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Summary15

Masting, a variable and synchronized variation in reproductive effort is a prevalent strategy16

among perennial plants, but the factors leading to interspecific differences in masting remain17

unclear. Here, we investigate interannual patterns of reproductive investment in 517 species18

of terrestrial perennial plants, including herbs, graminoids, shrubs, and trees. We place these19

patterns in the context of the plants’ phylogeny, habitat, form and function. Our findings reveal20

that masting is widespread across the plant phylogeny. Nonetheless, reversion from masting21

to regular seed production is also common. While interannual variation in seed production is22

highest in temperate and boreal zones, our analysis controlling for environment and phylogeny23

indicates that masting is more frequent in species that invest in tissue longevity. Our modeling24

exposes masting-trait relationships that would otherwise remain hidden and provides large-scale25

evidence that the costs of delayed reproduction play a significant role in the evolution of variable26

reproduction in plants.27

Introduction28

In perennial plants, reproduction can occur through spatially synchronized seed production,29

which varies substantially over time. In some years, investment in seed production is much30

higher than average, while in other years plants allocate few or no resources to reproduction,31

resulting in what is known as masting [1, 2]. The concentration of reproduction in intermittent32

years appears heritable [3], and helps alleviate pollen limitation and reduce seed predation but33

comes at the cost of skipped reproductive opportunities [4, 5, 6, 7]. The varying balance of34

masting costs and benefits is likely responsible for the rich diversity of reproductive behaviors35

observed in perennials, ranging from relatively regular fruiting to rare reproduction happening at36

long lags [1, 8, 9, 10, 11]. Large-scale variation in masting benefits is better explored compared37

to costs [1, 9, 12, 11]. For example, interannual variation in seed production is high in the38

temperate zone, where the benefits of starving and satiating specialist seed predators are the39

greatest [1, 13]. In contrast, the costs of missed reproductive opportunities have long been only40

theorized to be higher in species with high population growth rates and low adult survivorship41

[14, 5], but this has remained challenging to test. Here, using trait-based approaches, we provide42

support for this central tenet of masting theory, showing that masting predominately occurs in43

species with conservative plant tissues.44

Accessible trait-based approaches can serve as indicators of life history strategies, aiding in45

the identification of functional constraints and trade-offs [15, 16, 17, 18], and providing an avenue46

to investigate how varying costs of reproduction (skipped reproduction) shapes the evolution of47

masting. High stem tissue density (i.e. wood density) provides mechanical strength and reduces48

mortality, but limits growth rates, which distinguishes strategies reliant on stress persistence49

from rapid utilization of ephemeral opportunities[17]. We can thus expect stronger masting in50

species with high stem tissue density, as lower mortality rates due to stronger stress resistance51
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Figure 1: MASTREE+ sites used in the analysis, and climatic space for the species analyzed. a) Location of
MASTREE+ sites (red dots) included in this study (data displayed in Van der Grinten IV projection). b) Climatic
distribution of our sites. Each dot represents average climatic conditions (mean annual temperature, MAT, and
mean annual precipitation, MAP) at the species distribution level (n = 517 species). Data on species distribution
was largely derived from the Global Biodiversity Information Facility (GBIF, www.gbif.org) (see Methods).
The Whittaker biome plot is included in the background for context.

should buffer against missed reproductive opportunities [14, 19, 20]. Similarly, productive but52

short-lived leaves with high nitrogen content and low leaf mass per area (LMA) are characteristic53

of cheap, acquisitive leaves that are efficient in resource-rich environments and associated with54

high population growth rates [20]. Such leaves should be thus associated with low interannual55

variation in reproduction [1, 21]. In addition, high interannual variation should be also associated56

with large seeds if expensive reproduction strongly depletes resources after reproductive events57

[22, 5]. Although these links are theoretically established in the literature, supporting evidence is58

scarce, as data on seed production accumulate slowly and require significant investment [23, 24].59

The relationships between traits at large scales are complicated by their often-neglected direct60

(conditional) and indirect (marginal) relationships [25, 26], through the intricate connection of61

climate, geography, or phylogeny. In the case of masting, stem tissue density tends to be high in62

the tropics where interannual variation in seed production is low [17, 9]. Therefore, a negative63

correlation between interannual variation in seed production and stem tissue density could64

be an indirect relationship resulting from latitudinal covariance in these traits. Alternatively,65

the relationship could be direct if the low interannual variation in seed production requires66
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species to produce conservative stems. Indirect relationships may also arise from phylogenetic67

conservatism. Certain taxa may exhibit large interannual variations in seed production and68

high stem tissue density even if environmental conditions that select one or both traits change.69

Traditional summaries such as principal component analysis (PCA) summarize correlations that70

include all the indirect ways traits could be associated [26, 27]. To address this issue, novel71

methods such as joint attribute modeling enable the decomposition of relationships into direct72

and indirect, driven by either climate or phylogeny [28, 26]. These statistical tools synergize with73

the recent advancement of global coordination in monitoring and seed production data synthesis,74

allowing tests of decades-old assumptions of the field while accounting for longstanding issues75

with covariance between variables.76

In this study, we explore the relationship between masting, phylogeny, climate, and functional77

diversity across 517 species of vascular plants, including herbs, graminoids, shrubs, and trees78

from various biomes (Fig. 1). We use MASTREE+, a database that provides information79

on annual variations in plant reproductive effort [24]. We characterize the variability of seed80

production in each species using two commonly used masting metrics, the coefficient of variation81

