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Abstract—Towards Beyond 5G and 6G, Open Radio Access
Network (Open-RAN) is a recent RAN architecture that pro-
motes the decoupling of RAN components, virtualization, open
interfaces, and the use of machine learning-based intelligent
models. Operators can benefit from this architecture to optimize
the network performance and reduce deployment and operation
costs. Open-RAN paves the way for RAN-sharing, where multiple
operators can share the same infrastructure instead of deploying
their own. In this paper, we model the problem of allocating radio
and computing resources to multiple operators with different
services as an Integer Linear Programming (ILP) problem aiming
to satisfy users’ demands. Due to the high complexity of solving
an ILP problem, we develop a policy-gradient-based Reinforce-
ment Learning (RL) model that aims to dynamically allocate
resources to operators. The simulation results demonstrate the
higher efficiency of our RAN-sharing RL model as it improves
the radio and CPU resource utilization compared to No-Sharing
models that deploy double the amount of provisioned resources,
as each operator has its own infrastructure, with its own base
stations and computing resources. In the considered scenario, RL
demonstrates up to 19.5% more RBs utilization and 27.4% more
CPU utilization. This highlights the ability of the RL model to
reduce operational and deployment costs. Additionally, the RL
model outperforms static RAN-sharing algorithms thanks to its
dynamic adaptation to operators’ varying traffic. Precisely, it
scores up to 12.3% and 17.6% more RBs and CPU utilization,
respectively.

I. INTRODUCTION

As the demand for mobile data continues to multiply, the
network architecture continues to evolve to accommodate
various services and adapt to customers’ needs and demands.
Open Radio Access Network (Open-RAN) is a new paradigm
that promotes the openness and virtualization of different
Radio Access Network (RAN) components and interfaces.
The Open-RAN architecture supports having components from
multiple vendors and ensures that the interfaces connecting
these components are open. Such openness is needed to
achieve interoperability. It also encourages competition among
vendors, reducing capital and operational expenditure [1]. In
this architecture, a traditional base station is decoupled into
an Open Radio Unit (O-RU), an Open Distributed Unit (O-
DU), and an Open Central Unit (O-CU) [2]. The O-RU is
responsible for Radio Frequency functions and lower physical
(low-PHY) layer functions. The O-CU is responsible for
functions of the higher layers, such as the Packet Data Con-
vergence Protocol (PDCP) and Radio Resource Control (RRC)
layers. The O-DU is responsible for the High Physical layer
(High-PHY), Multiple Access Control (MAC), and Radio Link
Control (RLC) layers [3]. As the network evolves toward 6G,
Open-RAN should be able to provide improved performance
and reduced costs from operators’ perspective.

One of the main goals of operators is to optimize profits.
Operators aim to reduce deployment and operational costs.
Hence, the concept of sharing RAN resources among multiple
operators raises as a candidate to reduce costs. For example,
in some rural areas that rarely have a high demand, the
utilization of radio and computing resources is likely to be
low. In legacy RAN architecture, operators used to deploy
non-shared physical or virtual resources in these areas or to
rent them from an infrastructure provider. Instead of deploying
(or renting) resources that are on average underutilized, with
O-RAN architecture, it would be possible to deploy shared
infrastructure to improve the utilization of these resources.
Better utilization indicates more efficient usage of resources
as fewer resources are deployed, leading to less deployment
and operational costs. Additionally, RAN sharing could be
implemented as a backup plan in case an operator suddenly
gets overloaded or has a temporary system failure.

Enabling RAN sharing requires coordination between net-
work components in addition to intelligent and central control.
Open-RAN standardizes the near-Real-Time Radio Intelligent
Controller (near-RT-RIC) and the non-Real-Time Radio In-
telligent Controller (non-RT-RIC) [4]. These RICs provide
closed-loop control to manage the different network com-
ponents. Additionally, they allow data-driven algorithms to
exploit the massively available data to optimize the network
performance. Precisely, the RICs permit training, deployment,
and optimization of different Machine Learning-based algo-
rithms. To reap the benefits of RAN sharing, it is necessary
to devise algorithms that efficiently distribute the resources
to the involved operators. Such algorithms could be based
on machine learning, which can solve various problems in
telecommunication [3].

