraints": ["direct_travel_time >= 600", "direct_travel_time <= 1200"]
37 }
38 ],
39 }

The attribute “reaction time” in Listing 8 controls the levels of urgency. See how “latest departure”
is computed as the sum of “time stamp” and “reaction time”, which causes the length of the intervals to
perform actions to be equal to attribute “reaction time”. In this example we use a normal distribution
(sub-item pdf ), and the urgency of this instance will have an approximate mean (χ) of 10 minutes (600
seconds) and standard deviation (χs) of 1 minute (60 seconds). To obtain higher or lower levels of urgency
one must appropriately change these values. Finally, geographic dispersion can be manipulated by declaring
an interval of values in the attribute named “direct travel time” (see again Listing 8), which stores the direct
travel time between two locations named “origin” and “destination”. The expression includes a predefined
function that computes the estimated travel time between the locations. In the given example, every request
will have between 10 and 20 minutes of time distance between origin and destination. So, the interval can
be adjusted in order to create instances with a greater or smaller value of geographic dispersion.

We used the network from “Chicago, Illinois” to generate instances. Instances are divided into small
(between 300 and 600 requests, in steps of 300), medium (between 900 and 1800 requests, in steps of 300),
and large (between 2100 and 3000 requests, in steps of 300). The planning period is between 07:00 and 08:00
(1 hour). The dynamism levels vary between 0% and 100% in steps of 10. Meanwhile, urgency mean is set to
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lie in {5, 10, 15, 30} minutes. Meanwhile, the urgency standard deviation is set to lie in {0, 5, 10} minutes.
Three limited intervals for geographic dispersion were utilized: a) between [180,1000] (short distance trips);
b) ]1000,3000] (medium distance trips); and c) ]3000, 6000] (long distance trips). A fourth option with no
interval limit is also considered.

Each instance group is identified by N p s b e d m t g, where N denotes name of city for which the
network was retrieved; p is an acronym for the problem, in this case ODBRP; s gives the size of the instance;
b and e denote the beginning and end of the planning period, respectively; d gives the dynamism level; m and
t provide the urgency mean and standard deviation, respectively; and g denotes the geographic dispersion
value. We carefully generated the instances so it is possible to fairly evaluate the different levels of dynamism,
urgency and geographic dispersion. This means that some instances will portray the same requests locations,
and varying only the properties values. The instance files are available on Github3.

11 Conclusion and future research

In this paper, we presented REQreate, a tool aimed at generating instances that are significantly more
realistic than previous approaches for on-demand public transportation problems. Instances from these
problems mainly consist of demand from passengers for transportation. Hence, real life networks are retrieved
from OpenStreetMaps (OSM) with support of the OSMnx tool (Boeing, 2017). We described in what
manner the attributes and parameters for instances can be given as input to REQreate via a JSON file.
Given notations for the Dial-A-Ride Problem (DARP) and On-Demand Bus Routing Problem (ODBRP),
we further presented properties that can be considered when analyzing the performance of optimization
algorithms: size, dynamism, urgency, and geographic dispersion. The concept of instance similarity was also
proposed to provide some level of diversity in the benchmark instance sets.

We used datasets provided by rideshare companies from the city of “Chicago, Illinois” and examined
which statistical properties of human movement could be inferred. Furthermore, REQreate was utilized
to generate synthetic instances and we performed a comparison between the properties of the two groups.
Requests were randomly chosen according to a simple framework taking into account Points of Interest
(POIs) and distances as major factors that impact human trajectories. The method has simple and yet
reasonable assumptions which can be useful in producing distinct urban patterns when data accessibility is
an issue. We also show that the tool can provide constructive suggestions for the planning of on-demand
transportation systems. For example, under which spatial, temporal and distance distribution conditions
the implementation is profitable. Finally, we also proposed a benchmark set consisting of 5280 instances for
the ODBRP.