(CV), and the lag-1 temporal autocorrelation (AR1), which describes the tendency of high82

seed production years to be followed by low seed production [1, 29]. Using joint attribute83

modeling, we extract conditional relationships driven by climate and phylogeny and associate84

large interannual variation in seed production with a need for conservative tissues. This provides85

large-scale evidence that the costs of delayed reproduction play a significant role in the evolution86

of variable reproduction.87

Results88

Masting on the spectrum of plant form89

We start with results derived from the traditional principal component analysis (PCA) approach to90

illustrate the challenges associated with mixing conditional and marginal relationships. Principal91

component analysis of functional traits and masting metrics indicates that masting is largely92

independent of functional traits. The PCA of six functional traits and masting metrics indicated93

that the 517 species examined here had two primary sources of variation: an axis of leaf94

economics (Axis 1: leaf mass per area, leaf nitrogen, leaf area) and plant size (Axis 2: seed95

mass, plant height, and stem tissue density), with no contributions from masting metrics (i.e.96

coefficient of variation, CV, and the lag-1 of temporal auto-correlation, AR1 of seed production).97

Instead, masting generated a distinct axis of variation (Axis 3), with species exhibiting high CV98

and negative temporal autocorrelation of seed production concentrated at one end of the axis (Fig.99

2 & Fig. S1). However, the correlation summary mixed conditional and marginal relationships100

conferred by phylogeny and climate, which each had strong effects on masting, as explained101

below.102
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Figure 2: Masting metrics (coefficient of variation, CV, and lag-1 temporal autocorrelation of seed production,
AR1) on the spectrum of plant functional traits. A) Biplot of principal components that summarized axes 1 and 2,
and B) and axes 1 and 3. The PCA included plant functional traits (stem tissue density, leaf area, leaf nitrogen, leaf
mass per area LMA, plant height, and seed mass) and masting metrics (CV and AR1). Arrow length indicates the
loading of each considered trait onto the axes. Points represent the position of species color-coded according to their
growth form (yellow for trees, purple for shrubs, and grey for others that included graminoid and non-graminoid
herbaceous and climbers). C) Summary of PCA loadings, and D) contributions to the three axes of variation. The
bars at C) and D) are color-coded to match the colors of axes (at A and B) to which the traits loaded the most. The
trait probability density function is given in Fig. S1, and CV/AR1 by growth form with PCA S2
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Figure 3: Coefficient of variation of seed production mapped onto a plant phylogeny. Warmer colors (reds)
indicate higher, while blue lower CV (the phylogenetic signal is calculated using Pagel’s 𝜆 = 0.48, 𝑝 < 0.0001, n =
518 species). Distributions of the masting metrics are in Fig.S4. Orders of plants are provided at the periphery of
the phylogenetic tree.
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Masting on the Tree of Life of plants103

The coefficient of variation (CV) and the lag-1 temporal auto-correlation (AR1) exhibited104

phylogenetic coherence, with CV coherence being about twice as strong (CV: 𝜆 = 0.48, 𝑝 <105

0.0001; AR1: 𝜆 = 0.27, 𝑝 < 0.0001, as shown in Fig. 3 and Fig. S3). Several groups were106

found to have a high concentration of species with a very high coefficient of variation in seed107

production (Fig. 3). These groups included Poales’ Chionochloa and Miscanthus. The Pinales108

order also included high-CV genera such as Abies, Juniperus, and Picea, as well as mixed ones109

such as Pinus. Fagales were also mixed, including high-variability genera such as Betulaceae110

and mixed ones such as Fagaceae, which had high-CV Fagus and diverse Quercus. Low CV111

was common in Magnoliales, Gentianales, and some genera of Cornales and Malvales, such as112

Cistaceae and Cornaceae. Highly negative temporal autocorrelation of seed production was a113

characteristic trait of Fagales (Fig. S3). Other groups, such as Rosales or Pinales, were mixed,114

while Malpighiales, Gentianales, and Magnoliales were dominated by positive autocorrelation.115

Masting across climates116

Although interannual variation (CV) and lag-1 temporal auto-correlation (AR1) of seed pro-117

duction were not correlated (Fig. S5), they responded to the climate in opposite ways that118

resulted in a convergence of high CV and negative AR1 in the same climates (Fig. 4). Positive119

temporal autocorrelation was observed in species that grow in hot and dry environments, such as120

subtropical deserts or tropical seasonal forests (Fig. S6), where low CV was also common (Fig.121

S6). Conversely, negative AR1 and high CV were predicted in temperate and boreal forests,122

which are characterized by intermediate annual temperatures and precipitation (Fig. 4). We123

also explored models that were supplemented with climate variability (standard deviation of the124

monthly mean temperatures and coefficient of variation of the monthly precipitation), but the125

inclusion of climate variability has not improved our model’s fit (Table S2).126

Masting and traits, accounted for climate and phylogeny127

The conditional prediction from generalized joint attribute modeling (GJAM), which accounted128

for the effects of phylogeny and species climatic niche on masting, revealed that species with129

dense stems and conservative leaves characterized by high mass per area tend to have higher130

coefficients of variation in seed production (Fig. 5). There was also a weak (non-significant in131

the full model) association between high CV and small seeds (Fig. 5, Table S1). These effects132

suggest that correlations (or the lack thereof) observed by PCA between traits and masting133

metrics were mainly driven by climate or shared ancestry. For instance, stem tissue density is134

highest in climates where masting is lowest (Fig. S7), but this negative covariance changes sign135

once the climate is taken into account.136
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Figure 4: Summary of climate effects on masting, derived from the GJAM model that included coefficient of
variation (CV) and temporal autocorrelation (AR1) as responses (n= 517 species). a) Boxplots show the marginal
posterior distributions of the GJAM-derived coefficients. Specifically, boxes show mean effect size as vertical lines
and are bounded by 80% credible intervals (CI), with 95% CI as whiskers. Colors highlight signs of the correlation
(green for positive and purple for negative), with opacity increasing from 80% to 95% of the distribution outside
of zero. Grey indicates coefficients that overlap zero. b) Effects of mean annual temperature (MAP, in ◦𝐶) and
mean annual precipitation (MAT, in cm) on CV and AR1. The surface shows the conditional relationship between
CV/AR1 and MAT across levels of MAP. Convex hull is defined by species observations (red dots). MAT and
MAP are defined for each species’ distribution derived from the Global Biodiversity Information Facility (GBIF,
www.gbif.org). Biplots of relationships between CV/AR1 and MAT and MAP are in Fig. S6. Climate effects
on functional traits are in Fig. S7.