In this paper, we consider the problem of inter-operator
RAN sharing, considering a scenario in which both the spec-
trum and the infrastructure are shared. We model an Integer
Linear Programming (ILP) problem that allocates radio and
computing resources to different users from multiple operators,
aiming to satisfy users’ demands from all operators. Due to
the high complexity of solving an ILP problem, we propose a
Reinforcement Learning (RL)-based algorithm to dynamically
solve the allocation problem. We compare the RL problem to
other benchmarking algorithms; Equal-Sharing, Proportional-
Sharing, and No-Sharing. Precisely, we evaluate the ability of
the RL-based model to better utilize the radio and computing
resources and to serve more demands.

The rest of the paper is organized as follows: Some re-
lated works are surveyed in Section II. The ILP problem is
formulated in Section III, and the RL model is presented in
Section IV. The simulation results are discussed in Section V,
and our work is concluded in Section VI.



Fig. 1: Higher numerology allows for shorter TTI, which
we call small TTI, leaving more time window for baseband
processing

II. RELATED WORK

Some research papers have considered partial RAN sharing
in Cloud-RAN, where only the spectrum is shared. We recall
that Cloud RAN is a RAN architecture that centralizes and
virtualizes RAN functions. This architecture has been boosted
by Open-RAN with the additional support for multi-vendors,
openness, and standardized Radio Intelligent Controllers. Au-
thors in [5] consider beamforming control when users of
operators are connected to multiple Radio Units. It aims to
minimize the total power consumption, including the fronthaul,
the RRH, and the backhaul. They consider cooperation be-
tween operators: Part of the spectrum is private while the other
is shared. They devise different algorithms and study the power
consumption considering different bandwidth-sharing ratios
among operators. Authors in [6] formulate a Mixed Integer
Problem to share and allocate resources to operators with the
goal of optimizing energy efficiency. They solve the problem
through Lagrange dual composition. In [7], authors adopt the
Open-RAN architecture. They propose to use an algorithm
based on Deep-Deterministic Policy Gradient along with fed-
erated learning by virtual operators to learn the optimal allo-
cation to slices focusing on Service Level Agreement (SLA)
satisfaction. Authors in [8] propose a platform for automated
zero-touch network and spectrum sharing in Open-RAN. They
model the problem using Quadratically Constrained Quadratic
Programming. They note an improvement in per-user average
throughput.

Through the Radio Intelligent Controllers, the Open-RAN
architecture provides native support for training and deploying
Machine Learning algorithms. Different Machine learning
techniques, including Reinforcement Learning, have been used
to solve various problems in mobile networks. A policy
gradient-based algorithm with dynamic input size was used in
[9] to schedule users dynamically. The used model can adapt
to a dynamic number of users. Authors in [10] use a similar
dynamic model to allocate computing resources to users while
aiming to maximize fairness, whereas [11] uses a similar
model to allocate computing resources while maximizing the
operator profits.

Different from the aforementioned papers, and to the best
of our knowledge, we are the first to propose a dynamic re-
inforcement learning algorithm that implements RAN sharing
and that scales with the number of operators and services.
Additionally, we are the first to tackle the problem from the
perspective of improving resource utilization to reduce capital
and operational expenditure.

