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Abstract

Fixed-horizon planning considers a weighted graph and asks to construct a path
that maximizes the sum of weights for a given time horizon T . However, in
many scenarios, the time horizon is not fixed, but the stopping time is chosen
according to some distribution such that the expected stopping time is T . If the
stopping-time distribution is not known, then to ensure robustness, the distribu-
tion is chosen by an adversary as the worst-case scenario. A stationary plan for
every vertex always chooses the same outgoing edge. For fixed horizon or fixed
stopping-time distribution, stationary plans are not sufficient for optimality.
Quite surprisingly we show that when an adversary chooses the stopping-time
distribution with expected stopping-time T , then stationary plans are sufficient.
While computing optimal stationary plans for fixed horizon is NP-complete, we
show that computing optimal stationary plans under adversarial stopping-time
distribution can be achieved in polynomial time.

Keywords: Graph planning, shortest path, finite horizon, expected stopping
time

1. Introduction

Graph search algorithms. Reasoning about graphs is a fundamental problem
in computer science, which is studied widely in logic (such as to describe
graph properties with logic [7, 3]) and artificial intelligence [15, 11]. Graph
search/planning algorithms are at the heart of such analysis, and gives rise to
some of the most important algorithmic problems in computer science, such as
shortest path, traveling salesman problem, etc.

Finite-horizon planning. A classical problem in graph planning is the finite-
horizon planning problem [11], where the input is a directed graph with weights
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Table 1: Summary of the results.

Complexity

Graph planning with. . . Stationary plan Arbitrary Stationary

always exists plan plan

Specified distribution No PTIME NP-complete

Unknown distribution (best-case) No PTIME NP-complete

Unknown distribution (adversarial) Yes PTIME

assigned to every edge and a time horizon T . The weight of an edge represents
the reward/cost of the edge. A plan is an infinite path, and for finite horizon
T the utility of the plan is the sum of the weights of the first T edges. An op-
timal plan maximizes the utility. The computational problem for finite-horizon
planning is to compute the optimal utility and an optimal plan, which has ap-
plications in artificial intelligence and robotics [15, Chapter 10, Chapter 25],
and in control theory and game theory [5, Chapter 2.2], [13, Chapter 6].

Solutions for finite-horizon planning. For finite-horizon planning the classical
solution approach is dynamic programming (or Bellman equations), which cor-
responds to backward induction [9, 5]. This approach not only works for graphs,
but also for other models (e.g., Markov decision processes [14]). A stationary
plan is a path where for every vertex always the same choice of edge is made.
For finite-horizon planning, stationary plans are not sufficient for optimality,
and in general, optimal plans are quite involved. Represented as transducers,
optimal plans require O(T ) states (see later Example 1). Since in general opti-
mal plans are involved, a related computational question is to compute effective
simple plans, i.e., plans that are optimal among stationary plans.

Expected finite-horizon planning. A natural variant of the finite-horizon plan-
ning problem is to consider expected time horizon, instead of the fixed time
horizon. In the finite-horizon problem the allowed stopping time of the planning
problem is a Dirac distribution at time T . In expected finite-horizon problem
the expected stopping time is T . A well-known example where the fixed finite-
horizon and the expected finite-horizon problems are fundamentally different is
playing Prisoner’s Dilemma: if the time horizon is fixed, then defection is the
only dominant strategy, whereas for expected finite-horizon problem coopera-
tion is feasible [12, Chapter 5]. Another classical example of expected finite
horizon that is well-studied is the notion of discounting, where at each time step
the stopping probability is λ, and this corresponds to an expected stopping time
equal to 1/λ [5].

Specified vs. unknown distribution. For the expected finite-horizon problem
there are two variants: (a) specified distribution: the stopping-time distribution
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with finite support is specified; and (b) unknown distribution: the stopping-
time distribution is unknown, and either resolved as the best-case scenario,
or resolved as the worst-case scenario by an adversary. The expected finite-
horizon problem with adversarial distribution represents the robust version of
the planning problem, where the distribution is unknown and the adversary
represents the worst-case scenario.

Motivation. We now present some motivation to study the expected stopping-
time problem with adversarial distribution. Our framework is relevant in the
following scenarios: first, in many scenarios the stopping-time distribution is
not known precisely, and for robust analysis the distribution is chosen adver-
sarially; second, as mentioned before the well-studied discounted-sum model is
a specific example that makes an assumption on the shape of the stopping-time
distribution. A weaker assumption is to consider time-varying discount fac-
tors [4]. If the discount factors are not known, then robust solutions require the
adversarial choice of the distribution. The above scenarios suggest that com-
plex stopping-time distributions are required to model realistic scenarios, and if
the precise parameters are unknown, then robust solutions require adversarial
choices. Moreover, in all cases when the stopping-time distribution is important
yet unknown, a conservative estimate (i.e., lower bound) of the optimal value is
obtained using the adversarial choice. Thus the problems we consider present
robust extensions of the classical finite-horizon planning that has a wide range
of applications.

Results. In this work, we consider the expected finite-horizon planning problems
in graphs. To the best of our knowledge this problem has not been studied in
the literature.
• Our first simple result is that for the specified distribution problem, the
optimal value can be computed in polynomial time (Theorem 1). However,
since the specified distribution generalizes the fixed finite-horizon problem,
the optimal plan description as an explicit transducer is of size T . Hence
the output complexity is not polynomial in general. Second, we consider
the decision problem whether there is a stationary plan to ensure a given
utility. We show that this problem is NP-complete (Theorem 2). We
establish the same results (Theorem 6 and Theorem 7) for the best-case
scenario of unknown distributions.

Our most interesting results are for the adversarial unknown distribution prob-
lem, which we describe below:
• We show that stationary plans suffice for optimality (Theorem 3).
• We show that the optimal value and an optimal stationary plan can be
computed in polynomial time (Theorem 4).

We highlight the surprising aspects and novelty of the above results.
• First, the result about optimality of stationary plans for adversarial dis-
tribution is surprising and counter-intuitive. In the classical finite-horizon
problem (and in the specified-distribution problem), the adversary does
not have any choice, and in the best-case scenario the choice of the distri-
bution is made favorably. In terms of the choice of plans and the choice
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of stopping-time distributions, in the first case there is only one quantifi-
cation (over the choice of plans), and in the second case there are two
quantifications, but no quantifier alternation. In the above cases, sta-
tionary plans do not suffice for optimality. In contrast, we show that in
the presence of an adversary the simpler class of stationary plans suffices
for optimality. The adversarial case represents a quantifier alternation
between the choice of plans and stopping-time distribution. Quite sur-
prisingly our results establish that simpler plans suffice for optimality in
the quantifier alternation case as compared to the cases with no quantifier
alternation, or only one quantifier.
• For the expected finite-horizon problem with adversarial distribution, the
backward induction approach does not work, as there is no a-priori bound
on the stopping time. We develop new algorithmic ideas to establish
polynomial-time complexity. Note that our algorithm also computes sta-
tionary optimal plans (which are as well optimal among all plans) in poly-
nomial time, whereas computing stationary optimal plans for fixed finite
horizon, or specified distribution, is NP-complete. Thus again our algo-
rithm establishes a surprising result: a problem with quantifier alterna-
tion can be solved in polynomial-time, whereas the same problem without
quantifier alternation is NP-complete.

Our results are summarized in Table 1 and are relevant for synthesis of
robust plans for expected finite-horizon planning.

2. Preliminaries

Weighted graphs. A weighted graph G = 〈V,E,w〉 consists of a finite set V of
vertices, a set E ⊆ V × V of edges, and a function w : E → Z that assigns a
weight to each edge of the graph.

Plans and utilities. A plan is an infinite path in G from a vertex v0, that is a
sequence ρ = e0e1 . . . of edges ei = (vi, v

′
i) ∈ E such that v′i = vi+1 for all i ≥ 0.

A path induces a sequence of utilities u0, u1, . . . where ui =
∑

0≤k≤i w(ek) for
all i ≥ 0. We denote by UG the set of all sequences of utilities induced by the
paths of G. For finite paths ρ = e0e1 . . . ek (i.e., finite prefixes of paths), we
denote by start(ρ) = v0 and end(ρ) = v′k the initial and last vertex of ρ, and by
|ρ| = k + 1 the length of ρ.

Plans as transducers. A plan is described by a transducer (Mealy machine or
Moore machine [8]) that given a prefix of the path (i.e., a finite sequence of
edges) chooses the next edge. A stationary plan is a path ρ = e0e1 . . . ek where
for every vertex the same choice of edge is made always, that is for every edge
ei = (vi, v

′
i) and ej = (vj , v

′
j) in ρ, if vi = vj then v′i = v′j . We define the size of

a Mealy or Moore machine to be its number of states. A stationary plan as a
Mealy machine has one state, and as a Moore machine has at most |V | states.
Given a graph G we denote by SG the set of all sequences of utilities induced
by stationary plans in G.
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Distributions and stopping times. A sub-distribution is a function δ : N→ [0, 1]
such that pδ =

∑

t∈N
δ(t) ∈ (0, 1]. The value pδ is the probability mass of δ.

Note that pδ 6= 0. The support of δ is Supp(δ) = {t ∈ N | δ(t) 6= 0}, and we say
that δ is the sum of two sub-distributions δ1 and δ2, written δ = δ1+δ2, if δ(t) =
δ1(t)+δ2(t) for all t ∈ N. A stopping-time distribution (or simply, a distribution)
is a sub-distribution with probability mass equal to 1. We denote by ∆ the set
of all stopping-time distributions, and by ∆⇈ the set of all distributions δ with
|Supp(δ)| ≤ 2, called the bi-Dirac distributions.

Expected utility and expected time. The expected utility of a sequence u =
u0, u1, . . . of utilities under a sub-distribution δ is Eδ(u) =

1
pδ
·
∑

t∈N
ut ·δ(t). In

particular, the expected utility of the identity sequence 0, 1, 2, . . . is called the
expected time, denoted by Eδ.

3. Expected Finite-horizon: Specified Distribution

Given a stopping-time distribution δ with finite support, we show that the
optimal expected utility can be computed in polynomial time. This result is
straightforward.