8

www.gbif.org


CV AR1

0.0 0.5 −0.2 0.0 0.2 0.4

Height

Leaf area

Leaf N

LMA

Seed size

Stem density

Coefficient value

Figure 5: GJAM-derived, conditional relationship between masting metrics (CV and AR1) and functional traits
(stem tissue density, seed mass, LMA, leaf N, leaf area, and plant height) after accounting for effects of climate and
phylogeny (n= 517 species). Boxplots show the marginal posterior distributions of the GJAM-derived coefficients.
Specifically, boxes show mean effect size as vertical lines and are bounded by 80% credible intervals (CI), with
95% CI as whiskers. Colors highlight signs of the correlation (green for positive and purple for negative), with
opacity increasing from 80% to 95% of the distribution outside of zero. Grey indicates coefficients that overlap
zero.

Discussion137

Interannual variation in seed production across 517 species is associated with restricted climatic138

and phylogenetic space and conservative tissues that include higher stem tissue (wood) density139

and higher LMA. First, the coefficient of variation of seed production was highest in temperate140

and boreal climates, which supports previous studies that have shown the CV to be highest at141

mid-latitudes [1, 9]. Second, masting has evolved multiple times across the Tree of Life in142

plants, in growth forms ranging from grasses to trees. Nonetheless, numerous branches have143

split into high and low-variability groups, perhaps because species quickly lose their inherited144

seed production variability once there is no ongoing selection for it (e.g., low seed predation145

or high pollination can be achieved via other routes). Third, high interannual variation in seed146

production is concentrated in life history strategies that invest in low mortality. High survival147

rates decrease the costs of missed reproductive opportunities, which is a major masting cost that148

can prohibit masting evolution even when there is a strong selection for it [19, 7]. Thus, costs149

of delayed reproduction appear a major factor driving the evolution of masting across species.150

Masting is a widespread phenomenon in the Tree of Life of plants. Although the coefficient of151

variation (CV) of seed production exhibited relatively strong phylogenetic coherence, branches152

lacking closely related species that have reverted from masting to regular seed production were153

rare. For instance, the Betulaceae family, comprising Betula, Carpinus, and Alnus, displayed154

generally high variability, with exceptions including Alnus hirsuta and Betula pendula. The155
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closely related Chionochloa species all showed highly interannually variable seeding patterns,156

with related Dactylis glomerata being a low-variability exception. Perhaps the high costs of high157

seed production variability mean that if the need for masting (e.g., high seed predation rates or158

low pollination efficiency) can be circumvented through less costly alternatives, regular seeding159

re-evolves. In this context, oaks represent a notable example of diversity and rapid transitions160

between low and highly variable strategies, contrasting with Pinales, where masting was lost161

less frequently. A comparison of these two groups to understand why masting is almost always162

beneficial in Pinales, such as Picea or Abies, but can quickly cease to be so in Quercus, is a163

promising area for future research. Are the costs of masting systematically smaller in Pinales, or164

is the need for masting (e.g., low pollination efficiency) systematically greater? One interesting165

way forward is to examine this question in light of the high resprouting abilities of oaks but not166

pines [30].167

A high coefficient of variation in seed production does not necessarily imply a need for168

negative lag-1 temporal autocorrelation, indicating that the two can evolve independently [9, 10].169

High CV values without strongly negative AR1 may happen if mast years are not followed by170

complete failure years [9, 10]. However, climate effects on these metrics lead to the convergence171

of high CV and highly negative AR1 in the same boreal and temperate habitats. Predator172

satiation is most effective at mid-latitudes [13], which is often explained by a lower diversity of173

alternate food resources for seed consumers that helps control their populations [1, 9]. Thus,174

the high potential effectiveness of predator satiation may lead to stronger selection for both high175

CV and negative AR1 in such biomes. Alternatively, species in the boreal and temperate zones176

may rely less on mutualistic interactions [31], which tend to select against masting [32, 1, 11].177

For example, wind pollination is less frequent at low latitudes [33], and the absence of negative178

AR1 may avoid the starvation of animal pollinators in these systems. Finally, to the extent that179

negative AR1 reflects resource depletion following high-seeding years [34, 35], convergence180

between high CV and negative AR1 could be driven by stronger resource constraints in certain181

climates [21]. Irrespective of the reason, in climates where high CV and negative AR1 co-182

occur, masting-driven pulsed resources would be expected to involve frequent famines [36, 37],183

creating an especially unstable base of food webs in these biomes.184

Masting is associated with a restricted functional trait space. High interannual variation in185

seed production is common in species with high stem tissue density and, to a lesser extent, in186

species with high leaf mass per area (LMA). These species invest heavily in constructing tissues,187

resulting in slower returns on nutrient investment but higher survival through higher defenses188

against physical damage and herbivores [38, 39, 17]. Theoretical models suggest that the189

significant costs of missed reproductive opportunities can prevent the evolution of masting, even190

in the presence of significant benefits such as improved pollination and reduced seed predation191

[14, 19, 7]. In this context, our results support this long-standing theory, testing of which has192

previously been frustrated by lack of data. What is more, recent studies suggested that the other193

theoretical masting cost, negative density-dependent seedling survival [5, 40], may be lower194

than expected. Theory predicts that negative density-dependent seedling survival can prohibit195

the evolution of masting in plants that have high adult survival [40]. However, recent evidence196
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implies that masting does not result in lowered seedling survival in Sorbus aucuparia [12], and197

may even increase seeding survival in tropical communities [41]. Generally, negative density198

dependence appears fairly weak on average and highly variable among species, suggesting that199

its generality may be overstated [42]. Together with our results, these suggest that the costs of200

delayed reproduction may be a major mechanism driving the evolution of masting across plant201

life history strategies.202

We also found no support for theories linking high CV with large seed [22, 5]. We speculate203

that the tendency for high CV in small-seeded species, in contrast to theoretical predictions,204