III. PROBLEM FORMULATION

We consider a system with a set of base stations B. Mainly,
the base station includes the antenna and the Open Radio Unit

(O-RU) located physically at the cellular site, while the Open
Distributed Unit (O-DU) and the Open Central Unit (O-CU)
are run virtually in the O-Cloud. The spectrum and the CPU
resources are shared by different operators belonging to set O.
The total radio Resource Blocks available for each base station
b is denoted by NRB

b . Operators have users from different
service types. The set of services V includes enhanced Mobile
Broadband (eMBB, v = 0) and Ultra Reliable Low Latency
Communication (URLLC, v = 1). We denote by Uo,v

b the set
of users of base station b belonging to operator o using service
v. N is the set of integer numbers in the interval [0, NRB

b ].
In the Open Cloud (O-Cloud), we consider a set of CPU
cores C to be allocated to operators to process users’ frames.
5G introduces the concept of numerology, which defines the
bandwidth of the subcarriers and the transmission duration.
We consider numerology 0 for eMBB and numerology 2 for
URLLC. Numerology 0 has a subcarrier spacing of 15KHz,
while Numerology 2 has a subcarrier spacing of 60 KHz.
In concrete, 1 RB in numerology 2 takes four times more
space than numerology 0 in the frequency domain; however,
it takes four times shorter transmission time. This allows for
decreasing the transmission latency of URLLC frames.1

Suppose at the start of each Transmission Time Interval
(TTI) (i.e., the time taken to transmit a full frame), eMBB
frames are transmitted. The duration of this TTI is 1 ms.
However, as URLLC uses numerology 2, the corresponding
transmission duration is four times shorter than that of eMBB.
We refer to it in this paper as small TTI that equals 0.25 ms.
This allows four consecutive URLLC transmissions during 1
ms. Fig. 1 shows the impact of using the different numerolo-
gies on the transmission duration and the amount of time left
for baseband processing. We suppose deMBB and dURLLC are
the time budgets of the sum of the transmission and baseband
processing, for eMBB frames and URLLC frames respectively.
We set deMBB to be equal to 2TTI = 2ms and dURLLC

to 1.25ms. As the eMBB transmission counts for 1ms, only
1ms is left for eMBB baseband processing. Meanwhile, for
URLLC, the time available for processing depends on which
small TTI they are transmitted. As the transmission duration
of URLLC frames is shorter, they get additional time for
baseband processing in case computing resources are available.

For simplicity, we suppose that at each TTI, the scheduling
decisions for URLLC frames at the transmitter are simulta-
neously made for the upcoming 4 small TTIs. Considering
uplink transmission, there will be four instants of arrivals of
frames at the O-Cloud (i.e., the receiver) during each 1ms.
These instants form the set T = {1, 2, 3, 4}, where they are
separated by 0.25ms. While URLLC frames can arrive at any
of these instants, eMBB frames take 1ms for transmission,
so they arrive at the last one (t = 4). Fig. 1 demonstrates
how using different numerologies modifies the transmission
time and hence, the time available for processing. Let xb,o,v

n
be a binary variable that is equal to 1 if and only if operator
o ∈ O is using n resource blocks of a base station b ∈ B for
a service type v ∈ V . Let yb,o,v,un,c,t be a binary variable that is
equal to 1 if and only if user u ∈ U of service type v ∈ V

1We note that multiplexing two numerologies creates Inter-Numerology-
Interference and that using higher numerology could lead to higher delay
spread, increasing errors due to multipath fading. In this work, we assume
the operator takes the required measures to combat errors due to multipath
fading, and we suppose that the resource blocks used for each service are
adjacent (i.e., all eMBB RBs are adjacent, and all URLLC RBs are adjacent).
To cope with the inter-numerology interference, we assume that a sufficient
amount of the spectrum is available to be used as a guard band between the
two numerologies.