Appropriate future research directions include new methods to describe mathematically a broader variety
of human behaviour regarding intra-urban traveling. Hypothetically, population density combined with POIs
could strengthen the outcome of spatial distributions. Another interesting direction is to understand how
the proposed properties (size, dynamism, urgency and geographic dispersion) influence the performance of
a newly developed method.
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De Corte, A., & Sörensen, K. (2014). Hydrogen: an artificial water distribution network generator. Water
resources management , 28 (2), 333–350.

Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). Rangen: A random network generator for
activity-on-the-node networks. Journal of scheduling , 6 (1), 17–38.

Dingil, A. E., Schweizer, J., Rupi, F., & Stasiskiene, Z. (2018). Transport indicator analysis and comparison
of 151 urban areas, based on open source data. European Transport Research Review , 10 (2), 58.

Drakoulis, R., Bellotti, F., Bakas, I., Berta, R., Paranthaman, P. K., Dange, G. R., . . . Amditis, A. (2018). A
gamified flexible transportation service for on-demand public transport. IEEE Transactions on Intelligent
Transportation Systems, 19 (3), 921–933.

Drexl, A., Nissen, R., Patterson, J. H., & Salewski, F. (2000). Progen/πx–an instance generator for resource-
constrained project scheduling problems with partially renewable resources and further extensions. Euro-
pean Journal of Operational Research, 125 (1), 59–72.

Gallagher, M., & Yuan, B. (2006). A general-purpose tunable landscape generator. IEEE transactions on
evolutionary computation, 10 (5), 590–603.

Garey, M. R., & Johnson, D. S. (1979). A guide to the theory of np-completeness. Computers and
intractability , 641–650.

Gkiotsalitis, K., & Stathopoulos, A. (2016). Demand-responsive public transportation re-scheduling for
adjusting to the joint leisure activity demand. International Journal of Transportation Science and Tech-
nology , 5 (2), 68–82.

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring network structure, dynamics, and function using
networkx (Tech. Rep.). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

Häll, C. H., Andersson, H., Lundgren, J. T., & Värbrand, P. (2009). The integrated dial-a-ride problem.
Public Transport , 1 (1), 39–54.

Hernando, L., Mendiburu, A., & Lozano, J. A. (2015). A tunable generator of instances of permutation-based
combinatorial optimization problems. IEEE Transactions on Evolutionary Computation, 20 (2), 165–179.

Ho, S. C., Szeto, W., Kuo, Y.-H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A survey of dial-a-ride
problems: Literature review and recent developments. Transportation Research Part B: Methodological ,
111 , 395–421.

27



Kilby, P., Prosser, P., & Shaw, P. (1998). Dynamic vrps: A study of scenarios. University of Strathclyde
Technical Report , 1 (11).

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of a general class of resource-
constrained project scheduling problems. Management science, 41 (10), 1693–1703.

Kujala, R., Weckström, C., Darst, R. K., Mladenović, M. N., & Saramäki, J. (2018). A collection of public
transport network data sets for 25 cities. Scientific data, 5 , 180089.

Larsen, A., Madsen, O., & Solomon, M. (2002). Partially dynamic vehicle routing—models and algorithms.
Journal of the operational research society , 53 (6), 637–646.

Leeftink, G., & Hans, E. W. (2018). Case mix classification and a benchmark set for surgery scheduling.
Journal of scheduling , 21 (1), 17–33.

Liu, M., Singh, H. K., & Ray, T. (2014). Application specific instance generator and a memetic algorithm for
capacitated arc routing problems. Transportation Research Part C: Emerging Technologies, 43 , 249–266.

Liu, Y., Kang, C., Gao, S., Xiao, Y., & Tian, Y. (2012). Understanding intra-urban trip patterns from taxi
trajectory data. Journal of geographical systems, 14 (4), 463–483.

Lund, K., Madsen, O. B., & Rygaard, J. M. (1996). Vehicle routing problems with varying degrees of
dynamism. IMM, Institute of Mathematical Modelling, Technical University of Denmark.