may result from contrasting selection pressures. For example, small seeds are correlated with205

seed bank persistence in the soil [43], which is another way to circumvent the costs of missed206

reproductive opportunities [19]. Consequently, if there are ways that small-seeded species207

can reduce the costs of missed reproduction, masting might evolve more readily, offsetting the208

expected direct effect of large seeds on masting.209

In summary, our analysis supports the idea that the extent of year-to-year variation in masting210

is regulated by a species’ phylogeny, location (climate), and life history (plant form). The211

effects of climate and phylogeny on mast seeding and functional traits necessitated conditional212

predictions that extracted direct associations [28, 27]. A PCA analysis that combined all the213

ways in which variables can be linked suggested that masting created a third, mostly independent214

dimension of variation in plant traits. This outcome would support a twin-filter model, according215

to which primary strategies, such as the fast-slow leaf economics spectrum [44], determine plant216

persistence for climate and habitat norms, whereas traits involved in episodic events, including217

reproduction, affect fitness regardless of other traits [45]. In other words, masting would evolve218

whenever there is a need for it, regardless of the plant form. However, by extracting direct219

effects, we showed that links among traits and variation in seed production were concealed by220

their covariance with climate and phylogeny. That modeling reversed the analytical outcomes,221

showing that the costs of delayed reproduction may prevent masting in fast-growing, low-survival222

plant forms. The required next step is to directly link masting with life history traits (population223

growth rate, size at sexual maturity, mortality rates) which, with growing data availability [46],224

may soon become feasible.225
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Methods226

Data description227

Our analysis is based on MASTREE+, a database of annual records of population-level repro-228

ductive effort of 974 from all vegetated continents [24]. For our analysis, we excluded time229

series that were on an ordinal scale and those based on pollen measurements. We analyzed two230

subsets of the data. One, broader, was limited to time series with at least 5 years of observations.231

That analysis is reported in the main text. Second, a more restrictive analysis included time232

series with at least 10 years of records. Results of that analysis are reported in the Supplementary233

Section and provide quantitatively the same outcomes.234

Masting metrics235

We computed the coefficient of variation (CV, standard deviation divided by mean of seed236

production) for each site-species combination. The CV is commonly used in masting studies to237

describe inter-annual variations of seed production [1, 29, 47]. We also computed lag-1 temporal238

auto-correlation of seed production (AR1), which characterized the tendency of high-seeding239

years to be followed by low-seeding years. For each species, we computed the average CV and240

AR1. To compute auto-regressive correlation we used the acf function in R [48].241

Functional traits242

We extracted species-level functional traits from [49], which include Leaf Mass Area (LMA,243

in g.m−2), stem tissue density (SSD, in mg.mm−3), plant height (ph, in m), leaf nitrogen (ln, in244

mg.g−1), seed size (sm, in mg), and leaf area (la, in mm−2), and plant growth form (Fig .S8).245

We also obtained plant growth form, which includes trees, shrubs, and other categories, with246

graminoid and non-graminoid herbaceous, and climbers (see distribution in Fig. S2).247

Full trait information obtained from [49] was available for 210 species from MASTREE+248

database. To increase species coverage, we performed a trait-imputation procedure. We used249

machine learning that accounted for species phylogeny [50, 51]. We filled only species that had250

information for at least three functional traits (out of six used in the analysis) [18, 50]. First, we251

log10 transformed known functional traits and incorporated phylogenetic information for each252

species [52]. The phylogenetic information was summarized by eigenvectors extracted from253

a principal coordinate analysis (PCoA), which represented the variation in the phylogenetic254

distances among species. We used the first ten axes of PCoA for the imputation process255

[52, 50]. The phylogeny was obtained using the R package V.Phylomaker2 [53, 54], with256

the GBOTB.extented.TPL tree as a backbone [55, 56], and scenario S3 to generate the257

phylogeny [57, 54]. Imputation of missing trait information with machine learning has been258

done through the R package missForest [58]. That imputation allowed us to increase the259

sample size (i.e. species for which we had full traits and seed production data) to 517 species.260

The GJAM model without trait data imputation generated qualitatively similar results for CV261
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(Table S1). In the case of AR1, lack of trait imputation resulted in a positive association262

between leaf N and AR1, and a negative between height and AR1 being significant. That hints263

that acquisitive leaves may buffer against strong post-mast seeding failure [21], although it is264

unclear why smaller plants have more negative AR1. For consistency, we discuss only the results265

with the data imputation in the main text.266

Abiotic variables267

We determined the species’ climatic niche by using species occurrences extracted from Global268

Biodiversity Information Facility (GBIF, ,www.gbif.org) through the rgbif package [59]269

(data request: 10.15468/dl.jxyrhk, [60]). We removed species occurrences from GBIF270

that are incorrectly or vaguely reported and outliers by using the R packageCoordinateCleaner271

[61] to keep precise species locations (mean number of occurrences for our species = 7,609,272

CI975 = [1; 105,093]). Next, for each occurrence, we extracted a mean annual temperature273

(MAT, in ◦𝐶) and mean annual cumulative precipitation (MAP, in cm) by using CHELSA274

data [62], and averaged those values from all occurrences per species to one value per species275

range (MAT and MAP). For each species, we used average species climatic conditions from276

MASTREE+ if the number of sample sites from MASTREE+ was higher than the number of277

species occurrences from GBIF (n = 55 species). We used GBIF-based climate to accommodate278

functional traits and masting metrics at species-wide averages. Nonetheless, MAT and MAP279

obtained through MASTREE+ sites and GBIF present strong correlations (Fig. S9), and using280

both provides qualitatively the same results.281

Analysis282

Phylogenetic analysis283

We estimated the phylogenetic signal of the coefficient of variation (CV) and temporal auto-284

correlation (AR1) of seed production with Pagel’s 𝜆 [63]. Pagel’s 𝜆 is based on the Brownian285