Theorem 1. Let G be a weighted graph. Given a stopping-time distribution
δ = {(t1, p1), . . . , (tk, pk)} ⊆ N × Q, with all numbers encoded in binary, the
optimal expected utility supu∈UG

Eδ(u) can be computed in polynomial time.

A special case of the problem in Theorem 1 is the fixed-length optimal path
problem, which is to find an optimal path (that maximizes the total utility)
of fixed length T , corresponding to the distribution δ = {(T, 1)}. A pseudo-
polynomial time solution is known for this problem, based on a value-iteration
algorithm [11, Section 2.3]. The algorithm runs in time O(T · |V |2) (where T is
encoded in binary), and relies on the following recursive relation, where At(v)
is the optimal value among the paths of length t that start in v:

At(v) = max
v′∈V

w(v, v′) +At−1(v
′).

A polynomial algorithm running in O(log(T ) · |V |3) to obtain AT (v) is to
compute, in the max-plus algebra1, the T -th power of the transition matrixM of
the weighted graph, whereMij = w(i, j) if (i, j) ∈ E, andMij = −∞ otherwise.
The powerMT can be computed in time O(log(T ) · |V |3) by successive squaring
of M and summing up according to the binary representation of T . This gives
a polynomial algorithm to compute AT (v), which is the largest element in the
row of MT corresponding to v. Note that the entries of the matrix MT are
bounded by T ·W , where W is the largest absolute weight in the graph. We
now present the proof of Theorem 1.

1In the max-plus algebra, the matrix product C = A·B is defined by Cij = maxk Aik+Bkj .
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v0 v1 v2 . . . vn−2 vn−1vn
−1 0 0 0 0

1

1

−1

Figure 1: A weighted graph (with n+1 vertices) where the optimal path (of length T = k·n+1)
is not simple: at v0, the optimal plan chooses k times the edge (v0, v1), and then the edge
(v0, vn).

Proof of Theorem 1. Given the weighted graph G = 〈V,E,w〉 and the distri-
bution δ = {(t1, p1), . . . , (tk, pk)}, we reduce the problem to finding an optimal
path of length k in a layered graph G′ where the transitions between layer i and
layer i + 1 mimic sequences of ti+1 − ti transitions in the original graph. For
t ≥ 2, define the t-th power of E recursively by Et = {(v0, v2) | ∃v1 : (v0, v1) ∈
E ∧ (v1, v2) ∈ Et−1} where E1 = E. Let M be the transition matrix of the
original weighted graph. We construct the graph G′ = 〈V ′, E′, w′〉 where

• V ′ = V × {0, . . . , k},

• E′ = {(〈v, i〉, 〈v′, i + 1〉) | (v, v′) ∈ Eti+1−ti ∧ 0 ≤ i < k} where t0 = −1,
and

• w′(〈v, i〉, 〈v′, i+ 1〉) = (pi+1 + pi+2 + · · ·+ pk) · (M
ti+1−ti)v,v′ .

The optimal expected utility supu∈UG
Eδ(u) is the same as the optimal fixed-

length path value for length k in G′. The correctness of this reduction relies on
the fact that the probability of not stopping before time ti+1 is pi+1 + pi+2 +
· · · + pk and the largest utility of a path of length ti+1 − ti from v to v′ is
(M ti+1−ti)v,v′ . Given a path (v0, v1)(v1, v2) . . . (vk−1, vk) of length k in G′ (that
induces a sequence w′

0 . . . w
′
k−1 of weights), we can construct a path of length

tk +1 in G (visiting vi at time ti and inducing a sequence u of utilities), and we
show that the value of the path of length k in G′ is the same as the expected
utility of the corresponding path in G with stopping time distributed according
to δ, as follows (where ut0 = 0):

k−1∑

i=0

w′
i =

k−1∑

i=0





k∑

j=i+1

pj



 · (uti+1
− uti)

=
k∑

j=1

pj ·

j−1
∑

i=0

(uti+1
− uti)

=

k∑

j=1

pj · utj .
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Conversely, given an arbitrary path in G, let vi be the vertex visited at time ti,
and consider the path (〈v0, 0〉, 〈v1, 1〉)(〈v1, 1〉, 〈v2, 2〉) . . . (〈vk−1, k − 1〉, 〈vk, k〉)
in G′, which has a total utility at least the same as the expected utility of the
given path in G.

Therefore, the problem can be solved by finding the optimal fixed-length
path value for length k in G′, which can be done in polynomial time (see the
remark after Theorem 1).

In the fixed-horizon problem with δ = {(T, 1)}, the optimal plan need not be
stationary. The example below shows that in general the transducer for optimal
plan requires O(T/|V |) states as Mealy machine, and O(T ) states as Moore
machine.

Example 1. Consider the graph of Figure 1 with |V | = n+1 vertices, and time
bound T = k · n + 1 (for some parameter k). The optimal plan from v0 is to
repeat k times the cycle v0, v1, . . . , vn−1 and then switch to vn. This path has
value 1, and all other paths have lower value: if only the cycle v0, v1, . . . , vn−1

is used, then the value is at most 0, and the same holds if the cycle on vn is ever
used before time T . The optimal plan can be represented by a Mealy machine
of size O(T/|V |) that counts the number k ∈ O(T ) of cycle repetitions before
switching to vn. A Moore machine requires size O(T ) as it needs a new memory
state at every step of the plan.

Example 2. In the example of Figure 2 the optimal plan needs to visit several
different cycles, not just repeating a single cycle and possibly switching only at
the end. The graph consists of three loops on v0 with weight 0 and respective
length 6, 10, and 15, and an edge to v1 with weight 1. For expected time T =
6 + 10 + 15 + 1, the optimal plan has value 1 and needs to stop exactly when
reaching v1 (to avoid the negative self-loop on v1). It is easy to show that the
remaining length T − 1 = 31 can only be obtained by visiting each cycle once:
as 31 is not an even number, the path has to visit a cycle of odd length, thus
the cycle of length 15; analogously, as 31 is not a multiple of 3, the path has to
visit the cycle of length 10, etc. This example can be easily generalized to an
arbitrary number of cycles by using more prime numbers.

We now consider the complexity of computing optimal plans among station-
ary plans.

Theorem 2. Let G be a weighted graph and λ be a rational utility threshold.
Given a stopping-time distribution δ, whether supu∈SG

Eδ(u) ≥ λ (i.e., whether
there is a stationary plan with utility at least λ) is NP-complete. The NP-
hardness holds for the fixed-horizon problem δ = {(T, 1)}, even when T and all
weights are in O(|V |), and thus expressed in unary.

Proof. The NP upper bound is easily obtained by guessing a stationary plan
(i.e., one edge for each vertex of the graph) and checking that the value of the
induced path is at least λ.
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v0 v1
1

0

0

0

L1

L2

L3

−1

Figure 2: Three loops of respective length L1 = 6 = 2 · 3, L2 = 10 = 2 · 5, and L3 = 15 = 3 · 5.
For T = 32 = 6 + 10 + 15 + 1, the optimal plan needs to visit each cycle once.

The NP-hardness follows from a result of [6] where, given a directed graph G
and four vertices w, x, y, z, the problem of deciding the existence of two vertex-
disjoint simple paths (one from w to x and the other from y to z) is shown to
be NP-complete. It easily follows that given a directed graph, and two vertices
v1, v2, the problem of deciding the existence of a simple cycle that contains
v1 and v2 is NP-complete. We present a reduction from the latter problem,
illustrated in Figure 3. We construct a weighted graph from G, by adding two
vertices start and sink, with an edge from start to each successor of v1, an edge
(v1, sink), and a self-loop on sink. All edges have weight 0 except those from v2
with weight 1, and the edge (v1, sink) with weight n+ 1 where n is the number
of vertices in G. Let T = n+ 1 and the utility threshold λ = n+ 2.

If there exists a simple cycle containing v1 and v2 in G, then there exists a
stationary plan from start that visits v2 then v1 in at most n steps. This plan
can be prolonged to a plan of n+1 steps by going to sink and using the self-loop.
The total weight is n+ 2 = λ.

If there is no simple cycle containing v1 and v2 in G, then no stationary plan
can visit first v2 then v1. We show that every stationary plan has value at most
n + 1 < λ. First if a stationary plan uses the edge (v1, sink), then v2 is not
visited and all weights are 0 except the weight n+1 from v1 to sink. Otherwise,
if a stationary plan does not use the edge (v1, sink), then all weights are at most
1, and the total utility is at most n + 1. In both cases, the utility is smaller
than λ, which establishes the correctness of the reduction.

4. Expected Finite-horizon: Adversarial Distribution

Our main result is the computation of the following optimal values under
adversarial distributions2. Given a weighted graph G and an expected stopping
time T ∈ Q, we define the following:

2Adversarial distributions may have finite or infinite support.
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G

v1

v2
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sink

·

·

·

· · ·

1 1 1

n+ 1

0

Figure 3: The NP-hardness reduction of Theorem 2.

• Optimal values of plans. For a plan ρ that induces the sequence u of
utilities, let

val (ρ, T ) = val(u, T ) = inf
δ∈∆:Eδ=T

Eδ(u).

• Optimal value. The optimal value is the supremum value over all plans:

val(G, T ) = sup
u∈UG

val(u, T ).

Our two main results are related to the plan complexity and a polynomial-time
algorithm.

Theorem 3. For all weighted graphs G and for all T we have

val (G, T ) = sup
u∈UG

val(u, T ) = sup
u∈SG

val(u, T ),

i.e., optimal stationary plans exist for expected finite-horizon under adversarial
distribution.

Remark 1. Note that in contrast to the fixed finite-horizon problem, where sta-
tionary plans do not suffice, we show in the presence of an adversary, the simpler
class of stationary plans are sufficient for optimality in expected finite-horizon.
Moreover, while optimal plans require O(T/|V |)-size Mealy (resp., O(T )-size
Moore) machines for fixed-length plans, our results show that under adversarial
distribution optimal stationary plans exist (Theorem 3) and thus require O(1)-
size Mealy (resp., O(|V |)-size Moore) machines.