and base station b ∈ B belonging to operator o ∈ O is using
n resource blocks, CPU c for processing, and arrives at the
O-Cloud at instant t ∈ T . zoc is a binary integer that indicates
that CPU c is assigned to operator o. Denote by ρb,o,v,udem the
demanded throughput of a user, ρb,o,v,un the rate provided to a
user when it uses n resource blocks, and tb,o,v,un the processing
time of a user frame when it uses n resource blocks. As
both the processing time and the number of resource blocks
depend on the number of resource blocks and the Modulation
and Coding scheme (MCS) index [12], we sample the MCS
indexes of users from the distribution used in [13], [14]. This
distribution provides the probability of having different MCS
indexes based on real measurements. ηo,v represents a priority
weight for a service v of operator o while a user priority weight
νb,o,v,u can be used to ensure fairness (i.e., lowering this
values for users who have massively transmitted previously,
and increasing it for those who haven’t or transmitted less.
The Integer Linear Programming model is shown here:
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The objective (1) is used to maximize the total transmitted
throughput, considering the priority weights given for opera-

tors, services, and users. Constraints (2), (3), (4) ensure the
binary nature of the decision variables. (5) and (6) capture
the total number of RBs used by operator o for service v at
base station b. (7) ensures that each user gets a unique total
number of resource blocks, its frame is processed on a unique
CPU, and the frame is only transmitted once. Additionally,
(8) ensures that the users of an operator of eMBB service at
a specific base station can not use resource blocks more than
what is assigned to their slice. We note that the RB in this
ILP is defined according to numerology 0. To use numerology
2, 4 RBs are fused together to have a carrier spacing of
60 KHz instead of 15 kHz; this is ensured by constraint
(9). (10) ensures that eMBB frames can not arrive at instants
t=1,2,3 as their transmission takes 1 full TTI. Constraint (11)
tracks the amount of processing budget available for URLLC
alone after deducting the transmission and scheduling delay
dt and the processing from previous instants on the CPU doldc .
Constraints (11) and (12) together ensure that the maximum of
the URLLC transmission interval (0.25 ms) and doldc should be
deducted of the available time budget of URLLC dURLLC as
it is not possible to process the frames during this interval.
Constraint (13) tracks the time available for eMBB alone.
If only eMBB is transmitted, there will be no overlap of
processing, as the processing budget of an eMBB frame is
equal to the TTI duration. On the other hand, (14) ensures that
no overlapping of processing happens when URLLC frames
use the CPU. Constraints (15) and (16) ensure that a CPU is
assigned to one operator and only the users of this operator
can use this CPU. Finally, (17) ensures that no user gets a rate
higher than it demands.

In this part of the problem, we combine two problems:
The first is the slicing among operators and services, and the
second is the scheduling of users. While the latter is done
on a small time scale (i.e., every 1ms), the former is likely
to be done on larger time scales. While Open-RAN supports
Radio Intelligent Controllers (RIC) with 10ms and 1s time
scales, the standardization of RealTime RIC (RT-RIC) is being
considered, which would act on a time scale of 1ms. Due
to the high complexity of solving the ILP problem, we opt
to use reinforcement learning to set upper-level policies. For
scheduling users of each operator, we use the Proportional
Fairness with priority for URLLC algorithm [15] to allocate
RBs and CPU resources to users.

IV. REINFORCEMENT LEARNING MODEL

In Reinforcement learning (RL), an agent learns by inter-
acting with the environment. Precisely, the agent executes
an action and receives an analysis of how good or bad the
action is. The ultimate goal for an agent is to maximize its
cumulative reward. RL could help solve complex problems,
though suboptimally. To design the RL model, we define
the state, action, and rewards for the RL agent. The state
represents the current characteristics/observations of the agent
within the environment. When the agent executes an action,
the environment will provide it with a reward. Based on the
rewards the agent receives, it will learn what actions will help
it maximize the cumulative rewards, so it acts accordingly.