Motion evolutionary model and ranges from 0, when there is no phylogenetic signal, to 1 where286

the phylogenetic signal is estimated to be very strong. The Pagel’s 𝜆 was estimated by using the287

phyolosig function from phytools R package [64] and visualized with ggtree [65]. We288

used a plant phylogenetic tree provided by [55].289

Multivariate analysis290

We used the principal component analysis (PCA) to describe the multivariate trait spectrum,291

which included the six functional traits and two masting metrics (CV and AR1). We kept292

functional traits log10 transformed. We standardized and centered variables. We used ade4293

[66] R package. Moreover, we estimated the occurrence probability of trait combination in two-294

dimensional space (determined by the PCA axis 1 and 2, or by axis 2 and 3) with their bivariate295
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trait combinations. We used the two-dimensional kernel density estimation and determined the296

highest probability trait occurrence [18, 51].297

Joint model analysis298

We jointly modeled functional traits and masting metrics using the generalized joint attribute299

modeling (GJAM, [28]). Average climatic conditions per species range (occurrences obtained300

via GBIF, see above) were included as predictors, i.e. mean annual temperature (MAT) and301

mean annual precipitation (MAP). We tested a set of models with different combinations of the302

interaction between MAP and MAT, and their quadratic terms. Model selection was based on the303

Deviance information criterion (DIC). The GJAM allowed us to accommodate the dependence304

between traits and phylogeny as random groups. To this end, we followed past studies that used305

a similar approach [67, 27], and grouped species according to genus or family (when the genus306

had less than 10 species). We used the ’multiple’ category for families with less than 5 species.307

We accommodated the mutual dependence structure of traits and isolated their effect on308

masting metrics through conditional prediction [68, 27]. Conditional prediction offers an309

estimation of the relationships between traits and masting metrics while accounting for the310

effects that come through climate and phylogeny. These conditional parameters are obtained311

via gjam R package [28], by specifying traits being conditioned (here, functional traits) on the312

variable of interest (here, CV and AR1 of seed production). In doing this, we first estimate how313

responses (functional traits and masting metrics) correlate with climate. Next, the relationships314

among responses are estimated, after accounting for the predictors (climate and phylogeny). The315

gjam is an open-access R package gjam available on CRAN.316

14

https://cran.r-project.org/web/packages/gjam/index.html


Data availability statement317

The data used in this study have been deposited in the Open Science Framework (OSF)318

(https://osf.io/57w2q/). The full MASTREE+ dataset is available in [24]. Traits319

have been downloaded from [49]. Climate data have been extracted from CHELSA at https:320

//chelsa-climate.org/.321

322

Code availability statement323

R statistical software v4.3.0 was used in this work [48]. All analyses used published R packages.324

325

15

https://osf.io/57w2q/
https://chelsa-climate.org/
https://chelsa-climate.org/
https://chelsa-climate.org/


References326

[1] Kelly, D. & Sork, V. L. Mast Seeding in Perennial Plants: Why, How, Where? Annual327

Review of Ecology and Systematics 33, 427–447 (2002).328

[2] Pesendorfer, M. B. et al. The ecology and evolution of synchronized reproduction in329

long-lived plants. Philosophical Transactions of the Royal Society B: Biological Sciences330

376, 1–8 (2021).331

[3] Caignard, T., Delzon, S., Bodénès, C., Dencausse, B. & Kremer, A. Heritability and genetic332

architecture of reproduction-related traits in a temperate oak species. Tree Genetics and333

Genomes 15, 1 (2019).334

[4] Hett, J. M. A dynamic analysis of age in sugar maple seedlings. Ecology 52, 1071–1074335

(1971).336

[5] Kelly, D. The evolutionary ecology of mast seeding. Trends in Ecology Evolution 9,337

465–470 (1994).338

[6] Norton, D. A. & Kelly, D. Mast seeding over 33 years by dacrydium cupressinum lamb.339

(rimu) (podocarpaceae) in new zealand: The importance of economies of scale. Functional340

Ecology 2, 399–408 (1988).341

[7] Tachiki, Y. & Iwasa, Y. Both seedling banks and specialist seed predators promote the342

evolution of synchronized and intermittent reproduction (masting) in trees. Journal of343

Ecology 98, 1398–1408 (2010).344

[8] Koenig, W. D. et al. Is the relationship between mast-seeding and weather in oaks related345

to their life-history or phylogeny? Ecology 97, 2603–2615 (2016).346

[9] Pearse, I. S., LaMontagne, J. M., Lordon, M., Hipp, A. L. & Koenig, W. D. Biogeography347

and phylogeny of masting: do global patterns fit functional hypotheses? New Phytologist348

227, 1557–1567 (2020).349

[10] Dale, E. E., Foest, J. J., Hacket-Pain, A., Bogdziewicz, M. & Tanentzap, A. J. Macroevo-350

lutionary consequences of mast seeding. Philosophical Transactions of the Royal Society351

B: Biological Sciences 376 (2021).352

[11] Qiu, T. et al. Masting is uncommon in trees that depend on mutualist dispersers in the353

context of global climate and fertility gradients. Nature Plants 9, 1044–1056 (2023).354

[12] Seget, B. et al. Costs and benefits of masting: economies of scale are not reduced by355

negative density-dependence in seedling survival in sorbus aucuparia. New Phytologist356

233, 1931–1938 (2022).357

16



[13] Zwolak, R., Celebias, P. & Bogdziewicz, M. Global patterns in the predator satiation effect358

of masting: A meta-analysis. Proceedings of the National Academy of Sciences of the359

United States of America 119 (2022).360

[14] Waller, D. M. Models of mast fruiting in trees. Journal of Theoretical Biology 80, 223–232361

(1979).362

[15] Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).363

[16] Muller-Landau, H. C. The tolerance-fecundity trade-off and the maintenance of diversity364

in seed size. Proceedings of the National Academy of Sciences of the United States of365

America 107, 4242–4247 (2010).366

[17] Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12,367

351–366 (2009).368

[18] Dı́az, S. et al. The global spectrum of plant form and function. Nature 529, 167–171369