Macedo, E., & Tchemisova, T. (2017). A generator of nonregular semidefinite programming problems. In
Congress of apdio, the portuguese operational research society (pp. 177–199).

Maggioni, F., Perboli, G., & Tadei, R. (2014). The multi-path traveling salesman problem with stochastic
travel costs: Building realistic instances for city logistics applications. Transportation Research Procedia,
3 , 528–536.
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Appendix

A Configuration file for the DARP

The configuration file example for the DARP is divided in Listings 1 and 2. We remark that these Listings are
part of the same configuration file, but they are split for visualization purposes. Moreover, this is a simplified
version of the configuration file, as items seed, network, among others were omitted. First, in Listing 1, the
planning period is given as input in parameters “min planning period” (tsmin) and “max planning period”
tsmax. The declared values will later be used to indicate the interval for request announcements is between
7:00 and 10:00. The vehicles are located in a single depot randomly generated (“depots”). The “origin” (op)
and “destination” (dp) attributes will be randomly chosen within the boundaries of the network. The integer
“wheelchair requirement” attribute will be uniformly chosen for each request inside the interval [0,1], where
1 explicit a requirement for a vehicle that supports a wheelchair, and 0 otherwise. The direct travel time
between “origin” and “destination” is disclosed in attribute “direct travel time”, established by an expression
including a predefined function that computes an estimated travel time between two locations: “dtt(x,y)”,
where “x” and “y” are attributes or parameters declared with type “location”. The earliest departure is
named “earliest departure” (eup), the values are randomly chosen according to a normal distribution with
mean 30600 (8:30) and standard deviation 3600 (1 hour), and the constraint state it must be greater than
or equal to parameter “min planning period”.

The remainder attributes are declared in Listing 2. The attribute “time stamp” (tsp) is specified by the
subtraction of “earliest departure” from an attributed named “lead time” (“earliest departure - lead time”),
where the latter is uniformly chosen between 0 and 600 seconds (0-10 minutes). Additionally, “time stamp”
must also respect the planning period time constraints. Similarly, “latest departure” (lup ) is specified by
an expression (“earliest departure + time window size”), where values for “time window size” are randomly
chosen within the interval [300,600] seconds (5-10 minutes) according to an uniform distribution. The
“earliest arrival” (eop) is simply calculated from the expression “earliest departure + direct travel time”.
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Attribute “latest arrival” (lop) is calculated by adding “time window length” to “earliest arrival”, and is
restricted to be lesser than or equal to parameter “max early departure”. The travel time matrix consists of
estimated travel times between all pairs of locations in “depots” (W ), “origin” (O), and “destination” (D).
Finally, we emphasize that each instance can be tested with several combinations of fleet size and vehicle
capacity.

B Configuration file for the ODBRP

The configuration file example for the ODBRP is divided in Listings 3 and 4. As previously remarked
in Appendix A, these Listings are part of the same configuration file. They were also simplified for visu-
alization purposes. First, in Listing 3, a zone named “zone center” is declared in item places, where its
center point coincides with the network’s centroid. The planning period is given as input in parameters
“min planning period” (tsmin) and “max planning period” tsmax. The declared values indicate the interval
for request announcements is between 6:00 and 9:00. An array of zones named “zones dest” is declared
containing only “zone center”. The “origin” (op) and “destination” (dp) attributes will be randomly chosen
within the boundaries of the network, however, “destination” is bounded to the specific zone declared in
array “zones dest”. Suppose this configuration file to be a hypothetical example where the target location
of requests is the city center, usually employees commute to this area during morning peak hours. The
direct travel time between “origin” and “destination” is disclosed in attribute “direct travel time” and was
previously described in Appendix A. The “earliest departure” (eup) values are randomly chosen according
to an uniform distribution within the interval [25200, 32400] (7:00 to 9:00). We remark that constraint
“earliest departure >= min planning period” is indeed redundant for this attribute, however we display it
in the configuration file for elucidation purposes.