We consider a policy-gradient-based algorithm to allocate
RBs to each service (i.e., eMBB and URLLC) for each
operator and per each BS. In policy gradient algorithms, the
agent learns the optimal probability distribution of actions
that maximize its rewards. We represent each (Base Station,
operator, service) tuple at a step i of the RL episode by
δb,o,vi . An episode consists of multiple steps. At each step,
an action (i.e., assigning a RB of a BS to an operator for



Fig. 2: Neural Network Architecture
a specific service) is taken. The episode is complete once
all the resources are allocated. We use a flexible Neural
Network, as in [9], [10], [11], that scales with the number
of BSs, Operators, and services. The architecture is shown
in Fig. 2. Each δb,o,vi is fed into a common neural network
to yield a value. The outputted values from all δb,o,vi are fed
into a softmax function producing a probability distribution.
Thus, the agent selects a tuple according to this probability
distribution. At each step, a tuple is selected, assigning an RB
to an operator for a specific service and a specific base station.
For simplicity and as we are considering a scenario with low
load, the RL agent does not allocate CPUs to operators. When
RAN sharing is enabled, we assume that operators share all
the CPUs. As the RL deals with the upper-level decisions, the
proportional fairness algorithm is used to allocate radio and
CPU resources to schedule users’ frames every TTI. However,
we could adapt our model to include a tuple (CPU, operator,
service) to allocate a CPU to an operator, and the state
representation would include a variable to represent whether it
is an RB or a CPU. We leave such adaptation for future work.

Next, we present the Markov Decision Process (MDP) of
the RL agent, and the RL algorithm.

A. State
One episode consists of multiple steps. At each step, one

tuple will be selected. An episode finishes when the RBs
of all base stations have been distributed. Suppose that the
instantaneous total number of packets in the queue at a base
station b from operator o and service v is represented by
P b,o,v . To represent the tuple δb,o,vi (Base Station, operator,
service), we consider the total number of users for service v
and operator o at base station b, the total number of users
from each operator at base station b, and the total number
of users from each service at base station b. Additionally, we
consider the total number of non-served packets for service v
and operator o at base station b. A flag (i.e. v) for the service
type is also used. Additionally, δb,o,vi includes the total number
of allocated RBs for this tuple, which could vary based on the
decisions from previous steps. Recall that Uo,v

b is the set of
users at base station b of operator o using service v. δb,o,vi is
represented by:

δb,o,vi =

{
|Uo,v

b |,
∑
v∈V
|Uo,v

b |,
∑
o∈O
|Uo,v

b |, P
b,o,v, v

}
The concatenation of all δb,o,vi form the state si. We note
that once all the RBs of a BS have been allocated, the tuples
corresponding to this base station are removed from the state
representation.
B. Action

At each step i of an episode, the goal is to allocate an RB
of BS b to an operator o and service v. This is achieved by

selecting a tuple that is represented by δb,o,vi . The action ai at
step i is the tuple:

ai = (b, o, v), b ∈ B, o ∈ O, v ∈ V

C. Reward
At each state si, once an action is executed, a reward is

generated by the environment. This helps the RL agent assess
how good its action has been. Recalling that P b,o,v is the total
number of packets in the queue from operator o and service v
at base station b, let P b,o,v

served be the total number of the served
packets. For an action ai = (b, o, v), the rewards is defined by

ri(si, ai) = ηo,v × (
P b,o,v
served

P b,o,v
)

where ηo,v is a weight used to control the priority for a service
or operator.

D. RL algorithm
The RL agent uses the algorithm known as REINFORCE

with a baseline [16]. In the training phase, the weights θ of
the Neural Network are initialized before starting any episode.
Then δb,o,vi and state si are updated at each step i. Then the
agent executes action ai, gets ri, and moves to si+1. This will
be repeated until the terminal state is reached. This is the case
when there is no more RBs to allocate to any operator at all
BS. The weights θ are updated according to this formula:

θ ←− θ + αγi∇log(P (si, ai))

α is the learning rate, P (si, ai) is the probability value yielded
by the NN, and γi is the discounted reward. γi is normalized
by subtracting the mean of the rewards in an episode and
dividing by the standard deviation of the rewards.