Theorem 4. Given a weighted graph G and expected finite-horizon T , deciding
whether val (G, T ) ≥ 0 can be done in O(|V |16 · log(T )) time, and computing
val(G, T ) can be done in O(|V |16 · log(W · |V |) · log(T )) time (where W is the
largest absolute weight in the graph G).
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Figure 4: Bi-Dirac distributions are sufficient.

4.1. Theorem 3: Plan Complexity

In this section we prove Theorem 3. We start with a basic property of sub-
distributions. Two sub-distributions δ, δ′ are equivalent if they have the same
probability mass, and the same expected time, that is pδ = pδ′ and Eδ = Eδ′ .
The following result is straightforward.

Lemma 1. If δ1, δ
′
1 are equivalent sub-distributions, and δ1 + δ2 is a sub-

distribution, then δ1 + δ2 and δ′1 + δ2 are equivalent sub-distributions.

Bi-Dirac distributions are sufficient. By Lemma 1, we can decompose distribu-
tions as the sum of two sub-distributions, and we can replace one of the two sub-
distributions by a simpler (yet equivalent) one to obtain an equivalent distribu-
tion. We show that, given a sequence u of utilities, for all sub-distributions with
three time points t1, t2, t3 in their support (see Figure 4 where t1 < t2 < T < t3),
there exists an equivalent sub-distribution with only two time points in its sup-
port that gives a lower expected value for u. Intuitively, if one has to distribute
a fixed probability mass (say 1) among three time points with a fixed expected
time T , assigning probability pi at time ti, then we have p1 + p2 + p3 = 1,
which corresponds to the set of convex combinations of the three points (ti, ui)
(see the triangle in Figure 4), and we have p1 · t1 + p2 · t2 + p3 · t3 = T , which
corresponds to those convex combinations whose first coordinate is T (see the
vertical segment at T within the triangle in Figure 4). Finally, the expected
utility (to be minimized) is p1 ·ut1 + p2 ·ut2 + p3 · ut3 , which is the second coor-
dinate of the convex combinations. The least expected utility can be obtained
for either p1 = 0 or p2 = 0 if t1, t2 < T (for p1 = 0 in Figure 4), and for either
p2 = 0 or p3 = 0 if T < t2, t3. In both cases, bi-Dirac distributions are sufficient
to compute the optimal expected value.

Lemma 2 (Bi-Dirac distributions are sufficient). For all sequences u of utilities,
for all time bounds T , the following holds:

inf{Eδ(u) | δ ∈ ∆ ∧ Eδ = T } =

inf{Eδ(u) | δ ∈ ∆⇈ ∧ Eδ = T },

i.e., the set ∆⇈ of bi-Dirac distributions suffices for the adversary.
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Proof. First, we show that for all distributions δ ∈ ∆ with Eδ = T ,

(i) there exists an equivalent distribution δ′ ∈ ∆ such that |Supp(δ′)∩ [0, T −
1]| ≤ 1 and Eδ′(u) ≤ Eδ(u), i.e., only one point before T in the support is
sufficient, and

(ii) there exists an equivalent distribution δ′ ∈ ∆ such that |Supp(δ′)∩ [0, T −
1]| ≤ 1, and |Supp(δ′) ∩ [T,∞)| ≤ 1, and Eδ′(u) ≤ Eδ(u), i.e., only one
point before T and one point after T in the support are sufficient.

The result of the lemma follows from these two claims.
To prove claim (i), first consider an arbitrary sub-distribution δ with

Supp(δ) = {t1, t2, t3} where t1 < t2 < t3. Then t1 < Eδ < t3 and either
Eδ ≤ t2, or t2 ≤ Eδ.

We show that among the sub-distributions δ′ equivalent to δ and with
Supp(δ′) ⊆ {t1, t2, t3}, the smallest expected utility of u is obtained for
Supp(δ′) ( {t1, t2, t3}. We present below the argument in the case t2 ≤ Eδ,
and show that either δ′(t1) = 0, or δ′(t2) = 0. A symmetric argument in the
case Eδ ≤ t2 shows that either δ′(t2) = 0, or δ′(t3) = 0.

Let x = δ′(t1), y = δ′(t2), and z = δ′(t3). Since δ′ and δ are equivalent, we
have

x+ y + z = pδ

x · t1 + y · t2 + z · t3 = pδ · Eδ

Hence

z = pδ − x− y

x · (t1 − t3)
︸ ︷︷ ︸

x′

+ y · (t2 − t3)
︸ ︷︷ ︸

y′

= pδ · (Eδ − t3)

The expected utility of u under δ′ is

Eδ′ (u) = x · ut1 + y · ut2 + z · ut3

= x · (ut1 − ut3) + y · (ut2 − ut3) + ut3 · pδ

= x′ ·
ut1 − ut3
t1 − t3

+ y′ ·
ut2 − ut3
t2 − t3

+ ut3 · pδ (1)

Since x′+y′ is constant and x′, y′ ≤ 0, the least value of Eδ′(u) is obtained either

for x′ = 0 (if
ut1

−ut3

t1−t3
≤

ut2
−ut3

t2−t3
), or for y′ = 0 (otherwise), thus either for x = 0,

or for y = 0. Note that for x = 0, we have y = pδ·(Eδ−t3)
t2−t3

and z = pδ·(t2−Eδ)
t2−t3

,
which is a feasible solution as 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1 since t2 ≤ Eδ ≤ t3, and
0 < pδ ≤ 1. Symmetrically, for y = 0 we have a feasible solution.

As an intermediate remark, note that for pδ = 1 and Eδ = T , we get (for
y = y′ = 0, and symmetrically for x = x′ = 0)

Eδ′ (u) = ut3 +
T − t3
t1 − t3

· (ut1 − ut3). (2)

11



To complete the proof of Claim (i), given an arbitrary distribution δ with
Eδ = T , we use the above argument to construct a distribution equivalent3 to δ
with smaller expected utility and one less point in the support. We repeat this
argument until we obtain a distribution δ′ with support that contains at most
two points in the interval [0, k] where k is such that

∑

i≤k δ(i) · i > T − 1. Such
a value of k exists since Eδ =

∑

i∈N
δ(i) · i = T . By the construction of δ′, we

have
∑

i≤k δ
′(i) · i > T − 1 and therefore at most one point in the support of δ′

lies in the interval [0, T − 1], which completes the proof of Claim (i).
To prove claim (ii), consider a distribution δ from (i) with Eδ = T , thus we

can assume that δ(t0) 6= 0 for some t0 < T , and δ(t) = 0 for all t < T with

t 6= t0. Let ν = inft≥T
ut−ut0

t−t0
, and we consider two cases:

• if for all t ≥ T such that t ∈ Supp(δ), we have
ut−ut0

t−t0
= ν, then by an

analogous of Equation (1), we get

Eδ(u) = ut0 +
∑

t≥T

δ(t) · (t− t0) ·
ut − ut0
t− t0

= ut0 + ν ·
∑

t≥0

δ(t) · (t− t0)

= ut0 + ν · (T − t0)

which is the expected utility of u under a bi-Dirac distribution with support
{t0, t} where t ≥ T is any element of Supp(δ) (see Equation (2));

• otherwise there exists t ≥ T such that t ∈ Supp(δ) and
ut−ut0

t−t0
> ν. By an

analogous of Equation (1), we have

Eδ(u)− ut0 =
∑

t≥T

δ(t) · (t− t0) ·
ut − ut0
t− t0

where
∑

t≥T

δ(t) · (t− t0) = T − t0,

that is
Eδ(u)−ut0

T−t0
is a convex combination of elements greater than or equal

to ν, among which one is greater than ν. It follows that
Eδ(u)−ut0

T−t0
> ν, and

thus there exists ǫ > 0 such that
Eδ(u)−ut0

T−t0
> ν + ǫ.

Consider t1 ≥ T such that
ut1

−ut0

t1−t0
< ν + ǫ (which exists by definition of ν),

and let δ′ be the bi-Dirac distribution δ′ with support {t0, t1} and expected
time T . By an analogous of Equation (2), we have

Eδ′ (u)− ut0 =
T − t0
t1 − t0

· (ut1 − ut0)

< (T − t0) · (ν + ǫ) < Eδ(u)− ut0

3Equivalence follows from Lemma 1.
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0 Tt1 t2 t

optimal value of the path

(a) When an optimal distribution exists

0 Tt1 t

optimal value of the path

(b) When no optimal distribution exists

Figure 5: Geometric interpretation of the value of a path.

Therefore, Eδ′ (u) < Eδ(u) which concludes the proof since δ′ is a bi-Dirac
distribution with Eδ′ = T .

Geometric interpretation. It follows from the proof of Lemma 2 (and Equa-
tion (2)) that the value of the expected utility of a sequence u of utilities under
a bi-Dirac distribution with support {t1, t2} (where t1 < T < t2) and expected
time T is

ut1 +
T − t1
t2 − t1

· (ut2 − ut1).

In Figure 5a, this value is obtained as the intersection of the vertical axis at
T and the line that connects the two points (t1, ut1) and (t2, ut2). Intuitively,
the optimal value of a path is obtained by choosing the two time points t1 and
t2 such that the connecting line intersects the vertical axis at T as down as
possible.

Lemma 3. For all sequences u of utilities, if ut ≥ a · t + b for all t ≥ 0, then
the value of the sequence u is at least a · T + b.

Proof. By Lemma 2, it is sufficient to consider bi-Dirac distributions, and for
all bi-Dirac distributions δ with arbitrary support {t1, t2} the value of u under
δ is

ut1 +
T − t1
t2 − t1

· (ut2 − ut1)

=
ut1 · (t2 − T ) + ut2 · (T − t1)

t2 − t1

≥
(a · t1 + b) · (t2 − T ) + (a · t2 + b) · (T − t1)

t2 − t1

≥ a · T + b

13



0 Tt1 t2 t

optimal value of the path

(a) For the example of Figure 5a.

0 Tt1 t

optimal value of the path

(b) For the example of Figure 5b.

Figure 6: Convex hull interpretation of the value of a path.