(2016).370

[19] Rees, M., Kelly, D. & Bjørnstad, O. N. Snow tussocks, chaos, and the evolution of mast371

seeding. American Naturalist 160, 44–59 (2002).372

[20] Adler, P. B. et al. Functional traits explain variation in plant lifehistory strategies. Proceed-373

ings of the National Academy of Sciences of the United States of America 111, 740–745374

(2014).375

[21] Fernández-Martı́nez, M. et al. Nutrient scarcity as a selective pressure for mast seeding.376

Nature Plants 5, 1222–1228 (2019).377

[22] Sork, V. L., Bramble, J. & Sexton, O. Ecology of mast-fruiting in three species of North378

American deciduous oaks. Ecology 74, 528–541 (1993).379

[23] Clark, J. S. et al. Continent-wide tree fecundity driven by indirect climate effects. Nature380

Communications 12, 1242 (2021).381

[24] Hacket-Pain, A. et al. Mastree+: Time-series of plant reproductive effort from six conti-382

nents. Global Change Biology 28, 3066–3082 (2022).383

[25] Agrawal, A. A. A scale-dependent framework for trade-offs, syndromes, and specialization384

in organismal biology. Ecology 101 (2020).385

[26] Seyednasrollah, B. & Clark, J. S. Where Resource-Acquisitive Species Are Located: The386

Role of Habitat Heterogeneity. Geophysical Research Letters 47, 1–12 (2020).387

[27] Bogdziewicz, M. et al. Linking seed size and number to trait syndromes in trees. Global388

Ecology and Biogeography 32, 683–694 (2023).389

17



[28] Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J. & Zhang, S. Generalized joint390

attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data.391

Ecological Monographs 87, 34–56 (2017).392

[29] Koenig, W. D. et al. Dissecting components of population-level variation in seed production393

and the evolution of masting behavior. Oikos 102, 581–591 (2003).394

[30] Vacchiano, G. et al. Natural disturbances and masting: from mechanisms to fitness395

consequences. Philosophical Transactions of the Royal Society B: Biological Sciences 376396

(2021).397

[31] Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a398

latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology,399

Evolution, and Systematics 40, 245–269 (2009).400

[32] Herrera, C. M., Jordano, P., Guitian, J. & Traveset, A. Annual variability in seed production401

by woody plants and the masting concept: Reassessment of principles and relationship to402

pollination and seed dispersal. American Naturalist 152, 576–594 (1998).403

[33] Regal, P. J. Pollination by Wind and Animals: Ecology of Geographic Patterns. Annual404

Review of Ecology and Systematics 13, 497–524 (1982).405

[34] Sala, A., Hopping, K., McIntire, E. J., Delzon, S. & Crone, E. E. Masting in whitebark406

pine (pinus albicaulis) depletes stored nutrients. New Phytologist 196, 189–199 (2012).407

[35] Crone, E. E. & Rapp, J. M. Resource depletion, pollen coupling, and the ecology of mast408

seeding. Annals of the New York Academy of Sciences 1322, 21–34 (2014).409

[36] Bogdziewicz, M., Zwolak, R. & Crone, E. E. How do vertebrates respond to mast seeding?410

Oikos 125, 300–307 (2016).411
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Figure Legends/Captions505

Figure 1: MASTREE+ sites used in the analysis, and climatic space for the species analyzed. a) Location of506

MASTREE+ sites (red dots) included in this study (data displayed in Van der Grinten IV projection). b) Climatic507

distribution of our sites. Each dot represents average climatic conditions (mean annual temperature, MAT, and508

mean annual precipitation, MAP) at the species distribution level (n = 517 species). Data on species distribution509

was largely derived from the Global Biodiversity Information Facility (GBIF, www.gbif.org) (see Methods).510

The Whittaker biome plot is included in the background for context.511

Figure 2: Masting metrics (coefficient of variation, CV, and lag-1 temporal autocorrelation of seed production,512

AR1) on the spectrum of plant functional traits. A) Biplot of principal components that summarized axes 1 and 2,513

and B) and axes 1 and 3. The PCA included plant functional traits (stem tissue density, leaf area, leaf nitrogen, leaf514

mass per area LMA, plant height, and seed mass) and masting metrics (CV and AR1). Arrow length indicates the515

loading of each considered trait onto the axes. Points represent the position of species color-coded according to their516

growth form (yellow for trees, purple for shrubs, and grey for others that included graminoid and non-graminoid517

herbaceous and climbers). C) Summary of PCA loadings, and D) contributions to the three axes of variation. The518

bars at C) and D) are color-coded to match the colors of axes (at A and B) to which the traits loaded the most. The519

trait probability density function is given in Fig. S1, and CV/AR1 by growth form with PCA S2520

Figure 3: Coefficient of variation of seed production mapped onto a plant phylogeny. Warmer colors (reds)521

indicate higher, while blue lower CV (the phylogenetic signal is calculated using Pagel’s 𝜆 = 0.48, 𝑝 < 0.0001, n =522

518 species). Distributions of the masting metrics are in Fig.S4. Orders of plants are provided at the periphery of523

the phylogenetic tree.524

Figure 4: Summary of climate effects on masting, derived from the GJAM model that included coefficient of525

variation (CV) and temporal autocorrelation (AR1) as responses (n= 517 species). a) Boxplots show the marginal526

posterior distributions of the GJAM-derived coefficients. Specifically, boxes show mean effect size as vertical lines527

and are bounded by 80% credible intervals (CI), with 95% CI as whiskers. Colors highlight signs of the correlation528

(green for positive and purple for negative), with opacity increasing from 80% to 95% of the distribution outside529

of zero. Grey indicates coefficients that overlap zero. b) Effects of mean annual temperature (MAP, in ◦𝐶) and530

mean annual precipitation (MAT, in cm) on CV and AR1. The surface shows the conditional relationship between531

CV/AR1 and MAT across levels of MAP. Convex hull is defined by species observations (red dots). MAT and532