V. SIMULATION AND RESULTS

To measure the performance of the RL algorithm for RAN
sharing, we consider a scenario with 5 base stations. Each
base station has 100 RBs. In the case of RAN sharing, the
100 RBs of each BS are shared by the operators who together
share 4 CPUs in the O-Cloud. In case there is no sharing,
there will be a BS for each operator, each with 100 RB.
The same applies to the CPUs where each operator will use
4 CPUs. To measure the required processing time for user
frames, we use the model in [12]. In fact, we are targeting
the case where we have a low-to-medium load. This creates
an incentive for operators to deploy shared infrastructure to
reduce costs. We suppose that we have two operators and two
services (i.e., eMBB and URLLC). We assume the combined
deadline for transmission and baseband processing for eMBB
is 2ms, whereas it is 1.25ms for URLLC.

We set the weight ηo,v to 1 for all the operators and services.
The arrivals of users to base stations per service and per
operator follow a Poisson distribution, where we vary the rate
from 0.6 to 1 user/ms. The packets arrival per each eMBB
user is also a Poisson distribution with a rate that is randomly
chosen for each user such that it is between 1 and 50 packets
per second. For each URLLC user, this rate is between 1 and
10 packets per second. A user persists in the system for a
random time that is uniform between 10 and 30 ms. The size
of eMBB packets is set to 1500 bytes whereas it is 32 bytes
for URLLC.

The RL algorithm is initially trained for 4000 TTI. After
training, we use the trained RL agent to test two variations.



Fig. 3: (a) Percentage of served packets (b) RB Utilization (c) CPU Utilization as a function of users’ arrival rate

RL-1 invokes the RL agent every 1ms, so the system is recon-
figured every 1ms. In the second variation, RL-10 algorithm
is run every 10ms and reconfiguration of the system is done
every 10ms. The latter could be implemented in the near-RT-
RIC. However, the former variation must be implemented in
a Real-Time RIC that supports operations between 1 and 10
ms. The Real-Time RIC proposal could be considered in Open-
RAN and is proposed in [17]. To compare the RL models, we
consider three algorithms for benchmarking. The first one is
called Equal Sharing, which does static sharing as in [18].
Assuming both operators have similar traffic patterns, each
operator shares the same number of RBs, such that the 100
RBs of a BS are divided equally on each. Per operator, the
50 RBs are divided such that 38 RBs are allocated to eMBB
with numerology 0. The remaining 12 RBs use numerology
2. Hence, every four RBs allocated to URLLC are grouped
together to form one RB. We recall that in numerology 2,
the transmission time (i.e., which we call small TTI) is 0.25
ms, and the subcarrier spacing is multiplied by 4 as 4 RBs
get fused to form one URLLC RB. Hence, for every small
TTI, we have 3 RBs (i.e., 12 initial ones divided by 4 fused
RBs) for URLLC, but as we have 4 small TTIs during 1ms,
the total available URLLC RBs within the windows of 1ms
is equal to 12. Additionally, operators share 4 CPUs in the
O-Cloud. Additionally, we consider the case where operators
don’t have the same arrival rate. So instead of Equal sharing,
we use Proportional Sharing algorithm. In this algorithm, the
RBs are not shared equally but proportionally according to the
ratios of their arrival rates. On the other hand, we consider
another policy No Sharing where each operator has its own
resources (i.e., each operator has its own base station, each
with 100 RBs and has 4 non-shared CPUs at the O-Cloud).
We recall that the tested algorithms do not schedule users,
as they all use the proportional fairness algorithm for low-
level scheduling. To allow for the sharing of the CPUs, the
proportional fairness combines all users from all base stations
together. The proportional fairness ranks users based on the
ratio of the achievable throughput if they get scheduled divided
by the historical throughput. Users with the highest value are
scheduled first under the condition that there are still enough
computing resources to serve them. If the RBs of a specific
(BS, service, operator) tuple are fully used, users belonging to
such a tuple are excluded from the algorithm.