It is always possible to fix an optimal value of t1 (because t1 ≤ T is to be
chosen among a finite set of points), but the optimal value of t2 may not exist,
as in Figure 5b. The value of the path is then obtained as t2 →∞. In general,
there exists t1 ≤ T such that it is sufficient to consider bi-Dirac distributions
with support containing t1 to compute the optimal value. We say that t1 is a
left-minimizer of the expected value in the path. Given such a value of t1, let
ν = inft2≥T

ut2
−ut1

t2−t1
, and we show in Lemma 4 that ut ≥ ut1 + (t − t1) · ν, for

all t ≥ 0. This motivates the following definition.

Line of equation fu(t). Given a left-minimizer t1, we define the line of equation
fu(t) as follows:

fu(t) = ut1 + (t− t1) · ν.

Note that the optimal expected utility is

min
0≤t1≤T

inf
t2≥T

ut1 +
T − t1
t2 − t1

· (ut2 − ut1) = min
0≤t1≤T

ut1 + (T − t1) · ν = fu(T ).

In other words, fu(T ) is the optimal value.

Lemma 4 (Geometric interpretation). For all sequences u of utilities, we have
ut ≥ fu(t) for all t ≥ 0, and the expected value of u is fu(T ).

Proof. The result holds by definition of ν for all t ≥ T . For t < T , assume
towards contradiction that ut < ut1 + (t − t1) · ν. Let ε > 0 be such that
ut = ut1 +(t− t1) ·ν−ε. We obtain a contradiction by showing that there exists
a bi-Dirac distribution under which the expected value of u is smaller than the
optimal value of u. Consider a bi-Dirac distribution with support {t, t2} where
the value t2 is defined later.
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fu(t)

ρ

ρ′

C

C

C

(a) Repeating a good cycle (Lemma 6).

fu(t)

ρ

ρ′

C

(b) Removing a bad cycle (Lemma 7).

Figure 7: Constructing a lasso without decreasing the value (Lemma 6 and Lemma 7).

We need to show that

ut +
T − t

t2 − t
· (ut2 − ut) < ut1 + (T − t1) · ν,

that is
ut · (t2 − T ) + ut2 · (T − t)

t2 − t
< ut1 + (T − t1) · ν

which, since ut = ut1 + (t− t1) · ν − ε, holds if (successively):

ut1 · (t2 − T ) + (t− t1) · (t2 − T ) · ν + ut2 · (T − t) ≤ ε · (t2 − T ) + ut1 · (t2 − t) +
(t2 − t) · (T − t1) · ν,

ut1 · (t− T ) + ut2 · (T − t) + ν · (t · t2 + t1 · T − t2 · T − t · t1) ≤ ε · (t2 − T ),

(ut2 − ut1) · (T − t) + ν · (t2 − t1) · (t− T )− ε · (t2 − T ) ≤ 0,

(T − t) ·
(

ut2
−ut1

t2−t1
− ν

)

· (t2 − t1)− ε · (t2 − T ) ≤ 0.

We consider two cases: (i) if the infimum ν is attained, then we have ν =
ut2

−ut1

t2−t1
for some t2 ≥ T , and the inequality holds; (ii) otherwise, we can choose

t2 arbitrarily, and large enough to ensure that (T − t) ·
(

ut2
−ut1

t2−t1
− ν

)

is smaller

than ε
2 , so that the inequality holds.

A corollary of the geometric interpretation lemma is that the value of a
path can be obtained as the intersection of the vertical line at time T with the
boundary of the convex hull of the region above the sequence of utilities, namely
convexHull({(t, y) ∈ N× R | y ≥ ut}). This result is illustrated in Figure 6.

Simple lassos are sufficient. A lasso is a path of the form ACω where A and C
are finite paths (with C a nonempty cycle), where ACω is A followed by infinite
repetition of the cycle C. A lasso is simple if all strict prefixes of the finite path
AC are acyclic. In other words, simple lassos correspond to stationary plans.

15



We show that there is always a simple lasso with optimal value. Our proof
has four steps. Given a path ρ that gives the utility sequence u, let ν be the
slope of fu(t). Given a cycle C in the path ρ, let SC be the sum of the weights
in C and let MC = SC

|C| be the average weight of the cycle edges. The cycle C

is good if MC ≥ ν, i.e., the average weight of the cycle is at least ν, and bad
otherwise.

• First, we show (in Lemma 5) that every path contains a good cycle.

• Second, we show (in Lemma 6) that if the first cycle in a path is good,
then repeating the cycle cannot decrease the value of the path.

• Third, we show (in Lemma 7) that removing a bad cycle from a path
cannot decrease the value of the path.

• Finally, we show (in Lemma 8) that given any path, using the above two
operations of removal of bad cycles and repetition of good cycles, we obtain
a simple lasso that does not decrease the value of the original path.

Thus we establish that simple lassos (or stationary plans) are sufficient for op-
timality. To formalize the ideas we consider the notion of cycle decomposition.

Cycle decomposition. The cycle decomposition of a path ρ = e0e1 . . . is an infi-
nite sequence of simple cycles C1, C2, . . . obtained as follows: push successively
e0, e1, . . . onto a stack, and whenever we push an edge that closes a (simple)
cycle, we remove the cycle from the stack and append it to the cycle decom-
position. Note that the stack content is always a prefix of a path of length at
most |V |.

Lemma 5. Let T ∈ N. Given a path ρ that induces a sequence u of utilities, let
ν = min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
. Then, in the cycle decomposition of ρ there

exists a simple cycle C with MC ≥ ν.

Proof. Towards contradiction, assume that all cycles C in the cycle decomposi-
tion of ρ are such that MC < ν. Let t1 be a left-minimizer of ρ. Since all cycles
in ρ have average weight smaller than ν, we have:

lim inf
t2→∞

ut2 − ut1
t2 − t1

< ν

Since the infimum is bounded by the liminf, it follows that

min
0≤t1≤T

inf
t2≥T

ut2 − ut1
t2 − t1

< ν

which is in contradiction with the definition of ν.

We show that repeating a good cycle, and removing a bad cycle from a path
cannot decrease the value of the path.
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Lemma 6. Let T ∈ N. If the first cycle C in the cycle decomposition of a path
ρ is good, i.e., MC ≥ ν where ν = min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
, then there exists

a lasso ρ′ such that val(ρ′, T ) ≥ val(ρ, T ).

Proof. Let u be the sequence of utilities induced by ρ. Since C is the first cycle
in ρ, there is a prefix of ρ of the form AC where A is a finite path. Consider
the lasso ρ′ = ACω and its induced sequence of utilities u′.

We show that the value of ρ′ is at least the value of ρ. By Lemma 4, the
optimal value of u is fu(T ), and the sequence u is above the line fu(t) (which
has slope ν), i.e., u(t) ≥ fu(t) for all t ≥ 0. By Lemma 3 it is sufficient to show
that u′ is above the line fu(t) to establish that the optimal value of u′ is at least
fu(T ), that is val(ρ′, T ) ≥ val(ρ, T ), and conclude the proof (the argument is
illustrated in Figure 7a).
We show that u′(t) ≥ fu(t) for all t ≥ 0:

• either t ≤ |A|+ |C|, and then u′(t) = u(t) ≥ fu(t),

• or t > |A|+ |C|, and then let k ∈ N such that |A| ≤ t− k · |C| ≤ |A|+ |C|,
and we have

u′(t) = u(t− k · |C|) + k · SC (ρ′ = ACω)

≥ fu(t− k · |C|) + k ·MC · |C|

(u is above fu(t) and SC =MC · |C|)

≥ fu(t)− ν · k · |C|+ k ·MC · |C|

(fu(t) is linear with slope ν)

≥ fu(t) + k · |C| · (MC − ν)

≥ fu(t). (MC ≥ ν)

Lemma 7. Let T ∈ N. If a path ρ contains a bad cycle C, that is such that
MC < ν where ν = min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
, then removing C from ρ gives

a path ρ′ such that val(ρ′, T ) ≥ val(ρ, T ).

Proof. Let u, u′ be the sequences of utilities induced by respectively ρ and ρ′, By
the same argument as in the proof of Lemma 6 (using Lemma 3 and Lemma 4),
it is sufficient to show that u′ is above the line fu(t). Since C is a cycle in
ρ, there is a prefix of ρ of the form AC where A is a finite path, and for all
t ≥ 0 we have (the argument is illustrated in Figure 7b): either t ≤ |A|, then
u′(t) = u(t) ≥ fu(t), or t > |A|, and then
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u′(t) = u(t+ |C|)− SC (C is removed from ρ to get ρ′)

≥ fu(t+ |C|)−MC · |C| (u is above fu(t) and SC =MC · |C|)

≥ fu(t) + ν · |C| −MC · |C| (fu(t) is linear with slope ν)

≥ fu(t) + |C| · (ν −MC)

≥ fu(t). (MC < ν)

Now we can show how to construct a simple lasso with value at least the
value of a given arbitrary path, and it follows that simple lassos are sufficient
for optimality.

Lemma 8. Let T ∈ N. There exists a simple lasso ACω such that
val(ACω , T ) = val(G, T ).

Proof. Given an arbitrary path ρ, we construct a simple lasso with at least the
same value as ρ. It follows that the optimal value is obtained by stationary
plans. The construction repeats the following steps:

1. Let C be the first cycle in the cycle decomposition of ρ;

2. if C is a bad cycle for the original path ρ, then we remove it to obtain a
new path ρ′. We continue the procedure with ρ′ (go to step 1.);

3. otherwise C is a good cycle for the original path ρ. Let A be the prefix of
ρ until C starts, and we construct the lasso ACω.

First, note that if the above procedure terminates, then the constructed lasso
has a value at least the value of the original path ρ (by Lemma 6 and Lemma 7),
and it is a simple lasso by definition of the cycle decomposition.

Now we show that the procedure always terminates. By Lemma 5, there
always exists a good cycle in the cycle decomposition of ρ, and thus eventu-
ally a good cycle becomes the first cycle in the path constructed by the above
procedure, which then terminates.

Theorem 3 follows from the above lemmas.