The remainder attributes are declared in Listing 4. First, “max walking” and “walk speed” are default
names for attributes that store, correspondingly, the maximum time a passenger is willing to walk to a bus
station and their average walking speed. For this example, the values from “max walking” and “walk speed”
are randomly chosen according to an uniform distributions between 300 to 600 seconds (5-10 minutes)
and 4 to 5 km/h, respectively. The set of departure and arrival bus stations are declared in attributes
“stops orgn” and “stops dest”, respectively. The expressions that specify both attributes include a predefined
function “stops(x)”, which returns all bus stations within less than “max walking” from location “x”. The
constraints in attributes “stops orgn” and “stops dest” are written with built-in functions of Python4. The
first constraint is “len(y) > 0”, which guarantees that the array “y” is not empty. The second constraint
“not (set(y) & set(z))” guarantees that there is no intersection between the two arrays “y” and “z”. The
attributes “time stamp” (tsp) and “lead time” are declared exactly as in Appendix A, except for the addition
of sub-item static probability. By default, static probability can take the value of a real number within
the interval [0,1], expressing the probability of a request being know before the planning period stars (the
“time stamp” is set to 0 which represents a static request), therefore allowing to schedule requests in advance.
Attribute “latest arrival” (lop) is calculated by multiplying “direct travel time” to 1.5 and adding the result
with “earliest departure”. Constraint “latest arrivel <= max planning period” ensures that “latest arrival”
does not surpass the planning period time window. The travel time matrix consists of estimated travel times
between all pairs in “bus stations”, which is a default name for the bus stations within the boundaries of
the network. Finally, we further emphasize that each instance can be tested with several combinations of
fleet size and vehicle (bus) capacity.

4We strongly recommend getting familiar with the built-in Python functions, as it will help the user grasp the capabilities
of the generator.
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Listing 1: Configuration file example for the DARP - part 1

1 { ...
2 "parameters":[
3 {
4 "name": "min_planning_period",
5 "type": "integer",
6 "value": 7,
7 "time_unit": "h"
8 },
9 {

10 "name": "max_planning_period",
11 "type": "integer",
12 "value": 10,
13 "time_unit": "h"
14 },
15 {
16 "name": "depots",
17 "type": "array_locations",
18 "size": 1,
19 "locs": "random"
20 }
21 ],
22 "attributes":[
23 {
24 "name": "origin",
25 "type": "location"
26 },
27 {
28 "name": "destination",
29 "type": "location"
30 },
31 {
32 "name": "wheelchair_requirement",
33 "type": "integer",
34 "pdf": {
35 "type": "uniform",
36 "loc": 0,
37 "scale": 1
38 }
39 },
40 {
41 "name": "direct_travel_time",
42 "type": "integer",
43 "time_unit": "s",
44 "expression": "dtt(origin ,destination)",
45 "output_csv": false
46 },
47 {
48 "name": "earliest_departure",
49 "type": "integer",
50 "time_unit": "s",
51 "pdf": {
52 "type": "normal",
53 "loc": 30600,
54 "scale": 3600
55 },
56 "constraints": [ "earliest_departure >= min_planning_period"]
57 }
58 ...
59 ]
60 ...
61 }
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Listing 2: Configuration file example for the DARP - part 2

1 { ...
2 "attributes": [
3 {
4 "name": "lead_time",
5 "type": "integer",
6 "time_unit": "s",
7 "pdf": {
8 "type": "uniform",
9 "loc": 0,