MAP are defined for each species’ distribution derived from the Global Biodiversity Information Facility (GBIF,533

www.gbif.org). Biplots of relationships between CV/AR1 and MAT and MAP are in Fig. S6. Climate effects534

on functional traits are in Fig. S7.535

Figure 5: GJAM-derived, conditional relationship between masting metrics (CV and AR1) and functional traits536

(stem tissue density, seed mass, LMA, leaf N, leaf area, and plant height) after accounting for effects of climate and537

phylogeny (n= 517 species). Boxplots show the marginal posterior distributions of the GJAM-derived coefficients.538

Specifically, boxes show mean effect size as vertical lines and are bounded by 80% credible intervals (CI), with539

95% CI as whiskers. Colors highlight signs of the correlation (green for positive and purple for negative), with540

opacity increasing from 80% to 95% of the distribution outside of zero. Grey indicates coefficients that overlap541

zero.542
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Supplementary material
Supplementary Notes
Analysis with time-series restricted to 10 years
In that Supplement, we report the results as in the main text, but with a more restrictive data filtering, i.e. we
limited the time series (site by species combinations) to have at least 10 years of observations.

Phylogenetic signal The strength of the phylogenetic signal slightly increased once the data was restricted
to fewer species. In the case of CV, 𝜆 equaled 0.57 (𝑝 < 0.00001, n = 364 species), while in the case of AR1, 𝜆
equaled 0.41 (𝑝 < 0.00001, n = 364 species, Fig. S10).

Principal Component Analysis (PCA) Patterns summarized by the PCA analysis on the restricted dataset
(n = 368) resembled those run on a larger set of species (n = 517). Masting metrics created a 3rd, largely independent
from the first two, axis of variation (Fig. S11).

Generalized Joint Attribute Modeling (GJAM) The coefficient of variation and lag-1 temporal
auto-correlation responded in the opposite way to climate (Fig. S12). Conditional parameters estimated with
GJAM support the conclusion that high CV is concentrated in species that are characterized by conservative tissue
construction, i.e. high stem (tissue) density (Fig. S13). That support comes from the relationship of CV with stem
tissue density, but not with leaf mass per area (LMA).
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Supplementary Figures

Figure S1: Masting metrics on the spectrum of plant form and function. Trait probability density function
for principal components: a) axis 1 and axis 2; b) axis 1 and axis 3. Colors indicate the probabilistic distribution
of trait combinations in the functional trait space defined by a PCA. Contour lines indicate 0.99, 0. 50, and 0.25
quantiles of the probability distribution, and dots represent species. We estimated the occurrence probability of
a given combination of trait values determined by the principal components axis and bivariate trait combination
using two-dimensional kernel density estimation.
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Figure S2: Masting metrics on the spectrum of plant form and function, by growth form. Trait probability
density function for principal components between axis 3 and axis 1 according to plant growth form for a) other
groups, b) shrub, and c) trees. For each growth form group, the colors indicate the probabilistic distribution of
trait combinations in the functional trait space defined by a PCA (ranging from low probability in pale white to
high probability in red). Contour lines indicate 0.99, 0. 50, and 0.25 quantiles of the probability distribution. We
estimated the occurrence probability of a given combination of trait values determined by the principal components
axis and bivariate trait combination using two-dimensional kernel density estimation. Analysis and plots have been
made with the R package funspace [51]. d) Coefficient of variation (CV) and lag-1 temporal auto-correlation
(AR1) across growth forms (n = 517 species). The growth form follows a compilation from [49], with samples:
trees, n = 367 species; shrubs, n = 86 species; other n = 64 species. Other include graminoid and non-graminoid
herbaceous and climbers. Groups were compared with a one-sample t-test (** P < for 0.01, * P < for 0.05, and
n.s. for P > 0.05)
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Figure S3: Lag-1 temporal autocorrelation of seed production mapped onto a plant phylogeny. Warmer
colors (reds) indicate higher, while blue lower AR1 (𝜆 = 0.27, 𝑝 < 0.0001, n = 518 species). Distribution of the
masting metrics is given in Fig. S4.
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Figure S4: Distribution of masting metrics. Histogram of a) coefficient of variation (CV), and b) lag-1 temporal
auto-correlation (AR1) for the 517 species analyzed. Black dotted lines show median and quantiles at 2.5% and
97.5%.
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Figure S5: Relationship between the coefficient of variation (CV) and the lag-1 temporal auto-correlation
(AR1). The Hexagon color is scaled to the number of observations within each hexagon, n = 517.
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Figure S6: Summary of climate effect on masting metrics, derived from the GJAM model. Relationship
between the coefficient of variation (CV) and lag-1 temporal auto-correlation (AR1) and species climatic niche
(MAP, in cm and MAT, in °C). The predictions and associated standard error are derived from the GJAM model.
Each dot represents one species (n = 517).
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Figure S7: Summary of climate effect on functional traits, derived from the GJAM model. Effects of mean
annual temperature (MAP, in ◦𝐶) and mean annual precipitation (MAT, in cm) on functional traits (a- leaf area,
b- LMA, c- leaf N, d- plant height, e- stem tissue density and f- seed mass). The surface shows the conditional
relationship between functional traits and MAT across levels of MAP. Convex hull is defined by species observations
(red dots). MAT and MAP are defined for each species’ distribution derived from Global Biodiversity Information
Facility (GBIF, www.gbif.org). Traits are log10 transformed.
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Figure S8: Bivariate relationships between plant functional traits, their distributions (histograms), and
correlations. The prediction lines at bivariate scatter plots are the loess regressions (estimate with 95% CI).
The dots represented each species (n=517), with 2D kernel density estimation. The significance of the Pearson
correlations: *** for p-values < 0.001, ** for 0.001, and * for 0.01. Traits were log10 transformed.
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Figure S9: Correlation of climatic variables obtained from average conditions of MASTREE+ sites and
from GBIF observations. a) Relation between MAT (in degree C) from MASTREE+ observations and GBIF
observations extracted from CHELSA. b) Relation between MAP (in cm) from MASTREE+ observations and
GBIF observations extracted from CHELSA. Each dot represents one species (n = 517). The regression line is
reported in black (estimate with 95 % CI), with the equation at the bottom right and correlation and the 1:1 line in
red dashed.
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Figure S10: Phylogeny of masting metrics on a restricted dataset. (a) Coefficient of variation of seed
production mapped onto a plant phylogeny restricted to time series of 10 years and longer. Warmer colors (reds)
indicate higher, while blue lower CV (𝜆 = 0.56, 𝑝 < 0.0001, n = 364 species). (b) Lag-1 temporal autocorrelation
of seed production mapped onto a plant phylogeny, restricted to time series of 10 years and longer. Warmer colors
(reds) indicate higher, while blue lower temporal autocorrelation (𝜆 = 0.40, 𝑝 < 0.0001, n = 364 species).
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Figure S11: Masting metrics on the spectrum of plant form and function, for time series of 10 years and
longer (n=368). A) Biplot of principal components that summarized axes 1 and 2, and B) axes 2 and 3. The PCA
included plant functional traits (stem tissue density, leaf area, leaf nitrogen, leaf mass per area LMA, plant height,
and seed mass) and masting metrics (CV and AR1). Arrow length indicates the loading of each considered trait
onto the axes. Points represent the position of species color-coded according to their growth form (green for trees,
blue for shrubs, and black for others that included graminoid and non-graminoid herbaceous and climbers). C)
Summary of PCA loadings and D) contributions to the three axes of variation.34