4.2. Theorem 4: Algorithm and Complexity Analysis

In this section we present our algorithm and then the complexity analysis
(Theorem 4).

Algorithm. The key challenges to obtain an algorithm are as follows. First,
while for the fixed-horizon problem backward induction or powering of transition
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Figure 8: The path ρ is preferred to ρ′.

matrix leads to an algorithm, for expected time horizon with an adversary, there
is no a-priori bound on the number of steps, and hence the backward induction
approach is not applicable. Second, stationary optimal plans suffice, and as
shown in Theorem 2 computing optimal stationary plans for the fixed horizon
problem is NP-hard. We present an algorithm that iteratively constructs the
most promising candidate paths according to a partial order of the paths, and
the key is to define the partial order.

It follows from the geometric interpretation lemmas (Lemma 3 and Lemma 4)
that the value of a path is at least 0 if its sequence of utilities is above some line
that contains the point (T, 0).

Lemma 9. The value of a sequence u of utilities is at least 0 if and only if there
exists a slope M ∈ R such that ut ≥M · (t− T ) for all t ≥ 0.

Proof. If the value of u is at least 0, then fu(T ) ≥ 0 and by Lemma 4 we have
ut ≥ fu(t) for all t ≥ 0. Then ut ≥ fu(t) − fu(T ) (which is a linear function
of t) and we can take for M the value of the coefficient of t in the expression
fu(t)− fu(T ).

To prove the other direction, consider the line of equation f(t) =M · (t−T ),
and by Lemma 3, the value of the sequence u is at least f(T ) = 0.

The expression ut −M · (t − T ) that appears in the condition of Lemma 9
can be obtained by subtracting M to each weight of the graph, and shifting the
sum of the weights by the constant T ·M . Since M is unknown, we can define
the following symbolic constraint onM (associated with a path ρ) that ensures,
if it is satisfiable, that the sequence of utilities of ρ = e0e1 . . . ek is above the
line of equation f(t) =M · (t− T ) :

ϕρ ≡
∧

0≤i≤k

(ui ≥M · (i− T ))
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Note that k = |ρ| − 1, and the constraint ϕρ represents an interval (possibly
empty, possibly unbounded) of values for M . Intuitively, a finite path is more
promising (thus preferred) in order to be prolonged to an infinite path with
value at least 0 if the total sum of weights is large and the constraint ϕρ is weak
(see Figure 8a and Figure 8b). To each finite path ρ, we associate a pair 〈u, ψ〉
consisting of the sum u of the weights in ρ, and the constraint ψ = ϕρ.

Given two pairs 〈u, ψ〉, 〈u′, ψ′〉 (associated with paths ρ and ρ′ respectively),
we write 〈u, ψ〉 � 〈u′, ψ′〉 if u ≥ u′ and ψ′ implies ψ, and we say that ρ is
preferred to ρ′ (this is a partial order). Given a set S of such pairs, denote by
⌈
S
⌉
= {z1 ∈ S | ∀z2 ∈ S : z2 � z1 → z1 � z2} the set of �-maximal elements of

S. Note that the elements of
⌈
S
⌉
are pairwise �-incomparable.

Intuitively, if ρ and ρ′ end in the same vertex, and ρ is preferred to ρ′, then
it is easier to extend ρ than ρ′ to obtain an (infinite) path with expected value
at least 0. Formally, for all infinite paths π with start(π) = end(ρ) = end(ρ′) we
have val (ρ · π, T ) ≥ val(ρ′ · π, T ). We use this result in the following form.

Lemma 10. Let ρ1, ρA be two paths of the same length with the same end
state, i.e., end(ρ1) = end(ρA). If ρ1 is preferred to ρA, then for all paths ρC with
start(ρC) = end(ρA), the path ρ1 · ρC is preferred to the path ρA · ρC .

Proof sketch. Let ρ1C = ρ1 · ρC an ρAC = ρA · ρC . Denote by u1, uA, u1C , and
uAC the sum of the weights of the paths ρ1, ρA, ρ1 ·ρC , and ρA ·ρC respectively.

Since u1 ≥ uA and ϕρ
A
→ ϕρ1

, it is easy to see that u1C ≥ uAC , and that
for every length |ρ1| ≤ k ≤ |ρ1| + |ρC |, the sum of the weights of the prefix of
length k of ρ1 · ρC is at least as large as the sum of the weights of the prefix
of length k of ρA · ρC . It follows that ϕρAC

→ ϕρ1C
as well, hence ρ1 · ρC is

preferred to ρA · ρC .

Our algorithm uses the procedure BestPaths(t0, v0, u0, ψ0) (shown as Algo-
rithm 1) that iteratively computes the �-maximal pairs 〈u, ψ〉 corresponding
to the paths ρ1 of length 1, 2, . . . , |V | that start at time t0 in vertex v0 (see
Figure 9), and that prolong a path ρ♯ with sum of weight u0 and constraint ψ0

on M (where u is the sum of weights along ρ♯ · ρ1, and ψ ≡ ϕρ♯·ρ1
). We give a

precise statement of this result in Lemma 11.

Lemma 11 (Correctness of BestPaths). Let ρ♯ be a finite path of length t0, that
ends in state end(ρ♯) = v0 with sum of weight u0 and associated constraint ψ0

on M . Let D = BestPaths(t0, v0, u0, ψ0). Then,

• for all 0 ≤ i ≤ |V |, for all v1 ∈ V , for all pairs 〈u, ψ〉 ∈ D[t0+ i, v1], there
exists a path ρ1 of length i with start(ρ1) = v0 and end(ρ1) = v1, such that

– u is the sum of weights of the path ρ♯ · ρ1, and

– ψ ≡ ϕρ♯·ρ1
is the constraint on M associated with the path ρ♯ · ρ1;

• for all paths ρ1 of length i ≤ |V | such that start(ρ1) = v0 and end(ρ1) = v1,
there exists a pair 〈u′, ψ′〉 ∈ D[t0 + i, v1] such that 〈u′, ψ′〉 � 〈u, ψ〉 where
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Algorithm 1 BestPaths(t0, v0, u0, ψ0)

Input : t0 ∈ N is an initial time point, v0 is an initial vertex, u0 is the
initial sum of weights, and ψ0 is the initial constraint on the
slope parameter M .

Output: The table of �-maximal values of paths from v0 with initial
values t0, u0, ψ0.

begin
/* initialization */

1 D[t0, v0]← {〈u0, ψ0〉}
2 for v ∈ V \ {v0} do

3 D[t0, v]← ∅

/* iterations */

4 for i = 1, . . . , |V | do

5 for v ∈ V do

6 D[t0 + i, v]← ∅

7 for v1 ∈ V and 〈u1, ψ1〉 ∈ D[t0 + i− 1, v1] do

8 if (v1, v) ∈ E then

9 u← u1 + w(v1, v)
10 t← t0 + i− 1
11 ψ ← ψ1 ∧ (u ≥M · (t− T ))
12 D[t0 + i, v]← D[t0 + i, v] ∪ {〈u, ψ〉}

13 D[t0 + i, v]←
⌈
D[t0 + i, v]

⌉

14 return D
end

– u is the sum of weights of the path ρ♯ · ρ1, and

– ψ ≡ ϕρ♯·ρ1
is the constraint on M associated with the path ρ♯ · ρ1.

Proof. For the first item, the proof is by induction on i. The case i = 0 holds
since D[t0, v1] is nonempty only for v1 = v0 (lines 1-3 of Algorithm 1), and we
can take for ρ1 the empty path since then D[t0, v0] = {〈u0, ψ0〉} contains the
pair associated with ρ♯ = ρ♯ · ρ1.

For the inductive case, consider length i ≥ 1 and assume that the result
holds for length i − 1. Then for all pairs 〈u1, ψ1〉 ∈ D[t0 + i − 1, v1] where
v1 ∈ V (see also line 7 of Algorithm 1), there exists a path ρ1 of length i − 1
such that 〈u1, ψ1〉 is the pair associated with ρ♯ · ρ1. It is easy to see that the
pair 〈u, ψ〉 added to D[t0 + i, v] at line 12 of Algorithm 1 is associated with the
path ρ♯ · ρ1 · (v1, v) where u = u1 + w(v1, v) and ψ ≡ ψ1 ∧ (u ≥ M · (t − T ))
with t = t0 + i − 1 = |ρ♯ · ρ1 · (v1, v)| − 1. Since the assignment at line 13 of
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Figure 9: The result of the computation of BestPaths(t0, v0, u0, ψ0).

Algorithm 1 can only remove pairs from D[t0 + i, v], the result follows.
For the second item, the result follows from similar arguments as above,

a proof by induction on i using Lemma 10, and the fact that the algorithm
explores all successors v of each vertex v1 that ends a path associated with a
pair 〈u1, ψ1〉 ∈ D[t0 + i − 1, v1].

As we know that simple lassos are sufficient for optimal value (Lemma 8),
our algorithmic solution is to explore finite paths from the initial vertex, until
a loop is formed. Thus it is sufficient to explore paths of length at most |V |.
However, given a simple lasso ρA·ρ

ω
C , it is not sufficient that the finite path ρA·ρC

lies above a line M · (t − T ) (where M satisfies the constraint ψAC associated
with ρA · ρC) to ensure that the value of the lasso ρA · ρ

ω
C is at least 0. The

reason is that by repeating the cycle ρC several times, the path may eventually
cross the line M · (t− T ). We show (in Lemma 12) that this cannot happen if
the average weight MC of the cycle is greater than the slope of the line (i.e.,
MC ≥M).

Lemma 12. Given a lasso ρA · ρ
ω
C , let ψAC be the symbolic constraint on M

associated with the finite path ρA · ρC , and let MC be the average weight of
the cycle ρC . The lasso ρA · ρ

ω
C has value at least 0 if and only if the formula

ψAC ∧ (MC ≥M) is satisfiable.

Proof. First, if the lasso ρA · ρ
ω
C has value at least 0, then by Lemma 9, there

exists a slope M ∈ R such that ut ≥ M · (t − T ) for all t ≥ 0 (where ut is the
sum of weights at time t in ρA ·ρ

ω
C). For such value ofM , the formula ψAC holds

(by definition), and it is easy to see thatMC ≥M (otherwise, there would exist
t ≥ 0 such that ut < M · (t− T )). Therefore ψAC ∧ (MC ≥M) is satisfiable.