10 "scale": 600
11 },
12 "output_csv": false
13 },
14 {
15 "name": "time_stamp",
16 "type": "integer",
17 "time_unit": "s",
18 "expression": [ "earliest_departure - lead_time"]
19 "constraints": [ "time_stamp >= min_planning_period", "time_stamp <= max_planning_period"]
20 },
21 {
22 "name": "time_window_size",
23 "type": "integer",
24 "time_unit": "s",
25 "pdf": {
26 "type": "uniform",
27 "loc": 300,
28 "scale": 300
29 },
30 "output_csv": false
31 },
32 {
33 "name": "latest_departure",
34 "type": "integer",
35 "time_unit": "s",
36 "expression": "earliest_departure + time_window_size"
37 },
38 {
39 "name": "earliest_arrival",
40 "type": "integer",
41 "time_unit": "s",
42 "expression": "earliest_departure + direct_travel_time"
43 },
44 {
45 "name": "latest_arrival",
46 "type": "integer",
47 "time_unit": "s",
48 "expression": "earliest_arrival + time_window_size",
49 "constraints": [ "latest_arrival <= max_planning_period"]
50 }
51 ],
52 "travel_time_matrix": ["depots", "origin", "destination"]
53 }
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Listing 3: Configuration file example for the ODBRP - part 1

1 { ...
2 "places": [
3 {
4 "name": "zone_center",
5 "type": "zone",
6 "centroid": true ,
7 "radius": 2000,
8 "length_unit": "m"
9 }

10 ],
11 "parameters":[
12 {
13 "name": "min_planning_period",
14 "type": "integer",
15 "value": 6,
16 "time_unit": "h"
17 },
18 {
19 "name": "max_planning_period",
20 "type": "integer",
21 "value": 9,
22 "time_unit": "h"
23 },
24 {
25 "name": "zone_dest",
26 "type": "array_zones",
27 "size": 1,
28 "value": ["zone_center"]
29 },
30 ],
31 "attributes":[
32 {
33 "name": "origin",
34 "type": "location"
35 },
36 {
37 "name": "destination",
38 "type": "location",
39 "subset_zones": "zone_dest",
40 },
41 {
42 "name": "direct_travel_time",
43 "type": "integer",
44 "time_unit": "s",
45 "expression": "dtt(origin ,destination)",
46 "output_csv": false
47 },
48 {
49 "name": "earliest_departure",
50 "type": "integer",
51 "time_unit": "s",
52 "pdf": {
53 "type": "uniform",
54 "loc": 25200,
55 "scale": 7200
56 },
57 "constraints": [ "earliest_departure >= min_planning_period"]
58 },
59 ...
60 ]
61 ...
62 }
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Listing 4: Configuration file example for the ODBRP - part 2

1 { ...
2 "attributes": [
3 {
4 "name": "max_walking",
5 "type": "integer",
6 "time_unit": "s",
7 "pdf": {
8 "type": "uniform",
9 "loc": 300,

10 "scale": 300
11 },
12 "output_csv": false
13 },
14 {
15 "name": "walk_speed",
16 "type": "real",
17 "time_unit": "kmh",
18 "pdf": {
19 "type": "uniform",
20 "loc": 4,
21 "scale": 1
22 }
23 },
24 {
25 "name": "stops_orgn",
26 "type": "array_primitives",
27 "expression": "stops(origin)",
28 "constraints": ["len(stops_orgn) > 0"]
29 },
30 {
31 "name": "stops_dest",
32 "type": "array_primitives",
33 "expression": "stops(destination)",
34 "constraints": ["len(stops_dest) > 0", "not (set(stops_orgn) & set(stops_dest))"]
35 }
36 {
37 "name": "lead_time",
38 "type": "integer",
39 "time_unit": "s",
40 "pdf": {
41 "type": "uniform",
42 "loc": 0,
43 "scale": 600
44 },
45 "output_csv": false
46 },
47 {
48 "name": "time_stamp",
49 "type": "integer",
50 "time_unit": "s",
51 "expression": [ "earliest_departure - lead_time"]
52 "constraints": [ "time_stamp >= min_planning_period", "time_stamp <= max_planning_period"],
53 "static_probability": 0.5
54 },
55 {
56 "name": "latest_arrival",
57 "type": "integer",
58 "time_unit": "s",
59 "expression": "earliest_departure + (direct_travel_time * 1.5)",
60 "constraints": [ "latest_arrival <= max_planning_period"]
61 }
62 ],
63 "travel_time_matrix": ["bus_stations"]
64 }
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