We repeat the simulation 10 times, and each run consists of
1000 TTI, and we plot the 95% confidence intervals. Figure 3
shows the percentage of served packets, the RBs utilization,

and the CPU utilization as a function of the arrival rate of
users. The served packets are the number of scheduled and
processed packets normalized by the combined total number
of packets in all the queues in the system. As expected, the
No Sharing algorithm performs the best due to the over-
provisioning of resources. This means the CAPEX and OPEX
of the operators will be much higher compared to the case
when sharing is permitted, as No Sharing requires doubling
the resources. On the other hand, RL-1 serves more packets
compared to Equal Sharing as it benefits as it dynamically
reallocates resources according to the instantaneous needs of
each operator. Such demands fluctuate as packets arrive, and
hence, resources can be moved from one operator to another
or from one service to another to satisfy these demands. On
the other hand, RL-10 is not as good as RL-1 since it takes
more time to reconfigure the system. However, as the arrival
rate increases, RL-10 can perform better than Equal Sharing as
the packets would arrive densely. So some users and packets
will be massively served over a window of 10 ms, and the
others have to wait 10 ms for the network to be reconfigured.
Note that this could incur a high delay that would negatively
affect delay-sensitive data.

Analyzing the RB utilization and CPU utilization in
Fig. 3(b) and Fig. 3(c), the No Sharing has the lowest
utilization. This results from the fact that each operator had
to double its provisioning radio and processing resources. On
the other hand, the RL algorithms have almost double the RB
and CPU utilization of that of No Sharing, which means RL-
1 is using, on average, the same amount of resources as the
No Sharing counterpart, given that No sharing has a doubled
amount of resources. On the other hand, the RL algorithms,
thanks to their dynamicity, are able to learn the instantaneous
needs of the system. Thus, they better occupy RBs and CPUs.
Next, we consider another case where operator 1 has a varying
users’ arrival rate while operator 2 has a fixed arrival rate of 1
user per ms. This allows us to test the case where one operator
has a demand lower than the other operator. We recall that
here we use Proportional Sharing algorithm instead of Equal
sharing, as operators no longer have the same arrival rate.
We also note that we did not retrain the model to capture
this scenario, but we reused the model trained in the initial
scenario. This is, in fact, a case of Transfer Learning where
the knowledge of an agent in a specific scenario can be used in
a close/similar but not identical scenario. Fig. 4 demonstrates
the ability of the RL model to adapt to the dynamic demands
and perform better than the baseline algorithm Proportional



Fig. 4: Percentage of (a) Served Packets (b) RB Utilization (c) CPU Utilization as a function of the ratio users’ arrival rate of
operator 1 vs. operator 2

Sharing. Thanks to the dynamicity of the RL models, it will
be able to respond to the non-frequent bursts of traffic arriving
from the less-loaded operator 1.

These results demonstrate the efficiency of the sharing mod-
els to improve the radio and computing resources utilization
compared to No-Sharing and thus allow for decreasing the
deployment and operational costs.

VI. CONCLUSION

In this paper, we have considered the inter-operator sharing
of radio and computing resources in Open-RAN. As operators
aim to minimize the deployment and operational costs, shar-
ing infrastructure presents a potential to decrease costs and
improve profits. We have modeled the inter-operator sharing
problem as an ILP problem that aims to share resources among
operators while satisfying their users’ demands. Due to the
high complexity of solving an ILP problem, we developed an
RL model to allocate resources among the different services
of different operators. The results demonstrate the ability of
the RL model to dynamically adapt to the varying traffic
and dynamic demands of operators compared to static sharing
models. Additionally, the RL model achieves higher radio and
CPU resource utilization in comparison to the case of No
sharing, where each operator has its own infrastructure. This
demonstrates the ability of the RAN sharing enabled by the
RL model to better utilize the resources, allowing operators
to deploy fewer resources in total and share them. Hence, this
decreases operators’ capital and operational expenditure. In
this work, the proposed RL module configures the allocation
of RBs. For future work, we will modify the RL model so
that it allocates both CPUs and RBs. Also, inspired by the
advances in Natural Language Processing, we will consider
using attention-based models such as transformers in the
architecture of the RL model.
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