Second, if the formula ψAC ∧ (MC ≥ M) is satisfiable, then let M be a
satisfying value, and by Lemma 9 and a similar argument as above, the lasso
ρA · ρ

ω
C has value at least 0.

The algorithm ExistsPositivePath(v0) explores the paths from v0, and keeps
the �-preferred paths, that is those with the largest total weight and weakest
constraint on M . There may be several �-incomparable paths of a given length
i that reach a given vertex v̂, therefore we need to compute a set A[i, v̂] of
�-incomparable pairs (line 1 of Algorithm 2).
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Algorithm 2 ExistsPositivePath(v0)

Input : v0 is an initial vertex.

Output: true iff there is a path from v0 with expected utility at least 0.

begin

1 A← BestPaths(0, v0, 0, true)
2 for i = 0, . . . , |V | do

3 for v̂ ∈ V and 〈u1, ψ1〉 ∈ A[i, v̂] do

4 C ← BestPaths(i, v̂, u1, ψ1)
5 for j = 1, . . . , |V | − i do

6 for 〈u2, ψ2〉 ∈ C[i+ j, v̂] do

7 if ψ2∧
u2−u1

j
≥M is satisfiable then return true

8 return false

end

Given a pair 〈u1, ψ1〉 ∈ A[i, v̂], the algorithm ExistsPositivePath further ex-
plores (for-loop at line 3 of Algorithm 2) the paths from v̂, until a cycle ρC of
length j is formed around v̂, with average weight MC = u2−u1

j
and associated

pair 〈u2, ψ2〉 ∈ C[i + j, v̂] (line 7 of Algorithm 2) such that ψ2 ∧ (MC ≥ M) is
satisfiable. We claim that there exists such a cycle if and only if there exists a
lasso with value at least 0. The claim is established in the following lemma.

Lemma 13 (Correctness of ExistsPositivePath). There exists an infinite path
from v0 with value at least 0 if and only if ExistsPositivePath(v0) returns true.

Proof. (First part)
For the first direction of the proof, if there exists an infinite path with value

at least 0, then by Lemma 8 there exists a lasso ρ = ρA ·ρ
ω
C with value at least 0.

Consider the call A ← BestPaths(t0, v0, u0, ψ0) in ExistsPositivePath (line 1
of Algorithm 2) where t0 = u0 = 0 and ψ0 ≡ true. Let v̂ = end(ρA) and let i be
the length of ρA (note that i < |V | because ρA is acyclic). By the correctness
result of BestPaths (Lemma 11 (item 2), where ρ♯ is the empty path), there is
a pair 〈u1, ψ1〉 ∈ A[i, v̂] such that 〈u1, ψ1〉 � 〈uA, ψA〉 where 〈uA, ψA〉 is the
pair associated with ρA, thus u1 ≥ uA and ψA → ψ1 hold. Then by Lemma 11
(item 1), there is a path ρ1 of length i from v0 to v̂, and u1 is the sum of
weights of ρ1, and ψ1 ≡ ϕρ1

is the constraint on M associated with ρ1 (i.e., ρ1
is preferred to ρA).

Now consider the call C ← BestPaths(i, v̂, u1, ψ1) in ExistsPositivePath (line 4
of Algorithm 2). Let ρ♯ = ρ1 in Lemma 11 and note that the assumptions of
that lemma are satisfied, namely 〈u1, ψ1〉 is the pair associated with ρ1, and
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v̂ = end(ρ1).
Since ρA · ρ

ω
C is a lasso, we have start(ρC) = end(ρC) = end(ρA) = v̂ and let j

be the length of ρC (note that i+j ≤ |V |). By Lemma 11 (item 2), there is a pair
〈u2, ψ2〉 ∈ C[i+j, v̂] such that 〈u2, ψ2〉 � 〈u1C , ψ1C〉 where 〈u1C , ψ1C〉 is the pair
associated with ρ1 · ρC , thus u2 ≥ u1C and ψ1C → ψ2 hold, and by Lemma 11
(item 1), there is a path ρ2 of length j such that start(ρ2) = end(ρ2) = v̂ and
u2 is the sum of weights of ρ1 · ρ2, and ψ2 ≡ ϕρ1·ρ2

is the constraint on M
associated with ρ1 · ρ2.

Now we show that ψ2 ∧
u2−u1

j
≥ M is satisfiable, and thus

ExistsPositivePath(v0) returns true (Line 7 of Algorithm 2). First, by Lemma 12
the formula ψAC ∧ (MC ≥ M) is satisfiable, and by Lemma 10 we have
ψAC → ψ1C . We showed above that ψ1C → ψ2, thus ψ2 ∧ (MC ≥ M) is
satisfiable. Now, since the length of the cycle ρC (and of ρ2) is j − i (i.e., the
length of ρA · ρC minus the length of ρA), we have MC = SC

j
. Moreover we

showed above that u2 ≥ u1C = u1 + SC , thus MC = SC

j
≤ u2−u1

j
, and since

ψ2 ∧ (MC ≥ M) is satisfiable it follows that ψ2 ∧
u2−u1

j
≥ M is satisfiable as

well.
(Second part)
For the second direction of the proof, if ExistsPositivePath(v0) returns true,

then there exists i, j, v̂, 〈u1, ψ1〉, 〈u2, ψ2〉 (corresponding to the for-loops in
lines 2, 3, 5, 6 of Algorithm 2) such that:

• 0 ≤ i ≤ |V | and 1 ≤ j ≤ |V | − i,

• v̂ ∈ V ,

• 〈u1, ψ1〉 ∈ A[i, v̂] and 〈u2, ψ2〉 ∈ C[i + j, v̂] where A =
BestPaths(0, v0, 0, true), and C = BestPaths(i, v̂, u1, ψ1),

• ψ2 ∧
u2−u1

j
≥M is satisfiable.

Therefore, by Lemma 11 (item 1), there exist paths ρA and ρC such that:

• ρA is a path of length i from v0 to v̂, such that u1 is the sum of weights
of the path ρA, and ψ1 ≡ ϕρ

A
;

• ρC is a path of length j with start(ρC) = end(ρC) = v̂ (thus ρC is a cycle),
such that u2 is the sum of weights of the path ρA · ρC , and ψ2 ≡ ϕρ

A
·ρ

C
is

the constraint on M associated with the path ρA · ρC .

Therefore, u2−u1 is the sum of the weights along ρC , and thusMC = u2−u1

j
.

Since the formula ψ2 ∧
u2−u1

j
≥M is satisfiable, it follows that ϕρ

A
·ρ

C
∧ (MC ≥

M) is satisfiable, and by Lemma 12, the lasso ρA · ρ
ω
C has value at least 0.

Optimal value. We can compute the optimal value using the procedure
ExistsPositivePath as follows. From Lemma 4, the optimal value is either of the

form
ut1

·(t2−T )+ut2
·(T−t1)

t2−t1
, or of the form ut1 + (T − t1) · ν where the following

bounds hold (ν = inft2≥T
ut2

−ut1

t2−t1
):
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• 0 ≤ t1 ≤ t2 ≤ |V |

• 0 ≤ t2 − t1 ≤ |V |

• 0 ≤ T − t1 ≤ |V |

• 0 ≤ t2 − T ≤ |V |

• −W · |V | ≤ ut1 , ut2 ≤W · |V |

• ν is a rational number p
q
where −W · |V | ≤ p ≤W · |V | and 1 ≤ q ≤ |V |

Therefore, in both cases we get the following result.

Lemma 14. The optimal value belongs to the set

ValueSpace =
{p

q
| −2W · |V |2 ≤ p ≤ 2W · |V |2 and 1 ≤ q ≤ |V |

}

.

Given a value p
q
, we can decide if there exists a path with expected value at

least p
q
by subtracting η = p

q·T from all the weights the graphs, and asking if
there exists a path with expected value at least 0 in the modified graph. Indeed,
if we define w′(e) = w(e) + η for all edges e ∈ E, then for all paths ρ, if u is the
sequence of utilities along ρ according to w, and u′ is the sequence of utilities
along ρ according to w′, then

∑

i

pi · u
′
i =

∑

i

pi · (ui + η · i)

= η ·
∑

i

pi · i+
∑

i

pi · ui

= T · η +
∑

i

pi · ui,

thus the value of the path is shifted by T · η = p
q
. Then it follows from

Lemma 14 that the optimal value can be computed by a binary search using
O(|ValueSpace|) = O(log(W · |V |)) calls to ExistsPositivePath.

Optimal path. An optimal path can be constructed by a slight modification of
the algorithm. In BestPaths, we can maintain a path associated to each pair in
D as follows: the empty path is associated to the pair 〈u0, ψ0〉 added at line 1
of Algorithm 1, and given the path ρ1 associated with the pair 〈u1, ψ1〉 (line 7
of Algorithm 1), we associate the path ρ1 · (v1, v) with the pair 〈u, ψ〉 added to
D at line 12 of Algorithm 1. It is easy to see that for every pair 〈u, ψ〉 in D, the
associated path can be used as the path ρ1 in Lemma 11 (item 1). Therefore,
when ExistsPositivePath(v0) returns true (line 7 of Algorithm 2), we can output
the path ρ1 · ρ

ω
2 where ρi is the path associated with the pair 〈ui, ψi〉 (i = 1, 2).
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Complexity analysis. We present the running-time analysis of ExistsPositivePath
(Algorithm 2) and we show that it runs in polynomial time. The key challenge
is to bound the number of �-incomparable pairs. The number of such pairs
corresponds to the number of simple paths in a graph, and hence can be expo-
nential in general. Our main argument is to establish a polynomial bound on
the number of �-incomparable pairs.