Figure S12: Summary of climate effects on masting metrics, derived from the GJAM model that included
coefficient of variation (CV) and temporal autocorrelation (AR1) as responses for time series of 10 years and
longer (n=368 species). a) Boxplot of standardized coefficients from the GJAM model with 95%CI, bounded by
80% interval. Colors highlight signs of the correlation (green for positive and purple for negative), with opacity
increasing from 80% to 95% of the distribution outside of zero. Grey is for coefficients that overlap zero. b)
Effects of mean annual temperature (MAP, in ◦𝐶) and mean annual precipitation (MAT, in cm) on CV and AR1.
The surface shows the conditional relationship between CV/AR1 and MAT across levels of MAP. Convex hull is
defined by species observations (red dots). MAT and MAP are defined for each species’ distribution derived from
the Global Biodiversity Information Facility (GBIF, www.gbif.org). Biplots of relationships between CV/AR1
and MAT and MAP are in Fig. S6.
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Figure S13: Conditional relationship between masting metrics and functional traits, restricted to time series
of 10 years and longer (n=368 species). Boxplots are based on the mean estimate, CI at 80% and 95% to determine
the ranges of the boxplot. Colors highlight signs of the correlation (green for positive and purple for negative), with
opacity increasing from 80% to 95% of the distribution outside of zero. Grey is for non-significant variables (i.e.
coefficients overlap 0).
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Supplementary Tables

Table S1: Summary of the conditional relationship between masting metrics and functional
traits without trait imputation. GJAM-derived conditional relationship between masting
metrics (CV and AR1) and functional traits (stem tissue density, seed size, LMA, leaf N, leaf
area, and plant height) after accounting for the effect of climate and phylogeny. Coefficients are
reported with 95%CI, with significance (95% CI overlapping 0) of functional trait coefficients
in bold. GJAM was used here on the dataset without functional trait imputation (total count of
species with missing traits for LMA = 90 species; seed size = 84 species; leaf N = 96 species;
leaf area = 111 species; stem density = 84 species; height = 51 species).

Masting metric Conditional traits Estimate SE 2.5% 97.5% significance

CV
LMA 9.64e-04 4.26e-04 1.38e-04 1.79e-03 *
Seed size -2.27e-05 8.60e-06 -3.92e-05 -5.60e-06 *
Leaf N -6.98e-04 3.95e-03 -8.44e-03 7.18e-03
Leaf area -8.00e-07 1.50e-06 -3.80e-06 2.10e-06
Stem density 5.68e-01 1.79e-01 2.17e-01 9.29e-01 *
Height 3.97e-03 2.17e-03 -2.33e-04 8.28e-03

AR1
LMA -3.17e-05 2.36e-04 -4.94e-04 4.34e-04
Seed size 4.40e-06 4.80e-06 -4.80e-06 1.38e-05
Leaf N 4.82e-03 2.35e-03 3.11e-04 9.45e-03 *
Leaf area 2.00e-07 8.00e-07 -1.50e-06 1.90e-06
Stem density -1.01e-01 9.88e-02 -2.92e-01 9.72e-02
Height -2.77e-03 1.20e-03 -5.08e-03 -4.06e-04 *
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Table S2: Joint traits model selection (based on the DIC values). GJAM models were fitted
with different combinations of climate covariates, average species climatic conditions (MAP and
MAT), and climate variability (MAP𝜎 and MAT𝜎). Some model combinations were excluded
due to collinearity issues. Note: in the top-scored models that included climate variability,
the effects of climate variability on masting metrics overlapped with 0. The other models that
included either MAP𝜎 and MAT𝜎 had the Δ DIC less than 10, which means that these model
fits received essentially no support. In other words, the probability that one of the alternative
models is the best for the data is 0.

Climatic predictors in GJAM DIC
MAP × MAT + MAT2 + MAP2 10,997
MAP × MAT + MAT2 + MAP2 + MAP𝜎 11,005
MAP × MAT 11,063
MAP𝜎 × MAT + MAT2 + MAP2

𝜎 11,113
MAP𝜎 × MAT 11,149
MAT𝜎 × MAT 11,159
MAP × MAT𝜎 + MAT2

𝜎 + MAP2 + MAP𝜎 11,190
MAP𝜎 × MAT𝜎 + MAT2

𝜎 + MAP2
𝜎 11,314

MAP𝜎 × MAP + MAP2 + MAP2
𝜎 11,464

MAP × MAT𝜎 11,505
MAP × MAP𝜎 11,576
MAP𝜎 × MAT𝜎 11,652

38