To analyze the complexity of the algorithm, we need to bound the size of
the array D computed by BestPaths (Algorithm 1). We show that there cannot
be too many different pairs in a given entry D[t0+ i, v1]. By Lemma 11, to each
pair 〈u, ψ〉 ∈ D[t0+ i, v1] we can associate a path ρ of length i with start(ρ) = v0
and end(ρ) = v1, such that (our analysis holds for all paths ρ♯ in Lemma 11,
and as ρ♯ plays no role in the argument, we proceed with empty ρ♯ for simplicity
of the exposition4):

• u is the sum of weights of the path ρ, and

• ψ ≡ ϕρ is the constraint on M associated with the path ρ.

It is important to note that the constraint ψ is determined by (at most)
two points tL, tR in ρ (see also Figure 8a and Figure 8b), one before T and one
after T , namely

ψ ≡
(
utL ≥M · (tL − T )

)
∧
(
utR ≥M · (tR − T )

)

where tL = argmax0≤i≤T (
ui

i−T
) and tR = argminT≤i≤|ρ|(

ui

i−T
).

Note that the first constraint in the above expression is a lower bound onM
since tL ≤ T , and the second constraint (which may not exist, if |ρ| < T ) is an
upper bound on M . For simplicity of exposition, we assume that |ρ| ≥ T . The
case |ρ| < T is handled analogously (tR is undefined in that case).

Define the down-point of ρ = e0e1 . . . e|ρ|−1 as downpoint(ρ) = 〈tL, vL, tR, vR〉
where tL and tR are defined above, and vL = end(e0e1 . . . etL), and vR =
end(e0e1 . . . etR) (for |ρ| < T , the down-point of ρ is downpoint(ρ) = 〈tL, vL〉).

Decompose ρ into ρL = e0e1 . . . etL , ρM = etL+1etL+2 . . . etR , and ρR =
etR+1etR+2 . . . e|ρ|−1. We claim that the paths corresponding to two different
pairs in D[t0+ i, v1] have different down-points, which will give us a polynomial
bound on the size of D[t0 + i, v1]. Intuitively, and towards contradiction, if
two down-points are the same in two different paths, then we can select the
best pieces among (ρL, ρM , ρR) from the two paths and construct a path that
is preferred, and thus whose pair is in D[t0 + i, v1] and subsumes some pair
in D[t0 + i, v1], which is a contradiction since the elements of D[t0 + i, v1] are
�-maximal.

Lemma 15. Let D = BestPaths(t0, v0, u0, ψ0) and 1 ≤ i ≤ |V |. For all pairs
〈u, ψ〉, 〈u′, ψ′〉 ∈ D[t0 + i, v1], let ρ, ρ′ be their respective associated path; if

4The proof can be carried out analogously by considering ρ♯ · ρ instead of ρ with heavier
notation.
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〈u, ψ〉 6= 〈u′, ψ′〉, then the down-points of ρ and ρ′ are different (downpoint(ρ) 6=
downpoint(ρ′)).

Proof. We prove the contrapositive, for |ρ| ≥ T (the case |ρ| < T is simpler,
and proved analogously). Assume that 〈tL, vL, tR, vR〉 = 〈t

′
L, v

′
L, t

′
R, v

′
R〉 (the

down-points are equal), and we show that then 〈u, ψ〉 = 〈u′, ψ′〉.
First, since tL = t′L and vL = v′L, we claim that the sum of weights at time tL

is the same in ρ and in ρ′, that is utL = u′tL , and therefore, ϕρL
≡ ϕρ′

L
(remember

that the constraint ψ associated with ρ and ρ′ is determined by tL = t′L). The
proof of this claim is by contradiction. Assume that utL > u′tL (the argument
for the case utL < u′tL is analogous). Consider the path ρ = ρL · ρ

′
M · ρ

′
R, and

note that ρ is indeed a path5, as end(ρL) = vL = v′L = start(ρ′M ). Comparing
ρ and ρ′, since utL > u′tL it is easy to see that ū > u′ where ū is the sum
of weights of ρ, and by the same argument we have ψ′ → ψρ. It follows that
ρ is preferred to ρ′, and by Lemma 11 the set D[t0 + i, v1] contains a pair
〈u∗, ψ∗〉 � 〈ū, ϕρ〉 � 〈u

′, ψ′〉. Since D[t0 + i, v1] is a set of �-maximal elements
(line 13 of Algorithm 1), it follows that 〈u′, ψ′〉 6∈ D[t0 + i, v1], in contradiction
with the assumption of the lemma.

Second, by an analogous argument, since tR = t′R and vR = v′R, the sum of
weights at time tR is the same in ρ and in ρ′, that is utR = u′tR , and therefore,
ϕρR
≡ ϕρ′

R
. Finally u = u′ and ψ ≡ ψ′, which concludes the proof.

It follows from Lemma 15 that the size of all sets D[t0+ i, v1] for 1 ≤ i ≤ |V |
and v1 ∈ V is at most |V |4, the maximum number of different down-points.

We now show that the worst-case complexity of BestPaths and
ExistsPositivePath is polynomial, and thus the optimal expected value problem
is solvable in polynomial time.

The worst-case complexity of BestPaths is O(|V |10), as there are two nested
for-loops over V (line 4 and line 5 in Algorithm 1), in which the dominating
operation is the computation of the �-maximal elements of D[t0+ i, v] (line 13),
which is quadratic in the size of D[t0 + i, v], thus in O(|V |8).

The worst-case complexity of ExistsPositivePath is O(|V | · |V | · |V |4 · |V |10) =
O(|V |16), as a product of the size of the three outermost for-loops, and the dom-
inating call to BestPaths (line 4) in O(|V |10). Therefore we obtain Theorem 4.

5. Expected Finite-Horizon: Best-Case Distribution

We now consider the problem of maximizing the value of a plan where the
value of a plan is computed as the supremum value (instead of the infimum
value) over all distributions with expected stopping time T . The optimization
problem is thus to choose a path as well as a stopping-time distribution in order
to maximize the value.

Given a weighted graph G and an expected stopping time T ∈ Q, we define
the following:

5Note that if ρ and ρ′ have a common prefix (such as ρ♯), then ρ also has the same prefix.
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(a) Edge v0 → v1 is taken too early (the
sup-value is at most 0).
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(b) Edge v0 → v1 is taken too late (the
sup-value is at most T

T+1
< 1).

Figure 10: The optimal sup-value requires memory in the example of Figure 2 (the optimal
sup-value is 1).

• Optimal sup-value of plans. For a plan ρ that induces the sequence u of
utilities, let

val sup(ρ, T ) = val sup(u, T ) = sup
δ∈∆:Eδ=T

Eδ(u).

• Optimal sup-value. The optimal sup-value is the supremum value over all
plans:

val sup(G, T ) = sup
u∈UG

val sup(u, T ).

Since the distribution is chosen by the maximizer and there is no adversary,
the optimal sup-value is at least as large as the optimal (inf-)value defined in
Section 4. However, while stationary plans suffice against adversarially chosen
distributions, it turns out that optimal plans for the sup-value are in general
not stationary (i.e., memory is necessary for optimality).

Example 3. Consider the example of Figure 2 described in Example 2 where
T = 31. If the edge (v0, v1) is used exactly at time T (which requires mem-
ory as shown in Example 2), then the sup-value of the path is 1 by choosing
δ = {(T, 1)}. We show that if the edge (v0, v1) is not used exactly at time T ,
then the sup-value is less than 1, and therefore the optimal value is 1 and re-
quires memory. Figure 10a and Figure 10b illustrate the situation when the edge
(v0, v1) is used before time T or after time T . In both cases, the sup-value is
less than 1, and if the edge (v0, v1) is never used, then the value is 0, thus also
less than 1.

In Example 3, the memory is used before time T to get the peak of utility
positioned optimally with respect to T . However, we show that after time T
memory is no longer necessary. A plan ρ = e0e1 . . . is stationary after T if for
all T ≤ t1 < t2, if et1 = (·, v) and et2 = (·, v), then et1+1 = et2+1. We denote by

S≥T
G the set of all sequences of utilities induced by plans in G that are stationary

after T .
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Theorem 5. For all weighted graphs G and for all T we have

val sup(G, T ) = sup
u∈UG

val sup(u, T ) = sup
u∈S

≥T

G

val sup(u, T ),

i.e., optimal stationary-after-T plans exist for expected finite-horizon under best-
case distribution.

Proof. By Lemma 2, bi-Dirac distributions are sufficient for optimality (the
lemma is stated for inf, but it holds for sup as well by considering the graph
with all weights multiplied by −1). The geometric interpretation of Lemma 3
and Lemma 4 can be adapted to the sup-value by defining, given a sequence u of
utilities, the optimal line of equation fu(t) = ut1 + (t− t1) · ν where t1 is a left-

maximizer (defined analogously to left-minimizers) and ν = supt2≥T
ut2

−ut1

t2−t1
.

The sequence u always lies under the optimal line (i.e., ut ≤ fu(t) for all t ≥ 0),
and the optimal sup-value of u is f(T ).

The argument for the proof of Theorem 5 follows the same line as the proof of
Theorem 3, namely to construct, given an arbitrary plan, a plan that is station-
ary after T and has at least the sup-value of the given plan. This construction
proceeds by considering the cycle decomposition of the suffix eT eT+1 . . . of the
given plan, and given the first cycle C in the cycle decomposition:

• either fu(t) = ut for some t in the cycle (hence t ≤ T + |V |), and then
repeating the cycle C gives a plan that is stationary after T and has better
(or equal) sup-value,

• or fu(t) > ut for all t in the cycle, and then we can either (i) remove the
cycle C ifMC < ν, or (ii) repeat the cycle C forever ifMC ≥ ν. Analogous
analysis as in Lemma 6 and Lemma 7 shows that the resulting plan has
better (or equal) sup-value, and the analysis in the proof Lemma 5 and
Lemma 8 shows that a cycle C with MC ≥ ν exists in u, and thus we
eventually get by this procedure a plan that is stationary after T and has
better (or equal) sup-value than the given plan.

It follows from Theorem 5 that an optimal plan always exists under best-case
distribution (since there are finitely many stationary-after-T plans).

We show that computing optimal plans among stationary plans cannot be
done in polynomial time unless P = NP. In contrast, the optimal sup-value for
arbitrary paths and best-case distribution can be computed in polynomial time.

Theorem 6. Given a weighted graph G, an integer T , and a threshold λ ∈ Q,
deciding whether supu∈SG

val sup(u, T ) is at least λ is NP-complete. The NP-
hardness holds for T and all weights expressed in unary.

Proof. The NP upper bound is easily obtained by guessing a stationary plan
(i.e., one edge for each vertex of the graph) and checking that the value of the
induced path is at least λ.

The NP-hardness is obtained by a reduction from the Hamiltonian cycle
problem, which is to decide, given a directed graph G = 〈V,E〉, whether G
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Figure 11: The NP-hardness reduction of Theorem 6.

contains a simple cycle of length |V |. The reduction is as follows. Given G, pick
a vertex v ∈ V and create a copy v̂ of v with the same incoming neighbors as v.
Add an edge (v̂, sink) with weight 1 and a self-loop on sink with weight −1. All
other edges have weight 0. Let v be the initial vertex, and let T = |V |+ 1 and
λ = 1. The correctness of the reduction is established as follows. If G contains
a Hamiltonian cycle, then from v, there is a stationary path to v̂ of length |V |
that can be extended to sink. The value of the path at time T is 1, and thus
the sup-optimal value is at least 1. On the other hand, if G does not contain a
Hamiltonian cycle, then all stationary paths from v to sink have length at most
n− 1, hence the sup-optimal value is less than 1 (corresponding to the situation
in Figure 10a).

The following basic lemma is useful to construct an optimal plan.

Lemma 16. Given a finite path ρ from vertex v0 to vertex v1 of length ℓ, with
sum of weights u1, there exists a path ρ′ from v0 to v1 of the same length ℓ, with
sum of weights at least u1, and of the shape ρ′ = ACxB where C is a simple
cycle (x ≥ 0), and the length of AB is at most |V |3.

Proof. Given a path ρ as in the lemma, if ℓ ≤ |V |3 we take A = ρ, x = 0, and
B = ǫ. Otherwise, ℓ > |V |3 and consider a cycle C in ρ with maximal average
value MC . If ρ contains several occurrences of C (say ρ = A1C

xA2C
yA3),

we group them and construct the path A1C
x+yA2A3. We iterate this process

until we get a path of the shape A1C
xA2 where C does not occur in the cycle

decomposition of the path A1A2. Note that this new path has the same length
and same sum of weights as ρ.

In the cycle decomposition of the path A1A2, consider for each length 1 ≤
k ≤ |V | the number nk of cycles of length k. If |A1A2| > |V |

3, then nk ≥ |V |
for some k (indeed a path with nk ≤ |V | − 1 for all k has length at most

(|V | − 1) · |V |2+|V |
2 + |V | − 1 < |V |3). Consider such k, and let m = |C| the

length of C. In the path A1A2, remove m cycles of length k (note that this is
possible since m ≤ |V | ≤ nk), and repeat k more times the cycle C, to obtain a
path ACx+kB of the same length as A1C

xA2, and with at least the same sum
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of weights, since C has the largest average value among the cycles in A1A2.
Repeat this construction until |AB| ≤ |V |3 to conclude the proof.

The optimal sup-value for arbitrary paths and best-case distribution can be
computed in polynomial time as follows. We consider two cases depending on
whether an optimal distribution exists. In both cases, we show that the range
of possible values for the left-maximizer, which is a priori the interval [0, T ] and
thus contains a pseudo-polynomial number of values (namely, O(T )), can be
restrained to a small (polynomial) number of values.

• If no optimal distribution exists, let 0 ≤ t1 ≤ T be a left-maximizer and
let ν be the slope of the optimal line. We show that either t1 ≤ |V |, or
t1 ≥ T −|V | (which gives a range of values for t1 of size O(|V |)). Consider
an optimal plan ρ and its left-maximizer t1. If |V | < t1 < T − |V |, we
construct another plan ρ′ with sup-value at least the sup-value of ρ, and
with left-maximizer t′1 either t′1 ≤ |V |, or t

′
1 ≥ T − |V |.

Since |V | < t1, in ρ there exists a cycle C before t1. Let SC be the sum
of weights along C, and let |C| be the length of C. The mean value of C
is MC = SC

|C| .

– If MC ≥ ν, then consider the path ρ′ obtained from ρ by repeating
the cycle C once more, and let t′1 = t1 + |C|. Note that t′1 ≤ T , thus
the sup-value of ρ′ is at least (assuming u and u′ are the sequences
of utilities induced by ρ and ρ′, respectively):

u′t′
1
+ ν · (T − t′1)

=ut1 + SC + ν · (T − (t1 + |C|))

=ut1 + ν · (T − t1) + SC − ν · |C|

=ut1 + ν · (T − t1) + (MC − ν) · |C|

≥ut1 + ν · (T − t1) since MC ≥ ν

which is the sup-value of ρ.

– The case MC < ν is impossible because removing the cycle C from
ρ would then give a better plan than ρ (which we assumed to be
optimal): consider t′1 = t1 − |C| (note that t′1 ≥ 0) and we have

u′t′
1
+ ν · (T − t′1)

=ut1 − SC + ν · (T − (t1 − |C|))

=ut1 + ν · (T − t1)− (MC − ν) · |C|

>ut1 + ν · (T − t1) since MC < ν

Consider the algorithm that enumerates the possible values of t1 (in
[0, |V |] ∪ [T − |V |, T ]), and of the vertex v1 at time t1, then computes
the sum u1 of weights of the best path to v1 of length t1, and mean value
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MC of the best cycle reachable from v1 (which can be done in polynomial
time, see Section 3 and [10]). Store t1 and v1 that gives the largest value
of u1 + (T − t1) ·MC . Call u

∗ this value.

• If an optimal distribution exists, let {t1, t2} be its support, and by the
argument in the proof of Theorem 5 we have 0 ≤ t1 ≤ T and T ≤ t2 ≤
T + |V |. By Lemma 16 the segment of the optimal plan up to time t1
has shape ACx

1B and the segment from t1 to T has shape DCy
2E with

|AB| < |V |3 and |DE| < |V |3. We denote by F the segment from T to t2

It follows that T = |AB|+ |DE|+ x · |C1|+ y · |C2| with x ≥ 0 and y ≥ 0,
which we can equivalently express as x = x0 + a · t and y = y0 + b · t for
Bi ≤ t ≤ Bs where x0, y0, a, b, Bi, Bs are integer constants. The sup-value
of the plan is given by

u =
(t2 − T ) · ut2 + (T − t1) · ut1

t2 − t1

where (denoting by uAB the sum of weights in the path AB, by ui the
sum of weights in the cycle Ci, etc.):

t1 =|AB|+ x · |C1|

t2 =t1 + |DE|+ y · |C2|+ |F |

ut1 =uAB + x · u1

ut2 =ut1 + uDE + y · u2 + uF

Hence the sup-value of the plan can be expressed as the fraction of a
quadratic function of t, and a linear function of t:

u =
a0t

2 + a1t+ a2
b0t+ b1

and solving du
dt

= 0 gives at most two values t̃0 and t̃1. It follows that the
optimal plan is obtained for t ∈ {Bi, Bs, ⌊t̃0⌋, ⌈t̃0⌉, ⌊t̃1⌋, ⌈t̃1⌉}. Consider
the algorithm that enumerates the possible lengths and end-points of the
segments in the optimal plan, namely vertices v1, v2, v3, v4 and lengths
ℓA, ℓB, ℓD, ℓE , ℓF , ℓ1, ℓ2 such that ℓA + ℓB ≤ |V |

3, ℓD + ℓE ≤ |V |
3, and

ℓF , ℓ1, ℓ2 ≤ n, and computes the value of the best paths

from v0 to v1 of length ℓA,
from v1 to v2 of length ℓB,
from v2 to v3 of length ℓD,
from v3 to v4 of length ℓE + ℓF ,

and of the best cycles of length ℓ1 around v1, and of length ℓ2 around v3.
Using those values to compute the optimal sup-value of a path with shape
ACx

1BDC
y
2EF , and storing the length and vertices that give the largest

value. Call u∗∗ this value.
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The optimal sup-value is max(u∗, u∗∗) and can be computed in polynomial
time since u∗ is computed in O(|V |5 · log(T )) (factor |V |2 for enumeration, and
|V |3 · log(T ) for computation of best paths of fixed length less than T ) and u∗∗ is
computed in O(|V |16 · log(V )) (factor |V |13 for enumeration, and |V |3 · log(|V |)
for computation of best paths of fixed length less than |V |3).

We show that optimal plans for best-case distributions have a shape that
consists of simple cycles and connecting segments of polynomial length. As
we have a polynomial algorithm to compute the best path of a fixed length
(Theorem 1) we obtain a polynomial algorithm for the best-case distribution
problem by enumerating the possible lengths and end-points of the segments
and cycles, and then computing the best utility such segments can have.

Theorem 7. Given a weighted graph G and expected finite-horizon T , the opti-
mal sup-value can be computed in time O(|V |16 · log(V · T )), thus in polynomial
time.

6. Conclusion

In this work we consider the expected finite-horizon problem. Our most
interesting results are for worst-case distribution of stopping times: we show
that stationary plans are sufficient, and present polynomial-time algorithms for
computing an optimal plan. This is in contrast with the case of specified distri-
bution and best-case distribution of stopping times where stationary plans are
sufficient for optimality (memory is necessary) and computing an optimal plan
among stationary plans is NP-complete. In terms of algorithmic complexity,
our main goal was to establish polynomial-time algorithms, and we expect that
better algorithms and refined complexity analysis can be obtained.

A more general problem is to consider worst-case distributions with different
types of constraints on the expected value (such as interval constraints), and on
higher-order moments (e.g., the variance), which we leave for future work.

Another natural extension of this problem is to consider models of graphs
with stochastic transitions, that is Markov decision processes (MDP). The prob-
lem immediately becomes much harder, and at least as hard as the Skolem prob-
lem for linear recurrence sequences (and even the Positivity problem), whose
decidability is a longstanding open question [2]. This holds even in the special
case of Markov chains (i.e., MDP without nondeterministic choices).
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